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ABSTRACT OF THE THESIS  

PathFormer: Interpretable and Powerful Graph Transformer  

for Gene Network Analysis 

by 

Qihang Zhao 

Master of Science in Computer Science 

Washington University in St. Louis, 2023 

Professor Yixin Chen, Chair 

 

Understanding which gene/pathway expression profiles are related to specific disease phenotypes 

has been a critical active research area in Bioinformatics. Although graph neural networks 

(GNNs) have achieved impressive performance on various graph-based real-world applications 

such as recommendation systems and social network analysis, applying GNNs in gene-network-

based Bioinformatical tasks is still challenging due to the effectiveness issue and lack of 

interpretation method. In this paper, we propose PathFormer, an interpretable graph Transformer 

(i.e. GNN), to effectively analyze gene networks and discover meaningful biomarkers/pathways.  

PathFormer is composed of a stack of PathFormer encoder layers and two subsequent 

interpretation machines. The PathFormer encoder layer is constructed upon the global attention 

mechanism, where a novel positional encoding scheme is proposed to enhance the model 

expressivity and the pathway message is incorporated in the attention matrix computation. On 

the other hand, the proposed interpretation machines leverage topological information and 

pathway message to identify core sub-gene networks of significant biomarkers and pathways 

through the top-K selection strategy. We apply the PathFormer model on the notorious 

Alzheimer disease (AD) classification task. Experiments are performed on two independent AD 

datasets: Mayo and Rosmap, and empirical results show that our proposed PathFormer model 
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significantly outperforms strong baselines, including state-of-the-art GNNs and graph 

Transformers. On average, Pathformer model successfully increases the prediction accuracy of 

33% and 55% over best existing GNN and interpretable GNN. Furthermore, the interpretation 

machines in PathFormer can provide instance-level explanation (i.e. personalized explanation) as 

well as the group-level explanation (i.e. population-based explanation), and experiments show 

that PathFormer can identify meaningful core gene sub-networks that consist of multiple 

reported AD-related genes and rational pathways.
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Chapter 1. Introduction 

Gene networks are ubiquitous in various bioinformatical applications, including drug synergy 

prediction [1, 2], Alzheimer's disease (AD) detection [59,60], cancer subtype classification 

[3,4,5], etc. The increasing availability of omics data in genomic era provides huge potential in 

gene network analysis to reveal informative molecule structures in the bioinformatical tasks. 

However, the diversity of gene networks and corresponding omics data makes the testing space 

massive and it’s impractical to manually analyze all possible situations. Thus, computational AI 

models are developed to analyze the functionality of genes based on gene expression profile to 

reveal causal processes that contribute to disease onset and progression. These computational 

models [6,7,8] have revolutionized the field of bioinformatics, yet they still share limitations 

such as the lack of transparency and ignorance of gene connectivity/topology information.  

Graph neural networks (GNNs) [9,10,11,12,13,14] are dominant architectures for modeling 

relational structured data such as social networks or molecules. Numerous efforts are put into the 

direction of implementing GNNs in real-world applications [15,16,17]. Most GNNs follow the 

neighborhood aggregation scheme that iteratively passes messages between each node and its 

neighbors to learn a node embedding that encodes the local substructure. The message passing 

scheme shows impressive graph representation learning ability to extract highly expressive 

features representing the local structure information in a graph. Nowadays, GNNs have become a 

widely applied graph analysis method and achieved impressive performance on various graph-

based tasks. Thus, GNNs show superior representation learning ability and interpretability than 

previous computational AI models in analyzing gene networks. 
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Though GNNs are theoretically ideal deep learning tools for analytical tasks on gene networks, 

some drawbacks limit their practical potentials in real-world Bioinformatics. First, recent works 

[19, 21] reveal that the dominant GNNs suffer the over-squashing problem when aggregating 

information from a long path or in graphs with large average node degrees. Compared to well-

studied graphs like protein networks and social networks, gene networks usually have much larger 

average node degree and more long-range information (i.e. pathways) to encode. Thus, 

effectiveness of existing GNNs on gene networks is degraded due to the over-squashing problem 

and the prediction accuracy is usually very low. Furthermore, the interpretability of AI models 

[24,25,26] is usually of great importance to relieve the distrust in real-world applications, 

especially where high-state decisions are made based on decisions of AI models. Currently, 

dominant GNNs are not interpretable, and their output predictions are not transparent. Though 

some interpretation methods [27] are developed for GNNs, they can only provide the instance-

level explanations, while population-level explanations are usually required in Bioinformatics. 

To tackle the limitations of effectiveness and transparency in previous GNNs, we propose our 

PathFormer model. In analog to a traditional Transformer model [65], PathFormer is composed of 

several PathFormer encoder layers. The PathFormer encoder layer resort to a pathway-and-

topology based global attention mechanism to address the over-squashing problem. Unlike the 

self-attention mechanism used in general Transformer encoder, the proposed attention mechanism 

utilizes GNNs to incorporate topology information in the key and query matrix, while computing 

a pathway-based attention matrix as the bias term. We also design a novel domain-knowledge-

specific positional encoding scheme that takes gene index as the gene canonical label in the 

attention mechanism to improve the expressive power and to facilitate the pathway encoding. On 

the other hand, PathFormer is also equipped with two interpretation machines to provide users 
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with instance-level and population-level explanations. Both interpretation machines take the top-

K selection strategy: (1) The first interpretation machine provides instance-level (personalized) 

explanation which uses the attention matrices in PathFormer encoder layers to characterize the 

nodes’ overall impact in the prediction task, then detected core gene sub-network is composed of 

top-K genes and pathways connect them. (2) Inspired by SAGpool [23] and DGCNN [22], the 

second interpretation machine proposes a (trainable-parameter) strategy to implement the top-K 

selection that detects the most important genes in the prediction task. Specifically, we assign to 

each gene a trainable parameter and then sort the trainable parameters of all genes. Henceforth, the 

second interpretation machine provides group-level (population-level) explanation.  

Figure 1: The overview of the pipeline. Gene meta data are transferred to graphs (i.e. gene networks). Then, the 

gene networks are sent to the proposed PathFormer model, which provides predictions of gene network analytical 

tasks and generate corresponding interpretations. 

 

In this work, we focus on a specific gene-network based bioinformatical task: Alzheimer's 

disease (AD) prediction. As the most common type of dementia, Alzheimer's disease is a 

neurodegenerative disease that leads to cognitive deterioration of the brain, affecting the 

memory, thinking, and daily activities of patients. Alzheimer's disease is generally approached 

from diagnosis and treatment. To date, there have been only a few symptomatic treatments, 

including cholinesterase inhibitors [55], NMDA receptor antagonists [56], and memantine [57], 
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but none have been effective in stopping the progression of Alzheimer's disease. As a result, 

researchers have focused more on early diagnosis, as this allows patients to keep their level of 

function longer. From a genetic perspective, researchers are investigating the potential 

association of certain genes with the progression of Alzheimer's disease. For example, three 

genes (APP, PSEN1 and PSEN2) and one genetic risk factor (APOEε4 allele) are associated with 

autosomal dominant familial Alzheimer's disease [58]. Following the inspiration, two AD 

datasets (Mayo and Rosmap) are constructed where gene networks are formulated with gene 

expression of patients and known gene interactions, then the objective is to classify Alzheimer's 

disease versus healthy controls.  

To effectively implement the early detection of AD, we introduce a GNN-based pipeline, which 

can also be applied to other gene network analysis tasks, such as cancer subtype classification 

and longevity prediction. Figure 1 illustrates the overview of the pipeline. Based on the pipeline, 

we evaluate our proposed PathFormer model against previous GNNs. Experimental results 

indicate that PathFormer significantly outperforms strong baselines, including state-of-the-art 

graph Transformers and GNN baselines. Furthermore, numerous visualizations show that 

PathFormer can extract biologically meaningful core gene sub-networks of biomarkers and 

pathways for future research in Alzheimer's disease. 
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Chapter 2. Background and Preliminary Analysis 
 

2.1. Backgrounds  

Transformer: The Transformer model solves the language modeling problem [28,29,30,31] 

using self-attention mechanism, and improves the performance over RNN-based or convolution-

based deep learning models in both accuracy and efficiency. The Transformer encoder consists 

of a stack of Transformer encoder layers, where each layer is composed of two sub-networks: a 

(multi-head) self-attention network and a feed-forward network (FFN).  

let 𝐻 = {ℎ1
𝑇 , ℎ2

𝑇 , … , ℎ𝑛
𝑇} be the input to a Transformer encoder layer. In the self-attention 

network, the attention mechanism takes H as input and implements different linear projections to 

get the query matrix Q, key matrix K and value matrix V, Then the attention matrix A is 

computed as following to measure the similarities, which is then used to update the 

representation in parallel.  

𝐴 =  
𝑄 𝐾𝑇

√𝑑𝑘
          𝑍 = softmax(𝐴)𝑉         (2.1) 

After the self-attention network, the feed-forward network consists of two linear transformations 

with a Rectified Linear Unit (ReLU) activation in between to generate the output. i.e., 𝑂 =

𝐹𝐹𝑁(𝑍). The FFN is composed of a standard Dropout Layer → Layer Norm → FC (fully 

connected) Layer → Activation Layer → Dropout Layer → FC Layer → LayerNorm sequence, 

with residual connections from Z to after the first dropout, and from before the first FC layer to 

after the dropout immediately following the second FC layer. 
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Transformer on graphs: Recently, there has been a trend to generalize transformer to graph 

representation learning tasks. Recent works [34, 35] propose message passing layers that update 

node representation from nodes in surrounding neighborhood via Transformer-style attention. On 

the other hand, as graph data do not have the canonical grid to embed the position of nodes, 

different techniques are developed to embed the graph structural information and nodes spatial 

information in following works: SAN [32], Graphormer [35], GraphiT [33] 

 

2.2. Gene Network Analysis  

The effectiveness of GNNs for a specific graph learning task is usually affected by graph 

properties. For instance, Morris et al. [18] and Xu et al. [19] show that message passing GNNs 

cannot be more powerful than  1-dimensional Weisfeiler-Lehman (1-WL) algorithm [20] in 

distinguishing non-isomorphic graphs, thus these GNNs cannot predict certain graph properties 

such as cycle counts and will fail in corresponding graph prediction tasks. As such, 

comprehensive analysis of graph properties always plays an important role when applying GNNs 

in real world. Based on our analysis, gene networks have two domain-specific properties critical 

to the success of GNNs. (1) gene networks always contain numerous high-centrality nodes than 

general graphs. (2) Any gene at most appears once in each graph, and the existence of the edge 

between a certain gene pair is invariant among different graphs. Then we will introduce the 

impact of these properties. 

The high-centrality property (i.e. first property) indicates that the average node degree in gene 

networks can be extremely larger than graphs in other real-world applications. Hence, GNNs on 

gene-networks suffer more severe over-squashing problem [21]. Basically, the receptive field of a 
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node in GNN is the size of rooted subtree to encode, and the over-squashing problem states that 

the receptive field of nodes will grow exponentially with the number of GNN layers, where the 

base of the exponential function can be approximated by the average node degree. Then, GNNs 

are susceptible to a bottleneck as they aggregate too much information to a single node and the 

exponentially growing information are squeezed into fixed-size vectors (i.e. node representations). 

As such, when developing GNNs for gene networks, the over-squashing problem should be taken 

into consideration, so that the generate representations can capture meaningful gene structure 

information. 

Here, we also compare the graph property of gene networks in AD datasets (i.e. Mayo and Rosmap) 

with graphs in other benchmark datasets (i.e. (i.e. QM9 [40,41], molhiv [42], molpcba [42], and 

NA [43] ). It has been shown that the large average node degree in graphs usually leads to the 

over-squashing problem in GNNs. In the study, we select 4 well-adopted graph benchmark datasets: 

QM9 [40,41], molhiv [42], molpcba [42], and NA [43] as baselines, and count the average number 

of nodes and edges in graphs. The ratio of average number of nodes and edges measures the 

average node degrees, reflecting the expansion speed of the receptive field. Figure 2 illustrates the 

empirical evaluation results. We find that the ratio in gene networks is close to 20, while that in 

general graphs is usually smaller than 2.  



8 

 

 

Figure 2: Graph property comparison 

The canonical labeling property (i.e., second property) provides finer inductive bias than general 

graphs such that gene index (i.e., gene name) itself encodes the ‘position’ of a node and can be 

used to distinguish genes. The gene indexes itself can serve as canonical labels, which implicitly 

solve the challenging graph canonization problem in the situation. That is, using gene index as 

gene label will provides the canonical form of input gene network. Formally, we can formulate the 

graph classification/regression problems on gene networks as following: Given a set of graphs 

𝔾 = {𝐺𝑛 = (𝑉𝑛, 𝐸𝑛)|𝑛 = 1,2, … 𝑁)}, where 𝑉𝑛 and 𝐸𝑛 are the node set and edge set of graph 𝐺𝑛, 

respectively.  The set of node types 𝕋 = {1, 2, … 𝑇} consists of node types in 𝔾. For a graph 𝐺𝑛,  

each node 𝑖 ∈  𝐺𝑛 has a d-dimensional feature x(i) and a node type p(i), while the graph 𝐺𝑛 has a 

label 𝑦𝑛.  Then, in the studied gene-network learning problem, (1) ∀ 𝐺𝑛 ∈ 𝔾 and ∀𝑖, 𝑗 ∈ 𝑉𝑛, we 

have 𝑝(𝑖) ≠ 𝑝(𝑗) ; (2) For ∀ 𝐺𝑛, 𝐺𝑚 ∈ 𝔾  and 𝑖, 𝑗 ∈ 𝑉𝑛   𝑠, 𝑘 ∈ 𝑉𝑚 , if we have 𝑝(𝑖) =

𝑝(𝑠) & 𝑝(𝑗) = 𝑝(𝑘), then we have (𝑖, 𝑗) ∈ 𝐸𝑛  ⟺ (𝑠, 𝑘) ∈ 𝐸𝑚;  The objective is to learn graph-

representations to predict graph labels. The problem formulation aligns with the fact that the gene 

correlations are shared among different gene networks. That is, we can infer the connectivity of 

genes in unseen gene networks from the observed gene networks one their gene indexes are 

identical. 



9 

 

Chapter 3. PathFormer Model 
 

3.1 Notations 

In this section, we introduce the proposed PathFormer model. For notation convenience, we first 

define some basic concepts that will be used in the graph analysis and graph signal processing. 

We consider a graph 𝐺 = (𝑉, 𝐸, 𝑋) where 𝑉 = {1,2, … , 𝑛} is the node set of size 𝑁 = |𝑉|, 𝐸 ∈

𝑉 × 𝑉 is the edge set, and 𝑋 ∈ ℝ𝑛 × 𝑑 is the d-dimensional node feature tensor with a feature 

dimension of d. For each node i in a graph 𝐺, we denote by 𝒩(𝑖) = {𝑗 ∈ 𝑉|(𝑖, 𝑗) ∈ 𝐸} the 

neighboring node set of node i, and we denote by 𝒟(𝑗) the dependent node set of node j such that 

there exists a path from node i to node j iff 𝑗 ∈ 𝒟(𝑗). 

 

Figure 3: Architecture overview. (a) introduces the basic component, PathFormer encoder layer. (b) illustrates that the 

PathFormer model consists of a stack of PathFormer encoder layers and two subsequent interpretation mechanisms. 
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3.2  Overview of PathFormer Model 

The AD early detection problem is essentially a graph classification task. Learning based graph 

classification is usually achieved by three steps: (1) iteratively updating node feature vectors 

through message passing (graph convolution) layers; (2) summarizing final node feature vectors 

as a graph vector/representation through a readout layer; (3) predicting the graph label based on 

graph representation through a standard MLP (multiple layer perceptron). Following this 

scheme, our PathFormer model introduces a novel graph convolution layer, PathFormer encoder 

layer, to tackle the effective limitation and over-squashing problem. In addition, PathFormer also 

proposes two interpretation machines which inject the interpretability into the readout layer to 

generate the graph representation/vector. Figure 3 (b) illustrates the overall architecture of 

proposed PathFormer model, where the PathFormer encoder layer, interpretation machines, and 

MLP can be trained together in an end-to-end fashion. 

 

3.3 PathFormer Encoder Layer  

The proposed PathFormer encoder layer (graph convolution layer) resorts to the attention 

mechanism to address the over-squashing problem. An Intuitive choice for implementing the 

attention-based graph convolution operation is to use the self-attention mechanism in the 

standard Transformer model, As (self)-attention based information propagation models (such as 

Transformer) have been proven to be efficient for over-squashing problem [21]. However, self-

attention mechanism equivalently treats genes with same profile expression, which ignores the 

topology and pathway information in the attention scores and makes it difficult to design 

downstream interpretation method for extracting biological meaningful information. In addition, 

the self-attention mechanism also fails to incorporate the inductive bias that each gene only 
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appears at most once in each gene network and the same pair of nodes’ connectivity is consistent 

across gene networks.  

To address these drawbacks, our PathFormer encoder layer introduces three innovative design 

aspects to improve the standard self-attention mechanism (SAM) in gene network analysis. (1) 

To incorporate topology information in the attention matrix of attention mechanism, GNNs are 

used to replace the linear layer in SAM when computing the key matrix 𝐾, and query matrix 𝑄. 

(2) To encode pathway information in the input gene network, we assume that genes interact 

with each other through the shortest path between them. Then PathFormer encoder layer extracts 

pathways between genes and uses MLP to learn the pathway correlation. (3) Gene indexes are 

used as the positional encodings. As each gene at most appears once in each gene network, the 

gene index can be used to uniformly distinguish genes in the same graph, indicating that using 

gene indexes as the additional features can provably find the canonical form of input gene 

network, which inherently solves the graph canonization problem and maximize the expressive 

power.  

Figure 3 (a) illustrates the architecture of PathFormer encoder layer. We denote by the input to 

the 𝑘-th PathFormer encoder layer 𝐻𝑘 = (ℎ1
𝑘, ℎ2

𝑘, … , ℎ𝑛
𝑘), where vector ℎ𝑣

𝑘 is obtained by 

concatenating the gene feature 𝑧𝑘−1(𝑣) from the last layer and the one-hot encoding of gene 

index (i.e. canonical label) i(𝑣). In the first layer, 𝑧0(𝑣) is the initial gene expression profile. 

Then, in the proposed global attention mechanism, the query matrix 𝑄𝑘 and key matrix 𝐾𝑘 are 

computed with GNNs, while value matrix 𝑉𝑘 is computed with a linear projection layer (i.e. LP),    

𝑄𝑘 = 𝐺𝑁𝑁(𝐻𝑘, 𝐴)            (3.1) 

𝐾𝑘 = 𝐺𝑁𝑁(𝐻𝑘, 𝐴)         (3.2) 
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𝑉𝑘 = 𝐿𝑃(𝐻𝑘)         (3.3) 

As the strategy of using gene indexes as positional encoding provides equal expressivity as 

directly distinguishing the canonical form of input gene network, adding i(𝑣) in the input ℎ𝑣
𝑘 will 

enable GNNs to distinguish all different gene network architectures. As the gene index of the 

same gene and the connections of same gene pair are shared among different gene networks, the 

proposed positional encoding method also has good generalization ability to be applied to unseen 

gene networks. 

Some recent research in Bioinformatics [] indicate that the personalized biomarkers may varies 

across different patients/samples, which makes the population-based analysis fail to detect these 

biomarkers. However, many personalized biomarkers from different patients are observed to 

formulate signaling pathways, thus pathway analysis shows huge potential in revealing the 

mechanism of disease phenotypes. Following this inspiration, we also propose to incorporate 

pathway information in the global attention mechanism. Specifically, for each pair of gene (i.e. 

gene i and gene j), we extract the shortest path (𝑆𝑃𝑖,𝑗) between them. Each shortest path is 

represented as the sequence of gene features and the gene index. Then the pathway correlation 

matrix T is computed through a MLP and is used as a bias term to attention score computed from 

query and key:   

𝑇𝑖,𝑗
𝑘 = {

MLP(𝑆𝑃𝑖,𝑗)   there exists a path from gene i to gene j

−∞               otherwise                                                    
         (3.4) 

𝐴𝑡𝑡𝑘 =
𝑄𝑘𝐾𝑘𝑇

√𝑑𝑘
+ 𝑇𝑘         (3.5) 
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Above equations also illustrates that our global attention mechanism can manipulate all 

components in the graph Fourier space, which helps to address the low-path concern (see 

Appendix B) in graph learning problem. After that, the PathFormer encoder layer updates the 

node features as the standard Transformer encoder: 

𝑂𝑘 = softmax(exp(𝐴𝑡𝑡𝑘))𝑉𝑘         (3.6) 

𝑍𝑘+1 = FFN(𝑂𝑘)         (3.7) 

 

3.4 Interpretation Machines 

In this section, we introduce our proposed interpretation machines in the PathFormer model. 

Specifically, the first interpretation machine is based on the proposed global attention 

mechanism to provide instance-level (personalized) explanation and group-level (population-

based) explanation, while revealing their correlations. On the other hand, the second 

interpretation machine introduces trainable parameters to characterize the significance of each 

gene and can generate a population-based explanation. The PathFormer model equipped with the 

first/second interpretation machine is named as PathFormer-V1/PathFormer-V2, accordingly. 

3.4.1 Interpretation machine based on attention mechanism 

The first interpretation machine resorts to the framework of additive feature attribution methods, 

which provide explanation through a linear function of binary variables. Numerous interpretable 

AI models in image processing are unified in this framework and provide meaningful 

explanations on images. To specifically interpret graph neural networks on graph-structured data, 

we adapt the definition of the additive property for graph data attribution as follows:  

𝜖(𝐴) =  𝜙0 + ∑ 𝜙𝑖,𝑗𝐴𝑖,𝑗         (3.8) 
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where A is the adjacency matrix of the explanation, 𝐴𝑖,𝑗 is a binary variable representing the 

existence of an edge.  

Personalized explanation Unlike a standard message passing GNN model, the attention 

matrices 𝐴𝑡𝑡1 … 𝐴𝑡𝑡𝐾 from our PathFormer model (where K is the number of PathFormer 

encoder layers) encode the pathway message information, gene profile expressions and topology 

information. Thus, we can interpret the K-layer PathFomer of each sample/patient as following:  

𝜖𝑖,𝑗 =  ∑ 𝐴𝑡𝑡𝑖,𝑗
𝑘𝐾

𝑘=1           (3.9) 

Where  𝐴𝑡𝑡𝑘 is the learnt attention matrix in the k-th PathFormer encoder layer. Here we define 

the biomarkers as the genes most relevant to the prediction of the PathFormer model, which can 

be quantitatively measured as 𝑒𝑖 =  ∑ 𝜖𝑖,𝑗𝑗 . Then, to detect the core gene sub-network, we can 

sort {𝑒𝑖, 𝑖 ∈ 𝑉} to detect the most relevant genes. Furthermore, as each attention matrix 𝐴𝑡𝑡𝑘 is 

adjusted by the pathway correlation matrix, the core gene sub-network also contains shortest 

pathways between selected genes to allow the pathway information aggregation.  

Population-based explanation Above gene ‘importance’ 𝑒𝑖 is personalized. We can also compute 

the average 𝑒𝑖 across different patients/samples to reflect the population-based significance. Then 

the core gene sub-network for the whole population is constructed following the same sorting 

strategy and shortest path connection framework.  

 

3.4.2 Interpretation machine based on trainable-parameter strategy 

Though attention mechanism based interpretation can provide the population-based 

interpretation, it is not population oriented and is originally designed for personalized 

explanation. Hence, here we also introduce a population-oriented interpretation mechanism 
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based on a trainable parameter strategy. Based on our previous analysis, gene indexes in the gene 

networks provides meaningful additional information for structure representation learning. 

Hence, we propose to use a gene-index-related trainable parameter to explicitly perform the 

sorting and top-K selection operation, instead of using {𝑒𝑖, 𝑖 ∈ 𝑉} computed based on learnt 

attention matrices. Concretely, we denote by 𝜖 the trainable parameter of size T, where T is the 

total number of genes in the graph dataset 𝔾. Then, for each input graph 𝐺 = (𝑉, 𝐸), let 𝐻𝑘 be 

the output node representations from the last PathFormer encoder layer. Let index set 𝑖𝑑𝑥 =

{𝑖(𝑣)|𝑣 ∈ 𝑉}, where i(v) is the gene index. Then, the trainable-parameter strategy first extracts 

the corresponding trainable weights by index selection: 

𝜖𝐺 =  𝜖[𝑖𝑑𝑥]         (3.10) 

Then nodes in graph 𝐺 is sorted according to 𝜖𝐺, and we only use top-K node representations in 

𝐻𝑘 for prediction. Let 𝑖𝑑𝑥𝐺 be the returned index set in the sorting operation on 𝜖𝐺, then the 

output node representations of the trainable parameter strategy can be represented as 

𝐻𝑘𝜖𝐺[𝑖𝑑𝑥𝐺]. We also provide examples in Appendix A to explain this process more.  

 

3.5 Discussions 

PathFormer has multiple exclusive advantages. First, the gene-index-based attention matrix in 

Pathformer encoder layers enables the learnt attention matrix to embed path-based information 

between nodes from the additional gene index information. Henceforth, it inherently avoids the 

complexity of finding all possible paths between nodes. In addition, as the PathFormer encoder 

layer is formulated upon the attention mechanism, it contains rich higher-order connectivity 

patterns and avoids the exponentially increased receptive field in message passing GNNs, which 

address the low-path challenges [36,37,38, 39] and over-squashing challenges in gene networks. 

We demonstrate the effectiveness of the PathFormer model on the designed gene-network 
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datasets. Experimental results indicate that PathFormer significantly outperforms strong 

baselines, including state-of-the-art graph Transformers and GNN baselines. Furthermore, 

visualizations show that PathFormer can identify more meaningful substructures in gene 

networks than general GNN explanation models like GNNExplainer [27] in impactful real-world 

bioinformatical tasks.  
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Chapter 4. Experiment 

4.1 Datasets: Mayo and Rosmap  

Two datasets of Alzheimer’s disease, Mayo and Rosmap, were used for our model. These two 

datasets are designed for the challenging Alzheimer’s disease (AD) classification problem in 

bioinformatics [50,51], such as distinguishing Alzheimer’s disease (AD) samples from normal 

elderly controls [52]. The node features of the graphs in Mayo and RosMap were first mapped to 

the reference genome using STAR (v.2.7.1a), and then the transcriptomic (TPM) values of 

16,132 common protein-coding genes were obtained in both datasets by applying the Salmon 

quantification tool in alignment-based RNA-seq data. The aim is to distinguish the AD samples 

from the control Samples. The Mayo dataset contains 158 graphs, each including 16,132 genes, 

while the Rosmap dataset contains 357 graphs, each also including the same 16,132 genes. The 

only difference is that the feature values are different. Also, according to the Biological General 

Repository for Interaction Datasets (BioGRID: https://thebiogrid.org/), any two interrelated 

genes are undirected. 

 

4.2 Baselines and Experiment Setup 

Baselines In the experiment, we select two types of well adopted baselines in graph 

representation learning tasks: (1) The first type of baselines are state-of-art graph Transformers 

on graph property predictions, including position-aware models (Graphormer), structure-aware 

models (graphTrans [44]) and SAT [45].  (2) The second type of our baselines are powerful 

GNNs that have achieved leader positions in various graph learning problems: such as flat GNNs 

(i.e., GAT, DGCNN, GIN, and GCN), Subgraph-based GNNs (i.e., ID- GNN [46] and NGNN 

[47]) and hierarchical graph pooling GNNs (i.e., Diffpool and SAGpool). 
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Experiment setup. To provide robust evaluation, we perform 5-fold cross validation due to the 

size of the dataset and the number of baselines for comparison, and report the accuracy averaged 

over 5 folds and the standard deviation of validation accuracies across the 5 folds. All baselines 

are implemented in PyTorch on NVIDIA Tesla P100 12GB GPUs. 

 

Next, we provide the (hyper-)parameter setting of the proposed Pathformer models and 

baselines. The training protocols is composed of the selection of the evaluation rates and training 

stop rules. Specifically, the learning rate of optimizer picks the best from the set {1e 4, 1e 3, 1e 

2}; the training process is stopped when the validation metric does not improve further under a 

patience of 10 epochs.  

Similar to the standard Transformer model, the PathFormer encoder is composed of a stack of 

PathFormer encoder layers. In the experiments, we use 2 PathFormer encoder layers. In each 

layer, the number of head is set to be 2; dimensions of key, query, and value vectors are set to be 

32; the dimension of linear layers in the feed-forward network is set as 64. In each graph 

convolution layer of GNN baselines, the embedding dimension is set to be 128. The number of 

graph convolution layer is selected from the set {2, 3, 4}. In graph pooling models (SAGpool 

and Diffpool), the proportion of nodes to keep in each graph pooling layer is set to be 10%. In 

NGNN, we use height-2 rooted subgraphs due to the memory consideration. The graph-level 

readout function is selected from the set {mean, sum}. In GNNExplainer, we use GCN as the 

base model. Graph Transformers in the experiments are based on standard Transformers. When a 

standard Transformer model is used, the number of Transformer encoder layer is 4, the 

dimension dk is set to be 6, the number of heads is set to be 4. Due to the property of designed 

dataset, Graphormer does not perform the pre-training as on OGB datasets. In graphTrans, we 
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use GIN with 2 layers to extract the node embeddings. In SAT, we use height-2 rooted 

subgraphs.  

4.3 Predictive Performance   

In the section, we evaluate the predictive performance of PathFormer on graph-level learning 

tasks. Figure 4 summarizes the predictive performance of PathFormer relative to strong 

baselines. Experimental results indicate that PathFormer consistently improve the performance 

over all baselines. 

 

Figure 4: Experiential results 

Specifically, our PathFormer significantly outperforms all GNNs by 33% on average in terms of 

classification accuracy. Furthermore, when we compare PathFormer against other interpretable 

GNNs (i.e., SAGpool, Diffpool) that provide interpretability by detecting core subgraphs, the 

performance improvement increases to about 55%. Furthermore, we also find that previous 

GNNs’ classification accuracy of distinguishing AD samples from health controls is only slightly 

higher than 0.5. This observation indicates that the applicability of previous GNNs are limited in 

real-world bioinformatics as these AI models are slightly better than random guess. From this 

perspective, our PathFormer successfully increases the classification accuracy to a reasonable 
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level (around 0.8) for applications. Hence, PathFormer show significant practical advantage over 

previous GNNs in the early detection of AD. 

 

4.4 Interpretation results   

The interpretability of deep learning models is of vital importance for real-world applications in 

the field of bioinformatics, as the interpretability can illustrate the chain of reasoning to aid in 

trust and to increase the testability. In the section, we present the interpretation results from two 

proposed interpretation mechanism in our PathFormer model. 

 

4.4.1 Interpretation results based on attention mechanism 

Population-based and personalized explanation results. In the first part, we provide and analyze 

the population-based/personalized explanation results. Figure 5 presents visualizations of 

population-based core gene sub-networks on dataset Mayo and Rosmap, while Figure 6 provides 

visualizations of personalized core gene sub-networks for 4 random-selected patients from the 

testing samples in Mayo. In these visualizations, we highlight the provable risky Alzheimer’s 

genes as red color, genes on the shortest pathways between provable risky genes as yellow color, 

genes connected to provable risky genes as green color, and rest genes in the core sub-network as 

blue color. While shortest pathways are highlighted with purple lines.   
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Figure 5: Population-based explanation: Visualization of population-based core gene sub-networks 

 

Figure 6: Personalized explanation: visualization of detected core gene sub-network across samples/patients  

We find out several intriguing observations from these visualizations. First, Figure 6 illustrates 

that the detected personalized gene sub-networks across patients are different. This observation 

Mayo: Core Gene Sub-Network Rosmap: Core Gene Sub-Network
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aligns with the bioinformatical research findings that biomarkers vary across patients. Second, by 

comparing detected biomarkers and pathways of population-based gene sub-networks in Figure 5 

and personalized gene sub-networks in Figure 6, we find that personalized biomarkers usually 

target on specific population-based pathways.  Hence, we summarize the detected target 

biomarkers and pathways in Figure 7. Specifically, target biomarkers consist of some provable 

risky Alzheimer’s genes as well as their corresponding pathway genes and common 1-hop genes 

(from Mayo and Rosmap). While the connections between biomarker genes contains all detected 

pathways of these genes.  

 

Figure 7: Summary of detected biomarkers and pathways. 

By comparing Figure 7 with recent genomic research findings in AD, we find that the detected 

biomarkers contain many reported common Alzheimer’s genes, including late-onset Alzheimer’s 

gene: APOE and young-onset Alzheimer’s gene: APP. Furthermore, research on the genetics of 

Alzheimer's progresses reveal some biological important links between late-onset Alzheimer’s 

gene (APOE) and other genes such as PICALM, PLD3, CLU, etc. Some of these link can be 

tracked in Figure 7, and Figure 7 provides how these genes are linked to each other through 
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pathways. For example, we think that APOE and PLD3 are linked through the pathway APOE↔ 

ELAVL1↔ ERP44↔PLD3.  

 

 

Figure 8: Comparison of instance-level interpretation between PathFormer and GNNExplainer  

Comparison to previous GNN explanation models. In the experiment, we also PathFormer 

against the current state-of-art GNN explanation model: GNNexplainer [27]. GNNExplainer 

provides a general solution to introduce the interpretability in graph neural networks without 

modification of the underlying model architecture, and it can identify subgraphs consists of 

important graph pathways in the prediction process. In the experiment, we use GCN as base 

GNN model. We find that personalized core sub-networks detected by GNNexplainer is always 

same across different patients, and the visualization result can be found in Appendix C. The 

result indicates that base GCN model in GNNexplainer consistently focus on the same localized 

pattern (a gene sub-network shared among patients), while assigning genes in the localized 

pattern different importance scores (weights) as the top in Figure 8. We also use the distance of 
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shortest path of all gene pairs in the gene sub-networks deteted by GNNexplainer and PathFomer 

to measure the diversity of the sub-networks. Thus, high diversity indicates that long-range 

interactions between genes are tractable and explainable. The bottom in Figure 8 shows the 

comparison, and we can see that PathFormer can capture and interpret longer interactions 

between genes than usually GNN models.   

 

4.4.2 Interpretation results based on trainable parameter strategy 

Next, we present the population-based explanation results of our second interpretation machine. 

Figure 9 illustrate the detected core gene sub-networks, where K is set to be 1000, to reveal the 

mechanism of Alzheimer's progress. The green path represents the shortest path connecting each 

known Alzheimer's gene and risk gene variant, and the dark blue edge links 1-hop neighbors of 

the known Alzheimer's genes and risk gene variants above. The red nodes indicate the known 

Alzheimer's genes and risk variants, and the orange nodes indicate their 1-hop neighbors and the 

points passed on the shortest path. The remaining light blue nodes indicate genes that may have 

little association with Alzheimer's disease. Furthermore, we remove the singleton nodes, i.e., the 

known Alzheimer's genes and risk gene variants whose neighboring genes are not part of the list 

of top 1000 genes. Compared to known and probable Alzheimer's genes [49,61,62,63], 

Pathformer-v2 identified known genes APP and PSEN, as well as the risk genetic variants 

PICALM and CTNNA2 from Mayo dataset, while it recognized known gene APOE and risk 

genetic variants PTK2B, MAPT, PLD3, CTNNA2 and CNTNAP2 from Rosmap dataset. In 

addition, we also provide strategy to sparser the detected core gene sub-networks in Appendix A 

by incorporating the attention mechanism as we did in last section. 
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Figure 9: Detected core gene networks using population-based interpretation machine. 

Since the interpretation machine is population oriented, then we can extract the common 

subgraph from dataset Mayo and Rosmap to reveal how Alzheimer's genes and other risky genes 

are interact with each other, which provides insights into detecting more potential genes for 

Alzheimer's prevention and treatment. Figure 10 (a) presents some reported/potential common 

genes detected in Mayo and Rosmap, which illustrates our population-based interpretation 

machine successfully recognizes known genes APOE and PSEN1 [49,61,62,63] and the risk 

genetic variants PICALM, CTNNA2, VPS35, MAPT, and MEF2C. Furthermore, Figure 10 (b) 

provides an example explanation of how these functionally interact with each other.  

 

Mayo Rosmap
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Figure 10: Part of common genes from two different datasets 

We also perform Gene Ontology (GO) term analysis on the common genes subset to determine 

whether this subset of genes is significantly enriched in particular functional categories or 

biological pathways. This information serves to narrow down and prioritize the genes that 

require further experimental validation, potentially uncovering the underlying mechanisms of 

Alzheimer's disease, and identifying promising biomarkers and novel target genes that could be 

useful for future diagnostics. In figure 11, we present three subontology analyses including BP 

for Biological Process on top left, MF for Molecular Function on top right, and CC for Cellular 

Component on bottom. In the output graphs, the y-axis represents the enriched GO terms 

obtained from the GO enrichment analysis, while the x-axis represents the percentage of genes in 

the study set that are associated with each GO term. Each bar in the graph corresponds to a GO 

term, and the color of the bar represents the corrected p-value for the enrichment of the term, 

with blue indicating higher p-values (less significant enrichments) and red indicating lower p-

values (more significant enrichments).   

(a) (b)
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Figure 11: Gene Ontology term analysis on three subontologies, (BP = Biological Process(top left); CC = Cellular 

Component(top right); MF = Molecular Function(bottom)) 
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Chapter 5. Conclusion 

In this paper, we introduce a novel graph Transformer model, PathFormer, to support effective 

and interpretable analysis on gene networks. We test our PathFormer model on the Alzheimer’s 

disease (AD) prediction task. PathFormer significantly improves of the prediction accuracy over 

GNN baselines, where the improvement is about 33% over existing best GNN and 55% over 

interpretable GNNs. Furthermore, PathFormer can provide different level explanations by 

detecting the personalized/population-based core gene sub-networks, which contain biomarkers 

of reported risky Alzheimer’s genes and probable pathways that reveal the mechanism of 

Alzheimer's progresses. Overall, the PathFormer model is the current state-of-art deep learning 

(GNN) method for early detection of AD. Furthermore, the proposed interpretation machines can 

systematically identify genes that may affect the risk of Alzheimer's disease, which provides 

huge potentials in developing new therapies to treat and prevent Alzheimer's disease in the 

future. 

 

 

 

 

 

 



29 

 

References 

1. Andrew L Hopkins. 2008. Network pharmacology: the next paradigm in drug discovery. 

Nature chemical biology 4, 11 (2008), 682–690.  

 

2. Scott H Podolsky and Jeremy A Greene. 2011. Combination drugs—hype, harm, and hope. 

New England Journal of Medicine 365, 6 (2011), 488–491 

 

3. Lu, Ying, and Jiawei Han. "Cancer classification using gene expression data." Information 

Systems 28.4 (2003): 243-268. 

 

4. Viale, Giuseppe. "The current state of breast cancer classification." Annals of oncology 23 

(2012): x207-x210. 

 

5. Amrane, Meriem, et al. "Breast cancer classification using machine learning." 2018 electric 

electronics, computer science, biomedical engineerings' meeting (EBBT). IEEE, 2018 

 

6. Yang, Y., Han, L., Yuan, Y. et al. Gene co-expression network analysis reveals common 

system-level properties of prognostic genes across cancer types. Nat Commun 5, 3231 (2014). 

 

7. Horvath, Steve, and Jun Dong. "Geometric interpretation of gene coexpression network 

analysis." PLoS computational biology 4.8 (2008): e1000117 

 

8. Song, Won-Min, and Bin Zhang. "Multiscale embedded gene co-expression network 

analysis." PLoS computational biology 11.11 (2015): e1004574 

 

9. Justin Gilmer et al. “Neural message passing for quantum chemistry”. In: International 

Conference on Machine Learning. PMLR. 2017, pp. 1263–1272. 

 

10. William L. Hamilton, Rex Ying, and Jure Leskovec. “Inductive Representation Learning on 

Large Graphs”. In: (June 2017). URL: https://arxiv.org/abs/1706.02216.  

 

11. Thomas N Kipf and Max Welling. “Semi-supervised classification with graph convolutional 

networks”. In: arXiv preprint arXiv:1609.02907 (2016).  

 

12. Franco Scarselli et al. “The graph neural network model”. In: IEEE transactions on neural 

networks 20.1 (2008), pp. 61–80.  

 

13. Petar Velickovic et al. “Graph Attention Networks”. In: ArXiv abs/1710.10903 (2018).  

 

14. Jiaxuan You et al. “Graphrnn: Generating realistic graphs with deep auto-regressive models”. 

In: International Conference on Machine Learning. PMLR. 2018, pp. 5708–5717.  

 

15. Rianne van den Berg, Thomas Kipf, and Max Welling. “Graph Convolutional Matrix 

Completion”. In: ArXiv abs/1706.02263 (2017). 

 

https://arxiv.org/abs/1706.02216


30 

 

16. Tian Bian et al. “Rumor Detection on Social Media with Bi-Directional Graph Convolutional 

Net- works”. In: ArXiv abs/2001.06362 (2020).  

 

17. Zehao Dong et al. “Interpretable Drug Synergy Prediction with Graph Neural Networks for 

Human-AI Collaboration in Healthcare”. In: arXiv preprint arXiv:2105.07082 (2021).  

 

18. Christopher Morris et al. “Weisfeiler and leman go neural: Higher-order graph neural 

networks”. In: Proceedings of the AAAI conference on artificial intelligence. Vol. 33. 01. 2019, 

pp. 4602–4609.  

 

19. Keyulu Xu et al. “How powerful are graph neural networks?” In: arXiv preprint 

arXiv:1810.00826 (2018). 

 

20. AA Leman and Boris Weisfeiler. “A reduction of a graph to a canonical form and an algebra 

arising during this reduction”. In: Nauchno-Technicheskaya Informatsiya 2.9 (1968), pp. 12–

16.  

 

21. Uri Alon and Eran Yahav. “On the bottleneck of graph neural networks and its practical 

implications”. In: arXiv preprint arXiv:2006.05205 (2020).  

 

22. Muhan Zhang et al. “An end-to-end deep learning architecture for graph classification”. In: 

Proceed- ings of the AAAI Conference on Artificial Intelligence. Vol. 32. 2018.  

 

23. Lee, J.; Lee, I.; and Kang, J. 2019. Self-attention graph pooling. In International conference 

on machine learning, 3734–3743. PMLR.  

 

24. Alex A Freitas. “Comprehensible classification models: a position paper”. In: ACM SIGKDD 

explo- rations newsletter 15.1 (2014), pp. 1–10.  

 

25. Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “" Why should i trust you?" 

Explaining the predictions of any classifier”. In: Proceedings of the 22nd ACM SIGKDD 

international conference on knowledge discovery and data mining. 2016, pp. 1135–1144.  

 

26. Dong Z, Chen Y, Payne P, et al. Interpreting mechanism of Synergism of drug combinations 

using attention based hierarchical graph pooling[J]. arXiv preprint arXiv:2209.09245, 2022. 

 

27. Ying, Z.; Bourgeois, D.; You, J.; Zitnik, M.; and Leskovec, J. 2019. Gnnexplainer: Generating 

explanations for graph neural networks. Advances in neural information processing systems, 

32.  

 

28. Dai, Z.; Yang, Z.; Yang, Y.; Carbonell, J. G.; Le, Q.; and Salakhutdinov, R. 2019. Transformer-

XL: Attentive Lan- guage Models beyond a Fixed-Length Context. In Proceedings of the 57th 

Annual Meeting of the Association for Com- putational Linguistics, 2978–2988.  

 



31 

 

29. Al-Rfou, R.; Choe, D.; Constant, N.; Guo, M.; and Jones, L. 2019. Character-Level Language 

Modeling with Deeper Self-Attention. In Proceedings of the AAAI Conference on Artificial 

Intelligence, volume 33, 3159–3166.  

 

30. Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019. BERT: Pre-training of Deep 

Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Con- 

ference of the North American Chapter of the Association for Computational Linguistics: 

Human Language Technologies, Volume 1 (Long and Short Papers), 4171–4186.  

 

31. Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mohamed, A.; Levy, O.; Stoyanov, V.; and 

Zettlemoyer, L. 2020. BART: Denoising Sequence-to-Sequence Pre-training for Natural 

Language Generation, Translation, and Comprehension. In Proceedings of the 58th Annual 

Meeting of the Association for Computational Linguistics, 7871–7880.  

 

32. Kreuzer, D.; Beaini, D.; Hamilton, W. L.; Le ́tourneau, V.; and Tossou, P. 2021. Rethinking 

Graph Transformers with Spectral Attention. arXiv preprint arXiv:2106.03893.  

 

33. Mialon, G.; Chen, D.; Selosse, M.; and Mairal, J. 2021. GraphiT: Encoding Graph Structure in 

Transformers. arXiv preprint arXiv:2106.05667.  

 

34. Dong, Z.; Zhang, M.; Li, F.; and Chen, Y. 2022. PACE: A Parallelizable Computation Encoder 

for Directed Acyclic Graphs. arXiv preprint arXiv:2203.10304.  

 

35. Ying, C.; Cai, T.; Luo, S.; Zheng, S.; Ke, G.; He, D.; Shen, Y.; and Liu, T.-Y. 2021. Do 

Transformers Really Perform Bad for Graph Representation? arXiv preprint arXiv:2106.05234.  

 

36. Hoang, N.; Maehara, T.; and Murata, T. 2021. Revisit- ing graph neural networks: Graph 

filtering perspective. In 2020 25th International Conference on Pattern Recognition (ICPR), 

8376–8383. IEEE.  

 

37. Zhu, M.; Wang, X.; Shi, C.; Ji, H.; and Cui, P. 2021. Interpreting and unifying graph neural 

networks with an optimization framework. In Proceedings of the Web Conference 2021, 1215–

1226.  

 

38. Pan, X.; Song, S.; and Huang, G. 2020. A unified framework for convolution-based graph 

neural networks.  

 

39. Ortega, A.; Frossard, P.; Kovacˇevic ́, J.; Moura, J. M.; and Van- dergheynst, P. 2018. Graph 

signal processing: Overview, chal- lenges, and applications. Proceedings of the IEEE, 106(5): 

808–828.  

 

40. Raghunathan Ramakrishnan et al. “Quantum chemistry structures and properties of 134 kilo 

molecules”. In: Scientific data 1.1 (2014), pp. 1–7.  

 

41. Zhenqin Wu et al. “MoleculeNet: a benchmark for molecular machine learning”. In: Chemical 

science 9.2 (2018), pp. 513–530.  



32 

 

 

42. Weihua Hu et al. “Open graph benchmark: Datasets for machine learning on graphs”. In: arXiv 

preprint arXiv:2005.00687 (2020). 

 

43. Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features from tiny 

images”. In: (2009).  

 

44. Wu, Z.; Jain, P.; Wright, M.; Mirhoseini, A.; Gonzalez, J. E.; and Stoica, I. 2021. Representing 

long-range context for graph neural networks with global attention. Advances in Neural 

Information Processing Systems, 34: 13266–13279.  

 

45. Chen, D.; O’Bray, L.; and Borgwardt, K. 2022. Structure- aware transformer for graph 

representation learning. In In- ternational Conference on Machine Learning, 3469–3489. 

PMLR. 

  

46. You, J.; Gomes-Selman, J.; Ying, R.; and Leskovec, J. 2021. Identity-aware graph neural 

networks. arXiv preprint arXiv:2101.10320.  

 

47. Zhang, M.; and Li, P. 2021. Nested Graph Neural Networks. Advances in Neural Information 

Processing Systems, 34.  

 

48. Kovalerchuk, B., Ahmad, M.A., Science, A.T., University, C.W., Science, U.U., Systems, 

Tacoma, U.O., Inc., U.K., & Usa 2020. Survey of explainable machine learning with visual 

and granular methods beyond quasi-explanations. arXiv, abs/2009.10221. 

 

49. Agrawal, Sapeck. 2022. Alzheimer’s Disease: Genes. Validated Antibody Database and 

Reagents. 

 

50. Allen, M., Carrasquillo, M. M., Funk, C., Heavner, B. D., Zou, F., Younkin, C. S., Burgess, J. 

D., Chai, H. S., Crook, J., Eddy, J. A., Li, H., Logsdon, B., Peters, M. A., Dang, K. K., Wang, 

X., Serie, D., Wang, C., Nguyen, T., Lincoln, S., … Ertekin-Taner, N. (2016). Human whole 

genome genotype and transcriptome data for Alzheimer’s and other neurodegenerative 

diseases. Scientific Data, 3. 

 

51. de Jager, P. L., Ma, Y., McCabe, C., Xu, J., Vardarajan, B. N., Felsky, D., Klein, H. U., White, 

C. C., Peters, M. A., Lodgson, B., Nejad, P., Tang, A., Mangravite, L. M., Yu, L., Gaiteri, C., 

Mostafavi, S., Schneider, J. A., & Bennett, D. A. (2018). Data descriptor: A multi-omic atlas 

of the human frontal cortex for aging and Alzheimer’s disease research. Scientific Data, 5. 

 

52. Custodio, N., Montesinos, R., Chambergo-Michilot, D., Herrera-Perez, E., Pintado-Caipa, M., 

Seminario G, W., Cuenca, J., Mesía, L., Failoc-Rojas, V. E., & Diaz, M. M. (2022). A 

Functional Assessment Tool to Distinguish Controls From Alzheimer’s Disease in Lima, Peru. 

American Journal of Alzheimer’s Disease and Other Dementias, 37. 

 

53. Terry, A V Jr, and J J Buccafusco. “The cholinergic hypothesis of age and Alzheimer's disease-

related cognitive deficits: recent challenges and their implications for novel drug 



33 

 

development.” The Journal of pharmacology and experimental therapeutics vol. 306,3 (2003): 

821-7. doi:10.1124/jpet.102.041616. 

 

54. Hardy, John, and Dennis J Selkoe. “The amyloid hypothesis of Alzheimer's disease: progress 

and problems on the road to therapeutics.” Science (New York, N.Y.) vol. 297,5580 (2002): 

353-6. doi:10.1126/science.1072994. 

 

55. Grossberg, George T. “Cholinesterase inhibitors for the treatment of Alzheimer's disease:: 

getting on and staying on.” Current therapeutic research, clinical and experimental vol. 64,4 

(2003): 216-35. doi:10.1016/S0011-393X(03)00059-6. 

 

56. Danysz, Wojciech, and Chris G Parsons. “Alzheimer's disease, β-amyloid, glutamate, NMDA 

receptors and memantine--searching for the connections.” British journal of pharmacology vol. 

167,2 (2012): 324-52. doi:10.1111/j.1476-5381.2012.02057.x. 

 

57. Reisberg, Barry et al. “Memantine in moderate-to-severe Alzheimer's disease.” The New 

England journal of medicine vol. 348,14 (2003): 1333-41. doi:10.1056/NEJMoa013128. 

 

58. Bekris, Lynn M et al. “Genetics of Alzheimer disease.” Journal of geriatric psychiatry and 

neurology vol. 23,4 (2010): 213-27. doi:10.1177/0891988710383571. 

 

59. T. -A. Song et al., "Graph Convolutional Neural Networks For Alzheimer’s Disease 

Classification," 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 

Venice, Italy, 2019, pp. 414-417, doi: 10.1109/ISBI.2019.8759531. 

 

60. Z. Qin, Z. Liu and P. Zhu, "Aiding Alzheimer's Disease Diagnosis Using Graph Convolutional 

Networks Based on rs-fMRI Data," 2022 15th International Congress on Image and Signal 

Processing, BioMedical Engineering and Informatics (CISP-BMEI), Beijing, China, 2022, pp. 

1-7, doi: 10.1109/CISP-BMEI56279.2022.9980159. 

 

61. Giri, Mohan et al. “Genes associated with Alzheimer's disease: an overview and current 

status.” Clinical interventions in aging vol. 11 665-81. 17 May. 2016, 

doi:10.2147/CIA.S105769 

 

62. Cuyvers, Elise, and Kristel Sleegers. “Genetic variations underlying Alzheimer's disease: 

evidence from genome-wide association studies and beyond.” The Lancet. Neurology vol. 15,8 

(2016): 857-868. doi:10.1016/S1474-4422(16)00127-7 

 

63. Naj, Adam C et al. “Genomic variants, genes, and pathways of Alzheimer's disease: An 

overview.” American journal of medical genetics. Part B, Neuropsychiatric genetics : the 

official publication of the International Society of Psychiatric Genetics vol. 174,1 (2017): 5-

26. doi:10.1002/ajmg.b.32499 

 

64. Karch, Celeste M et al. “Alzheimer's disease genetics: from the bench to the 

clinic.” Neuron vol. 83,1 (2014): 11-26. doi:10.1016/j.neuron.2014.05.041 

 



34 

 

65. Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, 

Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." Advances in neural 

information processing systems 30 (2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



[35] 

 

Appendices 

Appendix A. Incorporating Attention Mechanism to Get Sparser Core Gene Sub-Network 

in Population-based Interpretation Machine 

As visualizations in the main paper indicates, some detected core gene sub-network for revealing 

the mechanism of Alzheimer's progress may contain too many edges, which makes it difficult to 

interpret. Hence, as the summation/mean of learnt attention matrices ∑ 𝐴𝑡𝑡𝑘 reflects how much 

message is passed between genes, we can use ∑ 𝐴𝑡𝑡𝑘 × 𝐴 to measure the effects of each edge, so 

that we can decide whether keep them in the core gene sub-network.  

Figure 12 illustrates the visualizations of the Pathformer-v2 (population-based explanations), 

where left column equipped with above edge filtering machine and right column is the original 

detected sub-networks. The graphs on the left column show the incorporation of the edge 

filtering machine and top-K method, where we selected the top 1000 genes out of 16132 genes 

and sorted the edges in the subgraph formed by these 1000 genes based on the edge filtering 

machine, which records the connection strength between genes. Depending on our needs, we can 

decide the number of edges required for the final core gene network, which is another reason 

why our proposed explanations are more flexible and easier to understand. In our experiments, 

we only keep top 50 edges in the core gene sub-networks. Then, each subgraph on the left 

column contains the top 50 edges that connect 71 genes, with the upper left subgraph consisting 

of one set of Mayo genes, while the lower left subgraph is made up of a separate set of Rosmap 

genes. Still, the green path represents the shortest path connecting each known Alzheimer's gene 

and risk gene variant, and the dark blue edge links 1-hop neighbors of the known Alzheimer's 

genes and risk gene variants above. The red nodes indicate the known Alzheimer's genes and risk 

variants, and the orange nodes indicate their 1-hop neighbors and the points passed on the 
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shortest path. The remaining light blue nodes indicate genes that may have little association with 

Alzheimer's disease. In the right column, we utilize the top-K method, without edge filtering 

machine. Experiment indicates that the proposed method can successfully make the core gene 

sub-networks easier to understand.  

 

 

 

Figure 12: Visualization of detected core gene networks using Pathformer-v2 on Mayo(top) and Rosmap(bottom), 

where graphs on the left column show the result using incorporation of global attention matrix and top-K method, 

while graphs on the right column show the result only applied with top-K method. 
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Appendix B.  Other Backgrounds 

Interpretable GNN: The interpretable GNN aims to show a transparent and understandable 

prediction process to humans. In other words, which parts of the input have a significant impact 

on the prediction? For a gene network, this could be genes, relationships between correlated 

genes, or a combination of both, i.e., motifs [27]. Most interpretable GNNs, such as 

GNNExplainer [27] take a local interpretable mechanism to explain the key subgraphs of each 

graph. One of the assumptions behind this type of interpretation is that there are input 

components that contribute significantly to the prediction, while the insignificant components 

have less impact. Such an assumption can lead to the fact that these interpretable GNNs do a 

poor job of discovering the important subgraphs when the genetic features or the relationships 

among these genes cannot be clearly distinguished. Furthermore, local interpretability treats 

GNNs as black boxes [48] thus limiting human trust in the given interpretation. 

Low-path Nature of GNN: In general graph learning problems like semi-supervised node 

classification, node features x(i) are often regarded as signals on nodes, and techniques in graph 

signal processing [39] are then leveraged to understand the signal characteristics. Various prior 

works [36,37,38] assume or observe that node features x(i) consist of low-frequency true features 

and noises. Based on the assumption, numerous GNNs are designed to decrease the high-

frequency components in node features, thus essentially acting as a low-pass filter on graph 

signals. However, the assumption is not verified on gene networks. Figure 1 shows that gene 

networks do not benefit from omitting high-frequency components in signals. This means that 

the low-pass nature might not exist in the studied problem, and only keeping low-frequency 

signals might degrade the performance of GNNs due to the information loss. 
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Appendix C.  Ablation Study 

Effect of K in population-based interpretation machine: Here we test the effect of K in the 

population-based interpretation machine. To provide robust analysis, we also equip the 

interpretation machine with base GNNs (GIN and GCN), where the node representations are 

learnt by GNNs and then the interpretation results and the predictions are generated by the 

population-based interpretation machine. Table 1 illustrate our results. Our finding suggests that 

although the accuracy of the population-based interpretation machine does not exhibit significant 

changes on the two datasets when K increase, the number of genes in common was lower at 

comparable ratios than those found with K=1000, which should be reasonable because as the 

sample size increases, the model is able to learn more information from diverse gene 

expressions. As a result, the model can better identify patterns in gene expression and find more 

shared genes that are significant to both datasets. 

 

Methods K Mayo_accuracy Rosmap_accuracy 

GIN-v2 500 0.567 ± 0.015 0.626 ± 0.024 

 1000 0.551 ± 0.049 0.63 ± 0.043 

GCN-v2 500 0.543 ± 0.024 0.632 ± 0.025 

 1000 0.53 ± 0.025 0.629 ± 0.028 

PathFormer-v2 500 0.874 ± 0.025 0.795 ± 0.016 

 1000 0.865 ± 0.035 0.802 ± 0.016 

Table 1: Performance of top-K models using different K values on two datasets 

Table 2 also illustrates the then number of common genes in the detected core gene sub-networks 

of Mayo and Rosmap are not significantly different when using different graph convolution 

layers (PathFormer, GIN, GCN). However, as PathFormer can sparse the core sub-network as 
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Appendix A states, it provides users more flexibility to using larger K to detect longer 

dependency between Alzheimer's genes and risky genes. 

 

Methods Common Genes of Top 500 Genes from Same 3000 

Genes 

PathFormer-v2 83 

GIN-v2 88 

GCN-v2 90 

Table 2: Common genes limited to same genes on two datasets 
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