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ABSTRACT

This paper presents an informal description of a methodology called
the Total System Design (TSD) Methodology. It consists of two vhases that
deal with the transformation of a system requirements specification to a
processing model (in the architecture design phase) and the subseguent
generation of hardware and software requirements (in the binding phase).
The proposed design strategy is based primarily on an extension of the
concept of abstract machine hierarchies to distributed systems, while the
binding strategy could be viewed as a "most constrained first" policy.
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INTRODUCTION

Increased reliance on distributed systems, growing interdependence
between hardware and software, stronger emphasis on the use of existing
software (due to soaring software development costs), and availability of
an ever increasing variety of hardware choices are several factors that
have contributed to making the development of the hardware/software
requirements the most critical issue faced by the system developers today,
aside from the problem definition which must precede all design
activities. The system architecture design and system binding are two
development phases that have been proposed in [ROMAB?&} to deal with the
design decisions relating to this issue. [ROMA82a] investigated the
nature of the hardware/software partitioning problem, characterized the
dynamics of hardware/software trade-offs, and put forth a proposal for a
class of design methodologies covering this aspect of system development.

The system architecture design phase deals with the selection of an
overall system architecture which accomplishes the intended system
functionality and which, under a reasonable set of technologicsal
assumptions, meets the performance and other comstraints originating with
the sysfem requirements. The proposed architecture and all the design
decisions taken during this phase form a processing model used as input to
the binding phase.

The binding phase, based on the limited degrees of freedom still lefi
open by the system architecture design phase and based on market
availability, identifies a particular mix of software and hardware and
produces specifications for all needed components. The nature of the
specifications, however, may vary from component to component depending on
its intended realization (software or hardware) and on the manner in which
it is to be obtained {off-the-shelf, through customization, or
custom-made). The system design stage is also concerned with the
integration of the system components from the point when both the software
and the hardware components are available and up to the point when the
system is offered for customer acceptance testing.

This paper presents an informal description of a methodology covering
these two key phases of system development, the Total System Design (TSD)
Methodology. The following three sections provide the reader with
informal definition of the type of specifications employed by the TSD
Methodology: the system requirements, the processing model, &nd the
hardware/software requirements (formal definitions may be found in
[ROMA82c}). The design strategy is first infroduced in this paper in
tutorial form, but is formalized in the Annex to this paper using the
methodology definition approach of [ROMA82b]. (A formal characterization
of the relationship between the design strategy and the nature of the
specification languages involved is presented in [ROMA82c].) The proposed
design strategy is based primarily on an extension of the concept of
abstract machine hierarchies to distributed systems, while the binding
strategy could be viewed as a "most constrained first" policy.
-Gonclusiens, references, and the Annex appear at the end of the paper.
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INFORMAL DEFINITION OF SYSTEM REQUIREMENTS

The system requirements are generated in the problem definition
stage. They consist of a conceptual model and a set of constraints which
together define the acceptability criterion for any proposed system
realization: a system is said to meet its requirements if and only if it
carries cut the functionality described by the conceptual model and
satisfies all the constraints present in the system requirements.

The role of the conceptual model is to capture in finite and precise
terms the nature of the interaction between the needed system and its
environment. In general, the conceptual model must have the ability to
describe the relevant environmental states, an abstraction of the stztes
of the system, and the way in which both the environmental and system
states change. The approach to describing the states and the state
transition rules varies from one specification language to another. The
language discussed in [ROMA82d], for instance, employs a set-theoretical
notation to describe both the environmental and the system states and uses
predicate calculus to define the state transition rules. By contrast,
other languages promote operational approaches based on data flow graphs

[BELL77], applicative methods [ZAVES!], etc.

Furthermore, some languages make implicit assumptions about either or
both the nature of the states and of the state transition rules; the loss
in generality is motivated by increased specificity in the handling of a
particular application area. As an example, a system that responds to
stimuli from the environment in a manner which is independent of the
history of previous stimuli and responses may be easily described in a
language which equates the state of the environment with the current
stimulus, has no ability to describe system states, and is capable of
defining a mapping from the set of stimuli fo the set of responses. Yet
another example could be used to illustrate the fact that there is also
great variability in the way state transitions may be described: in a
biomedical simulation system a new state is generated as & result of the
integration of a set of differential equations.

Increases in the ability to formally define the desired functionality
are not accompanied by commensurable advances in the definition of system
constraints. There are four important reasons contributing to this.
First, there is a great diversity of types of constraints (e.g., response
time, space, reliability, cost, schedule, weight, power, etc.?. Second,
some of them are related to possible design soclutions which are not yet
formally stated at the time the system requirements are being conceived.
Farthermore, their relevance differs at different points in the design.
Third, many constraints (e.g., maintainability) are not formalizable given
current state-of-the-art. Finally, not all constraints are explicit. TFor
instance, the designer is expected to follow generally accepted rules of
the trade in designing a system without having them explicitly stated.
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INFORMAL DEFINITION OF PROCESSING MODEL

The methodology put forth here treats systems as being describable by
a hierarchy of related design specifications where the specification at
one level reveals & design solution for some problem which is formally
defined within the level above. The processing model reflects this view
by assuming a similar structure: a total order over a2 finite set of
design specifications. The total ordering is not really necessary but hes
been adopted in order to simplify the presentation of both the processing
model and the system design strategy. Furthermore, the extrapolation to
an upside-down tree (a tree in which the level number of each node is
defined as the longest distance from a leaf rather than root) is trivial.

By definition, each design specification is viewed as corresponding
to a subsystem in the overall system. The support relation between
subsystems is explained later and is formally defined in [ROMA82c]. The
remainder of this section focuses on the informal definition of the design
specifications.

Regardless of its position in the hierarchy, each design
specification consists of same six components:

PROCESS STRUCTURE

network topology in terms of processes and links
definition of system and external processes

-~ definition of links

definition of link communication protocols

- PROCESSOR STRUCTURE
-- network topology in terms of processors and interconnections
definition of processors
~- definition of processor interconnections
-- definition of interconnection communication protocols

—

t

- PROCESS/PROCESSOR ALLOCATION
-- allocation and reallocation rule

~ PERFORMANCE SPECIPICATIONS
-- performance reguirements of processes and links
~-- performance requirements of processors and interconnections
-- performance characteristics of processes and links
-- performance characteristics of processors snd interconnections

-- performance models

- BINDING OPTIONS
-- set of feasible realizations of the process and processor
structures
-~ set of binding constraints

~ CONSTRAINTS.

.

The PROCESS STRUCTURE describes the subsystem functionality by means
of 2 network of communicating processes interconnected via links. Each
link providea a logical connection between two or more processes. The
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message traffic on each link, however, behaves in accordance with a
commuanication protocol specified by the designer. In the top level
subsystem the processes may correspond to successive transformations of
the input data in a data processing system or to query processing in a
database system. At other levels the process structure may be describing
operating system capabilities. In all cases, however, the description is
independent of the way in which the processes are distributed within a
realization of the system and of the manner in which they may bde

implemented.

The PROCESSOR STRUCTURE, in conjunction with the process/processor
allocation explained below, is an abstraction of all the subsequent levels
in the hierarchy. In its simplest form, the distinction between the
process and the processor structures is like the distinetion between an
application program and the operating-system/hardware combination that
enables it to execute. Furthermore, processors are assumed o correspond
to separate distributed collections of system components. In other words,
given the final system realization and any one of the processor structures
present in the hierarchy, one should be able to uniquely partition all
system components into equivalence classes and to establish a meaningful
one-to-one correspondence between these equivalence classes and the
entities (processors and interconnections) of the chosen processor
structure.

The PROCESS/PROCESSOR ALLOCATION captures the distribution of the
processes among the available processors. In its simplest form, the
allocation may be static, i.e., does not change during the execution of
the system. In such cases, all processes are partitioned among the
available processors with the links being partitioned accordingly between
processors and their interconnections. Reliability, workload balencing,
and other design considerations, however, often require dynamic changes in
the allocation of processes and links among the available processors and
interconnections. (Note: An sdditional degree of complexity may be

noticed in systems which permit a process to be mapped simultaneously on
several processors. This occurs, for instance, when the code associated

with a particular realization of some process and the execution of the
corresponding instructions are the responsibilities of two separste
processors. The definitions from [ROMA82c] do not rule out such cases.)
The separation of the allocation/reallocation issue from the functional
details of the process sfructure has the potential to significantly reduce
the complexity of 2nalyzing both the individual subsystems and their
relationships.

The PERFORMANCE SPECIFICATIONS deal with the performance sttributes
of the system and with the models used to relate the performance
attributes to the selected system architecture and to each other. A
performance attribute may be associated with either the process or the
processor structure and represents either a performance requirement
originating with some performance constraint or a performance
characteristic that has been established to be true, i.e., it was
. validated. Performance requirements (i.e., constraipts) are assumed’ to

propagate top-down from the process structure to the processor structure,
and from one subsystem to the next. The performance characteristies,
however, propagate bottom-up; only when the exact characteristics of the
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Processor structure are known mey one deduce with certainty the
characteristics of the process structure. Moreover, an acceptable design
demands that all performance characteristics imply the satisfiability of
the corresponding performance requirements. In this context, performance
models assume a duasl role. First, they assist one in determining the
performance requirements of the processor structure from those of the
process structure. Second, they propagate the performance characteristics
of the processor over the process structure.

The BINDING OPTIONS represent a non-empty (possibly infinite) set of
system realizations that are still feasible at a given point in the design
process. This set is very large at the start of the system architecture
design phase and, through successive design refinements, is systematically
reduced to & manageable size upon entering the binding phase. Because at
no point in time it is possible to enumerate the members of this set, the
designer specifies it indirectily via a distinguished category of
consiraints called binding constraints. They are formulated during the
design process as a result of explicit design choices (which rule other
out alternatives) and due to conclusions drawn from various design studies
and analysis of the stated system requirements, available technology,
anticipated operating environment, etec.

Finally, the CONSTRAINTS that appear in each design specification are
inherited from the original system requirements and carried along
throughout the entire design. Different constraints, however, affect the
design at different points in time. Some represent the origin of the
performance requirements while others may affect certain aspects of
binding. It is the designer who brings into consideration the appropriate
constraints at the right place in the design.

INFORMAL DEFINITION OF HARDWARE/SOFTWARE REQUIREMENTS

The hierarchy of design specifications present in the processing
model is mapped during the binding phase into off-the-shelf, customized,
and custom-made software and hardware. Separate sofiware requirements
specifications are generated for each subsystem. In addition, hardware
requirements specifications are produced for the lowest level subsystem in
the processing model hierarchy. VWhile there is great variability in the
way in which both software and hardware requirements need to be specified,

they generally include the following:

- a specification of the functional and performance requirements
of the hardware or the software (present, for the most part, in
the respective design specification);

- a specification of all relevant interfaces {between subsystems,
between components residing on different machines, between
components developed separately, etc.);

~ a mapping from parts of the broposed design onte existing
hardware or software;
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- & list of existing hardware or software to be used.

A simple inventory system may be used to illustrate the nature of the
hardware/software requirements:

SOFTWARE REQUIREMENTS.

LEVEL 1 (Application Program).

- functionality given by an inventory control language whose
syntax and semantics have been fully specified; no performance
constraints;

— user interface via the inventory command language; access to
the database defined by the INGRES user manual; the
implementation language C;

- all database manipulations are relegated to INGRES;

- off-the~shelf software to be used: INGRES -- & relational
database package.

LEVEL 2 (Operating System).
-~ funetionality given by the UNIX user manual;
-~ user interface via UNIX standard commands; UNIX version
supported by the PDP 11/40 machine and compatible with INGRES;
- no changes or enhancements to the UNIX operating system
permitted;
~ off-the-shelf software to be used: UNIX operating system.

HARDWARE REQUIREMERNTS.

LEVEL 2 (Hardware Configuration).

- the hardware configuration consists of a PDP 11/40 with 64k
bytes of main memory, a VI52 compatible CRT terminal, a 1200
baud printer, and two disk drives for 2.5 megabytes disk
cartridges;

- one serial port for interfacing the crt and the processor; one
parallel port for the printer; two direct memory access ports
for the disk drives;

- the mapping of functions to components is trivial in this case;

—~ specific printer, crt, and disk drives could be listed here.

The relation between the processing model and the hardwere/software
requirements is further analyzed in the next section.
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METHODOLOGY OUTLINE

GENERAL REMARKS

This section discusses a proposal for a class of TSD Methodologies
focused on the design activities leading to the identification of the
hardware and software components in distributed systems. The presentation
starts with a statement of objectives. It is followed by the design
strategy to carry out the system architecture design phase. The strategy
covers both the design of the individual subsystems and the sequencing of
design activities between subsystems. Finally, the discussion turns to a
systematic way of accomplishing the task associated with the binding
phase.

The principal goal of the proposed methodology is to increase the
quality and productivity of the design of large distributed systems.
Reaching this goal, however, places the following demands on the nature of
the TSD Methodologies:

- an ability to explore in a systematic manner a large design
space by separating system level issues from those involved in
the design of hardware and sofiware and by placing the selection
of hardware and software (i.e., hardware/software trade-offs) on
a more rational base than it has been done in the past;

- & structuring of the design process in a way which assures a
great degree of control over design complexity and promotes
incremental verification of both the functional and performance
aspects of successive system design refinements;

- a strategy which is based on general design principles rather
than the peculisrities of a specific class of applications but
which, at the same time, is adaptable, i.e., may be tuned to a
given application.

It is our contention that the design strategy we have selected indeed
has all these attributes. The remainder of this section describes the
proposed strategy. The ultimate validstion, however, has to come from
empirical studies in which the methodologies are applied to specific
problems. Furthermore, specification languages and an appropriate
assortment of techniques need to be developed in order to provide the
designer with a computer aided enviromment that would assure the high
productivity to which the TSD Methodologies aspire.

Before presenting the methodology it is necessary to point out that,
for the sake of clarity, certain simplifying assumptions are being made

throughout the paper:

- design backiracking due to errors receives limited coverage;

- parallel development of portions of the design by different
teams on the project is ignored despite the great opportunities
for concurrency within a project;
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- most project management activities are omitted;
- system integration is not discussed.

While they do not alter the overall flavor of the strategy, they may
make the methodology appear somewhat inflexible. We hope that by pointing
them out early in the presentation, the reader will have no troudble in
discerning the difference between the overall design strategy and the
artifacts of the simplifying assumptions.

SINGLE SUBSYSTEM DESIGN STRATEGY

As indicated earlier, systems are described in terms of a hierarchy
of design specifications. They force a structuring of the system in terms
of a number of subsystems, each supporting the subsystem above. The
methodology requires the design of individual subsystems to proceed
top-down. Within the general context of top-down design, however, several
related activities are interleaved. These design activities are outlined
below.

Successive and concurrent refinement of both the process and the
procesggor structures. The fact that a given system function may be
decomposed in more than one way is well-known. This design freedom
is not a menace, as seen by some (e.g., [BERG81]), but rather a
degree of flexibility essential to good design. The selection
between alternate decompositions is not intrinsic to the
decomposition itself, but depends upon the designer’'s odjectives
(maintainability, clean abstraction, simple interfaces, reliability,
etc.). Among them, the availability of certain {existing or
postulated) means of support may also affect the functional
decomposition. The case when the process structure is affected by
earlier choices of the processor structure is illiustrated by the way
in which the solution for a certain computational problem may take
different forms if one assumes the use of a2 high speed minicomputer
with or without an attached array processor. The converse situation
(which occurs frequently in the data processing field) is where the
needed hardware is selected based on the resuli of a functional
decomposition of the application problem, where the decomposition is
guided by some modularization principle.

Due to the interdependence between the selection of the process
structure and of the processor structure, TSD Methodologies emphasize
the concurrent refinement of both structures. While accommodating
the special cases where the peculiarities of the application force
one structure or the other to be dominant, this approach offers the
system designer the added flexibility required by an unbiased
treatment of the hardware/software trade-offs problem. Furthermore,
the balance is allowed to shift in one direction or another, not due
to personal prejudices, but due to constraints that affect the range

. of acceptable system realizations.
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Top-down propagation of performance requirements. Fundamental
to the conception of the TSD Methodologies is the assumption that
performance constraints direct to a large extent the designer's
activities. Performance requirements recognized at the top level of
& design specification propagate from one level to the next through
the assumptions the designer makes at one level about the
characteristics of the next. The assumptions later become
requirements and the cycle continues. In order for the designer to
make reasonable assumptions, two things are needed: past experience
and adequate performance models that relate the presumed performance
characteristics of entities of some level and the performance
requirements placed over the particular level of the design
specification. The nature of the performance models has to change
according to the level of functional detail. When the level of
abstraction is high, the models are less detailed, less accurate, and
also less costly than when lower levels of the specification are
reached. The scheme has two advantages. On one hand, it allows
performance considerations to influence design decisions early on.

On the other hand, it holds the promise that this may be achieved in
a cost effective manner. {This idea hes received some endorsement in

recent publications [KUMABO, SANGT79].)

Bottom-up propagation of performance characteristics. While the
performance requirements flow top-down, the validated performance
characteristics (once available) propagate in the opposite direction
fBOOTBOJ. The use of the performance data is important in making
immediate readjustments of the subsystem design and establishes the
accuracy of the assumptions that were made and the feasibility of the
proposed design. (The way in which the performance characteristics
become available is discussed later.)

Binding constraints accumulation. The hardware/software
trade-offs dynamics manifest themselves during the system design
stage as a gradual narrowing down of the range of feasible
realizations, i.e., binding options. This takes effect through a
growth in the set of recognized binding constraints. The set,
originally inherited from the subsystem above, is augmented from
several sources. First, each design decision taken {e.g., successive
refinements, allocation, etc.) rules out all realizations which have
adopted different approaches. Second, design studies that look ahead
to low level but potentially difficult components of the system also
affect the directions the designer is willing to comsider. If, for
instance, there were no totally distributed concurrency coordination
algorithms, a database design based on their potential availability
would have to be discarded. Third, inference studies may suggest
that the use of some technological alternatives may be unfeasible
(due to their impact on other aspects of the system or on its
operation environment, etc.) or, although feasible, not recommended
{due to anticipated technological trends, for instance). Finally,
the availability of certain software or hardware may dictate a design
solution which takes advamtage of such off-the-shelf components in_

order to reduce development costs.
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Systematic error detection. Error detection is supported via a
number of checks placed at various critical points in the seguence of
design activities within the tasks/subtasks and in the tasks/subtasks
review sections of the methodology specification. They involve
consistency checks between adjacent levels of a design gpecification
and between related components of the specification (e.g.,
process/processor allocation versus the process and the processor
structures). The checks also include logical verification between
the design specification of one subsystem and its requirements which,
in general, are established by the specification of the subsystenm
above, if any. For the top subsystem in the hierarchy, however, the
subsystem requirements are the same as the system requirements. This
issue is considered again in the discussion of the subsystems' design
dependencies which follows.

OVERALL SYSTEM DESIGN STRATEGY

The structuring of the system design in terms of the proposed
hierarchy of design specifications, is motivated by the desire to control
complexity through a systematic and strict separation of concerns. The
idea originates in part with the already common concepts of virtual
machine and stratified design (layers of virtual machines [ROBI77]). When
using a programming language, the designer is not in the least concerned
with the implementation details of the language (if the language is
properly designed). Similarly, when working at one level of a stratified
design the designer deals only with the semantics of the operations
available at that point and not with their possible realizations. The TSD
Methodologies attempt to exploit this approach in the context of
distributed systems by adapting it accordingly.

The designer starts from the system requirements and, through
successive refinements of the process and processor structures, defines
both the way in which the functionality specified in the conceptual model
is implemented and the support needs for such an implementation (e.g.,
message exchange capability, process reallocation due to failures, storage
management, etc.). The top design specification is said to describe the
application subsystem, due to the nature of its functionality which is
directly relevant to the application at hand. All subsequent
specifications are said to describe support subsystems.

As slready stated, the construction of each design specification
takes place in a fop-down manner. However, it is often the case that,
prior to completing the specification, the support needs required by the
process structure may become clear. In such cases, the generation of the
current design specification may be temporarily suspended and the design
of the supporting subsystem may proceed. Despite the fact that the strict
top-down design strategy could be followed, the designer masy chose to move
to the next subsystem in the hierarchy in order to minimize the risk that
some of the assumptions made about the support subsystem may prove to be
_Wrong. However, once the designer decides..fo move_.to the subsystem below,
the design discipline prescribed by the TSD Methodologies requires one to
complete the design of the support subsystem prior to resuming the design
of the subsystem above. This reduces thrashing between subsystems and
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enables the designer to make use of the performance characteristics of the
support subsystem in the adjustment and completion of the specification
for the subsystem being supported.

The diagram that follows depicts the result of aspplying this strategy
to the design of a computer graphics system. Design activities are
represented by groups of slashes. The left most column of slashes
corresponds to the design of the top subsystem, i.e., the application
subsystemn.

/ design of
/ grephics
/ language

// design of
// grathics

/ language

// interpreter

//
/// design of

17/ graphics
/// end

/// communication
/17 primitives

/77
//// design of
//// graphics
//// hardware
171/

/17

/!
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Aside from the global sequencing of design activities, an
understanding of the role that the processing model plays in the system
design stage requires the definition of three important concepts. The
first one is the notion that the top design specification (the application
subsystem) implements the system requirements. The second is the support
relation between the design specifications within the processing model
hierarchy. Finally, the concept of superficial binding makes the
transition to the binding phase.

A design specification is said to implement the system requirements
when iis process structure is logically equivalent to the functionality

captured in the conceptual model. The definition may be actually extended
to the individual levels developed during the top~down design of the
specification. A given level in the specification implements the system
requirements if its process structure is logically equivalent to an
abstraction of the conceptual model. These definitions establish the
correctness criteria to be employed during the design of the application
subsystem and form the foundation for future automated checking of the top

design specification.

In the most basic terms, "subsystem B supports subsystem A" implies
two things about B: (1) it contains the design of functions (unrelated to
the application area) which were assumed to be available during the design
of subsystem A and (2) it may represent a further refinement of the degree
of distribution within the system. With regard to the first role of =
support subsystem, it must be pointed out that the ultimate reslization of
the support relationship may assume a great variety of forms. Consider,
for instance, the special case when both subsysiems are eventually
implemented in software:

- the programs of A may actually invoke the programs of B either
as procedure calls or as macros -- such is the case when B
realizes the communication protocol assumed by the message
sending and receiving commands used by A;

- the programs of A may be interpreted by programs in B -- the
availability of a LISP interpreter may be one of the support
functions assumed by A;

- the programs of A may by objects (i.e., date) manipulated by
programs in B -- programs in B may have the responsibility to
monitor and relocate the programs of 4 in case of equipment
failure or for load balancing purposes.
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About the potential increase in the degree of distribution from one
subsystem to the next, the idea may be rendered easily through the use of

the earlier graphics system example.

DESIGN ACTIVITY

/ design of

/ graphics

/ language

/

/
// design of
// graphics

// language
// interpreter

//
//
/// design of
/// graphics
/// and
/// communication
/// primitives
/77
177
/717 design of
//// graphics
//// hardware
i
/117
i
/117
/117
i
/1
/17
11/
/17
//
//
//
//

T e

PROCESSOR STRUCTURE TOPOLOGY

(user) U <--> X --> I (image)

U =271 —=->%¥2 -->1

U<->21 -->22->1

U <-=> W1 --> W21

where
w1 =
w21 =
wzz =

minicomputer
image buffer
display unit

The third important concept, superficial blndlng, must be considered
. in conjunction with the hinding strategy.
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BINDING STRATEGY

A processing model is considered bound when all its entities are
mapped into software and hardware to be obtained (some by purchasing
off-the-shelf components, others by customizing aveilable components, and
yet others by custom building them). The binding process (also called
hardware/software trade-offs) starts in the system architecture design
phase and reaches its conclusion in the binding phase. In the first of
these two phases the growth in the set of binding constraints (explained
earlier in this section) reduces the set of feasible alternatives, thus
biasing the design toward certain technological alternatives the designer
considers to be most promising. This biasing becomes very sirong when the
designer choses to structure the system around the potentisl use of
available components; the system entities tentatively associated with
such components are said to be superficially bound to them. Note that one
entity may be superficially bound to one or more alternatives.

At the point when the binding phase is entered, large parts of the
processing model may be superficially bound. The strategy used to
accomplish the binding could be called a "most constrained first”
approach. The designer starts by identifying binding alternatives for the
most constrained areas of the specification. This results in the
immediate generation of new binding constraints over the remaining parts
of the design which, in turn, eliminates from consideration many fruitless
alternatives. Even if one is careful to always 1imit the investigation to
a tractable number of alternatives, the total number of system
configurations being evaluated at one time could grow rapidly. If, for
instance, one needs to merely select three machines and there are four
alternate candidates for each, the total number of system configurations
reaches sixty-four. While some configurations may be ruled out by
incompatibilities between some candidates associated with areas of the
design which are interfaced to each other, the designer needs to weed out
many more by employing guidelines such as cost minimization,
maintainability, uniformity, etc. Once the entire specification is
superficially bound to several slternate configurations, their number
needs to be reduced to one by evaluating the weak and the strong points of
each of them. Now the system specification is bound.

4 last task still to be carried out is the generation of the software
and the hardware requirements. They have to include such things as the
functionality of various components, performance and other constraints,
interface definitions, ete. The exact contents and form of these
requirements is hard to formalize due to significant variability between
systems. This concludes the informal presentation of the design strategy

proposed for the system design stage.
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CONCLUSIONS

This paper outlined a methodology {the TSD Methodology) for
generating the hardware and software requirements for a distributed
computer-based system. Future refinements of the methodology still need
to be carried out based on feedback from empirical evaluations of the
approach. Aitempts to show the feasibility of the TSD Methodology for two
application aress (ballistic missile defense and geographic data
processing) were successful. They indicated, however, the need to tune
the TSD Methodology to the specifics of the application area under
consideration. Plans are under way to do this for one narrowly focused
application area soon to be selected.
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ANNEX

FORMALIZATION OF THE DESIGN STRATEGY

NOTE: The flow of control constructs employed in this section are
explained in [ROMA82b]. Tasks, subtasks and procedures should be
treated like recursive procedures present in common programming
languages such as PL/1 or Pascal with the special provision that
their definition appears at the place of their first invocation.
Consequently, at the place of definition and first invocation,
parameters are defined and initislized at the same time.

Furthermore, &ll simplifying assumptions explained earlier are
reflected in the way the strategy is formalized here.

TASK System~Architecture-Design.
SUBTASK Subsystem-Design(i=1).

Review subsystem requirements (for i=1 the subsystem requirements
correspond to the system requirements and the subsystem is called the

application subsystem; otherwise, the requirements are given by the
processor structure definition and process/processor allocation defined
by the subsystem (i-1)).

Set the set of binding constraints to be the same as the binding
constraints of subsystem (i-1), unless i=1, in which case the set of
binding constraints starts by being empiy.

Identify those technological alternatives that may be ruled out as
unacceptable and/or limit the set of technological =zlternatives only to
those that appear to be appropriate; formulate constraints which would
reflect these considerations; add these constraints to the binding

constraints.
IF the subsystem i is already available THEN DONE.

Develop top-level (i.e., level 1) for the design specification of the
subsystem i based on some abstiraction of the requirements definition;
the process structure includes the modelling of the subsystem's
environment; the processor siructure topology is inherited from the
subsystem (i-1), if it exists.

PROCEDURE Subsystem-Refinement(j=2).

[ ==> { Generate the process structure for level j by decomposing or
by copying the process structure of level {(j-1).
Generate the processor structure for level j by decomposing
the processor structure of level (j-1) w.r.t. -the needs of
the process structure on level j.} |

==> { Generate the processor structure for level j by decomposing or
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by copying the processor structure of level (j-1).

Generate the process structure for level j by decomposing the
process structure of level (j-1) w.r.t. the capabilities of
the processor structure on level J.}}

Define process/processor allocation on level Js the allocation may he

static or

dynamic angd must be consistent with the allocation rule used

by the subsystem (i-1), if it exists.

iteration:

LOOP{ ==>
==>

Adjust the specification of the level j. |

Propagate both process and processor performance
requirements of level (j-1) over the level j and refine the
performance models used at level(j-1); analytical,
simulation and empirical techniques may be required to
support the requirements propagetion activity. ]
Investigate inference issues related to decisions tsken at
this level and eliminate binding options that are shown to
be inappropriate. |
Superficially bind aspects of the subsystem to already
available software/hardware, if such decisions are strongly
motivated by constraints or design principles. }

Carry out logical and consistency checks for level j. |
Carry out design studies for this or subsequent

subsystems. |

BREAK.

IF level j does not refine correctly level (j-1) THEN BACK.

IF level j is not an implementetion of some abstraction of the

subsystem

{ Process

requirements THEN BACK.

and processor structures are not completely refined

==> INVOKE Subsystem-Refinement(j+1).

Processor structure is completely refined
==} { INVOKE Subsystem-Design(i+1).

LOOP{ ==> Propagate the performance characteristics of the

subsystem {i+1) to the processor structure of the
subsystem i and, subsequently, to the process
structure of subsystem i. |
> Adjust_the specification of subsystem 1. |
> BREAK. }

IF process structure is not completely refined THEN

{ PROCEDURE Finish-Refinement(jf=3j+1).

Generate the process structure for level jf by
decomposing the process structure of level (3jf-1) w.r.t.

- the eespabilities of the processor -structure on 1evel Jf
(same as on level (jf-1)}.
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iteration:

LOOP{ ==> Adjust the specificstion of the level jf. |
==> Propagate proceas stiructure performance
requirements of level (jf-1) over the level jf
through the use of appropriate performance

models. |

==> Investigate inference issues related to
decisions taken at this level and eliminate

binding options that are shown to be

inappropriate. |

==> SBuperficially bind aspecits of the subsystem if
such decisions are sirongly motivated by

constraints or design principles.
==> Carry out logical and consistency checks for

level jf. !
=> BREAK.?

L]

IF level jf does not refine correctly level (jf-1) THEN

BACK.

IF level jf is not an implementation of some abstraction
of the conceptual model THEN BACK.

IF process structure is not completely refined THEN
INVOKE Finish-Refinement{jf+1).

PEND. } }}
PEND.

STREVIEW.

F(Check the self-consistency of the design specification for the

subsystem i.) ==> BACK.

F(Perform logical verification of the design specification with respect

to its functional requirements.) ==> BACK.

F(Check that all performance constraints placed on subsystem 1 are met,
given the characteristics of subsystem (i+1).) ==> BACK.

F(Determine that all consequences of the proposed design are

acceptable.) ==> BACK.
STEND.
Develop system testing plan.
TREVIEW.
F(Evaluate the system testing plan.) ==> BACK.

TEND.
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TASK Binding.
LOOP{ IF the system is superficially bound THEN BREAK.

Identify those design entities and groups of design entities which
are not superficially bound and have fewest degrees of freedom
with respect to binding.

FOR all such entities and groups DO
{ // { Identify binding candidate selection rules.

Select a tractable set of candidates.

Establish the mapping between the candidates and the
related design entities.

Define the compatibility relation between the candidates
associated with various parts of the design.

IF Compatibility problems are found THEN BACK.

Keep a reduced list of compatible alternatives based on various
guidelines such as cost minimization, uniformity, flexibility,
interface complexity, etec.

Evaluate the possible system configuraticns and reduce their number to
one.

{ Generste software requirements including: functionality; explicit
statements with regard to both constraints and degrees of freedom;

the specifications of the interfaces between the components of each
subsystem, between subsystems, and with the hardware; and the
" off-the-shelf and customized software to which some of the components

are bound. //

Generate hardware requirements including: functionality; explicit
siatements with regard to both constraints snd degrees of freedom;
the specifications of the interfaces between the hardware components
and with some of the software; and the off-the-shelf and customized
hardware to which some of the components are bound. }

Develop integration plan.
TREVIEW.
F(Check the self-consistency of ‘the software requirements.) ==> BACK.
F(Check the self-consistency of the hardware requirements.) ==> BACK.
F(Check consistency between hardware and software requirements.) ==> BACK.

F(Verify‘the functional -aspects of the hardware/software requirements
egainst the processing model.) ==> BACK.
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F(Check that all performance constraints placed on the system are met,
given the characteristics of the hardware and of the software.) ==> BACK.

F(Determine that all consequences of the proposed hardware/software
selection are acceptable.) ==> BACK.

F(Evaluate the integration plan.) ==> BACK.

TEND.
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