Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-82-6

1982-02-01

A Formal Treatment of Distributed Systems Design

Gruia-Catalin Roman and Robert K. Israel

The paper reports on a technique for the formal definition of the distributed systems design
methodology called the Total System Design (TSD) Methodology. Central to the formalization of
the TSD Methodology is the TSD Model, which consists of several information structures and a
set of consistency constraints (i.e., acceptance criteria). While the major part of this paper is
taken by the model definition, the authors' intent is not simply to justify the model itself. The
paper provides convincing evidence that rigorous methodology definitions are both feasible and
useful. It offers examples of how to approach the formalization of various... Read complete
abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Roman, Gruia-Catalin and Israel, Robert K., "A Formal Treatment of Distributed Systems Design" Report
Number: WUCS-82-6 (1982). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/896

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F896&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F896&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F896&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F896&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F896&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/896?utm_source=openscholarship.wustl.edu%2Fcse_research%2F896&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/896

A Formal Treatment of Distributed Systems Design

Gruia-Catalin Roman and Robert K. Israel

Complete Abstract:

The paper reports on a technique for the formal definition of the distributed systems design methodology
called the Total System Design (TSD) Methodology. Central to the formalization of the TSD Methodology
is the TSD Model, which consists of several information structures and a set of consistency constraints
(i.e., acceptance criteria). While the major part of this paper is taken by the model definition, the authors'
intent is not simply to justify the model itself. The paper provides convincing evidence that rigorous
methodology definitions are both feasible and useful. It offers examples of how to approach the
formalization of various methodological concepts such as satisfiability of system requirements,
hierarchical structuring of the system, and stepwise refinement. Finally, it shows how these and other
concepts of practical value in distributed systems design may become better understood through the use
of the proposed formalizations.

https://openscholarship.wustl.edu/cse_research/896?utm_source=openscholarship.wustl.edu%2Fcse_research%2F896&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/896?utm_source=openscholarship.wustl.edu%2Fcse_research%2F896&utm_medium=PDF&utm_campaign=PDFCoverPages

A FORMAL TREATMENT OF
DISTRIBUTED SYSTEMS DESIGN

Gruia-Catalin Roman

Robert K. Israel

WUCS-82-6

February 1982

Department of Computer Science
Washington University
St. Louis, Missouri 63130

Presented at the Symposium on Current Issues of Requirements Engineering
Environments, September 20 and 21, 1982, Kyoto, Japan.

As appeared in Requirements Engineering Environments, Y. Ohno (editor),
OHM/North-Holland Pub. Co., 1982, pp. 3-12.

A FORMAL TREATMENT OF DISTRIBUTED SYSTEMS DESIGN

Gruia-Catalin Roman and Robert K. Israel

Department Of Computer Science
Washington University
Saint Louis, Missouri 63130

Abstract

The paper reports on a technique for the
formal definition of a distributed systems design
methodology called the Total System Design (TSD}
Methodology. Central to the formalization of the
TSD Methodology is the TSD Model, which consists
of several information structures and a set of
consistency constraints (i.e., acceptance
eriteria). While the major part of this paper is
taken by the model definition, the authors' intent
is not simply to justify the model itself. The
paper provides convineing evidence that rigorous
methodology definitions are both feasible and
useful. It offers examples of how to approach the
formglization of various methodoclogical concepts
such as satisfiability of system requirements,
hierarchical structuring of the system, and
stepwise refinement. Finally, it shows how these
and other concepts of practical value in
distributed systems design may become better
understood through the use of the proposed
formalizations.

Acknowledgements: This work was partially
supported by Rome Air Development Center and by
Defense Mapping Agency under

contract F30602-80-C-0284, The contributions of
W. E. Ball, W, D, Gillett and M. J. Stucki in
discussing and reviewing parts of this paper are
also acknowledged.

Introduction

The formalization of a system design
methodology, like the semantic definition of a
programming language, is central to the
establishment of a correct usage and
implementation of the methodology. As such, a
formal treatment must involve the identification
of the ordering and nature of design activities,
the nature of the design specifications produced,
and the acceptance criteria which these
specifications must meet.

Our appreoach to modeling the system design
process is similar to that of the coperational
models employed in the semantic definition of
programming languages. The operational models
consist of a set of information structures with an
abstract interpreter which modifies them in
accordance with a predetermined set of rules [7].
Similar information structures may be used to
abstract the nature of the specifications

generated by a design methodology. Design
activities (synthetic and analytic) may be defined
as transformations and predicate evaluations over
the information structures with their sequencing
being specified in some operational manner such as
that proposed in [4]. Finally, the acceptance
eriteria applied to the delivered specifications
may be defined by an additional set of predicates
over the information structures.

This approach has been used successfully in
the formal definition of the Total System Design
(TSD) Methodology, which is a methodology for the
design of distributed hardware/software systems
[5). Central to this definition is the TSD Model,
which consists of several information structures
and a set of consistency constraints (i.e.
acceptance criteria) over those structures.

The TSD Model has its roots in three rather
different technical areas: Alford's work on
formal foundations for system specification and
design [1], programming language semantics [7],
and General Systems Theory [8]. The model
developed by Alford shares a certain commonality
of goals with the TSD Model {i.e. a better
understanding of the system design process), and
hence had a great influence on the development of
the TSD Model, The two approaches differ,
however, both in their perception of the system
design process and in the formalisms employed.
Alford's approach follows very closely the
techniques seen in general systems theoretic
models. Our strategy deviates from them in two
important ways. First, the TSD Model focuses on
concepts specific to distributed systems design
and represents them directly as part of the model
in ways that stress a clean separation of
concerns. Second, the model borrows heavily from
work in the area of programming language
semantics. The similarity of the approach to that
of operational semantics was described above.

Due to space limitations, this paper is
concerned solely with the information structures
and the consistency constraints that have been
employed in the semantic definition of the TSD
Methodoleogy and the formalization of related
design concepts., The TSD methodology is briefly
outlined in the next section as a means of
providing the reader with some of the motivation
behind the development of the formal model.

The main body of the paper, however, is
dedicated to a definition and discussion of the
three information structures that are part of the
model and the formalization of several important
methodelogical concepts. These information
structures are the system requirements, the
processing model which captures the nature of the
design specifications generated during
system-level design (i.e., prior to the commitment
to 2 particular hardware and software mix), and
the hardware/software requirements which reflect
the ultimate result of the hardware/software
trade-offs taking place during system design.

Following the definition of the information
structures, the consistency constraints which
formalize several basic concepts of the TSD
Methodology are presented. The nature of these
constraints will be identified in the discussion
of the information structures and the TSD
Methodology below.

TSD Methodeclogy Qutline

The TSD Methodology is limited in scope to
that part of the design which we call the system
design stage. It covers 21l design activities
involved in taking a set of overall system design
requirements and generating the specification of
the hardware and software requirements for the
system. There are two phases that make up this
stage: the system architecture design phase and
the system binding phase. The former deals with
the selection of a system architecture which
accomplishes the intended system functionality and
which, under a reasonable set of technological
assumptions, meets the constraints (such as
performance) imposed by the system requirements.
The proposed architecture and all the design
decisions taken during this phase form a
processing model used as input to the binding
phase,

The binding phase, based on the limited
degrees of freedom still left open by the system
architecture design phase and based on market
availability, identifies a particular mix of
software and hardware needed to implement the
system and produces specifications for all needed
components. The nature of the specifications,
however, may vary from component to component
depending on its intended implementation (software
or hardware) and on the manner in which it is to
be obtained (off-the-shelf, through customization,
or custom-made). The system design stage is also
concerned with the integration of the system
components from the point when both the software
and the hardware components are available and up
to the point when the system is offered for
customer acceptance testing.

The TSD methodology approaches the system
architecture phase by treating the design of
distributed systems in terms of the top down
development of a hierarchy of design
specifications that form a processing model. Each
design specification corresponds to a subsystem of
the overall system architecture with the top one

being the application subsystem and the bottom one
the supporting hardware. A design specification
at one level is sald to support the level above by
providing a design solution for problems which are
formally defined within the level above. This
approach is not unlike the one observed in systems
which have an onion-like structure with each layer
defining a virtual machine. Here the concept is
extended to distributed systems, including systems
where processes are subject to dynamic
reallocation. Design is considered to proceed top
down both within levels (though stepwise
refinements of design specifications) and between
levels in the model.

The top-down development of successive levels
in the system halts and the binding phase entered
when it becomes obvious that the support needs of
the bottom level of the processing model can be
implemented by physical hardware structures. 1In
the binding phase, an attempt is made to identify
a particular organization of hardware and software
components which meets the reguirements of the
processing model, The designer starts by
identifying binding alternatives for the most
constrained areas of the specifijcation, This
results in the imposition of new constraints over
the remaining parts of the design which, in turn,
eliminates from consideration many fruitless
alternatives., The last task performed is the
generation of the software and the hardware
requirements for the selected implementation.

System Requirements Definition

SRQ = (CM, R, CQ, eval)

CM conceptual model

R — domain of possible system realizations
CQ - set of design constraints

eval - system evaluation procedure

The system requirements (SRQ) are defined as
a d-tuple consisting of a conceptual model, a set
of possible system realizations, a set of
constraints on the system, and a system evaluation
function. The conceptual model (CM), which is
formally defined below, i3 a model of the
functionality of the system with respect to its
environment. The conceptual model does not
incorporate any non-functional constraints such as
speed or size limitations. This allows for formal
treatment of system functions independent of the
complexity of performance requirements. The set
of system realizations (R) consists of all
possible system realizations which exhibit the
functionality defined in the conceptual model.
Although this set i3 not necessary for the
definition of the system requirements, the concept
it represents will be used later in the system
design definition. The set of constraints (CQ)
consists of all explicit or implied constraints on
the performance, packaging, implementation, etec.
of the system. The constraints together with the
conceptual model fully specify the system to be
designed as the conceptual model determines the
set of possible realizations and the constraints
determine a (possible empty) subset of those

realizations that meet all of the non-functional
requirements.

The determination of the subset of
realizations which meet all of the requirements is
done by the system evaluation function (eval).
Given a set of realizations R and & set of
constraints €, eval(R,C) is a set containing only
those members of R which are consistent with the
constraints C. This particular approach has been
selected for dealing with impact of constraints
because of the difficulty involved in recognizing
all classes of active constraints.

Conceptual Model

CM = (ES, ESO, SS, Sso0, F)

ES - set of environment states

ESO - set of initial environment states
S35 - set of system states

550 - set of initial system states

F -~ functionality

F SUBSET.OF ((ES x 83) x (ES x 35))

The conceptual model (CM) is defined as a
5-tuple consisting of a set of environmental
states (ES), a set of initial states for the
environment (ES0), a set of system states (388), a
set of initial states for the system (S80), and a
transition mapping (F). The sets ES and ESO,
where ESO is a subset of ES, are used to model the
environment of the system, as the allowable
functionality of the environment must be
determined in order to establish the functionality
of the system. Similarly, the sets 3S and $S0,
where 380 is a subset of S5, are used to model the
system. Given this static characterization of the
system and its environment the mapping F is used
to model their dynamic properties. F can be
described as a subset of ((ES x S5) x (ES x 88))
where the first element in the pair is the current
state of the system and the environment, and the
second element is the successor state. Since many
to many mappings in F are allowed, it is possible
te model non-deterministic state transitions. A
system/environment interaction sequence
((el,s1),(e2,s2),...(en,sn),...) 18 correct iff el
is a member of ESQ, s1 is a member of 550, and
each pair of successive states
((ei,si},(ei+?,s5i+1)) is a member of F.

Processing Model Definition

PM = (D51, DS2, ... DSn)

DSi - System design specifications
DS1 IMPLEMENTS SRQ
D3i+1 SUPPCRTS DSi
DSn SPECIFIES MCH

for i<n

The processing model is defined as a linear
order of design specifications which meet a number
of criteria. First, the initial design
specification (DS1) must implement the system
requirements (SRQ). The IMPLEMENTS relationship
essentially requires that the design specification
accomplish the functionality established by the

conceptual model and that at least one realization
of that design specification meets the system
constraints. The next requirement is that each
Successive design specification must support its
immediate predecessor. The SUPPORTS relationship
requires that one design specification implements
the support needs (e.g., communication,
reallocation, postulated primitive operations,
etc.) of another design specification. The last
eriterion for the processing model is one of
completeness: the model completely specifies a
system architecture when the lowest level design
specification DSn SPECIFIES MCH, where MCH is a
net of physical machines, The SPECIFIES
relationship is defined more formally later in
this paper, but essentially states that certain
components of DSn can be mapped directly onto MCH.

System Design Specification

Ds = (PSS, PRS, ALC, PFS, BD, C, eval)

PSS - process structure

PRS - processor structure

ALC - process/processor allocation
PF3 - performance specifications
BD - binding options

c - constraints

eval - system evaluation procedure w.r.t. C

A system design specification is a 7-tuple
consisting of a process structure, a processor
structure, an allocation of processes to
processors, a set of performance specifications, a
set of binding options, a set of system
constraints, and a procedure for evaluating
systems with respect to the constraints. The
process structure is a network of processes and
conceptual communications links, and essentially
describes the functional elements which interact
to carry out the overall system function., The
processor structure describes a network of
abstract processors and their interconnections
which provides the support structure on which the
process structure resides., The process/processor
allocation defines a mapping of processes and
inter-process communications in the process
structure onto the processors and interconnections
in the processor structure, The performance
specifications attach performance requirements to
the process and processor structures and also
contain performance data derived from these
structures that can be used in the design
validation process. The binding options represent
a conceptual set of feasible realizations of the
system design which meet the binding constraints
(to be defined later). The set of constraints
consists of the constraints established by the
system requirements. Finally, the system
evaluation function serves to define the set of
binding options by evaluating the validity of
potential system realizations with respect to a
set of constraints, A more formal definition of
each of these components of the design
specification is presented below,

The system design specification may be
considered the skeletal semantic model for a
complete distributed systems design language.
Unfortunately, no such language is available at
this point although specification languages have
recelved considerable attention both in industrial
and academic cirecles, Varicus proposals range in
flavor from tables, standardized document formats,
and graphic representations (6], at one extreme,
to formal languages having well-defined syntax and
semantics [3] at the other. The work on program
specifications has largely dominated the field,
both with respect to the attention received and
level of formality. (The reader is referred to
[2] for a good survey of availsble formal program
specification techniques.) The specification of
distributed systems, however, continues to present
designers with many unresolved problems [2]. The
hope 1s for this work to provide valuable insights
that could affect the next generation of
distributed systems specification languages.

Process Structure

PSS = (PS5, LK)

PS - set of processes
PS = { P } P=(SP, sp0, TP) }

SP - set of process states
sp0 - set of initial process states
TP - state transition rule

TP SUBSET.OF (5P x SP)

LK - set of links between processes
LK = { L | L=(PL, SL, s20, TL) }
PL - processes linked by L
PL SUBSET.OF PS
SL - states internal to the link
s10 - set of initial link states
TL - link communieation protocol
TL SUBSET.OF (lcstates x lestates)
where
lestates = (SL x SP1 x ... SPn)
Fi MEMBER.OF PL
Pi = (SPi, sp0i, TPi)

The process structure (PSS) is defined as an
ordered pair (PS,LK), where PS is a set of
processes and LK is a set of links. Processes are
the individual funetional entities in the system,
The set PS describes not only the processes
internal to the system, but alsoc the processes in
the system enviromment. Links are the logical
communication paths of the system, and can be
viewed as the medium by which inter-process
message passing is carried out. The combination
of the process' behavior with the links' behavior
determines the overzll functionality of the system
and its environment.

A procesa P is defined as a triple (5P, sp0,
TP), where SP is a set of process states, sp0 is a
set of initial process states, and TP is a set of
valid transitions from one process state to
another. The functionality of the process is the
set of all valid sequences of states, which can be
determined from spQ through successive application
of the transitions in TP (the conceptual model was

defined similarly).

A link L is defined a2s a U4-tuple (PL, SL,
510, TL), where PL is & set of processes, SL is a
set of internal 1ink states, s10 is a set of
initial internal states, and TL is a set of valid
transitions which serves to specify the link
protocol. PL is a subset of PS, and represents
those processes which can communicate through the
link subject to the link protocol. The set SL
describes the internal states of the link, but
does not include knowledge of any portion of the
internal process state. The functiocnality of the
link and its interaction with the processes it
interconnects is specified by the state transition
rules in TL, which specify transitions from one
aggregate process/link state to another. Hence,
communication is accomplished by the fact that the
link has knowledge of and may alter the states of
the processes it connects,

Processor 3Structure

PRS = (PR, IC)

PR - set of processors
PR = { Q | Q=(5Q, =q0, TQ) }
3@ - set of processor states
8q0 - set of initial processor states
TQ - state transition rule
TQ SUBSET.OF (SQ x SQ)

IC - set of processor interconnections
IC = { W | W=(PW, SW, swO, TW) }
PW -~ processors being interconnected
SW - set of interconnection states
sw0 - set of ipitial interconnection states
TW - interconnection protocol
TW SUBSET.OF (icstates x icstates)
where
icstate = {SW x SQ1 x ... 3Qn)
Qi MEMBER.OF PW
Qi = (501, sq0i, TQi)

The processor structure (PRS) is defined as
an ordered pair (PR,IC), where PR is a set of
processors and IC is a set of processor
interconnections, PR is 2 set of abstract
processors, and represent the functional
processing elements in the system. IC is a set of
processor interconnections, which defines the
communications paths between processors. The
network of processors and interconnections so
described provides the support structure upon
which the process structure resides (in a manner
like that of a virtual machine supporting the
execution of a user process). It also identifies
the minimum degree of system distribution required
(the distribution may increase in subsequent
design specifications). The formal definitions of
the processors and interconnections is very
similar to that of the processes and links of the
procesg structure, and so the discussion will not
be repeated here.

Process/Processor Allocation

ALC = (AF, af0, TA)

AF - set of all allocations functions
AF = {8 } A : prstates —-> psstates}
prstates - composite processor structure
states
prstates = 5Q1 x 802 x ... 5Qh
x SW1 x ... SWk
psstates - composite process structure
states
psstates = SP1 x SP2 x ... SPn
x SLT x ... Silm

af0 — set of initial allocation functions

TA - set of valid allocation changes
TA SUBSET.OF
({(AF x psstates x prstates)x
(AF x psstates x prstates))

('A {(A1,x1,¥y1),(A2,x2,y2)) ELEMENT.OF TA)
[A1¢y1)=x1 AND A2(y2)=x2 AND

((A2 = A1 AND x2 = x1 AND TRS(y1,y2))

OR {A2 = A1 AND TSS(x1,x2) AND TRS{y1,y2))
OR (NOT(A1=A2) AND x1=x2))]

where
TRS = compqsite state transition rule for PRS
T3S = composite state transition rule for PSS

The process/processor allocation is defined
as a triple (AF, af0, TA), where AF is the set of
all allocation functions, af0 is a set of initial
allocation functions, and TA is z =et of
transitions between allocation functions. The
purpose here is to model the association between
processes and processorsa. Although most systems
maintain a static mapping between processes and
processors, this model allows for the
specification of systems in which the mappings
change over time, The valid sequences of
transitions is determined from afQ and TA.

The set of allocation functions AF is defined
as the set of all mappings from the set of
composite processor states (prstates) onto the set
of composite process states (psstates). The set
prstates is essentially the cross product of all
processor and interconnection states in the
processor structure, and the psstates is the cross
product of the process and link states in the
process structure. The mapping is funetional, so
that a given state of the processor structure
uniquely identifies a state of the process
structure., Note that it is possible for an
individual process state to have a functional
dependency on the states of more than one
processor, so that a process can effectively be
mapped ontoc more than one processor or
interconnection.

The set of valid allocation changes TA is a
subset of ((AF x psstates x prstates) x
(AF x psstates x prstates)), where each member of
an ordered pair in TA represents the association
of an allocation function with a specific

processor structure state and a process structure
state. Each member of TA represents a change in
the system allocation function to be associated
with a given change in the processor structure and
process structure states. Non-determinism is
possible as several members of TA may have the
same first element but different second elements
s0 that many different changes in the allocation
may be possible at a given state of the system.

In all cases, the members of TA are subject to the
following constrainta. First, if the allocation
funetion remains the same across a transition,
then a valid change in state of the processor
structure must have occurred and the process
structure state must have remained the same or
undergone a valid transition. Second, if the
allocation function changes across a transition
then no change in the process structure state must
have occurred. These constraints assure that TA
is consistent with the transition functions in the
processes and processors.

Performance Specifications

PFS = {PSRQ, PREQ, PSCH, PRCH, PMOD)

PSRQ - process structure performance
requirements
PSRQ SUBSET.OF (psstates® x PSA)
PSA - process structure attributes

PRRQ - processor structure performance
requirements
PRRQ SUBSET.OF (prstates® x PRA)
PRA - processor structure attributes

PSCH - process structure performance
characteristics
PSCH SUBSET.OF (psstates*® x PSi)

PRCH - processor structure performance
characteristies
PRCH SUBSET.COF (prstates® x PRA)

PMOD - performance model
PMOD : POWERSET(prstates® x PRA)
5 ——> POWERSET (psstates® x PSA)

> PSRQ

PMOD{PRRQ) ==
=z> PSCH

PMOD(PRCH}

PSCH ==> PSRQ
PRCH ==> PRRQ

where
{(x1,y1),...¢xn,yn)} ==> {(x1,21),...(xn,zn)}
IFF ('A i) [0<i<n+1 IMPLIES (yi IMPLIES zi)]

The performance specification (PFS) is
defined as a 5-tuple (PSRQ, PRRQ, PSCH, PRCH,
PMOD) where PSRQ is a set of process structure
performance requirements, PRRQ is a set of
processor structure performance requirements, PSCH
is a set of process structure performance
characteristics, PRCH is a set of processor
structure performance characteristies, and PMOD is
a performance model relating the various
specifications. The performance requirements

specifications serve to establish performance
criteria which must be met by the process and
processor structures, The performance
characteristics represent derived performance data
about the system.

The performance regquirements and
characteristics are defined as sets of (state
sequence, attribute predicate) pairs. The state
sequences are linear sequences of O or more
composite structure states, and represent various
subparts of a process or processor structure
functionality. The predicates associate specifie
attributes with each sequence, such as "elapsed
time < 100 microseconds™, Attributes of the
entire structure can be associated with null
sequences, such as "system storage < G64K" or
"system mass < 40Kg".

The performance model is a function which
maps (processor state sequence, attribute) pairs
to (process state sequence, attribute) pairs, and
represents the derivation of performance
requirements or characteristics for a process
structure based on a set of requirements or
characteristics for a processor structure
supporting it. Given the performance model PMOD,
then PMOD(PRRQ) must be consistent with PSRQ, and
PMOD(PRCH} must be consistent with PSCH, where a
requirement R1 is consistent with a requirement R2
iff the attributes associated with sequences in R1
imply the attributes associated with the same
sequences in R2. Of course, for the design
specification to be valid the performance
characteristics in each structure must be
consistent with the performance requirements for
the structure.

Binding Options

BD = (FB, FR, BC, eval)

FB - feasible bindings
FR - feasible realizations
BC - binding constraints

eval - binding evaluation function

FB = eval(FR, BC)
NOT(eval(FB, C) = nil)

(PSS U PRS U ALC U PSRQ U PRRQ) SUBSET.OF BC

The binding cptions (BD) are defined as a
4-tuple (FB, FR, BC, eval) where FB is z set of
feasible bindings, FR is a set of feasible system
realizations, BC is a set of binding constraints,
and eval is a binding evaluation function, The
set of feasible realizations FR is a conceptual
set of all system realizations which meet the
functional requirements of the design
specification. The set of binding constraints BC
represents a cumulative set of constraints which
have been imposed on the system binding through
the design process, Constraints which are
included in BC are such things as binding
restrictions derived from the system requirements,
restrictions imposed by the choice of process and
processor structures at the "current® and all

higher levels in the processing model, and
restrictions imposed by the performance
requirements. The set of feasible bindings FB is
the set of all feasible realizations which are
consistent with the binding constraints, i.e.

FB = eval(FR,BC). For the system design to be
valid, it must also be true that eval(BD,C) is not
empty, where C is the set of constraints from the
design specification. Hence, there must be at
least one binding of the design to a system
realization which meets all of the system
constraints,

Hardware/Software Requirements Definition

HSRQ = (SFRQ1,...,SFRQn,HDRQ)

SFRQ1 - subsystem software requirements
HDRQ - hardware requirements

The hardware/software requirements
specification is produced by the binding phase and
is the final product of the system design process,
The list of specifications SFRQ1 ... SFROn+1 are
requirements specifications for software systems
required for each of the n levels of the
processing model. The functional and performance
requirements for the software at each level are
derived from the process structure of its
corresponding level in the processing model, The
hardware requirements specification HDRQ is
derived from the processor structure of the design
specification DSn. The funetional and performance
specifications for the hardware are thus derived
directly from the processor structure. Additional
elements of the specifications include the
identification of existing hardware and software
components, the binding of process and processor
structure elements to the existing components, and
a2 specification of the interfaces required between
components,

Relationships Between Specifications

There are four basic relationships which tie
together the specifications of the information
structures in the processing model, The first
relationship, IMPLEMENTS, defines the requirements
that must be met for a design specification of a
system to be consistent with the system
requirements definition. The SUPPORTS
relationship ties a design specification to
another design specification which provides the
support structure for it. The REFINES
relationship describes the relationship between
design specifications in the stepwise refinement
of a design at one level in the processing model.
Finally, the SPECIFIES relationship ties a design
specification to a network of physical machines.

Implements

DS = (PSS, PRS, PFS, ALC,
BD=(FB, FR, BC, eval), C)

SRQ = (CM=(ES, ESO, SS, 830, F), R, CQ, eval)
DS IMPLEMENTS SRQ IFF

(?E PHI) [PHI: psstates ——> (ES x 88) 1
where
PHI is onto (ES x SS8)
TSS(x1, x2)} AND NOT(PHI(x1) = PHI(x2))
IMPLIES (PHI(x1), PHI(x2)) MEMBER.COF F

FR = R
C = CQ

The implements relationship is essentially a
predicate asserting that a design specification
specifies at least one system reazlization that
meets a system requirements specification. The
relationship is established if there exists a
mapping of composite process structure states in
the design specification onto the composite
system-environment state set in the system
requirements which has the following properties.
First, the constraints CQ in SRG must be the same
as the constraints C in DS, Second, the set FR of
feasible realizations 1n DS must be the same as
the set R of valld system realizations in SRQ.
Finally, any valid transition between states in DS
must map onto either no change in states of the
conceptual model or a valid change of states of
CM, Hence, PHI represents a mapping of the
functionality of DS onto the functionality of SRQ,
with DS and SRQ required to have the same set of
constraints,

Supports
DS = (PSS, PRS, ALC, PFS, BD, C, eval)
pst = (PSs', PRS', ALC', PFS', BD', C', eval)

DS' SUPPORTS DS IFF

(?E PSI) [PSI : (PS* U LK') -=> (PR U IC)
PSI is onto (PR U IC}
IF (Pi' MEMBER.OF PS') AND
(PSI(Pi') MEMBER.OF IC)
THEN {('A L3j' MEMBER.OF LK')
(IF Pi' MEMBER.OF PLj'
THEN PSI(Pi') = PSI(Lj')}]
IF (L3j' MEMBER.OF LK') AND
(PSI(Lj') MEMBER.OF PR)
THEN (!'A Px' MEMBER.OF PLJ'"}
f(PSI(Pk') = PSI{Lj")}]]

(?E QSI) [QSI : (PR* U IC') ——> (PR U IC)
Q51 is onto (PR U IC)
IF (Qi' MEMBER.OF PR') AND
(QSI(Qi') MEMBER.OF IC)
THEN (!A Wj' MEMBER.OF IC')
{IF Qi' MEMBER,OF PWj!
THEN QSI{Qi') = QSI(Wi")]
IF (Wj' MEMBER.OF IC') AND
(QSI(Wj') MEMBER,.OF PR)
THEN ('A Qk' MEMBER.OF PWj')
[(QSI(Qk'™) = QSI(Wj'))] 1]

(?E PHI) [(PHI : psstates' —> prstates)
PHI is onto prstates
IF TSS'(x1', x2') AND
NOT(PHI(x1')=PHI(x2"'))}
THEN TRS(PHI(x1'), PHI(x27))]

('A Qi MEMBER.OF PR) (?E PHI1.i)
[(PHI1.i : psstates,i' —> SQi)
PHI1.i1 is onto 3Qi
IF TSS.i'(x1', x2') AND
NOT(PHI1.i(x1')=PHI1.i(x2%))
THEN TQi(PHIt.i(x71'), PHI1.i(x2'))]

(!A Wj MEMBER.OF IC) (?E PHIZ.j)
[(PHI2.j : psstates,j' —> SWj)
PHI2.j is onto SWj
IF TS8S8.3'(x1', x2') AND
NOT{PHI2.j(x1"}=PHIZ2.j(x2"'))
THEN TW3i(PHIZ2.j{x1'), PHI2.j(x2'))]

AF* = { A" | A' : prstates' —> psstates' AND
A' = (Aq1',...,AQn', Aw1', ..., Awm') AND
(!'A Qi MEMBER.OF PR)
[Aqi ; prstate.i' ——> psstate.i'] AND
(!'A Wj MEMBER.OF IC)
{ Aw} : prstate.j' —> psstate.j'] }

where

psstate.i!' - composite state of entities
mapped by PSI into Qi

T8s5.i° - corresponding state transition
rule

prstate.1' - composite state of entities
mapped by QSI into Qi

TRS.1? - corresponding state transition
rule

psstate.j' - composite state of entities
mapped by PSI into Wj

T35.3! - corresponding state transition
rule

prstate.j' - composite state of entities
mapped by QSI into Wj

TRS. j! - corresponding state transition
rule

(?E KAI) [KAI : {psstate'® x PSA') .

—> {(prstate* x PRA))
PRRQ
PRCH]

KAI(PSRQ')
KAT(PSCH')

FB' = eval(FR', BC'}
FR' SUBSET.OF FR
BC SUBSET.OF BC'

c'=¢C

The SUFPORTS relationship between two design
specifications DS' and DS states that DS!
specifies the support system upon which DS
resides, or more precisely that DS' is a design
specification for the processor structure of DS.
A number of requirements must be met for the
relationship to hold, and these are described
below. The first set of requirements deals with
the mapping of processes, processors, links, and
interconnections in DS' to processors and
interconnections in DS. For processes and links,

there must exist a function PSI from processes and
links in D53' onto processors and interconnections
in DS. Under PSI, if any process in DS' maps to
an interconnection in D3, then all links to which
that process is attached in DS' must map to the
same interconnection in DS. Similarly, if any
link in DS' maps to a processor in DS then all
processes conneéected by the link must also map to
the same processor, For processors and
interconnections in D3', there must exist a
function QSI from processors and interconnections
in D3' to processors and interconnections in DS.
Under QSI, if any processor in DS' maps to an
interconnection in DS, then all interconnections
to which that processor is attached in DS' must
also map to the same interconnection in DS.
Similarly, if an interconnection in DS' maps to &
processor in DS then a2ll processors connected by
that interconnection must map to the same
processor in DS. The result of these restrictions
is that the processes, processcrs, links, and
interconnections of DS' are partitioned into
disjoint sets according to the processor or
interconnection in DS to which they are mapped.
In other words, DS' may increase the level of
distribution identified by DS, but only in a
manner consistent with DS.

The second group of restrictions deazls with
the functional mapping between the two design
specifications. In a global sense, there must
exist a mapping PHI from the composite process
structure state (psstates') in DS' %o the
composite processor structure state (prstates) in
DS such that valid transitions in psstates' map to
either valid transitions in prstates or no
transition, Using the partitioning from above,
however, we can qualify the mapping further, For
every processor Qi in the processor structure of
DS, we can define a composite process state
psstates.i' which is the composite state of all
links and processes in DS' which map to Qi through
PSI. Similarly, for each interconnection Wj in DS
we can define a composite process state
psstates.j'. We can now define a mapping between
the partitions of the processing model in DS' and
the processors and interconnections in DS as
follows, For each processor Qi in DS, there must
exist a mapping PHIV1.i from psstates.i' onto S5Qi
such that all valid transitions in psstates.i' map
to valid transitions in 501 or no transition in
5Qi. Also, for each interconnection Wj in DS
there must exist a mapping PHIZ.j from psstates.j'
onto SWj such that all valid transitions in
psstates.j' map to valid transitions in SWj or no
transition.

Using the partitioning concept a restriction
can also be placed on the the process/proccessor
allocation in DS8'. The requirement is essentially
that processes within a partition mapping to a
processor Q in DS can only be allocated to
processors in DS' which are also mapped to Q. Put
more formally, let us define prstates.i' as the
composite state of the processors and
interconnections in DS' which map through GSI to
processcor Qi in DS, and prstates.j' be the
composite state of the processors and

interconnections which map through QSI to
interconnection Wj in DS. Then the allocation
functicns A' in DS' can be decomposed into
subfunctions Aq1',...Agn',Aw1',...Awm' such that
the Aqi map prstates.i' onto psstates.i' and the
Awj map prstates.j' onto psstates.j', subject to
the state transition consistency rules for
allocation functions.

The last set of requirements deals with the
constraints and performance requirements and
characteristics of the two models. First, there
must exist a function KAI which maps {(psstates
sequences, attribute predicate) pairs onto
(prstates sequences, attribute predicate) pairs
such that KAI{PSRQ') is consistent with PRRQ and
KAI(PSCH') is equal to PRCH. Of course, the
mapping of psstates' sequences to prstates
sequences implied by KAI must be consistent with
the function PHI. 1In this way KAI provides the
translation between the performance requirements
and characteristies in DS' and those in DS.
Second, the set of constraints C' in DS' must
equal the set of constraints € in DS. Finally,
FR' must be a subset of FR and BC a subset of BCt.
The latter condition results as BC' contains the
binding constraints imposed by the design
decisions in DS as well as those imposed by design
decisions in DS',

Refines
DS = (PSS, PRS, ALC, PFS, BD, C, eval)
ps' = (PsS', PRS', ALC', PFS', BD', C', eval)

DS*' REFINES DS IFF

(?E PHI) [PHI : psstates' -—> psstates
PHI is onto psstates
IF TSS'(x1', x2') AND
NOT{(PHI(x1')=PHI(x2'))
THEN TSS{PHI{x1'), PHI(x2'))]

(?E QSI) [QSI : prstates' --> prstates
QSI is onte prstates
IF TRS'(y1', y2') AND
NOT(QSI{y1')=QS8I{y2'))
THEN TRS(QSI(y1'), Q3I(y2*'))]

('a MEMBER.OF AF)

x = (X1,...,X0,...,X0+m)

= {¥1yeees¥0, 00, ,yn+m)

ith yi MEMBER.OF SQi for 0<i<n+1

yi MEMBER.OF SWi1 for n<i<n+m+1

A = (A1,...,An,...,An+m)
with Ai(yi) = xi for O<i<n+m+1]

(1A A' MEMBER.OF AF')
[x' = {x11',...,x1k(1}",...,
xn1', ..., xnkin)?',...,
x(n+m)i', ..., x{(n+m)k(n+m) ')

y' o= (yitr, .., yik(D) Y, ...,
ynl1',...,ynk(n)', ...,
y(nemdi1t, ..., y(nsmdk(n+m) '}

with
yij' MEMBER.OF 5Qij’
for 0<i<n+1
yij' MEMBER.OF SWij'
for n<i<n+m+1 and 0<j<k(i)}

and 0<j<k{i)

A' = (A1), . ATK() Y, ...,
Ant1', ..., Ank(n)',...,
Aln+m)1?, ... ,A(n+m)k{n+m) ")
with Aij"(yij") = xij'
for 0<i<n+m+1 and 0<{j<k(i)

PHI(..., xi1%, ..., xik(i}", ...)
= (..., xi, ...

QSI(..., yi1',...,yik{i)", ...)
= (heoy ¥i, ..0) 1

(7E KHI} [KHI : (psstate'¥ x PSA")
—> (psstate® x PSA)

KHI(PSRQ') ==> PSRQ
KHI(FSCH') = PSCH]
(?E XSI) [K5I : (prstate'® x PRA')

-=> (prstate® x PRA)
KSI(PRRQ') =
KSI(PRCH') =

FB' = eval(FR', BC')
FR' SUBSET.OF FR
BC SUBSET.OF BC'

c' =¢

During the process of system design it is
usually necessary to decompose a design
specification at one level of the processing model
into a more detailed specification of the same
level, It is therefore necessary to define a
relationship REFINES between a design
specification DS and its refinement DS' in order
to formalize this notion of decomposition. 1In
contrast with current practices, our definition of
stepwise refinement allows for concurrent
refinement of both the process and processor
"structures. This extension, termed dual stepwise
refinement, is particularly important in the
design of high performance systems where hardware
and software designs may not be carried out
independently. For the relationship DS' REFINES
DS to be valid, the following requirements must
hold.

The first requirement is that there be a
functional mapping between the two design
specifications. For the process structures, there
must exist a function PHI from the composite
process structure state of DS' to that of DS, such
that valid transitions in the process structure
state of DS' map onto valid process structure
state transitions in DS, or no transitien. A
similar function QSI from the composite processor
structure state of D3' to that of DS must also
exist,

The second requirement is that the allocation
functions of the two design specifications must be
consistent with the functional mappings PHI and
QSI. Let the allocation functions A in DS be

broken up into n+4m sub-allocations A1, A2,
++.An+m, where n is the number of processors in PR
and m is the number of interconnections in IC. If
vi is the state of a single processor or
interconnection, then xi = Ai(yi) is the composite
state of all processes and links which are
allocated at least in part to the given processor
or interconnection. 1In the refinement DS', there
must be corresponding allocations Aij' and states
xij', yij' such that Aij*'(yij') = xij',
PHIC...xi1',...xik(i)',..) = (...xi...) and
PHI(...y11',...yik(i)...) = (...yi...). In other
words, if a set of processes (or links) ps in D3
is allocated to a specific processor (or
interconnection} pr in DS, then the set of
processes (links) ps' in DS' ontc which ps is
refined must be allocated within the set pr' of
processors {interconnections) which correspond to
pr in the refinement. Aside from the restriction
to the allocation function, this requires that
processors and interconnections be decomposed in a
hierarchical manner.

The final set of requirements deals with the
consistency of the binding options and performance
requirements. For process structures there must
exist a mapping KHI from {process state sequence,
attribute predicate) pairs in DS' to {process
state sequence, attribute predicate) pairs in DS
such that KHI(PSRQ') is consistent with PSRQ and
KHI(PSCH'} is equal to PSCH. For processor
structures, there must exist a similar mapping KSI
between (processor state sequence, attribute
predicate} pairs in DS' and DS such that
KSI(PRRQ') i= consistent with PRRQ and KSI(PRCH')
is equal to PRCH. Next, the set of constralnts C'
in DS' must equal the set of constraints C in DS,
Finally, the set of feasible realizations FR' in
DS' must be a subset of FR, and BC' a superset of
BC,

Specifies
Ds = (PSS, PRS, ALC, PFS, BD, C, eval)
MCH = (PSS"™, PRS", ALC™, PFS", BD", C*%, eval)

bS SPECIFIES MCH IFF

MCH SUPFORTS DS
QSI is one-to-one
SCFTWARE(PS3")
HARDWARE(PRS")
STATIC(ALC")

i.e.,
TA™ = ({{A"} x psstates" x prstates™)®#2)

A processing model is in a sense complete
when its lowest level design specification can be
mapped onto a physical set of hardware and
software, Given a machine level specification MCH
and a design specification DS, we say that DS
SPECIFIES MCH if the following requirements are
met. First, the machine level specification MCH
must have its processor structure map directly to
& hardware implementation and its process
structure map directly to a software
implementation on the given hardware. Second, the
process/processor allocation in MCH must be

statie., Third, the relationship MCH SUPPORTS DS
must be valid. Finally, the function QSI mapping
processors and interconnections in MCH to
processors and interconnections in DS must be one
to one,

Conclusions

Although our work has been motivated by the
nature of a particular methodology, the
information structures and the consistency
constraints are not specifie to a single
methodology. There are two reason for this,
First, an attempt has been made to maintain the
greatest possible degree of generality in all
definitions, Second, the nature of the
information structures and consistency constraints
is independent of the order in which they are
constructed and, consequently, they may be shared
by methodologies that employ quite distinet design
strategies. For instance, although the processing
mode] is structured in a top-down hierarchical
manner, since it is merely an interface between
the architecture design phase and the binding
phase it does not preclude the use of 2 bottom-up
oriented design methodology within the system
architecture design phase. Neither is it
necessary that the processing model be completed
before binding is undertaken. The formalization
of the concepts of hierarchiecal structuring of a
distributed system and dual stepwise refinement of
process and processor structures represents an
important contribution to a better understanding
of distributed system design.

References

[1) Alford, M., "Requirements for Distributed
Data Processing Design,™ Proe. 1'st Int.
Conf. on Distributed Computing Systems,
pp. 1-14, October 1979.

[21 Liskov, B. and Berzins, V., "An Appraisal of
Program Specifications,” Research Directions
in Software Technology, F. Wegner, editor,
MIT Press, pp. 276-301, 1979.

{3] Robinson, L. and Levitt, X, N., "Proof
Techniques for Hierarchically Structured
Programs,™ CACM 20, No. 4, pp. 27i-404,
April 1977.

(4] Roman, G.-C., "On Reducing Ambiguities in
Methodology Definitions," Proe. of 1982
Conf. on Trends and Applications, pp.
y7-54, May 1982,

{51 Roman, G.-C., Stucki, M. J., and Gillett, W.,
"The Total System Design (TSD) Methodology:
From Problem Definition to Hardware/Scftware
Requirements,™ Technical Report
No. WUCS5-82-4, Department of Computer
Science, Washington University, 1982.

[6] Ross, D. T., "Structured Analysis (SA): A
Language for Communicating Ideas,™ IEEE
Trans. on Soft., Eng. SE-3, No. 1,
pp. 16-34, January 1977.

[7] Rustin, R., Formal Semantics of Programming

Languages, Prentice-Hall, Enéizuood Cliffs,

New Jersey, 1972.

[8] Wymore, A. W., A Mathematical Theory of
Systems Engineering -~ the Elements, John

Wiley and Sons, New York, 1967,

Summary Of Notation

n-tuple
set definition

function definition

quantifiers
existential
universal

cross product
n'power eross product

logical implication

if and only if
logical operators

subset test

set membership test

set operations

set of all sequences
over some set

set of all subsets

empty set

(a, b, ...)
{a, b, ...}
{x | predicate(x)}

fname: domain -~-> range

(?E x) [predicatel
(1A x) [predicate]

setl x set2
set¥¥n

IF predl THEN pred2
pred1 IMPLIES pred2
IFF

AND, OR, NOT

set1 SUBSET,.OF set2
element MEMBER.OF set
UNION, INTERSECTION, MINUS

set®
POWERSET{set)
nil

	A Formal Treatment of Distributed Systems Design
	Recommended Citation
	A Formal Treatment of Distributed Systems Design

	tmp.1465590965.pdf.0OXKk

