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ABSTRACT OF THE DISSERTATION

Determination of the Structural and Functional Mechanisms of

Perfluorocarbon-based Nanoemulsion Particle Interactions with Model

Biomembrane Systems

by

SUN JOO LEE

Doctor of Philosophy in Biophysics

Washington University in St. Louis, 2010

Research Advisor: Professor Nathan A. Baker

Perfluorocarbon based nanoemulsion particles (PFC-NEPs) are very small sized (∼

250 nm in diameter) greasy droplets that are enclosed by emulsifying phospholipid

monolayer. PFC-NEPs have been extensively developed for target-specific delivery

of therapeutic agents such as imaging agents and drug molecules. Because of the

extremely small sizes of PFC-NEPs and fluid nature of their surface, the structure

of these particles at atomic resolutions has yet to be determined by experimental

approaches. The aim of this thesis is to determine the atomistic structure of PFC-

NEP interfaces with a particular focus on their interaction with model target bilayers.

The goal of this work is to help understand the molecular mechanisms for PFC-NEP

cargo binding and delivery. Such understanding will enable the rational design of

PFC-NEPs for optimal delivery and eventually lay a foundation to customize the

particles for delivery of specific cargo molecules.
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To achieve this goal, we have used molecular dynamics (MD) simulations at both

atomistic and coarse-grained levels using in-house force field parameters developed

for a perfluorocarbon molecule that forms the emulsion core. By employing atomistic

simulations, the PFC-NEP interface structure was determined in the absence and

presence of a model cargo. The interface structure featured the intercalation of the

PFC molecules into the emulsifying monolayer and differential cargo binding to the

PFC-NEP interface as a consequence of the intercalation, which expressed the need

to modulate the level of mixing of PFC with the emulsifying monolayer for cargo

binding to PFC-NEPs. Coarse-grained MD simulations have been employed to test a

proposed “hemifusion” mechanism for PFC-NEP delivery of cargo to target bilayers.

Our simulations showed that PFC-NEP and liposome particles fused after encounter;

distinct molecular details were observed from the fusion mechanism between two

bilayers.

This thesis research has not only provided the detailed structure to elucidate molecu-

lar mechanisms for cargo binding and delivery but also laid a foundation to decipher

the correlation between the structure and function of PFC-NEPs for more systematic

studies in the future.
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Chapter 1

Background and Introduction

The foundation of disease diagnosis, treatment, and prevention has been changed by

the application of broad spectra of nanoscale technologies. These nanoscale technolo-

gies involve the generation, characterization, and optimization of so-called nanopar-

ticles, in the nanometer scale size range (often 200 ∼ 300 nm or smaller). These

small-sized particles can act as biological mimetics, biomaterials, sensors, and vectors

for delivery of a variety of substances to specific biological targets. Nanomedicine

promises high resolution imaging and efficient treatment by enabling target specific

delivery of imaging or therapeutic agents, offering advantages over traditional small

molecule therapies. However, these promises have been substantially delayed due to

the lack of crucial groundwork to decipher physicochemical and physiological pro-

cesses. Difficulty in obtaining structural details at the molecular level places an

obstacle to understanding physicochemical properties.

The molecular-scale details can be obtained through computational methods such

as molecular dynamics simulations. However, physicochemical and, in particular,

physiological processes span several orders of magnitude in temporal and spatial scales

and thus make it difficult to simulate the processes at an atomic resolution within

reasonable computation times. Therefore, multi-scale computational methods have

been devised to dissect a process into wide range of lengthscales and timescales.

The focus of this thesis work is to lay a foundation for application of multi-scale

computational methods to understand the molecular details of the structure and

functional mechanisms of a specific class of nanoparticles.
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1.1 Perfluorocarbon based Nanoemulsion Particles

(PFC-NEP)

Perfluorocarbon (PFC) based nanoemulsion particles (PFC-NEPs) are promising

platforms for the cellular delivery of imaging and therapeutic agents to specific targets.

Numerous successful in vitro and in vivo applications of these particles for imaging

and treatment have been made. PFC-NEPs with ligands against ανβ3-integrin have

been used to image neovasculature upon tumor growth,(1; 2; 3) atherosclerosis,(4;

5; 6) and therapeutic treatment.(7; 8) The particles have been used to track the

movement of cells in the body, which will greatly help the development of cellu-

lar therapeutics.(9; 10) PFC-NEPs have been also applied to treat tumor,(2; 11)

thrombosis,(12) and atherosclerosis.(5; 6) Taking advantage of the dual functionality

of PFC-NEPs for imaging and treatment offers great promise for individualized thera-

peutics by enabling the quantification of the local concentration of therapeutic agents

at the intended target.(13) In addition, the application of PFC-NEPs with different

perfluorocarbon cores has opened new possibilities for simultaneous detection of mul-

tiple epitopes.(14; 10) Despite these successful applications, the underlying molecular

mechanisms for the action of these particles are largely unknown.

Cargo loading and delivery across the plasma membrane are the most crucial steps

of nanoparticle action and need to be understood at a molecular level as these pro-

cesses are strongly influenced by the structure of the particles and their constituent

molecules. Therefore, in the following sections, introduced are the structure of the

PFC-NEPs, their constituent molecules as well as the crucial processes for the actions

of PFC-NEPs.

1.1.1 Structure

Nanoscale PFC emulsion droplets are enclosed by a stabilizing phospholipid mono-

layer with targeting ligands on their surface. as illustrated in Figure 1.1.1.
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imaging agents, drug 
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antibody, peptide, 
peptidomimetics

Figure 1.1: A schematic diagram of a multifunctional perfluorocarbon nanoemulsion
particle. The perfluorocarbon emulsion core is enclosed by an emulsifying phospho-
lipid monolayer. Targeting ligands are attached to the phospholipids either by co-
valent or non-covalent bonds. Cargo molecules are attached to the phospholipids,
embedded in the monolayer, or dissolved in the emulsion core in the case of strongly
hydrophobic molecules. This diagram is adapted from Kaneda et al (13).

Nanoemulsion core

PFCs are synthetic fluids that are structurally the same as hydrocarbons but with

fluorine atoms replacing the hydrogen atoms. These compounds can be produced in

large amounts with high purity.(15) PFCs are biologically inert, chemically stable,

non-degradable, and non-toxic when ingested or inhaled.(16; 13; 17; 18; 19) Strong

hydrophobicity is the paramount property of PFCs to form emulsion cores in aqueous

solution and to maintain stable emulsions over time. Indeed, PFC-NEPs show very

long shelf life (12-months at 4 ◦C) with phospholipid emulsifiers.(20)

Perfluorooctylbromide Perfluorooctylbromide (C8F17Br;PFOB) is a perfluoro-

carbon with one terminal fluorine atom replaced by bromine and it is under investi-

gation in this thesis as an emulsion core-forming PFC molecule. PFOB is widely used

for its following advantageous properties. First, PFOB is rapidly excreted from body

with a half-life of 3 days, which is long enough to be practical and short enough to

be safe.(17) Second, its low vapor pressure is important for forming stable emulsions
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with phospholipids. Finally, it can be easily manufactured at high purity.(21) Emul-

sion particles based on PFOB, with egg-yolk lecithin as the surfactant, are in use for

clinical trials to supply oxygen(21; 22) in a biocompatible manner.

Emulsifiers

Bare PFC droplets are thermodynamically unstable. Therefore, emulsion droplets

aggregate and coalesce as they minimize energetically unfavorable contacts and even-

tually form a separate phase. Emulsifiers are molecules with amphipathic characteris-

tics such as phospholipids, surfactants, denatured human serum albumin or synthetic

polymer. Emulsifying molecules can stabilize the unstable PFC droplets.(23)

Emulsifiers stabilize small emulsion droplets by reducing the surface tension and by

increasing the repulsive force between particles. In the case of PFC-NEPs, the emul-

sifying layer encloses the hydrophobic PFC cores and generates hydrophilic surface,

thereby improving the solubility of these particles.(24; 25) While the physicochemical

properties of emulsifiers are critical for the emulsion stability, the surface properties of

nanoemulsion particles can be modulated by the interaction of cargo molecules and

electrolytes, which will eventually affect the nanoemulsion stability.(25) Therefore,

elucidating the interaction of cargo and electrolytes is important in predicting the

emulsion stability and selecting emulsifiers.

Phospholipids Phospholipids are used as one possible emulsifier for PFC-NEPs

due to the following advantages. Phospholipids can generate smaller emulsion par-

ticles because of their strong plasticity and ability to adopt high curvature.(26)

Small particle size is an important criterion to offer greater surface area, deeper

penetration into tissue, and longer retention in the blood stream.(26; 23; 27) Some

sources of phospholipids are egg-yolk and soybean lecithins that have similar phos-

pholipids compositions as human cells: zwitterionic phosphatidylcholine (PC) and

phosphatidylethanolamine (PE) in major quantities, lysophosphatidylcholine (LPC)

and sphingomyelin (SM) in minor quantities.(28) Therefore, emulsion droplets made

with these phospholipids are less likely to trigger an immune responses(21) by pro-

viding similar biochemical surface as human cells.(22)
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In addition to their role as emulsifiers, the phospholipid monolayer on the surface

of PFC-NEP plays important roles in cargo binding, attaching targeting ligands to

the NEPs, and cargo delivery. Each of these functional aspects is addressed in the

following section in detail. Chapter 3 is devoted to elucidating the surface structure

of PFC-NEP, which is very difficult to achieve with current experimental tools due

to their small size and inhomogeneous, dynamic nature.

1.1.2 Targeting

Targeting is a unique feature of many nanoparticles. Targeting can be passive or ac-

tive. Passive targeting takes advantage of the defense mechanism of the host so that

the nanoparticles are delivered to phagocytic cells.(29) Active targeting is mediated

by target-specific ligands that are attached to the nanoparticle surface either cova-

lently or non-covalently.(13) Biological molecules such as small peptides, monoclonal

antibodies, Fab as well as aptamers, peptidomimetics have been used as targeting

ligands to provide nanoparticle specificity. Specific ligand-receptor interactions can

occur with very low dissociation constant in the nanomolar range.(13)

The surface of particles typically can hold 20-40 monoclonal antibodies or 200-400

small molecule ligands.(29; 30) Multivalent ligand-receptor interactions will enhance

not only specificity but also delivery presumably by perturbing membrane structure

in a similar manner to SNARE. The conformational changes of SNARE bring the

membrane into close proximity and locally perturb the two adjacent lipid bilayers.

In doing so, SNARE induces the formation of a fusion pore or neck.(31) Hence,

nanoparticle targeting by ligands provides 1) sensitive and selective binding, 2) long

residence time at a targeted site, 3) prominent contrast-to-noise enhancement, and

4) accelerated delivery by perturbing membrane structure.(29; 31)

1.1.3 Cargo binding

The interaction of cargo with PFC-NEPs varies based on their physiochemical pro-

perties.(25) Amphiphilic or hydrophobic molecules are good candidates for emulsion

formulations and most of them may remain at the surface of PFC-NEPs due to
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very strong hydrophobicity of PFCs. Therefore, understanding the structure at the

PFC-NEP surface enclosed by a phospholipid monolayer will provide insight into how

hydrophobic and amphiphilic cargo molecules interact with PFC-NEPs.

Melittin

Melittin has been most extensively studied among many cytolytic peptides that

are found as an innate host defense mechanism in invertebrates, vertebrates, and

plants.(32; 33) The most crucial function of these peptides is to porate the cell mem-

brane and abolish the low dielectric barrier between extra- and intra-cellular com-

partments, which eventually leads to cell death. Common biophysical properties of

these peptides include: 1) many of the peptides are positively charged, 2) the peptides

undergo conformational change from random coil to amphipathic helix upon binding

to membrane surface, 3) their pore forming activity is highly cooperative.(32; 33; 34)

Cytolytic peptides have promising potential as an anticancer therapeutic if their pre-

mature degradation by peptidase and non-specific cytolytic activity can be controlled.

PFC-NEPs have been implemented to resolve these two main obstacles in order for

in vivo application of melittin, and it was shown to be successful. Soman et al.

demonstrated that the melittin AMP could be stably bound to PFC-NEPs without

disruption of NEP morphology nor destabilization of the PFC emulsion. Furthermore,

they showed that NEP-bound melittin retains its biological activity: it can lyse li-

posomes and induce apoptosis in vitro and, more importantly, significantly reduce

tumor size in in vivo mouse studies.(35; 11)

These experiments discovered intriguing aspects that the phospholipid monolayer

on the PFC-NEP surface was intact even after the binding of melittin and that the

fluorescence of tryptophan residue was quenched when melittins bound to PFC-NEPs.

Molecular determinants for the differential interaction of melittin with a target bilayer

and the emulsifying monolayer on the surface of PFC-NEPs have yet to be determined.

Chapter 4 addresses the structural details of differential melittin interaction to a

bilayer and the emulsifying monolayer of PFC-NEP.
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1.1.4 Cargo delivery

The final destinations of cargo molecules are mostly cytoplasm or sub-cellular or-

ganelles. To achieve efficient delivery to these final destinations, one has to understand

the molecular mechanisms for internalization of nanoparticles across a plasma mem-

brane. Phagocytosis and endocytosis are the most common internalization mecha-

nisms of various nanoparticles such as liposomes and polymer-based nanoparticles.(36)

However, these internalization mechanisms involve lysosomal degradation that atten-

uates therapeutic efficiency, particularly of therapeutic biomolecules such as nucleic

acids, small peptides, and proteins. Hence, alternative strategies have been devel-

oped to avoid the lysosomal pathway and to directly insert cargo molecules into the

cytoplasmic space. These strategies include the conjugation of therapeutic cargo to a

cell-penetrating peptide(37; 38), electroporation(39; 40), and therapeutic ultrasound

with microbubbles.(41; 42; 43) However, these methods have limitations such as a lack

of specificity, difficulty for in vivo application, limited spectrum of cargo molecules

to carry, and potential cell damage.(38; 40; 44; 45; 46)

Delivery using PFC-NEPs promises a mechanism overcoming these limitations by pro-

viding specificity, high capacity to load diverse cargo molecules, and a non-invasive

mode of action to cross a plasma membrane. Macroscopic experimental observations

suggest a two-step mechanism for the delivery of cargo molecules from PFC-NEPs to

the cytoplasm of the target cells (47). First, cargo molecules are delivered from NEPs

to target plasma membranes via passive diffusion, so called “contact-facilitated” de-

livery that takes place after the NEPs bind to or closely approach the target cell

surface.(48) The diffusion of cargo molecules is thought to be mediated by a hemifu-

sion lipid complex connecting the PFC-NEP to the target cell (see Fig. 1.1.4). The

formation of the hemifusion lipid complex was hypothesized based on the well-studied

fusion process between two bilayers, which progresses in the following pathway: close

apposition, a hemifusion stalk formation, stalk expansion into a disc-shaped hemifu-

sion diaphragm, and pore formation.(49; 50; 51; 52; 53; 54; 55; 56) Next, the cargo

molecules are transported from the plasma membrane into the cytoplasm by active

raft-dependent internalization at the cost of ATP hydrolysis.(47) However, the molec-

ular details of both steps are largely unknown and must be understood in order to

rationally design nanoparticles.
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PFC-NEP

Target Bilayer

Figure 1.2: A schematic diagram of “contact-facilitated” delivery mechanism. PFC-
NEP closely apposes a target bilayer. Two closely apposed monolayers form a hemi-
fusion complex. Cargo molecules (red) diffuse to the target bilayer through the hemi-
fusion complex.

1.2 Multi-scale computational approaches

1.2.1 Molecular dynamics (MD) simulations

Molecular dynamics simulations generate the time evolution of a system by numer-

ically integrating Newton’s equations of motion with the force computed for each

atom.(57; 58; 59) The force acting on each atom is calculated based on an underlying

force field that contains a set of parameters and equations to describe the interac-

tion between atoms.(60; 61; 62; 63) The trajectory from MD simulations provides

molecular details, from which various time dependent structural, dynamic, and ther-

modynamic properties are determined based on statistical mechanics.

Molecular dynamics simulations have been powerful tools to determine the dynamics

and structures of lipid aggregates because they depend on the molecular aspects of the

individual lipids and are intrinsically disordered to some degree.(64; 65) Experimental

techniques can elucidate only highly averaged conformations while most of molecular

details are ignored. The advantage of MD simulations become more pronounced

when studying non-lamellar states that frequently appear for biologically important

processes such as pore formation,(66; 67; 68) membrane genesis,(69; 70) membrane

fusion and fission.(54; 71; 72)

Multi-scale MD simulations need to be used because the phenomena pertaining to

membranes occur over a wide range of temporal and spatial scale. Figure 1.2.1 ad-

dresses the wide temporal ranges of lipid motions in pure biomembranes. Figure 1.2.3
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Figure 1.3: The wide range of time scales for lipid dynamics in a biomembrane. The
time scale of the lipid motions in a pure membrane ranges from a ps level to a few
hours, spanning 16 orders of magnitude difference. The figure is adapted from (73).

shows an example of multi-scale modeling to manifest the simplification of a molecule

upon coarsening.

1.2.2 Atomistic simulations

All-atom simulations treat every atom explicitly, which provides the most detail. The

most commonly used all-atom force field for membrane simulations is the CHARMM

force field.(60; 74) However, due the large number of atoms in each lipid, an all-

atom representation requires very high computational cost and significantly limits

the accessible system size. United-atom representations were developed to resolve

this high computational cost while keeping reasonably high levels of detail. United

atoms are made by combining nonpolar hydrogen atoms and an aliphatic carbon into

a single pseudo-atom.(75) The most commonly used united atom lipid model is based
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on a combination of OPLS and GROMOS force fields, which is called the Berger lipid

model.(76) This particular lipid model has been commonly used in combination with

all-atom water model. Recently the combination of an all-atom protein model and

the Berger lipid model was suggested.(77) Hence, simulations incorporating all-atom

and united-atom models are often called “atomistic”.

Even after implementing the united atom model, atomistic simulations are nor-

mally limited to small scale simulations such as a bilayer or monolayer simulations

within the dimensions of several tens of nanometers for less than a few hundred

nanoseconds.(69; 78; 79; 80) Such small scales can capture only limited biological

phenomena such as the dynamics of pure membrane, binding of small molecules

or ions,(80; 81) lipid mixing,(79) membrane protein fluctuation for very short time

scales.(82) Recently, however, advance in computation techniques and abundant com-

puting resources enabled vesicle fusion simulations at an atomic level.(55) This report

shows that atomistic simulations will be more extensively used for large scale simu-

lations because of its better accuracy than coarser models.

1.2.3 Coarse-grained simulations

Coarse-grained models can be categorized into two groups depending on the level of

detail that a model confers. The first group uses very simple models such that a

lipid is modeled by two beads, one hydrophilic and the other hydrophobic, and dis-

regards electrostatic interactions.(83; 84) Despite the simplicity, these highly coarse-

grained models are able to simulate mesoscopic phenomena such as self-assembly,

phase transition, and domain formation. The coarse-grained models of the second

group incorporate more details of individual lipids and are developed based on cor-

responding atomistic simulations and relevant experimental data including densities,

mutual solubilities, and relative diffusion rates.(85; 86; 87) Generally these models

contain divers types of beads and take account of electrostatic interactions and ex-

plicit solvent. Three major contributions to coarse-grained lipid have been made by

Klein et al. (86) Izvekov and Voth,(87) and Marrink et al. (85; 88; 89) All models

are able to reproduce self-assembly (90; 86) and obtain comparable structures as

determined by atomistic simulations.(87).
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Figure 1.4: Modeling of a perfluorocarbon, perfluorooctylbromide (PFOB), with vary-
ing levels of molecular details: A) all-atom, B) united-atom, C) coarse-grained model.
The number of atom reduces from 27 to 9 and 3 upon coarsening.

The MARTINI force field developed by Marrink et al. has been far more widely used

than the other two due to several advantages. First of all, the parameterization of

the interaction potentials is not tailored to a specific lipid type, and the small set

of building blocks can be used to model different lipids.(85) Furthermore, systematic

modifications of the interaction potentials allowed development of additional beads

in accordance with the existing force field parameters.(89) Expansion of the bead

types enabled modeling of proteins and small molecules such as cholesterol. Second

of all, the MARTINI force field provides the easiest accessibility by using the same

force field functions as GROMOS force field,(91) and hence the GROMACS simula-

tion package can be used without any modifications.(92) The MARTINI force field

has been extensively used to model mesoscopic phenomena pertaining to the mem-

brane: bilayer self-assembly of DPPC(69) and mixed DPPC/DPPE lipids,(70) tran-

sition from the lamellar to inverted hexagonal phase,(93) domain formation,(94) pore

formation,(66; 67; 68) bending, buckling, and curing of membrane.(95; 54; 71; 72)

Therefore, we have employed the MARTINI force field to run coarse-grained molec-

ular dynamics simulations of a closely apposed PFC-NEP and liposome. Chapter 5

reports the force field parameterization of a PFC molecule (PFOB) at a coarse-grained

level, and molecular details observed during the fusion event.
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1.3 Goal of Thesis

The goals of this thesis are to determine the molecular structure of the PFC-NEP

interface and to elucidate the “contact-facilitated” delivery mechanism using multi-

scale molecular dynamics simulations. These molecular details will help us understand

the underlying mechanisms and optimize PFC-NEPs for more efficient delivery. The

thesis is organized into the following chapters:

• Chapter 1 provides the introduction to PFC nanoemulsion particles and the

technique applied for this thesis work, multi-scale molecular dynamics simula-

tions.

• Chapter 2 is devoted to presenting my earlier research that is indirectly re-

lated to the stated goal of the thesis by addressing the general ion-membrane

interactions and suggests the usage of K+ over Na+ ions in molecular dynam-

ics simulations to prevent strong adsorption of Na+ to the zwitterionic neutral

lipids.

• Chapter 3 reports the force field parameterization of a perfluorocarbon, per-

fluorooctylbromide (PFOB) and atomistic structural details of the PFC-NEP

interface described with the new in-house model.

• Chapter 4 presents the atomistic structural details of a melittin cargo molecule

bound on the PFC-NEP interface in comparison with melittin bound to a bi-

layer.

• Chapter 5 reports the force field parameterization of PFOB at a coarse-grained

level, spontaneous emulsion formation, fusion between PFC-NEPs and model

liposomes, and molecular details over the course of fusion process.

• Chapter 6 provides the conclusion of the thesis and future direction based on

the current research.

• Chapter 7 provides supplementary materials for Chapter 3, 4 and 5.
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Chapter 2

Molecular dynamics simulations of

asymmetric NaCl and KCl

solutions separated by

phosphatidylcholine bilayers:

potential drops and structural

changes induced by strong

Na+-lipid interactions and finite

size effects.

2.1 Introduction

Membranes are among the most basic structures of cells and subcellular organelles.

Direct interactions of cations with membranes have been extensively studied due

This chapter is reproduced from my paper published in Biophysical Journal in 2008 May 1,
2010.
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to the prevalence of ions in biological milieu and the significant effects of ions on

membrane properties such as phase transitions (96; 97; 98; 99), aggregation and

fusion (100), surface charge densities and potentials (101; 102), structure and me-

chanical strength (103; 104; 99), and lipid mobilities (97). The nature of ion-lipid

interactions has been studied by several methods, including infrared spectroscopy

(96; 105), ζ-potential measurements (106), X-ray standing wave experiments (107),

NMR spectroscopy (108), atomic force microscopy (104; 103), small angle X-ray

diffraction (99), and molecular simulations (109; 110; 111; 112; 113; 97). Most of

these studies conclude that higher valency ions have greater affinity and larger effects

on biomembranes (96; 99); however, recent results have suggested that monovalent

cations can also interact with biomembrane lipid moieties and alter bilayer properties

(96; 104; 109; 111; 113; 97; 99).

Previous reports (111; 110; 114) have indicated that asymmetric Na+ and Cl− con-

centrations around bilayer systems can generate electrostatic potential differences as

large as -85 mV across lipid bilayers in molecular dynamics simulations. These re-

ports, in part, motivated the current study which was originally designed as a control

for studying asymmetric applications of salicylate around bilayers to extend our pre-

vious work in this area (115). To this end, we designed a simulation that contained

two bilayers separating chambers with differing NaCl and KCl concentrations but

with the same net ionic strength. Simple analysis of this system on the basis of

ion activities and the symmetries of the solutions suggests that, at steady state, the

Nernstian transmembrane potential (e.g., the potential drop at infinite separations of

the two bilayers) for this system should be negligible. However, as discussed in detail

throughout the remainder of this manuscript, we observed a significant potential drop

across DPPC (dipalmitoylphosphatidylcholine) bilayers due to selective Na+ binding

to the lipid carbonyls. Although there is some indirect experimental evidence which

may suggest some degree of Na+-carbonyl interactions (105), both the finite size of

our simulation and the non-equilibrium nature of the system caution against over-

interpretation of these observations. This paper addresses the possible effect due to

the finite size on the calculation of membrane potentials and the issue on the force

field parameters of ions on the electric properties and structures of membranes.
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Figure 2.1: Diagram of “double bilayer” simulation geometry with approximate di-
mensions along z-axis labeled. Left and right boundaries are periodic (e.g., K is a
single contiguous chamber in the simulation). As described in the text, the N cham-
ber contains 48 Na+, 2 K+, and 50 Cl− ions while the K chamber contains 2 Na+

(blue), 48 K+ (green), and 50 Cl− (orange) ions.
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2.2 Methods

2.2.1 Molecular dynamics simulations

GROMACS 3.2.1 (116) was used for the molecular dynamics (MD) simulations and

preparation of the starting structures; GROMACS 3.3.1 was used for all analyses.

DPPC (dipalmitoylphosphatidylcholine) lipids were simulated using the parameters

of Berger and Lindahl (117) together with SPC water (118) and Straatsma-Berendsen

sodium, potassium, and chloride ion parameters (119). This combination of force field

parameters have been successfully used in a number of previous studies (115; 120; 121;

117) and show good agreement with experimental observables such as area per lipid

head group and tail order parameters.

Following the work of Sachs et al (111), Gurtovenko (110), and Vernier et al (112),

the starting structure of the DPPC double bilayer system shown in Fig. 2.1 was

generated by duplicating a previously-equilibrated DPPC single bilayer system of

9.5 nm × 8.5 nm × 10.0 nm dimensions (115) along the bilayer normal direction.

The hydration level of 60 waters per lipid provided a spacing of approximately 6 nm

between the two bilayers. These two bilayers, together with the periodic boundary

conditions used in this simulation, provided two separated water chambers, denoted

“N ” and “K” (see Fig. 2.1). Ions were inserted into the two water chambers by

replacement of existing water molecules. In particular, 100 random water molecules

in the N chamber were replaced by 48 Na+, 2 K+, and 50 Cl− ions while 100 water

molecules in the K chamber were replaced by 2 Na+, 48 K+, and 50 Cl− ions. This

placement of ions resulted in an electroneutral system with solutions of ∼ 150 mM

ionic strength in both chambers but with different species ratios. The final simulation

system was comprised of 512 DPPC, 30568 SPC water, 50 Na+, 50 K+, and 100 Cl−

molecules. The membrane system was equilibrated as described previously (115): the

starting structure was subject to an energy minimization followed by a series of MD

simulations to increase the system temperature to 323 K. After the system reached

323 K, the MD simulation was continued for 172 ns.

All MD simulations were performed with Lennard-Jones interaction cutoffs of 1 nm.

Long-range electrostatic interactions were calculated using the particle-mesh Ewald
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method (122) with conducting boundary conditions and a direct space cutoff of 1 nm.

Simulations were performed in an isobaric-isothermal ensemble (NpT). The system

pressure was maintained at 1 atm with a Parrinello-Rahman barostat (123) using a 2

ps coupling time. The temperature was maintained at 323 K through a Nosé-Hoover

thermostat (124) with 0.5 ps coupling frequency. All bonds between hydrogen and

heavy atoms were constrained using the SHAKE algorithm (125) which permitted a

2 fs time step. The simulations were performed on Intel Xeon cluster nodes at the

National Biomedical Computation Resource and at the Texas Advanced Computing

Center. Snapshots from the simulations were stored for analysis at 16 ps intervals.

To determine the effect of the monovalent cations, the properties of our present double

bilayer system were compared with the those of an ion-free DPPC membrane simu-

lation which has been described previously (115). The ion-free system is equivalent

to the half of the double bilayer system along the z-axis and was simulated for 50

ns at the same conditions with the present simulation. The last 20 ns portion of the

trajectory was used to analyze equilibrium observables for this system.

2.2.2 Statistical tools

Time averages were used to calculate expectation values for system observables. In

general, these averages were computed over the 62 ns “stationary” portion of the 172

ns simulation, as described in Sec. 2.3.1. To compare the measured quantities between

different systems or between different parts within the same system, the statistical

errors of each quantity were calculated as explained below.

To estimate errors, the trajectory was divided or re-sampled into statistically-indepen-

dent smaller blocks. In order to determine the size of these blocks for a particular

observable, the autocorrelation time (126) of the observable was calculated for differ-

ent delay times τ using the following equation:

CA(τ) =
N

N − �τ

�
N−�τ

i=1 (Ai − �A�) (Ai+�τ − �A�)�
N

i=1 (Ai − �A�)2 , (2.1)

for N time points {t1, t2, . . . tN} with equal spacing ∆t = ti+1 − ti and a lag �τ such

that τ = �τ∆t. This autocorrelation function is for an observable A with mean value
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�A� evaluated at each of the time points such that Ai = A (ti). A characteristic

correlation time τA was calculated for each observable A as the smallest |τ | for which

CA(τ) = e
−1. We wish to point out that, due to the use of an NpT ensemble for

our molecular dynamics calculations, these correlation times are used strictly for

resampling purposes and not intended for a description of the dynamics of this bilayer

system.

To ensure statistical independence, decorrelation times of 2τ were used to generate

new datasets for calculating observable statistics. In particular, following similar

analyses by Chen and Pappu (127), bootstrap-style sampling-with-replacement (128)

was used to generate new resampled datasets of size Nr = tmax
2τ

(rounded to the

nearest integer) given the original evenly-spaced snapshots from a trajectory of length

tmax. Each resampled set was used to estimate averages for system observables. The

distribution of these averages over all resampled sets was then used to estimate the

variability of the observables and calculate variances and confidence intervals. Finally,

the statistical significance between any two samples was assessed by the Student t-

test with a 99.5 % confidence interval, using the error and the size of the resampled

datasets.
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Table 2.1: Ion distributions across the regions labeled in Fig. 2.3B as obtained from
the 110-172 ns portion of the simulation. Unlisted correlation times imply no change
in ion numbers during this simulation time. Averages and standard errors determined
using the bootstrap resampling procedure described in the text with the specified
correlation times.

Region Ion Correlation Number
time (ps) (average ± error)

N 1 Na+ 3968 16.2 ± 0.3
N 1 K+ 256.6 0.03 ± 0.01
N 1 Cl− 31.7 0.51 ± 0.02
N 2 Na+ 5571.2 15.5 ± 0.5
N 2 K+ 160 1.95 ± 0.01
N 2 Cl− 28.8 48.68 ± 0.03
N 3 Na+ 5332 16.2 ± 0.5
N 3 K+ 98.5 0.188 ± 0.005
N 3 Cl− 28.5 0.82 ± 0.02
K 1 Na+ – 2 ± 0
K 1 K+ – 48 ± 0
K 1 Cl− – 50 ± 0
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Figure 2.2: Phospholipids coordination by monovalent ions. A) Total number of lipid-
coordinated ions as a function of time for Na+ (blue) and K+ (green). B) Average
lipid-ion coordination numbers, defined in Eq. 2.2, as a function of time for Na+ (blue)
and K+ (green). C) Lipid:ion ratios for coordinated Na+ (blue) and K+ (green) ions.
The average fraction of the complex comprised of five DPPC molecules is 0.003 ±
0.007, so the bar is not visible in the figure. D) Example of a representative 4-
coordinate lipid carbonyl-ion interaction from. Any residues within 3.2 Å from a Na+

ion are displayed. The carbonyl oxygens coordinating the ion are shown red spheres.
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Figure 2.3: Relative number densities depicting fraction of total species as a function
of distance along the bilayer norm (see Fig. 2.1 for coordinate definition). A) Distri-
bution of lipid moieties (polar portion of lipid, dark blue; nonpolar portion of lipid,
green; total lipid density, cyan) and water (red). B) Distribution of ions (Na+, blue;
K+, green; Cl−, orange) with specific regions labeled for binding analysis (see text).
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Figure 2.4: Water distribution in the double bilayer system. Number of waters in
each chamber (K green, N blue) as a function of simulation time.
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2.3 Results

2.3.1 Reaching steady-state

The non-identical nature of the N and K chambers throughout our simulation indi-

cate that we are studying a non-equilibrium system at steady-state rather than the

equilibrium observations associated with most molecular dynamics simulations. Mon-

itoring macroscopic thermodynamics parameters is a standard procedure to verify the

equilibrium or steady state of the system. In our simulation, parameters such as tem-

perature, box pressure, and total energy of the system reached stationary values at

an early stage of the simulation (e.g., less than 10 ns); however, several other sys-

tem properties took much longer to stop drifting. Previous reports have shown that

adsorption and coordination of cations by carbonyl oxygens is one of the slowest pro-

cesses in the simulation of salt-containing zwitterionic bilayer systems (129; 97; 110).

Given these observations, we examined the time course of absorption and coordina-

tion of Na+ and K+ by the DPPC headgroups using the methods described below

(see Eq. 2.2 and description in Sec. 2.3.2). As shown in Fig. 2.2A and 2.2B, the to-

tal number of lipid-coordinated ions and the average coordination number increased

throughout the initial 65 ns of the simulation; no significant drift was observed after

65 ns. For our simulation, however, the most slowly-converging observables were net

water flux across the bilayers (see Sec. 2.3.3 and Fig. 2.4) and box area (see Sec. 2.3.4

and Fig. 2.5), which reached the steady-state only after 110 ns. Although the changes

in area were very small, they occurred over the same timescales as “fast” ion binding

and water flux through the membrane. While such small area changes alone may not

warrant concern about simulation convergence, their appearance together with other

slowly-relaxing properties, led us to confine our analysis to the last 62 ns of our 172

ns trajectory.

2.3.2 Ion-lipid interactions

To assess the specific interaction of each cation with the lipid, the average DPPC-

cation coordination number (cX) for each cation (X is Na+ or K+) was calculated in
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Figure 2.5: Plot of simulation box cross-sectional area (in the bilayer planes) over the
course of the molecular dynamics run. Figure includes individual snapshots (every
16 ps, dots) and 1.6-ns running average (line).

a manner similar to Gurtovenko (110) by

cX =
nC

nX,c

(2.2)

where nC is the number of carbonyls within a cutoff distance rX,c of any ion of species

X and nX,c is the number of ions of species X within a cutoff distance rX,c of any lipid

carbonyl group. We chose rc,Na+ = 0.322 nm and rc,K+ = 0.375 nm as determined

from the first minima of the Na+- or K+-DPPC carbonyl oxygen radial distribution

function (data not shown). The results from this analysis are illustrated in Fig. 2.2

and summarized in Table 2.2. Na+ coordination numbers varied from 3.11 ± 0.03 in

the N chamber to 3.2 ± 0.4 in the K chamber while K+ coordination numbers were

much smaller: 0.008 ± 0.002 in the N chamber and 1.2 ± 0.1 in the K chamber.

The distribution of ion coordination states is shown in Fig. 2.2C. The primary mode

of Na+ coordination was via DPPC carbonyl oxygens, as illustrated in Fig. 2.2D.

Our average Na+-lipid coordination number (3.11 ± 0.03) is comparable to the re-

sults of Gurtovenko (110). However, we also observed complexes involving 4 and 5
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Figure 2.6: DPPC A) SN-1 and B) SN-2 tail order parameters for N chamber DPPC
leaflets (blue), K chamber DPPC leaflets (green), and a DPPC bilayer surrounded
by pure water (black).

lipid molecules and found that 4-coordinate Na+ was the most common. Gurtovenko

observed 3-coordinate Na+ most frequently and did not report any 5-coordinate com-

plexes. There are a number of potential reasons for these differences; the most likely

is sampling (45 ns for Gurtovenko vs. 172 ns here). In particular, 5-coordinate lipid-

Na+complexes were observed only after 130 ns of simulation, suggesting a much slower

rate of formation.

2.3.3 Ion and water distributions

Figure 2.3 shows number densities for water and lipid moieties (Fig. 2.3A) as well as

individual ion species (Fig. 2.3B) as a function of distance along the bilayer normal.

These figures clearly demonstrate significant adsorption of Na+ to the polar region of

the DPPC bilayers. This adsorption is quantified in Table 2.1, which summarizes the

numbers of ions observed in each region of the simulation domain. As discussed below,

the specific association of Na+ with the bilayer appears to be due to coordination by

the DPPC carbonyl oxygens (Sec. 2.3.2) and leads to a significant dipole moment at

the interface of the N chamber DPPC leaflets (Sec. 2.3.5).

Time-dependent changes in water distribution in the double bilayer system are illus-

trated in Fig. 2.4. Over the first 110 ns of the simulation, water redistributed from

the initial configuration of 15284 water molecules in each chamber to 15271 ± 3 in

the N chamber and 15297 ± 3 in the K chamber. Even though the ionic strengths of
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Figure 2.7: Electrostatic potentials in the double bilayer system. A) Charge density
components of bilayer system; the entire system (black), lipids (cyan), water (red),
and ions (Na+, K+, and Cl−; green) B) Total electrostatic potential (black line) with
standard deviations (red) calculated as described in the text. The potential drop
across the bilayer is calculated from the potential value of -70 mV (-0.07 V) at z = 10
nm. C) Electrostatic potential components due to the lipids (cyan), water (red),
ions (Na+, K+, and Cl−; green), and the entire system (black). D. Electric field
components due to lipids (cyan), water (red), ions (Na+, K+, and Cl−; green), and
the entire system (black).

the two chambers were the same, adsorption of Na+ ions onto membrane likely gen-

erated an osmotic imbalance between the two chambers. This argument is supported

by the observation that the net water flux started at around 10 ns, which is after a

significant number of Na+ ions had adsorbed onto the membrane. By 110 ns, a net

of 13 ± 3 water molecules (0.083% of total) had transferred across the membrane;

after this time, fluctuations in N and K chamber water numbers were observed but

without a net change over the last 62 ns of simulation. Note that this net water flux

is small and, unlike similar work with stronger fields and ion asymmetries (112; 114),

not related to the formation of pores in the bilayer structure.
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Figure 2.8: Membrane mechanical properties changed due to ion interactions. A)
Bending and B) bulk moduli for leaflets facing the N and K chambers in the double
bilayer setup (see Fig. 2.1) and for leaflets of a 128-lipid DPPC bilayer in pure water.
Brackets and asterisks denote differences that are statistically significant (Student
t-test, ≥ 99.9 % confidence level).

2.3.4 Lipid structure: head group area and tail order param-

eters

The area per head group �A� is a fundamental characteristic of the membrane and

provides an important comparison to available experimental structural data (120;

130; 131). The area per head group was calculated by dividing the projected box

area in the xy-plane by the 128 lipids in each leaflet. As shown in Fig. 2.5, the

area per headgroup started at 0.6295 nm2 and, over a period of approximately 110

ns, decreased very slightly to a value of 0.6255 ± 0.0001 nm2 (as calculated over

the last 62 ns trajectory by using the bootstrap method with a correlation time

of 16 ps). In our simulation, this drift occurs over a much longer period than the

65 ns required for steady-state ion binding and, instead, has timescales similar to

the transfer of water between the N and K chambers (see Fig. 2.4). Despite this

small change in bilayer area due to Na+ binding, the range of �A� is in reasonable

agreement with experimental data (131) and previous simulations (115; 132). Other

simulations of lipid bilayers in the presence of aqueous Na+ ions have reported a much

larger decrease in membrane area associated with Na+ binding (110; 97; 132) than

the small contraction observed in this work. These differences are discussed in more

detail in Sec. 2.4.3.
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The lipid tail order parameters of the two acyl chains of DPPC were calculated

for comparison against published data (133). The order parameters were calculated

separately for each leaflet to distinguish the effect of different local ion concentrations

in the N and K chambers. The algorithms for calculating order parameters and

descriptions of their interpretations have been described previously (115; 134). We

generated order parameters from our simulation data using the resampling method

described above, using every snapshot of the trajectory. This statistical independence

was identified by examining the correlation time of �A�, an important determinant

of lipid tail order. This area correlation time was shorter than the sampling rate of

16 ps, allowing us to use every snapshot of the simulation in our analysis. As shown

in Fig. 2.6, the overall shapes of the order parameter profiles are similar between the

three different leaflet environments (N chamber, K chamber, and a DPPC bilayer in

pure water) and are reasonably close to experimentally measured order parameters

(133). The SN-1 tail of DPPC was disordered in the N and K chamber leaflets

relative to the DPPC bilayer in pure water near the carbonyl oxygens (Student t-

test, 99.5 % confidence interval). On the other hand, the SN-2 tails of N leaflet lipids

showed slight ordering of carbons near the carbonyl oxygens (Student t-test, 99.5

% confidence interval), presumably due to the higher participation of SN-2 carbonyl

oxygens in coordination of Na+ (data not shown).

Table 2.2: Ion-carbonyl coordination statistics calculated according to Eq. 2.2. Av-
erages and standard errors determined using the bootstrap resampling procedure
described in the text with the specified correlation times.

Chamber Ion Correlation Coordination number
time (ps) (average ± error)

N Na+ 2131 3.11 ± 0.03
N K+ 42 0.008 ± 0.002
K Na+ 12592 3.2 ± 0.1
K K+ 832 1.2 ± 0.1
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2.3.5 Electrostatic potential

The membrane potential was calculated from the total charge density to examine the

effect of the asymmetric ion distributions on the electrostatic properties of the mem-

brane. Given the zero potential difference boundary conditions implied by “conduct-

ing boundary” particle-mesh Ewald electrostatics (135; 122), the electric displacement

was calculated according to

D(z) =

�
z

0

ρ(z�)dz
� + D0 (2.3)

and the potential difference was calculated according to

φ(z)− φ(0) = −1

�

�
z

0

��
z�

0

ρ(z��)dz
�� + D0

�
dz

�
, (2.4)

where � is a homogeneous dielectric constant, ρ(z) is the charge density. For a net neu-

tral system with the boundary conditions described above, the displacement constant

D0 is defined by

D0 = − 1

L

�
L

0

�
z

0

ρ(z��)dz
��
dz, (2.5)

This constant D0 is related to the total polarization of system and is similar to that

obtained by Sachs et al (111). For our simulation, D0 = 0.0142 z· nm−1 = 2.27

×10−12 C· m−1.

The simulation box was divided into 200 slabs parallel along the bilayer normal (z)

direction. Potentials calculated at every 16 ps showed no correlation between snap-

shots at every slab along the z-axis, which implies that the correlation time is much

smaller than 16 ps. To verify this short correlation time, an additional short sim-

ulation was performed with a much more frequent output rate of 4 fs. From this

simulation, the correlation times of membrane potential were determined to be less

than 1 ps at all slabs, indicating a rapidly-fluctuating potential across the entire

membrane system. Since the correlation time was much shorter than the sampling

rate (16 ps), all snapshots were statistically independent from each other, and the

bootstrap resampling protocol described above was performed with all 4062 snapshots

of the trajectory. Charge densities (Fig. 2.7A) were used to calculate the potential
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Table 2.3: The Lennard-Jones interaction parameters of Na+and K+ions. The
FFGMX parameters were obtained from the GROMACS package(116). We have
also included Åqvist (137) and CHARMM parameters for comparison. The Åqvist
parameters are reproduced from Chen et al.(127). The CHARMM parameters for Na+

are obtained from Gurtovenko et al. (114), and the modified CHARMM parameters
for K+ are from Roux (138).

Ion FFGMX Åqvist CHARMM
σ (nm) � (kJ mol−1) σ(nm) �(kJ mol−1) σ(nm) �(kJ mol−1)

Na+ 0.25752 6.17743×10−2 0.33305 1.15980×10−2 0.24299 1.96290×10−1

K+ 0.64541 5.66508×10−5 0.49346 1.37235×10−3 0.35275 3.64251×10−1

(Fig. 2.7B) by trapezoidal rule integration (136) according to the formulæ above with

L = 20 nm and � = �0, the permittivity of free space.

The resulting potentials were averaged and plotted in Fig. 2.7B which shows a net

potential drop across the bilayers of -70 ± 10 mV between the K and N chambers.

Fig. 2.7C decomposes this potential into separate contributions from lipid, water, and

ions. This figure demonstrates that both lipids and water contribute to a net positive

potential drop while the ions provide a large negative contribution. The origins of the

negative ion contribution can be deduced from Fig. 2.3B which shows a clear layering

or separation of Na+ and Cl− ions at the membrane-water interface of leaflets in the

N chamber, leading to a large surface dipole moment. On the other hand, K+ and

Cl− ions in the K chamber are much more uniformly mixed and generate smaller

surface dipoles. These differing surface dipoles are clearly evident in Figure 2.7A,

which plots charge densities across the simulation domain.

2.3.6 Membrane mechanics

Ions are known to affect membrane fusion and phase transitions (139; 140). Divalent

ions have also been demonstrated to change the bulk modulus of DPPC bilayers (141).

Such effects can be quantified in our simulations by calculating mechanical moduli

related to the deformation of membrane in different modes such as membrane bending

and volume fluctuation. To compare the effects of different ionic environments, all
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mechanical measurements were made on each leaflet separately and then averaged

over the two leaflets which share the same water chamber (see Fig. 2.1).

The bending modulus denotes the energy required to bend the membrane and was

calculated on a per-leaflet basis, therefore including both peristaltic and undulatory

types of motion (142). The methods to describe the calculation of bending modulus

have been described previously (115; 121), although these previous studies focused

on mechanics of bilayers rather than individual leaflets. Briefly, a per-leaflet height

function was constructed by the position of the glycol carbon (C12) of each lipid.

These heights were mapped on a 0.5 nm grid which was then Fourier-transformed to

give ĥ(q). Each resulting ĥ(q) field was averaged over the two leaflets sharing the

same water chamber. The bending modulus kc was calculated according to

Kbend =
kBTA

8.3π3

�
dq

���ĥ(q)
���
2
, (2.6)

where kB is Boltzmann’s constant, T is the temperature, A is the (average) area,

and
���ĥ(q)

���
2

is the square modulus of ĥ(q). Figure 2.8 illustrates the differences

in bending modulus for the lipid leaflets facing the N and K chambers and for a

DPPC bilayer in pure water. All numbers are in reasonable agreement with the

experimental bending modulus of 1.0 × 10−19 J (143). Figure 2.8 shows large and

significant differences (Student t-test, 99.9% confidence interval) in the N leaflet

bending modulus when compared to the K leaflets or the leaflets of the DPPC bilayer

in pure water. Conversely, differences between the K leaflet and the pure water DPPC

bending moduli are much smaller, although still statistically significant. Errors on

the bending modulus were calculated using the bootstrap method described above

with 78 (single DPPC bilayer leaflets), 177 (N chamber leaflets), and 96 (K chamber

leaflets) snapshot sample sizes based on 128 (single DPPC bilayer leaflets), 176 (N

chamber leaflets), and 240 (K chamber leaflets) ps correlation times for the integral

of
���ĥ(q)

���
2
.

The bulk modulus describes the (volume) compressibility of the membrane and can

be determined from the fluctuation of the membrane volume through the following

relationship (144):

Kbulk =
kBTV

σ
2
V

(2.7)
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where Kbulk is the bulk modulus, V is the average volume of a leaflet, kB is Boltz-

mann’s constant, T is the temperature, and σ
2
V

is the variance in leaflet volume. The

volume of the membrane was calculated for each leaflet separately by multiplying

the box area with the thickness of each leaflet. The thickness of a leaflet was deter-

mined from the average distance between phosphorus atom and the center of bilayer

(145; 131). Based on Student t-tests with a 99.9% confidence interval, the average

volume of the leaflets were significantly different: 308.16 ± 0.04 nm3 for the single

DPPC bilayer system, 305.8 ± 0.1 nm3 for the N chamber leaflets, and 305.2 ±
0.1 nm3 for the K chamber leaflets. This volume data was used to calculate the

bulk modulus according to Eq. 2.7 above with errors assessed using the resampling

methods described above with 1250 (single bilayer), 324 (N chamber), and 243 (K

chamber) snapshot sample sizes based on 8 (single bilayer), 96 (N chamber), and 128

(K chamber) ps correlation times for volume. Figure 2.8 shows the bulk moduli and

associated errors for each of the leaflets; both the N and K chamber leaflets showed

significant differences with respect to the pure water DPPC bilayer leaflets. The N

and K leaflets had significantly different bulk moduli, although these differences were

much smaller than deviations from the pure water DPPC bilayer.
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2.4 Discussion

Our results show that the asymmetric distributions of different NaCl and KCl solu-

tions within our small double bilayer system can generate net potential differences

across DPPC membranes. In our simulation, this potential drop arose from imbal-

ances in the magnitudes of induced dipoles on both sides of the membrane caused by

differing levels of adsorption of monovalent cations to the DPPC bilayer surfaces. The

process of monovalent ion adsorption and water redistribution was extremely slow,

requiring 65 ns before our non-equilibrium simulation reached an apparent steady

state. At steady state, we observed high levels of Na+ bound to the headgroup region

of the DPPC bilayers through coordination by lipid carbonyl groups. Adsorption of

Na+ to the headgroup region was accompanied by accumulation of Cl− at the mem-

brane surface, leading to a net dipole on N chamber leaflets of the double bilayer

system (see Fig. 2.3). K+ ions showed significantly less affinity for the bilayer and

thus created a much smaller surface dipole moment. The net result of these dipoles

was a field across the bilayer which, in turn, led to the observed -70 ± 10 mV potential

drop.

2.4.1 Other observations of membrane cation binding

As observed in previous computational simulations, we saw extensive coordination of

Na+ ions by DPPC carbonyl oxygens (114; 97) throughout our simulations resulting

in high densities of Na+ ions at the lipid carbonyl region of the membrane-water

interface (97; 132; 146). Conversely, K+ showed significantly less coordination by

lipid carbonyl oxygens and, as a result, was distributed more uniformly away from

the carbonyl region of the lipid-water interface. Finally, as observed in previous

simulations (132; 97), Cl− ions were largely excluded from the interface region.

Recent experimental work has also observed specific monovalent ion-lipid interactions,

some of which provide indirect support for the interactions observed in our simula-

tions. First, recent atomic force microscope work by Fukuma and coworkers (104)

revealed specific interactions of Na+ ions with the headgroups of gel-phase DPPC

lipids. The primary site of these interactions appears to be the DPPC phosphate
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groups, a mode of Na+-DPPC interaction not observed in our molecular dynamics

simulations but observed in other molecular dynamics simulations of Sachs et al us-

ing the CHARMM force field in a different thermodynamic ensemble (113). However,

Fukuma and co-workers observed interesting regions of interactions between neighbor-

ing DPPC molecules at heights below the sites of Na+-phosphate interactions (104);

these lower-height interactions could be due to water molecules or Na+ ions bridging

adjacent DPPC carbonyls (Jarvis, personal communication). Second, infrared spec-

troscopy measurements were made on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocho-

line (POPC) vesicles in solutions of various metal chlorides. Addition of LiCl, NaCl,

and KCl to highly-hydrated POPC vesicles showed decreases in C=O vibrational

frequencies but little change in the asymmetric PO2 stretching mode frequencies, in-

directly suggesting possible interactions between the cations and POPC carbonyls.

Note that these experiments revealed significant effects for Li+, Na+, and K+, while

our simulations only showed significant carbonyl association for Na+ (Li+ was not

included in our simulations). These differences in putative carbonyl association could

be due to a number of reasons, including differences between POPC and DPPC and

possible simulation artifacts (discussed below). However, it is important to note that

these experiments were carried out at ion-to-lipid mole ratios of 1.6 which are much

higher than the 0.2 ion-to-lipid (or 0.1 Na+-to-lipid and 0.1 K+-to-lipid) ratios used in

our simulations. Third, Böckmann et al (97) used excess heat capacity measurements

to demonstrate how increasing NaCl concentrations shift POPC gel-to-liquid phase

transition temperatures to higher temperatures and broaden the overall calorimetric

profile. Such broadening suggests decreased cooperativity of the phase transition due

to the presence of NaCl (147). The same authors also studied the diffusion constant

of POPC molecules at different NaCl concentration. The appearance of populations

of lipids with much lower diffusion constants was matched to the complexation of the

lipids by coordinating Na+ ions. Finally, Pabst and co-workers (99) used small angle

X-ray diffraction to observe structural and mechanical changes in POPC bilayers,

albeit at higher concentrations (> 1 M) than used here.
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Table 2.4: Partial charges (in e) for lipid carbonyls were adpated from Chandrasekhar
et al. (151) for FFGMX parameters and from Heller et al. (152) for CHARMM
parameters.

FFGMX CHARMM
sn-1 sn-2 sn-1 sn-2

Ester oxygen -0.7 -0.7 -0.34
Carbonyl carbon 0.8 0.7 0.63
Carbonyl oxygen -0.6 -0.7 0.52

2.4.2 Force field sensitivity

The proper force field parameters are critical to reproduce the chemico-physical prop-

erties of the ions during the simulations (127). The Lennard-Jones interaction pa-

rameters for Na+ and K+ ions were obtained from the GROMACS FFGMX force

field (116) which contains parameters loosely related to values from Straatsma and

Berendsen (119), in which the parameters of these ions were fit to reproduce the

gas-phase energetics for ion monohydrates calculated by ab initio SCF calculations.

These parameters were implemented in the GROMACS force field and have been

widely used for ion-membrane interactions (148; 110; 149; 132), despite problems ac-

curately describing K+-protein interactions when used with protein GROMOS force

field parameters (150). Additionally, although popular, these Straatsma-Berendsen

parameters yield ion solvation free energies which are significantly more negative than

experimental values (119; 137). As shown in Table 2.3, these FFGMX parameters

used in our simulations are significantly different from the Åqvist parameters often

used in protein and nucleic acid simulations (137) and also differ from the modified

ion parameters of Roux (138). It is possible that these particular ion parameters may

have contributed to the strong adsorption of Na+ ions to the membrane. Compara-

tive analysis of ion force field effects on these results is underway; however, interested

readers should also refer to the recent work of Gurtovenko and Vattulainen for similar

comparisons (114).

Another potential source of concern lies in the high dipole moment of the lipid car-

bonyl group (see Table 2.4) used in our and many other GROMACS-based simula-

tions (110; 114; 146; 153; 154; 97; 129; 155). The high partial charges associated

with the lipid headgroup were determined by ab initio SCF calculations and resulted
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in good agreement with experimental areas per head group when simulated in con-

stant pressure ensembles (156; 151). However, it is possible that this high carbonyl

dipole moment could also influence Na+ interaction with the lipid headgroups and

lead to the high surface dipoles observed in the current simulations. Comparison of

GROMACS lipid parameters with other force fields is currently underway.

Of course, most fixed charged force fields are faced with a fundamental flaw: their

inability to accurately predict transfer free energies for multiple types of media (e.g.,

water, vacuum, protein, lipid, etc.) simultaneously due to their lack of atomic polar-

izability (157; 158; 159; 160). One consequence of this lack of atomic polarizability

in the context of lipid bilayers is an artificially-low dielectric coefficient in the lipid

tail region. In particular, the neutral united-atom alkane model used in the current

fixed charge lipid force field yields an effective dielectric coefficient of 1 for the lipid

tail region; however, a polarizable model for the alkane tails would yield an dielectric

coefficient for this region of approximately 2 (158). Such differences in dielectric co-

efficients have been shown to significantly affect ion permeation through gramicidin

A channels (161; 158) and may have an impact on the localization of ions in the

DPPC bilayers considered here. Another potential consequence of the fixed charge

force field is an incorrect affinity of Na+ and K+ for the lipid headgroup region; a

symptom of the inaccurate transfer free energies of fixed charge force fields discussed

above. The inclusion of polarizability in a force field comes at the expense of addi-

tional computation time which would have made the 172 ns of simulation reported

here prohibitively expensive. However, we look forward to the advances in polarizable

force field simulation methodology and computational power which should make the

routine use of polarizable force fields feasible in the near future.

2.4.3 Finite size effects

Our double bilayer system was relatively large. We included 256 lipids per bilayer

(512 lipids total), to allow for reasonable membrane undulations (121). Additionally,

we used much larger water chambers than other recent double bilayer studies (110;

111; 112). However, despite these precautions, there are important finite size artifacts

which effect this work and should serve as a precaution to other groups interested in

simulating asymmetric aqueous solutions in similar double bilayer configurations.
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Electrostatic properties. One finite size artifact in this simulation arises from

the finite extent of our water chambers between lipids, despite their relatively large

size as compared to recent simulations (110; 111; 112). Both the ion distributions

and the water polarization data presented earlier demonstrate the influence of finite

size effects. The counterion distributions (Fig. 2.3B) do not reach “bulk” or constant

values anywhere within the simulation domain. Given large enough water cham-

bers, we would expect a region of nearly constant ion densities between the bilayers,

corresponding to a weak electrostatic field and nearly constant ion concentrations.

Likewise, the electric field (Fig. 2.7D) also lacked a region of constant (small) values

and, instead, was zero only at the center of the water chambers. Since the electric field

due to the water molecules is expected to be proportional to their polarization, this

implies that the water in these systems was strongly influenced by their proximity of

the bilayer surfaces. As such, it is highly unlikely that our current simulation is mea-

suring Nernst “transmembrane” potentials; e.g., the net drop in potential observed

in “bulk” solution at some distance from the membrane surface associated with net

differences in ion chemical potentials. Instead, it is much more probable that the

results of this simulation reflects a combination of surface potentials due to (1) asym-

metric double layers induced by strong DPPC-Na+ interactions in the GROMACS

force field and (2) potential artifacts from the finite size of the simulations.

Structural properties. A second finite size artifact in this simulation arises from

the finite number of lipids in the bilayer leaflets. Other simulations of lipid bilayers in

the presence of aqueous Na+ ions have reported a much larger decrease in membrane

area associated with Na+ binding (110; 97; 132) than the small contraction observed

in this work. It is important to keep in mind that our system was set up with equal

numbers of lipids in the N and K chambers, unlike recent work by Gurtovenko and

Vattulainen (162) on lipids of asymmetric composition, but similar to the pore forma-

tion simulations of Gurtovenko (114) as well as past simulations of asymmetric ionic

solutions by Sachs et al (111), Gurtovenko (110), and Vernier et al (112). However,

significant ion binding was only observed for leaflets in the N chamber. The peri-

odicity of our system, together with its relatively small size, prevents an asymmetric

compression of the N and K chamber leaflets in response to ion binding. This finite

size artifact is present in common double bilayer setups where asymmetric aqueous

solutions are expected to induce asymmetric structural changes in bilayer leaflets but
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are unable to do so due to periodic constraints and (relatively) small system size. In

the present case, the finite number of lipids in our setup prevented the asymmetric

change in area between the N and K chamber leaflets resulting the observed area

decrease which was much smaller than previous symmetric Na+ solution simulations.

Note that this lack of change in area could also possibly compound the finite size

effects on electrostatic properties described above by alternating the dipole moment

densities associated with each leaflet. This finite area artifact could likely be over-

come in future simulations by simulating systems with fewer lipids in the K chamber

leaflet, in a manner similar to the simulations by Gurtovenko and Vattulainen (162)

on bilayers of asymmetric composition. We are exploring configurations for future

simulations.

2.5 Conclusions

An atomic-detail MD simulation has been used to demonstrate the influence of ion

imbalance on the properties of a lipid membrane while maintaining electroneutrality

and equal ionic strength in each water chamber surrounding the lipid bilayer. The

unexpected effects of the ions on the structural and electrical properties of the mem-

brane mainly originated from the strong adsorption of Na+ ions. Even though some

experimental observations indirectly support specific interactions of Na+ ions with

the zwitterionic lipid headgroup, the extensive binding and concomitant -70 mV po-

tential drop observed in our simulations also suggests cautious examination of force

field parameters and finite size effects. Finally, it is important to note the extremely

long “equilibration” time required for this asymmetric (and non-equilibrium) sys-

tem to reach steady state. In particular, slow processes related to Na+ headgroup

binding, small changes in the bilayer area and, water permeation across the lipid

bilayers resulted in relaxation times of approximately 110 ns. Overall, our results

show that potential drops across membrane interfaces can be highly sensitive to both

ion species and concentration due to specific lipid-ion interactions. This work also

suggests that, while the multilamellar membrane simulation methodology pioneered

by Sachs, Crozier, and Woolf (111) is an excellent mechanism for simulating asym-

metric membrane solution environments and electrostatics, care must be taken in
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assessment of force field parameterization, finite size effects, and sampling artifacts

when interpreting the simulation results.
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Chapter 3

Characterization of

Perfluorooctylbromide-Based

Nanoemulsion Particles Using

Atomistic Molecular Dynamics

Simulations

3.1 Introduction

Nanoscale particles have been developed for wide range of applications in medicine

(163). Medical applications include drug delivery (164), therapy (165; 166), in vivo

imaging (4; 167), in vitro diagnostics (168), biomaterials research (169), and ac-

tive implants (170). Among those applications, many studies have been focused

on the development of nanoparticles as carriers of therapeutic and imaging agents.

In nanomedicine, the delivery of therapeutic and imaging agents (cargo) is often

accomplished by functionalized nanoscale particles (carriers) to which target-specific

ligands are attached. Nanoparticle-based delivery using functionalized particles offers

This chapter is reproduced from my paper published in Physical Chemistry B, July 17, 2010.
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(A) (B)

Br Br

1.02 nm

Figure 3.1: The molecular structure of a PFOB-NEP interface and its constituent
molecules. A) Schematic diagram of a PFOB-NEP interface. PFOB droplet in water
is shown as a green sphere. The emulsifying phospholipid monolayer is shown in blue
(sphere for head group and lines for lipid tails). B) The structures of constituting
molecules. The structure of PFOB is shown with all atoms (green: Br, cyan: carbon,
white: fluorine) on the left and with united atoms on the right (large green: Br,
small green: perfluorocarbons CF2, CF3). The length of the molecule in its fully
extended conformation is 1.02 nm, and the molecular vector is shown with a black
arrow. 1-palmitoyl-2-oleoyl-phosphatidylcholine lipid is shown with united atoms at
the bottom (cyan: hydrocarbon, red: oxygen, blue: nitrogen, gold: phosphorus). The
P-N vector is designated by a black arrow.

advantages over traditional small molecule therapies in that it can improve solubil-

ity, protect molecules from premature degradation and non-specific interactions, and

increase the effective concentration of drugs in target tissues (171). Such advantages

enhance the therapeutic efficacy while decreasing dosages and side effects (5).

One example of functionalized nanoparticles are nanoemulsion particles (NEPs): emul-

sion droplets with nanoscale dimensions. In particular, perfluorocarbon-based NEPs

have been studied and developed for the delivery of therapeutic agents (13) and are

the focus of the current study. We are particularly interested in a class of NEPs

where the emulsion core is formed by hydrophobic perfluorooctylbromide (PFOB,

C8BrF17) (see Figure 3.1B) and the core is enclosed by a phospholipid monolayer

that functions as an emulsifier to stabilize the droplets (13; 35) (see Figure 3.1A).

Perfluorocarbons (PFCs) are biologically inert, chemically stable, non-degradable,
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non-toxic, and non-volatile, which are all characteristics that make nanoemulsions

biocompatible (16; 13; 17; 18; 19). In particular, PFOB has been most commonly

used due to its low vapor pressure that will reduce the likelihood of evaporation and

the production of pulmonary emphysema (172; 17). In addition, the short half-life

of PFOB in the body makes the molecule more practically applicable (18; 19). Fi-

nally, the emulsifying phospholipid monolayer is typically derived from either egg- or

soybean-lecithin. Such phospholipid preparations have been used for many purposes

in cosmetic, food, and drug applications (173).

There are already many biomedical applications of perfluorocarbon-based NEPs for

imaging, diagnosis, and therapy. Perfluorocarbon-based NEPs have been used in mag-

netic resonance imaging (MRI) studies to detect and quantify fibrin protein, to define

vessel geometry, and to track stem or progenitor cells(14; 174; 10). Fumagillin-loaded

NEPs functionalized to target ανβ3 integrin significantly suppress neovasculature,

thereby inhibiting tumor growth (5). Recently PFOB-NEP has been developed as

a platform to deliver melittin, a cytolytic peptide, to cancer cells, illustrating the

potential of using cytolytic peptides for chemotherapy (11; 35).

Macroscopic experimental observations suggest a two-step mechanism for delivery of

cargo molecules from perfluorocarbon-based NEPs to the cytoplasm of the target

cells (47). First, cargo molecules are delivered from NEPs to target plasma mem-

branes via passive diffusion, so called “contact-facilitated” delivery that takes place

after the NEPs bind to or closely approach the target cell surface (48). Next, the

cargo molecules are transported from the plasma membrane into the cytoplasm by

active raft-dependent internalization at the cost of ATP hydrolysis (47). However,

the molecular details of both steps are largely unknown and must be understood in

order to rationally design particles which achieve optimal delivery efficiency.

Our long term goal is to describe and understand the molecular details of cargo de-

livery from PFOB-NEP to target membranes via this contact-facilitated mechanism.

A lipid complex, resembling the hemifusion stalk intermediate from bilayer fusion,

was hypothesized to form between the PFOB-NEP phospholipid monolayer and the

outer monolayer of the target cell plasma membrane. Considering the relatively small

dimensions of hemifusion stalks (175), we plan to use computational simulations at
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Figure 3.2: Two snapshots of the modeled planar PFOB-NEP interface. The top
figure shows the starting structure at time 0 ns, and the bottom one shows the
structure at time 150 ns in equilibirum. The zoomed in figures on the right show
the intercalation of PFOB into the emulsifying monolayers over time. The POPC
monolayers with the head groups oriented toward water regions and with lipid tails
oriented toward PFOB region are shown in blue. Water is shown in red and white
and PFOB is shown in green.

both atomistic and coarse-grained levels to examine the structural details of this

intermediate as well as the functional roles of the component molecules.

As a first step towards this long-term goal, we parameterized the PFOB core at an

atomistic level. We simulated a model PFOB-NEP interface in a planar configuration

using our new PFOB parameters. The accuracy of our parameters was tested against

several experimental measurements while the accuracy of our PFOB-NEP interface

was examined using melittin as a molecular ruler in the following manner. Efficient

tryptophan (Trp) fluorescence quenching by bromine atoms can occur only when the

two molecules appose very closely (176), and we observe this quenching when melittin

binds to the surface of PFOB-NEPs (35). In our simulations, PFOB bromine was

observed to approach the melittin Trp side chain closely enough to quench Trp fluores-

cence. This observation provides a viable mechanism for the melittin Trp quenching

by resolving a contradiction in assumptions about PFOB-NEP structure (177). Fur-

thermore, the model provides insight into the roles of the molecular components on
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PFOB-NEP structure and function, thus offering a basis for future engineering and

design of PFOB-NEPs.

3.2 Methods

3.2.1 Parameterization

Force field parameters for perfluorocarbons (CF2 and CF3) were developed at the

united atom level of resolution for consistency with the Berger et al. lipid force fields

(76) commonly used in biomembrane simulations (178; 77; 179; 79). United atom

force field parameters for perfluorocarbons were previously developed by Shin et al.,

using σ values for the Lennard-Jones (LJ) interaction obtained from lattice spacing of

solid perfluoroalkanes and � values derived by modulating the � of CH2-CH2 and CH3-

CH3 based on the polarizability of the bond (180). Hariharan and Harris modified the

parameters introduced by Shin et al. by decreasing σ and slightly increasing � values

(181). Hariharan and Harris reported that the modified parameters reproduced the

experimental density within 2% error; however, the surface tension was much larger

than the experimentally measured, indicating the parameters still needed improve-

ment (181). Cui et al. independently developed perfluorocarbon parameter sets that

had very similar σ values to the Harihan model but a smaller � for CF2 and a greater �

for CF3. The Cui et al. parameters reproduced experimental density and vapor-liquid

equilibria (182); however, these could only reproduce liquid phase densities with 95%

accuracy. None of the pre-existing force field parameters modeled pure perfluorocar-

bons with the accuracy desired for our study; therefore, they were not tested to see

if they properly modeled the interface between perfluorinated molecules, emulsifying

lipids, and water. In our study, the emulsifying interface between PFOB and water is

the most important region because of its role in NEP functions including cargo bind-

ing and delivery. Therefore, in this study, new parameter sets were generated with

a particular emphasis on PFOB interfacial behavior, while maintaining or improving

the thermodynamic behavior described by past force fields.
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Table 3.1: The force field parameters of PFOB. The bond stretching and angle bending parameters were borrowed from the
OPLS-AA force field (183). The energy p rofiles along the torsional angle were calculated from model molecules: BrCF2-CF2CF3

a

and CF3CF2-CF2CF3
b.

Bond Stretching Parameters
bond kb(kJ mol−1 nm−2) r0(nm)
Br-PC 205016.0 0.19450
PC-PC 224262.4 0.15290

PC-PEC 224262.4 0.15290
Angle Bending Parameters

angle k0(kJ mol−1 rad−2) θ0(deg)
Br-PC-PC 577.392 110.0
PC-PC-PC 488.273 112.7

PC-PC-PEC 488.273 112.7
Coefficients of the Torsional Potential Energy Function (kJ mol−1)

dihedral angle C0 C1 C2 C3 C4 C5

Br-PC-PC-PCa -21.5787 22.5726 0.9644 -29.3050 2.8832 -10.8271
PC-PC-PC-PCb -22.1519 2.6823 -7.1261 12.2544 14.8433 -31.0271

PC-PC-PC-PECb -22.1519 2.6823 -7.1261 12.2544 14.8433 -31.0271
Lennard-Jones Parameters for Non-Bonded Interactions

atom type σ (nm) � (kJ mol−1)
PC 0.4824 0.3367

PEC 0.4824 0.4789
Partial Charges for Long-Range Coulomb Interactions

atom name charge (q)
Br1 0.065
PC2 -0.205
PC3 0.03
PC4 0.03
PC5 0.03
PC6 0.03
PC7 0.03
PC8 0.02

PEC9 -0.03
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PFOB molecules were modeled with an explicit bromine atom and two united atom

types: PC (intermediate CF2) and PEC (terminal CF3). Bond and angle terms were

taken from the OPLS-AA force field (183). Torsional parameters were derived from

the rotational energy profiles of two model compounds: Br-CF2-CF2-CF3 and CF3-

CF2-CF2-CF3. Single point energies were calculated after structural optimization

with torsional angles fixed at 15◦ increments, using ab initio calculations with the

B3LYP functional in combination with the cc−pVTZ-PP basis set (184). The coeffi-

cients of the Ryckaert-Bellemans (RB) dihedral potential function (185) were fit to

the potential profiles by a linear least squares method (see p.132 figure 7.1 of the

Supplementary materials) .

Electrostatic potential (ESP) charges (186) were determined for an optimized PFOB

molecule in vacuum by ab initio calculations with the B3LYP functional in combina-

tion with the cc−pPVTZ-PP basis set. Charges for the united atoms were obtained

by summing the partial charges of the atoms comprising each united atom. The LJ

parameters for PC and PEC united atoms were taken and optimized from the previ-

ous work (180); in particular, the size parameters (σ) were systematically varied to

reproduce the density and heat of vaporization of liquid PFOB. The resulting force

field parameters are summarized in Table 3.1, while tests of these parameters are sum-

marized in the Table 3.2 the details of the tests are described in the Supplementary

materials. We observed much better accuracy in the united-atom perfluoromethane

solvation energies in united atom n-hexane models rather than an all-atom perfluo-

romethane model. The united atom n-hexane models closely resemble the tail region

of the lipid models used in our simulations. Therefore, these results support the

compatibility of our model with the current lipid models.

Table 3.2: The bulk properties of liquid PFOB. The references for each experimental
bulk properties are Riess et al.(21) and Andre et al. (19) for density (ρ), Riess et al.
(21), Gregor et al. (187), Faithful et al. (188) for heat of vaporization (∆vapH), Song
et al. (189) for solvation free energy of CF4 in liquid n-hexane (∆G).

Properties Experiment Simulation
ρ (kg L−1) 1.925 (± 0.007) 1.891 (± 0.001)

∆vapH (kJ mol−1) 42.67 (± 1.276) 41.05 (± 0.26)
∆G (kJ mol−1) 2.056 2.00 (± 0.02)

45



3.2.2 Simulations

Initial structures

Planar PFOB-based nanoemulsion interface model A PFOB-based nanoemul-

sion particle (PFOB-NEP) interface was modeled in a planar configuration (see Figure

3.2). A similar “sandwich” topology was previously used by other researchers to sim-

ulate an emulsion composed of a triglyceride core and a phospholipid monolayer in

water (190). The interface model was constructed from structures of POPC monolay-

ers composed of 64 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) lipids extracted

from a previous POPC bilayer simulation (79). These two POPC monolayers were

then placed in a periodic box in an arrangement that separated lipid tails by 15.3 nm

and the headgroups by 6 nm. The space flanked by tails (inside) was filled with 1310

PFOB molecules while the other space facing the head groups (outside) was filled

with 11,678 water molecules. The system was fully hydrated with 91.2 waters per

lipid (191). The dimensions of the box were 6.2 nm x 7.2 nm x 27.1 nm along the x,

y and z directions. Two replica simulations were performed for 150 ns. This system

will be referred to as PFOB-NEP throughout this report.

Melittin peptides bound to the planar PFOB-NEP interface The initial

structure was prepared with an equilibrated PFOB-NEP interface structure obtained

from the simulations described above and a model of bilayer-bound melittin provided

by the Hristova and White groups.(192) A single melittin peptide was inserted into

each POPC monolayer to the depth of the glycerol groups (see Figure 3.11) as sug-

gested by experimental results (192). The peptide was inserted so that its non-polar

residues faced the hydrophobic interior while its polar residues faced the NEP-water

interface. POPC lipids that significantly overlapped with the inserted melittin pep-

tides were deleted, leaving 55 POPC lipids remaining in each monolayer. No PFOB

molecules had direct contact with the inserted melittin peptides and hence none of

them were deleted. 19,958 water molecules were added to solvate the system. To

neutralize the +5 formal charge of each melittin peptide, ten randomly chosen water

molecules were replaced by chloride ions. The hydration level of the system was ap-

proximately 90 water molecules per lipid. The dimensions of the systems were 6.0nm
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x 6.9 nm x 24.8 nm along the x, y and z directions. A single simulation was carried

out for 190 ns.

Force field parameters

POPC was modeled with the united atom force field parameters optimized by Berger

et al. (76) and Chiu et al. (193). Water was modeled by the simple point charge SPC

model (194).

Generally mixing of two different force fields is not recommended and sometimes not

feasible due to different functional forms and combination rules. However, Tieleman

et al. (77) have reported that OPLS-AA (195) all-atom protein representations could

be successfully used in combination with the united-atom lipid model described above.

In our system, such a combination of parameters prevents artificial condensation of

the membrane by eliminating overly favorable lipid-protein interactions; otherwise,

use of standard GROMOS united atom types may cause significant condensation of

the membrane.(77) Therefore, the melittin peptides used in these simulations were

modeled with the OPLS-AA force field (195). The combination of these two different

force fields for lipids and peptides was made possible by using a half-epsilon and double

pair list method (82) to resolve the different 1-4 interaction scaling factors used by the

two force fields (92). Our simulation used OPLS-AA combination rules; however, the

parameters for van der Waals (vdW) interaction energy for the 1-4 interaction pairs

were listed by their half magnitude in the parameter file for non-bonded interactions.

The 1-4 interaction pair list was repeated twice in the lipid topology file. By doing so,

the 1-4 interaction energy of lipid that originally use GROMACS combination rule

could be scaled properly while the combination rule of OPLS-AA force field was used.

This method was tested using both a pure POPC bilayer and bulk PFOB, and both

the bilayer area and the bulk PFOB density were identical within error to identical

simulations using standard combination rules (data not shown).
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Simulation parameters

Molecular dynamics simulations and analyses of the trajectory were performed with

GROMACS version 4.0 (92). The starting structures were subjected to previously

described equilibration procedures (78). First, an energy minimization was performed

using a steepest descent method and the system was then gradually heated from 50

K to 303 K through a series of short molecular dynamics (MD) simulations. After

the system reached the production temperature of 303 K, the MD simulation was

continued for at least 150 ns of production simulation. The cutoffs for LJ interaction

and for direct space for electrostatic interactions were 1.0 nm. The particle-mesh

Ewald method (196) with conducting boundary conditions was used for long-range

electrostatic interactions. The simulation was performed in an isobaric-isothermal

ensemble (NpT). A Parrinello-Rahman barostat (197) with 2 ps coupling time was

used to maintain the system pressure at 1 bar. The pressure coupling type varied

depending on the systems: isotropic pressure coupling was used for simulations of bulk

solutions, semiisotropic for simulations of PFOB-NEP interface and POPC bilayer

systems, and anisotropic for the simulation of melittin bound membranes. A Nosé-

Hoover thermostat (198) with 0.5 ps coupling frequency was applied to each molecule

type separately. Hydrogen atoms bonded to heavy atoms were constrained with the

LINCS algorithm (199), allowing a 2 fs time step to be used.

3.2.3 Analysis

Block averaging

To perform statistical analysis, each trajectory was divided into small blocks with the

block size chosen based on the standard error so that each block was independent of

one another (200). The standard error ε(f, n) in observable f for a block of length n

was calculated according to the formula ε(f, n) = σ/
√

M , where n is the block length,

σ is mean standard deviation, and M is the number of blocks in the simulation.

When the block size is large enough; e.g., much greater than the correlation time of

an observable, the standard errors become independent of the block size and the true
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standard error is obtained. The block size for sub-sampling was determined by the

value of n where ε(f, n) for observable f reached a plateau.

3.3 Results

3.3.1 Characterization of the PFOB-NEP interface

Equilibration and sub-sampling

Two independent simulations of the PFOB-NEP interface shown in Figure 3.2 were

performed for 150 ns; a control POPC bilayer was simulated for 300 ns. After equi-

libration, the PFOB in the PFOB-NEP “sandwich” became denser than in the more

loosely distributed initial state. This change was accompanied by the intercalation

of PFOB into the monolayer as shown in the right panel of Figure 3.2 and in the

number density profile of the molecules along the z-axis (Figure 3.3).

The cross-sectional area of total membranes was used to determine the equilibration of

the system. The three simulated systems showed no significant area drifts throughout

the simulations, implying that the systems quickly reached equilibrium during the

temperature equilibration steps (see p.139 figure 7.5 of the Supplementary materials).

To further ensure unbiased results, the first 10 ns of each trajectory was discarded

for analysis to remove any possible bias from the starting structure.

The fluctuation of the cross-sectional area of total membrane was also used to deter-

mine the statistically-independent block size for each trajectory to calculate standard

error as explained in the section 3.2.3. For the two PFOB-NEP interface simulations,

the standard error reached a plateau with a 14 ns block size and, beyond that size, the

increase in standard errors was marginal. Therefore, 10 independent blocks of 14 ns

each were generated from each trajectory and results from each block were combined

to compute means and standard errors.

The same test was performed for the control POPC bilayer, and with 14 ns block

size, the standard error stopped increasing drastically and only small increases were
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Figure 3.3: The number densities of each component of the system along the z-axis
are shown for whole system (solid), POPC monolayer (dashed), water (dotted dash),
and PFOB (dotted). The shaded regions in gray mark the density overlap between
POPC lipids and PFOB.

observed for much larger block sizes. With a 14 ns block size, 20 statistically indepen-

dent blocks were obtained from the control POPC bilayer simulation. The observables

calculated in this report were averaged over the statistically independent blocks as

determined in this section.

NEP-water interface geometry

Figure 3.4 shows that the width δ of PFOB and SPC water at the emulsion interface

increases substantially as compared with the pure PFOB-water interface shown in

p.137 Figure 7.3 of the Supplementary materials. Additionally, the PFOB and water

density profiles overlap only slightly in the presence of the POPC monolayer demon-

strating the effectiveness of the stabilizing monolayer at separating the hydrophobic

PFOB molecules from the aqueous environment.

Monolayer density distribution The number density profiles of the monolayer

along the z-axis were determined to assess structural changes in the POPC monolay-

ers. Two density profiles of the PFOB-NEP interface and the control POPC bilayer
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Figure 3.4: Phase separation of PFOB in water in the presence of an emulsifying
POPC monolayer. The mass densities of PFOB (green) and water (red) near the
interface are shown. The vertical dotted lines show the δ of PFOB interface (δPFOB),
and the vertical dashed lines show that of water interface (δSPC). The thickness of
the δ region was 1.75 nm for PFOB interface and 1.23 nm for water interface, and no
overlap is observed.

were aligned such that the maximum density of each was placed at zero on the z-axis.

Figure 3.5 shows that the thickness of the monolayer is greater in the PFOB-NEP

interface than in individual control bilayer leaflets. The largest increase in thickness

was observed in the tail region of the PFOB-NEP interface monolayer. The maxima

of the density profiles of different parts of lipids shifted outwards as compared to those

of the control POPC bilayer. The peak of choline group shifted toward the water side

and terminal methyl group shifted toward the lipid tail side. These density shifts are

consistent with the more parallel orientation of the P-N vector to the bilayer normal

(see Figure 3.8) and more ordered lipid tails (see Figure 3.7).

Total area The cross-sectional area of a lipid molecule has been a commonly used

metric to assess and compare membranes under different physical environments or

with different force field parameters (201; 79; 202) However, as described previously

(79), it is not a trivial problem to measure the cross-sectional area of individual lipids

in inhomogeneous membranes. As described above, the POPC monolayers of PFOB-

NEP interface were inhomogeneous due to the intercalation of PFOB. Therefore, the
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Figure 3.5: The monolayer thickness changes were examined by the number densities
of moieties of POPC lipid. The number densities of control POPC bilayer are plotted
with dashed lines, and those of PFOB-NEP interface with solid lines along the z-axis
with the same color codes as shown in the figure. To ease the comparison, two profiles
are aligned with their maximum densities to be at the zero point on the z-axis. The
whole POPC monolayer is shown in black, and lipid moieties in gray colors as shown
in the figure.

cross-sectional area of the total monolayer, which corresponds to the lateral area (XY-

plane) of the simulation box, was measured and compared with that of the control

POPC bilayer instead. The cross-sectional area of 128 POPC bilayer (41.0 ± 0.1

nm2) gives a per-lipid area of 0.641 ± 0.001 nm2 which is in good agreement with

both experiment (201) and with the results of other simulations (202). The expansion

of the cross-sectional total membrane area of PFOB-NEP interface compared to the

control POPC bilayer is shown in Figure 3.6A. The mean areas and standard errors

obtained from the independent blocks were 44.42 ± 0.17 for the 64-lipid PFOB-

NEP interface and the increase was significant (99.9% confidence level). The result

agrees qualitatively with experimental Langmuir results that show total monolayer

area expansion upon the application of gaseous PFOB to the hydrophobic tail side of

the monolayer (203).

Probe-accessible surface area Probe-accessible surface area (ASA) was mea-

sured using a 1.4 Å probe to examine the contribution of each molecule to the area

expansion. The contributions of hydrophilic and hydrophobic parts of the system
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to the total ASA were calculated separately. The hydrophilic parts consisted of all

POPC headgroup atoms, while the hydrophobic parts consisted of lipid tails and

PFOB.

In agreement with the total membrane area results, the total ASA of the PFOB-

NEP interface was greater than that of control POPC bilayer. The increase in the

total ASA could be fully attributed to the increased hydrophilic ASA; hydrophobic

ASA decreased in the PFOB-NEP interface. The lower inset of Figure 3.6B shows

the contribution of POPC lipid tails and PFOB to the hydrophobic ASA. The sur-

face exposure of lipid tails was substantially decreased while a small portion of the

hydrophobic surface area was contributed by PFOB molecules at the PFOB-NEP

interface. The reduction in hydrophobic ASA could be explained by the intercalation

of PFOB in between the lipid tails. The void volume in between lipid tails in POPC

bilayer provides continuous paths through which water probe could travel into the

hydrophobic interior of POPC bilayer; however, those paths were blocked by interca-

lated PFOB molecules in the PFOB-NEP interface which resulted in a substantially

decreased hydrophobic surface area.

Order parameters Lipid tail order parameters provide important details about

membrane structure (79; 204). Figure 3.7 clearly shows that tail order parameters for

POFB-NEP interface lipids increased, with respect to POPC bilayers, for both chains

all along the tail length. This increase was most prominent near the ends of the lipid

tails. In the control bilayer, the ends of lipid tails are more flexible and have smaller

order parameters due to the void volume at the center of bilayers. In the PFOB-NEP

interface, no void volume exists at the hydrophobic region and, hence, conformational

flexibility decreases more substantially near the termini of lipid tails. Increased order

parameters indicates that POPC molecules are in more extended conformations and

occupy a smaller cross-sectional area per lipid. This result clearly supports our con-

clusion that the expanded total monolayer area is due to the intercalation of PFOB

molecules into the POPC monolayers and not due to the disordering of POPC.

Head group orientation The P-N vector (see Figure 3.1B) connects the POPC

phosphorus and nitrogen atoms and reorients in response to environmental changes.

The orientation was computed to obtain cos θ where θ is the angle between the mean
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Figure 3.6: System area change. A) The distributions of the cross-sectional area
of the total monolayer are plotted for control POPC bilayer (black) and PFOB-NEP
interface (gray). B) The probe-accessible surface area (ASA) of control POPC bilayer
(dark gray) and PFOB-NEP interface (light gray) are plotted. The contributions from
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to CF3 to the hydrophobic probe-ASA of PFOB-NEP interface. The bottom insert
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bar shows that the contribution of both POPC (light gray) and PFOB (silver) in
PFOB-NEP interface.
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Figure 3.7: Lipid order parameters. A) Tail orders of the sn-1 saturated palmitoyl
chains are plotted for control POPC bilayer (black) and PFOB-NEP interface (gray).
The means are connected by solid lines with one standard error deviations by dotted
lines. B) Tail orders of the sn-2 unsaturated oleoyl chains are plotted with the same
line types and color codes.

P-N vector and the monolayer normal. Larger values of cos θ indicate a P-N vec-

tor orientation that is more parallel with respect to the monolayer normal. Figure

3.8 shows significantly greater cos θ value in the PFOB-NEP interface as compared

to POPC bilayers. Decreased electrostatic repulsion among the head group dipoles

due to expanded monolayer area likely caused this more parallel distribution of P-N

vectors. While this change in orientation was significant, no increased net polar-

ization density was measured (see p.140 figure 7.6 in the Supplementary materials),

indicating compensatory polarization changes in the rest of the system.

Characterization of PFOB structure

Shape Conformational variation of PFOB along the z-axis was examined. The

short chain length of PFOB resulted in no significant variation of the radius of gyration

along the z-axis (data not shown). Therefore, the average conformation of PFOB

along the z-axis was examined by assessing the mean end-to-end length from Br to

CF3 (see Figure 3.9B). The mean end-to-end length was 1.02 nm in a fully extended

conformation and 0.992 ± 0.002 nm for bulk PFOB. To obtain a profile of PFOB in

the emulsion environment, the simulation system was divided into slabs of 0.25 nm

thickness along the z-axis, and then mean length was computed from the average over

the molecules in an individual slab. Figure 3.9A shows that the PFOB conformation
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Figure 3.8: P-N vector orientation. The mean and one standard error deviation of the
P-N vector orientation to the monolayer normal are shown for control POPC bilayer
and PFOB-NEP interface.

has small but significant variations along the z-axis. The PFOB length was longer

within the monolayers, indicating that more PFOBs were in extended conformations

inside of the monolayers. On the other hand, the mean length was shortest near the

lipid termini where the mixing of lipid tails and PFOB occurs. The mean end-to-end

length at the middle of the PFOB-NEP interface was comparable to the mean length

of bulk PFOB, indicating that the direct influence of the emulsifying monolayers

vanished in the middle of the PFOB-NEP interface.

Orientation The mean orientation of PFOB along the z-axis was also examined.

The molecular vector of PFOB is defined in Figure 3.1B starting from Br and pointing

to the terminal CF3 atom. The orientation was measured from the normalized inner

product of the PFOB molecular vector with a unit vector along the z-axis. The

orientation of every PFOB was averaged over slabs of 0.25 nm thickness along the

z-axis and plotted in Figure 3.9B.

The plot shows that PFOB inside and adjacent to the monolayers was preferentially

oriented. The maximum peaks with the cos θ = 0.3 appeared inside of the monolayers,

showing that PFOB preferentially orients with its Br atom pointing to the hydrophilic

surface of the monolayer. The preferential orientations vanished very quickly outside

of the monolayers, and PFOB was randomly oriented with the cos θ zero in the middle

of the PFOB-NEP interface, which again supports the assertion that the PFOB-NEP

56



sandwich geometry can be appropriately used to model larger nanoemulsion droplet

interfaces.

The preferentially oriented PFOB in the monolayers contributed additional non-zero

charge density to the system as shown in Figure 3.9C. The charge attributed to

the preferentially oriented PFOB generated additional positive electrostatic potential

inside of the PFOB-NEP interface, which will be discussed in the section 3.3.1.

Electrostatic potential profile

The charge density profiles of the pure POPC bilayer (top) and the PFOB-NEP

interface (middle and bottom) are shown in Figure 3.10A. The overall charge density

profiles of the pure POPC bilayer and that of the PFOB-NEP monolayer are almost

indistinguishable. The PFOB charge densities of the PFOB-NEP interface are plotted

separately due to their much smaller scale compared to those of POPC and water.

The sinusoidal fluctuation of PFOB charge in and near the POPC monolayer was

observed and attributed to the polarized molecular orientation of PFOB molecules

discussed earlier in the previous section (3.3.1).

The electrostatic potential was calculated by the double integration of the charge

densities along the z-axis as shown in the following equation (205; 206).

φ(z)− φ(0) = −1

�

�
z

0

��
z�

0

ρ(z��)dz
�� + D0

�
dz

�
, (3.1)

where � is a homogeneous dielectric constant which is �0 for analysis of the atomistic

system, and ρ(z) is the charge density. The displacement constant D0 for net neutral

systems to impose the conducting boundary condition is defined by (205; 206)

D0 = − 1

L

�
L

0

�
z

0

ρ(z��)dz
��
dz, (3.2)

Results are shown in Figure 3.10B. The statistical errors in the electrostatic potential

along the z-axis were small and are not shown for clarity. The black curves in the

figure showed that electrostatic potentials of the PFOB-NEP interface and POPC

bilayer systems were substantially different. The positive potential in the interior of
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Figure 3.9: The structures of PFOB within PFOB-NEP interface. A) The mean
molecular end-to-end length of PFOB in each slab of 0.2 nm thickness along the z-
axis was calculated. A horizontal dotted line in gray shows the mean length of PFOB
in bulk. B) The mean cos θ, where the θ is an angle between z-axis and the molecular
axis of each PFOB molecule, was calculated along the z-axis. The molecular axis was
a vector starting from the Br atom to the terminal CF3. C) The polarization density
of the PFOB weak dipole is plotted along the z-axis. Dashed-gray boxes mark the
locations of the two POPC monolayers. The mean is plotted by a solid line and the
one standard error deviations are by dashed lines.
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PFOB-NEP was much greater than the potential at the hydrophobic interior of pure

POPC bilayer. The potentials due to different molecules were estimated separately

to identify the origin of this positive potential. It was observed that the potentials

due to both POPC and water of the PFOB-NEP interface system were comparable

to the potentials of pure POPC bilayer system. The additional positive potential was

attributed solely to the dipolar charge distribution of PFOB due to their polarized

orientation near the PFOB-NEP monolayer.

Another minor difference between the two systems is the slightly lower potential

at the boundary peak. The decreased potential can be explained by the greater

total membrane area and concomitantly decreased charge density in the PFOB-NEP

interface system.

3.3.2 Testing the model with melittin tryptophan fluores-

cence quenching

Melittin was simulated to test if the modeled system agrees with experimental results

in that Trp fluorescence was quenched upon melittin binding on the surface of PFOB-

NEP (35) and to elucidate the molecular mechanism of the quenching phenomenon.

The quenching of Trp fluorescence by bromine atom is known to occur within very

short distances via dynamics quenching mechanism (176; 207). Therefore, in order

for quenching to occur, bromine atoms must directly collide with Trp side chain.

A simulation with melittin at the NEP interface was performed for 190 ns as de-

scribed in the Methods sections 3.2.2 and 3.2.2. The initial structure and position of

melittin was based on x-ray diffraction results which show that, at low mole fractions,

melittin positions itself parallel to the membrane surface at the depth of the glycerol

groups and orients its hydrophobic residues towards the hydrophobic interior of the

membrane (192). Figure 3.11A shows the structure of the system after 190 ns of

simulation. Figure 3.11B shows that melittin maintains a helical conformation, in

agreement with experiments, (192) and that the Trp side chain faces the interior of

the PFOB-NEP interface.
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Figure 3.10: Charge densities and electrostatic potentials. To ease the comparison,
a half of the system along the z-axis is plotted. A) The charge densities of whole
system and individual components are plotted for control POPC (top) and for PFOB-
NEP interface (middle). The charge density of PFOB of the PFOB-NEP interface is
plotted separately (bottom) to be noticeable. The charge density of the whole system
is shown in a solid black line, POPC lipids in a dashed black line, water in a dotted
black line, and PFOB in a solid gray line. B) Electrostatic membrane potentials are
plotted. The potential of the whole system of control POPC bilayer is plotted on the
left panel. The potential of the whole system (black sold) of the PFOB-NEP interface
is shown on the right panel. The potential due to PFOB was plotted separately in
solid gray line, and the potential generated by POPC monolayer and water is shown
in dashed black line.
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The radial distribution of bromine atoms around each Trp side chain was computed to

assess the likelihood of quenching, and the radial distribution profiles of both peptides

are shown in Figure 3.11C. The density of bromine atoms appeared at distance shorter

or near the direct contact between the Trp side chain and bromine atoms considering

the radii of the two (approximately 0.35 nm and 0.33 nm respectively) (207). Such

close apposition is made possible only through the intercalation of PFOB molecules

into the monolayers and provides a molecular explanation of Trp quenching upon

melittin binding to PFOB-NEP interfaces. This result, in turn, supports our modeled

PFOB-NEP interface structure characterized by the PFOB intercalation.

3.4 Discussion

In this study, a new set of force field parameters for PFOB was developed to study

the structural properties of a PFOB-NEP interface. The atomistic simulations show

that PFOB intercalates into the emulsifying monolayers and causes unique structural

changes at the NEP-water interfaces. Due to the intercalation, the structures and

properties of the monolayer are altered, becoming distinct from those of similarly

composed bilayers. Also, the orientation and conformation of PFOB was different

within and near the monolayers as compared with bulk PFOB or the center of the

PFOB-NEP interface. Such changes likely contribute to the functions of PFOB-NEP

interface of cargo loading as well as cargo delivery.

3.4.1 United atom model for PFOB

The new set of force field parameters preserved important characteristics of PFOB

both in bulk and at the phase-separated interface between water and PFOB both in

the absence and presence of emulsifying phospholipid monolayer. The bulk density

and heat of vaporization were reproduced in an acceptable accuracy. The strong

hydrophobicity of the model PFOB generates a sharp interface in water and the com-

puted surface tension from the interfaces was close to the experimentally measured

value. While perfluorocarbon is regarded as lipophobic (177), the unfavorable solva-

tion free energy of a perfluoromethane in liquid n-hexane (2.06 kJ/mol) (189) was less
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Figure 3.11: Structure of melittin bound to the POPC monolayers of the PFOB-
NEP interface. A) Two melittin peptides, one in each POPC monolayer, are shown.
B) A melittin peptide in the bottom POPC monolayer is shown in detail. Melittin
peptides are drawn by a ribbon diagram; the parts in α-helix conformations are shown
in magenta, 3-10 helix in blue, turn in green, coil in while. Trp residues are shown
in yellow sticks. POPC lipids are drawn with blue lines for tails and with gray and
blue balls for head group atoms. Br atom of PFOB is shown in a green ball with
perfluorinated chain part in a green stick. Water is shown as white (hydrogen) and
red (oxygen) sticks. C) The radial distributions of Br atoms about Trp side chain of
melittin in the top (black) and bottom (red) leaflet are plotted as a function distance
between the tryptophan side chain and Br atoms.
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than thermal energy (2.48 kJ/mol) at room temperature. The strong hydrophobicity

with relatively moderate lipophobicity of perfluorocarbon is important to form sta-

ble emulsions. Our parameters preserved the weakly unfavorable interaction between

perfluorocarbon united atom and the united n-hexane and, as a result, substantial

mixing between PFOB and lipid tails is observed in our simulation.

3.4.2 System configuration caveats

The interface between PFOB and water was planar and was not allowed to have

any large scale curvature due to the periodic boundary conditions and small lateral

dimensions in our simulations. However, this planar interface can be considered to

be equivalent to small patches on the surface of larger PFOB-NEPs with radii of a

few hundred nanometers. Furthermore, because we observe a return to bulk PFOB

behavior in the center of our sandwich simulation geometries, they can therefore be

considered to mimic the interface of more realistic PFOB-NEPs. A similar simplifica-

tion scheme has been used to model triglyceride-based emulsions (190) and to mimic

cells that have asymmetric ionic conditions inside and outside of the cell by putting

two bilayers in a simulation box (78; 206; 179).

In the current study, structural differences in the emulsifying monolayer of the PFOB-

NEP have been assessed through comparison with a lipid bilayer of the same lipid

composition. As a control, a bilayer is less topologically relevant than the monolayer

at the air/water interface, which has been modeled recently.(208; 209) However, a

bilayer has been used as a control in our study to have a consistent comparison

with future simulations designed to understand the functional mechanism of cargo

delivery by using PFOB-NEPs as platforms. In particular, we wish to understand the

differential binding of cargo, such as melittin peptides, to monolayers of PFOB-NEPs

and the target bilayer membranes. Therefore, comparisons with a bilayer will provide

us not only consistency with the future work but also more insight to understand the

functional mechanisms of PFOB-NEPs.
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3.4.3 PFOB intercalation into phospholipid monolayer

Substantial intercalation of PFOB into POPC monolayers was the most remarkable

result of these simulations, and is somewhat contradictory to the expectation that

PFOB and lipid tail would have a clear interface due to the lipophobicity of per-

fluorocarbons (177). However, models based on this expectation cannot explain the

Trp fluorescence quenching that requires direct contact between the side chain and

bromine atoms. Gerber et al examined the influence of gaseous perfluorocarbons

(gFCs) on Langmuir DPPC monolayers and showed that gFCs had a strong fluidiz-

ing effect on the monolayer, expanded the total area, with more pronounced effects

if the gFCs were linear (203). The results indicated that gFC interacts with the lipid

tails. The fact that linear gFCs are more effective at causing such changes strongly

suggests that the effect is mediated by the intercalation of gFCs with the lipid tails.

Yokoyama et al tested the miscibility of perfluorocarbons of various lengths (FCn)

and showed that the length of FCn with respect to the lipid tail length is important

in determining their miscibility: FCn shorter than the lipid tail is miscible with lipid

tails, miscibility drops as the FCn length becomes closer to the tail length, and FCn

becomes immiscible if the length is comparable or greater than the tail length (210).

These observations support our modeled PFOB-NEP interface since the PFOB chain

length (FC8) is far shorter than either the palmitoyl (C16) or oleoyl (C18) lipid tails

of POPC. Finally, our simulation of melittin peptide loaded onto PFOB-NEP inter-

face corroborates the presence of this intercalation, in that PFOB intercalation is

necessary for the tryptophan fluorescence quenching to occur by direct collision with

bromine atoms (207).
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3.5 Conclusions

Despite active research to develop PFOB-NEPs as platforms for carrying therapeutic

agents, their atomistic structural details are yet to be determined, and limited knowl-

edge hinders the rational design of the NEPs for optimal efficiency. This study is the

first to report the structural details of the PFOB-NEP interface at an atomistic level.

The reported interface structure is corroborated by providing a structural explana-

tion for Trp quenching upon the melittin binding on the PFOB-NEP interface. More

importantly this work opens new possibilities to study; in particular, the influence of

different lipid compositions on the structure of the PFOB-NEP interface as well as

cargo binding to the interface. Finally, the atomistic structural details of PFOB-NEP

interface in the absence (pure PFOB-NEP interface) or presence of cargo (melittin

peptides in this report) can be used as reference structures to develop coarse-grained

models of the PFOB-NEP system. Simulation of the systems at a coarse-grained level

will enable us to study behaviors on a much larger scale, such as the hypothesized

lipid complex formation as well as cargo diffusion through the complex, which are

under extensive study in our group.
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Chapter 4

Interactions of antimicrobial

peptides with perfluorocarbon

nanoemulsion particles: a

molecular dynamics study

4.1 Introduction

Nanoemulsion particles (NEPs) with perfluorocarbon (PFC) cores have shown great

potential in delivering a wide range of therapeutic molecules to target cells.(163;

211; 212; 213) PFCs are strongly hydrophobic and form nanoscale emulsions when

mixed with water under strong shear force.(214) Biomedical NEPs are often formed

with phospholipid surfactants that form monolayers enclosing the PFC droplets to

stabilize the particles. PFCs are well known for their biological compatibility and

clinical safety (215), with years of demonstrated success as blood substitutes and in

other applications.(15; 203)

Recent efforts have focused on the use of PFC NEPs as platforms to specifically

deliver melittin, an antimicrobial peptide (AMP), to cancer cells.(35; 11) AMPs

have shown promise as anticancer chemotherapeutics if tumor cell specific delivery is

enabled.(35; 11; 216; 217) Soman et al. demonstrated that the melittin AMP could

be stably bound to PFC NEPs without disruption of NEP morphology nor destabi-

lization of the PFC emulsion. Furthermore, they showed that NEP-bound melittin
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retains its biological activity: it can lyse liposomes and induce apoptosis in vitro and,

more importantly, significantly reduce tumor size in in vivo mouse studies.(35; 11)

Employing PFC NEPs has resolved many of the difficulties that previously prevented

clinical applications of AMPs such as melittin. First, premature melittin degradation

is prevented by limited protease access to peptides associated with the emulsifying

phospholipid monolayer.(11) Second, the non-specific cytolytic activity can be di-

rected to tumor cells by targeting the NEPs with tumor cell specific ligands on their

surface.(11)

The current work is based on the interface structure of perfluorooctylbromide (PFOB)

based NEP (PFOB-NEP) determined by previous simulations.(218) This work has

focused on understanding differential interaction of melittin, a model cargo peptide

delivered by PFC NEPs, with phospholipids on the surface of PFOB-NEPs versus a

control bilayer. From the current simulations we aim to understand the structural

bases for experimentally observed phenomena such as melittin tryptophan quenching

upon its binding to PFOB-NEPs and the ability of PFOB-NEPs to remain intact even

after binding of critical concentrations of membrane-disrupting melittin peptides.(35)

Finally, structural comparison of melittin bound to the phospholipid monolayer of a

PFOB-NEP versus a control bilayer will suggest important structural motifs that can

affect the design of cargo for optimal binding to and delivery from PFOB-NEPs.
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Figure 4.1: Structures of melittin bound to membranes. Initial structure of the
Control (A) and the PFOB-NEP (B). Melittin in the top monolayer of the Control(C)
and of the PFOB-NEP (D) at approximately 300 ns. Lipids are shown in cyan for
carbon, blue for nitrogen, gold for phosphorus, red for oxygen atoms. PFOB is shown
in green sticks with an explicit bromine atom depicted as a green ball. The peptides
are shown in ribbon style with an explicit tryptophan side chain in yellow. Each
residue is colored based on their secondary structure: α-helix in magenta, 3-10 helix
in blue, random coil in white, and turns in cyan.
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4.2 Methods

4.2.1 Simulations

Initial structures

Melittin was studied in two model systems (see Fig. 4.1): a planar model of a per-

fluorooctylbromide (PFOB) NEP interface and a planar POPC bilayer. The initial

planar PFOB-NEP interface model in the absence of melittin was prepared as de-

scribed in previous work (218) with 1310 PFOB molecules sandwiched between two

POPC monolayers comprising 64 lipids each. The entire system was surrounded by

11678 water molecules. The initial planar POPC bilayer comprised 128 POPC lipids

and 7714 water molecules.

Melittin placement was assisted by a model of bilayer-bound melittin provided by

the Hristova and White groups.(192) A single melittin peptide was inserted into

each POPC monolayer to the mean depth of the glycerol groups (see Fig. 4.1) as

suggested by experimental results.(219; 192) The peptide was inserted so that its

non-polar residues faced the hydrophobic interior while its polar residues faced the

NEP-water interface. POPC lipids that significantly overlapped with the inserted

melittin peptides were deleted, leaving 55 POPC lipids remaining in each monolayer

of PFOB-NEP. No PFOB molecules had direct contact with the inserted melittin

peptides and hence none of them were deleted. 18,959 water molecules were added

to solvate the NEP interface and 10 randomly chosen water molecules were replaced

by chloride ions to neutralize 5+ formal charge of melittin. The hydration level of

the system was over 90 water per lipid, ensuring complete solvation. The dimensions

of the system were 6.0 nm x 6.9 nm x 24.8 nm along the x, y and z directions. Two

replica simulations were run for 300 ns respectively. The simulated system was named

“PFOB-NEP”.

To prepare a control system (named “Control”), the inital planar POPC bilayer was

duplicated along the x and y direction so that the new bilayer contained large number

of POPC lipids per inserted peptide. The lipids that significantly overlapped with

the inserted melittin peptides were deleted. Then the lipids at the boundary of the
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bilayer were deleted so that the ratio of lipid:melittin ratio ∼ 100:1 was satisfied in

each monolayer without excessive lipids to enhance computing efficiency. 9,984 water

molecules were added to solvate POPC bilayer simulation and to neutralize the +5

formal charge of each melittin peptide, ten randomly chosen water molecules were

replaced by chloride ions. The hydration level of 90 water per lipid was achieved.

The dimensions of the system were 8.3 nm x 8.7 nm x 12.0 nm along the x, y and z

directions. Three replica simulations were run for 300 ns respectively.

Force field parameters

PFOB was modeled with the force field parameters previously developed by Lee et

al.(218) POPC was modeled with the united atom force field parameters optimized

by Berger et al. (76) and Chiu et al. (193) Water was modeled with the simple

point charge SPC model.(194) The melittin peptides used in these simulations were

modeled with the OPLS-AA force field.(195) Mixing between Berger lipid model and

OPLS-AA protein force field was performed using the half-epsilon pairlist approach

discussed in previous reports.(218; 82)

Simulation parameters

Molecular dynamics simulations and analyses of the trajectory were performed with

GROMACS version 4.0.(92) The starting structures were subjected to previously

described equilibration procedures.(78) First, an energy minimization was performed

using a steepest descent method and the system was then gradually heated from 50

K to 303 K through a series of short molecular dynamics (MD) simulations. After

the system reached the production temperature of 303 K, the MD simulation was

continued for at least 300 ns of production simulation. Cutoffs for LJ interaction and

for direct space for electrostatic interactions were set at 1.0 nm. The particle-mesh

Ewald method (196) with conducting boundary conditions was used for long-range

electrostatic interactions. The simulation was performed in an isobaric-isothermal

ensemble (NpT). A Parrinello-Rahman barostat (197) with 2 ps coupling time was

used to maintain the system pressure at 1 bar. The pressure coupling type varied

depending on the systems: isotropic pressure coupling was used for simulations of bulk
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solutions, semiisotropic for simulations of PFOB-NEP interface and POPC bilayer

systems, and anisotropic for the simulation of melittin bound membranes. A Nosé-

Hoover thermostat (198) with 0.5 ps coupling frequency was applied to each molecule

type separately. Hydrogen atoms bonded to heavy atoms were constrained with the

LINCS algorithm (199), allowing a 2 fs time step to be used. Initial velocities were

randomly assigned from different Maxwell distributions for each simulation.

4.2.2 Analysis

Block averaging

To perform statistical analysis, each trajectory was divided into small blocks with the

block size chosen based on the standard error so that each block was independent of

one another.(200) The standard error ε(f, n) in observable f for a block of length n

was calculated according to the formula ε(f, n) = σ/
√

M , where n is the block length,

σ is mean standard deviation, and M is the number of blocks in the simulation.

When the block size is large enough; i.e., much greater than the correlation time of

an observable, the standard errors become independent of the block size and the true

standard error is obtained. The block size for sub-sampling was determined by the

value of n where ε(f, n) for observable f reached a plateau. When an observable was

calculated for each monolayer separately, then the results from each monolayer were

combined and the number of independent blocks was doubled.

4.3 Results

4.3.1 Equilibration and sub-sampling

The total membrane area was used to determine the equilibration and the size of

statistically independent sub-sample size. Substantial drift was only detected in one

POPC “Control” bilayer simulation (figure 7.8). To remove the initial drift, the first

100 ns of trajectory was discarded from all other simulations. The evolution of total

membrane area of the remaining 200 ns-long trajectories was used to determine the

71



0 100 200 300

0.65

0.7

0.75

0.8

Time (ns)
A

re
a

 (
n

m
2
)

Figure 4.2: Evolution of total membrane area. The evolution of total membrane area
of the Control (black, dark gray, and light gray) and the PFOB-NEP (red and light
red) are plotted for the trajectories of 300 ns.

independent sub-sample size as introduced in 4.2.2. A block size of ≥ 40 ns resulted

in a plateau of standard errors in all five simulations (see Supplementary material).

Therefore, a block size of 40 ns was applied, which generated 5 independent sub-

samples for each simulation. Sub-samples from each replica simulation was combined

to lead in 10 independent sub-samples for PFOB-NEP and 15 for Control. When the

observables were computed for each monolayer, then the sub-samples were duplicated

to be 20 for PFOB-NEP and 30 for Control.

4.3.2 Melittin conformation

Secondary structures

Many AMPs undergo significant structural transitions when binding to membrane

environments,(219; 220; 32) indicating the important role of the membrane environ-

ment in their structural properties. Therefore, it is useful to assess whether differences

between the monolayer environment of the PFOB-NEP and the bilayer environment

of POPC Control induce changes in the melittin conformation. Using the DSSP

algorithm (221), melittin secondary structures were categorized into four different

conformations: random-coil, bend, turn, and helix. The fractions of each conforma-

tion adopted were determined for each melittin residue (see Fig. 4.3).
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Two residues at both N- and C-termini adopted mostly random-coil conformations in

both the Control and PFOB-NEP. Two major helical segments (residue 6-LKVLTTGL-

13 and residue 17-ISWIKRK-23) were detected in both systems. The former was

named N-terminal and the latter C-terminal helical segment.
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Figure 4.3: The secondary structure content of each residue. The secondary structures
were categorized into four different conformations: random-coil (blue), bend (cyan),
turn (yellow), and helix (red). A) The top panel shows the secondary structure
contents of the Control, the bottom shows those of the PFOB-NEP. B) The difference
in the content for each conformation between the Control and PFOB-NEP is plotted.

The melittin bound to the monolayer of PFOB-NEP exhibited differences in the

structure from the melittin bound to the POPC bilayer. The overall peptide helical

content was smaller in the PFOB-NEP, for which it was replaced by the less structured

turn conformation. Reduction in helical content was more pronounced in the N-

terminal helical segment. At the kink (14-PAL-16) between the two helical segments,

the internal hydrogen bonds were lost and turn conformations were replaced by bend

conformations.
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4.3.3 Peptide-lipid interaction

Solvent accessible surface area

Solvent accessible surface area (SASA) was estimated for the peptide and lipids sepa-

rately (see Fig. 4.4), and the SASA was divided into either hydrophobic (|q| ≤ 0.25)

or hydrophilic (|q| > 0.25) surface area, where q represents the charge of each atom.

Hydrophobic SASAs of the peptide in the PFOB-NEP were greater than those of

the peptide in the Control POPC bilayer while hydrophilic surface area was slightly

decreased. However, the differences were not statistically significant at a 95 % con-

fidence level. Increased exposure of hydrophilic surface accompanied by decreased

exposure of hydrophobic surface of lipids agreed with our previous report (218) while

additional perturbation by the associated melittin was not detected.
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Figure 4.4: Solvent accessible surface area of the melittin peptide (A) and a lipid
molecule (B). Dark gray bars are those of the Control and red bars of the PFOB-
NEP. “Hphi” represents hydrophilic surface and “Hpho” hydrophobic surface. The ∗
symbol indicates the statistical significance with a p-value of 0.05.

Density overlap between melittin and the phospholipid monolayer

Number density profiles of melittin and lipid groups in a monolayer were determined

over the replica simulations and are illustrated in Figure 4.5. The density profile
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of the monolayer was centered at zero and the density profiles of other parts of

lipids and peptide were placed with respect to that of the monolayer. As reported
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Figure 4.5: Number density profiles of the phospholipid monolayer and embedded
melittin peptide for the Control (top) and PFOB-NEP (bottom) systems. The density
of the monolayer is shown in cyan and the density of methylene group in blue. The
density of the entire melittin peptide is shown in black and that of tryptophan side
chain (W19) is shown in orange. The density of water is shown in red and PFOB
(only in the bottom panel) in green.

previously (218), the monolayer on the surface of the PFOB-NEP was thicker due to

more extended head group and tail conformations. The monolayer density profiles

were almost identical between the Control and the PFOB-NEP, which was a striking

difference from the melittin-free system where the monolayer density profile of PFOB-

NEP was substantially wider, implying a thicker monolayer, than the Control (218).

The density profile of melittin peptide was narrower in the PFOB-NEP, and the

residual density of the peptide extended farther out of the hydrophilic surface of

monolayer in the Control. The density of tryptophan was detected near the methylene

group of oleoyl chain, which was deeper in the PFOB-NEP.
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Peptide penetration

To further understand the differential melittin interaction with monolayers, we deter-

mined the relative positions of Cα carbons with respect to the mean depth of glycerol

moiety of each monolayer (see Fig. 4.6).

Melittin was more deepley buried throughout the peptide in the Control than in the

PFOB-NEP. However, the deeper penetration was more substantial for the residues

in the N-terminal helical segment. A Student’s t test revealed that most of the

differences between the two systems are statistically significant.
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Figure 4.6: Penetration of melittin into the phospholipid monolayer. The top panel
shows the relative mean positions of Cα carbons of the Control (black) and the PFOB-
NEP (red) with respect to the position of glycerol groups of each monolayer. The
bottom panel shows the Student t-values for differences in Cαs between the Control
and PFOB-NEP systems. The dashed black line indicates the t-value (n = 48) for a
significant difference with a p-value of 0.05. The n number is doubled since two data
sets (one for each monolayer) were obtained from each block.

Close apposition of the bromine atoms near the tryptophan side chain

The radial distribution of the bromine atom of PFOB molecules around the tryp-

tophan (W19) side chain was determined for and averaged over each independent

76



sub-samples. The result is plotted in Figure 4.7. Finite bromine density appeared as

close as 0.3 nm to the tryptophan sidechain, indicating direct contact between the

two parties. This direct contact is important for explaining the experimental quench-

ing observed experimentally (176; 222) and in our previous atomic-scale simulations

(218).
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Figure 4.7: Close approach of bromine atoms to tryptophan side chain. The plot
shows the radial distribution function of PFOB bromine atom around the tryptophan
(W19) side chain. The black solid line shows the mean of the distribution and the
gray solid lines show the one standard error deviation of the distribution.

Peptide-lipid contact map

To further clarify the contribution of lipid moieties in their interaction with the em-

bedded melittin peptide, a contact map (223) was constructed to enumerate interac-

tions between the lipid moieties and each residue of melittin (see Fig. 4.8). Interaction

of a lipid moiety with a certain residue of melittin was defined by a distance cutoff

of 0.6 nm. The distance measurement was made for all possible pairs of the atoms

in a defined lipid moiety and a residue. If the distance of any pairs was shorter than

the cutoff, the number of contact was incremented by one for that specific match.

The contact numbers were averaged over two peptides in each monolayer and over

the simulations. Different lipid moieties are defined in the Figure 4.8A.

Figure 4.8B and C shows melittin interactions with the nearby lipids. The patterns

of peptide-lipid contact were very similar between the two systems. Charged residues

(amino terminus, Lys7, Arg22, Lys23, Arg24) showed more frequent interactions with
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polar lipid moieties including phosphate group and ester group of sn-2 chain (oleoyl

acid). Among them, two arginine residues showed the most extensive interactions.

As expected in their helical conformation, the residues on the hydrophilic side inter-

acted with head group moieties and the residues on the hydrophobic side of the helix

interacted with the moieties of lipid tails.

The melittin peptide embedded in the monolayer of the Control had more frequent

contact with lipids moieties both hydrophobic and hydrophilic. The interactions of

the peptide with the moieties of lipid tails near the N-terminus were declined in the

PFOB-NEP. The interactions near the C-terminus were also observed in the PFOB-

NEP, which was most substantial at the Arg22.
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Figure 4.8: Contact map between the every residue of the peptide and the moieties
of lipid. A) The division of a POPC lipid into small moieties is present. The contacts
of melittin with the Control (B) and with the PFOB-NEP (C) are shown by contour
maps. Smaller indices indicate lipid moieties closer to the hydrophilic surface while
greater indices indicate moieties that are deeper in the hydrophobic core. The mean
contact number ranges from 5 (dark blue) to 40 (dark red).
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4.3.4 Membrane structure

Monolayer thickness

To assess the structural changes of the membranes, monolayer thickness was deter-

mined and compared between the PFOB-NEP and Control bilayer systems in the

presence and absence of melittin. Bilayer thickness is typically determined by the

distance between the phosphate group of each monolayer (201); however, this defi-

nition is not applicable to monolayers. Therefore, our comparisons among the sim-

ulated systems used a definition of monolayer thickness determined from the mean

distance between the phosphate group and the terminal methyl group of the palmi-

toyl chain. Figure 4.9 shows that the monolayer became significantly thicker in the
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Figure 4.9: Comparison of monolayer thickness between the Control and the PFOB-
NEP. The ∗ symbol indicates the statistical significance with a p-value of 0.05.

Control when the membrane contained melittin while the thickness of the monolayer

of the PFOB-NEPs was not changed due to the presence of melittin. Despite its

increase in thickness, the melittin-bound monolayer of the Control was thinner than

that of PFOB-NEP. The increased thickness of the control monolayer in the presence

of melittin peptide was also observed in the density profile shown in Figure 4.5.

Lipid tail ordering

Lipid tail order parameters provide an indication of the mean conformation of lipids

in a membrane. On average, lipid order parameters increased upon the binding of

melittin to the membrane (see Fig. 4.10). To provide a more detailed view of the
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Figure 4.10: Global lipid order parameters. Lipid order parameters averaged over
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(A) and the oleoyl chain (B) of the Control and the PFOB-NEP (C, D in the same
sequence) were averaged over all the lipids in each monolayer. Data from systems
containing melittin peptides are shown in solid black lines; the dashed black lines are
the order parameters of the same membranes but in the absence of melittin.
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influence of melittin on the membrane structure, the order parameters were computed

as a function of distance from the embedded melittin. The membrane was subdivided

into 4 shells with the thickness of 0.9 nm around the peptide. Each lipid was assigned

to one of the 4 shells depending on its distance from the melittin in the xy plane.

Lipids in the innermost shell were assigned first. If the separation between the geo-

metric center of a lipid and the geometric center of any melittin residue was closer

than 0.9 nm, the lipid was assigned to the first shell. Next, the lipids for the second

shell were selected if the distance from the geometric center of a lipid to the geomet-

ric center of any lipid in the first shell was shorter than the 0.9 nm cutoff. Lipids

that belonged to the third and fourth shell were assigned in the same manner. This

assignment and the calculation of order parameters were repeated for every snapshot

and order parameters were averaged for each shell over the course of simulation.

Figure 4.11 shows the changes in the lipid order parameters due to the presence of

melittin. Melittin decreased tail order for lipids closer than 0.9 nm near the tail ends

but increased tail order for all bonds of all lipids beyond that distance. This ordering

effect by melittin was weaker and decayed more quickly in the PFOB-NEP than in the

Control bilayer. As shown in Fig. 4.11, the conformation of lipids in the fourth shell

of the PFOB-NEP:melittin system are similar to lipids in the melittin-free monolayers

of the PFOB-NEP system.
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Figure 4.11: Local lipid order parameters. Differences in the order parameters in the
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bonds near the polar head group are colored in blue and those near the hydrophobic
tail end in dark red.
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4.4 Discussion

4.4.1 Structural determinants of melittin binding to PFOB-

NEPs

Secondary structure

As illustrated in Figure 4.3, the helical content for the peptide in the Control bi-

layer agreed well with the experimentally measured helical content of about 19 to 20

residues.(224; 225) Additionally, the smaller helical content in the PFOB-NEP agrees

with the decreased ellipticity at 220 nm and 208 nm of melittin peptides when bound

to PFOB-NEPs as compared to the melittin bound to liposomes.(35) The N-terminal

segment showed more pronounced reduction in the helical content, which may have

resulted from the attenuated penetration of the segment into the monolayer (see Fig.

4.6). Since melittin peptides are known to be unstructured in solution and form sec-

ondary structure only upon binding to membranes (225; 226), it is possible that the

decreased helical content resulted from competition of internal hydrogen bonds with

the surrounding water molecules.(227)

Peptide-lipid interactions

The contact maps of peptide residues and lipid moieties showed that the two arginine

residues (R22 and R24) exhibited the strongest interaction with the phosphate and

ester groups (Fig. 4.8). This result is in accordance with the experimental observation

that these charged C-terminal residues are important for the binding to both neutral

and negatively charged membranes,(228) presumably due to salt bridges between the

arginine guanidinium and lipid phosphate groups.(229) These particular interactions

were diminished in the PFOB-NEP system, indicating that this mode of interaction of

melittin with the PFOB-NEP monolayer may be weaker than in the Control bilayer.
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PFOB intercalation affects cargo loading

PFOB is the perfluorocarbon that forms the core of PFOB-NEPs. Our previous work

(218) showed that PFOB could intercalate into the emulsifying lipid monolayers due

to their linear shape and lengths that are relatively shorter than the monolayer lipid

tails. PFOB intercalation reduces the free volume in the hydrophobic tail region of

the monolayer and thus provides a driving force for preventing insertion of melittin

into the PFOB monolayer to the same depth as it is found in bilayer environments.

This attenuated penetration results in reduction in melittin secondary structure and

subsequent changes in the interactions with nearby lipids. These observations sug-

gest that the interaction of the core forming perfluorocarbon with the emulsifying

monolayer affects the interaction of cargo on the surface of PFC-NEPs. Reduced

free volume could be more detrimental for the loading of cargo molecules that require

deeper penetration due to elevated hydrophobicity. For optimal cargo loading for such

hydrophobic molecules, modulation of the mixing between the emulsifying monolayer

and the core forming perfluorocarbon will be required.

4.4.2 Membrane structural changes

Our simulations showed that melittin thickened the monolayers of the Control system

bilayer, This observation was determined by the mean distance between the phosphate

and terminal methyl group (Fig. 4.9) and by the number density profiles (Fig. 4.5).

Consistent with this thickening, we observed changes in lipid order parameters (Fig.

4.10. The disordering of lipids adjacent to the melittin was observed in accordance

with previous experiments (Fig. 4.11).(230; 231; 232) However, lipids beyond the first

shell, directly surrounding the peptide, were influenced to be more ordered. Higher

order indicates more extended lipid tail conformations and, consequently, a thicker

membrane.

While local lipid disordering agrees with experimental results, our observation of

overall monolayer thickening is in contrast to the experimental observations made

at melittin concentrations below the critical concentration at which melittin caused

membrane thinning.(230; 231; 232) A possible reason for the deviation is the presence

of overly favorable interactions between the peptide and lipids. Artificially strong
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interactions may have caused tighter interactions, increased order, and membrane

thickening. Such overly favorable protein and lipid interactions were detected with the

combination of the united gromos protein model and the Berger lipid model.(195; 82)

To reduce the impact of this potential artifact, we carefully chose the combination

of the all-atom OPLS force field for melittin and the Berger lipid model, which did

not inherit such problem based on a previous report by Tieleman et al.(77) Our data,

however, indicated that we might still have some degree of this artificial effect in our

simulations. Because of these limitations, we have confined our interpretation of the

data to comparative studies of the differences between the Control and the PFOB-

NEP environmental influence on melittin conformations and melittin interactions with

lipid bilayers/monolayers.

4.4.3 Mechanism of quenching for melittin tryptophan upon

binding to PFOB-NEPs

Experimental measurements place the depth of the melittin tryptophan residue (W19)

1.06 nm away from the center of a di-oleoyl-phosphatidylcholine (DOPC) bilayer.(233)

As illustrated in Figure 4.5, our simulations also placed tryptophan density approxi-

mately 1 nm away from the center of the Control bilayer, thus showing good agreement

with these experimental results. Previously, based on the observation that melittin

tryptophan fluorescence could be quenched by water-soluble molecules, it had been

argued that the melittin tryptophan should be located in the water-accessible region

near the first carbon of the lipid tails.(225) This observation was in apparent contra-

diction with the placement of the melittin tryptophan 1.06 nm away from the center

of a DOPC bilayer.(233) As shown in Figure 4.5, our data reconcile these two appar-

ently opposing experimental results by showing that water molecules could penetrate

to the depth of tryptophan and thus suggesting that water-soluble quenchers should

also be able to access the deeply buried tryptophan side chain in this region of the

bilayer.

The validity of our simulations is also further supported by the location of the melittin

tryptophan residue in the PFOB-NEP interface system in that tryptophan side chain

had direct contacts with the bromine atom of PFOBs. The direct contact between

the tryptophan side chain and bromine atoms provides the molecular mechanism for
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tryptophan fluorescence quenching upon the peptide binding to the surface of PFOB-

NEPs (see Fig. 4.7).(218; 35)

4.4.4 Understanding PFOB-NEP stability in the presence of

high melittin concentrations

Melittin does not disrupt lipid monolayer structure on the surface of PFOB-NEP, even

at very high melittin concentrations (lipid:melittin ratios of up to 40:1) far above

the critical concentration (lipid:melittin ratio of 62:1) for melittin transmembrane

configuration and pore formation in POPC bilayers. (35; 234; 34) Our simulations

provide some insight into potential reasons why this disruption does not occur. It

has been shown experimentally that helical conformation and amphipathicity are

important for the lytic activity of melittin toward neutral membranes, (235) such

as the lipids obtained from the egg lecithin used to prepare PFOB-NEPs.(236) Our

simulations revealed reduced helicity and suggested potentially lower pore-forming

and lytic capabilities. Another important feature for pore formation and membrane

disruption is the reorientation of melittin to a transmembrane configuration.(34) In

the monolayer of the PFOB-NEP, this conversion to a transmembrane configuration is

extremely unlikely due to necessary interaction of polar and charged melittin residues

with the strongly hydrophobic perfluorocarbon core of the PFOB-NEP.

4.5 Conclusions

Our simulations revealed the molecular details of the melittin bound at high mole

fractions either to a bilayer or a PFOB-NEP monolayer. A few structural details

including helical contents and direct contact between tryptophan (W19) side chains

and bromine atoms corresponded experimental observations (35) and hence supported

our simulations.

Melittin exhibited differences in its conformation and mode of interactions with the

surrounding lipids when bound to a PFOB-NEP monolayer. First, the helical content

of melittin was reduced, 2) it adopted more linear overall conformation, and 3) it
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exhibited less frequent direct contacts with the lipids especially by the charged C-

terminal residues.

From these structural changes, functional consequences were inferred. First these

changes suggested a weaker binding affinity of the melittin toward the PFOB-NEP

monolayer. Reduced helicity destabilizes the amphipathic peptide at the membrane

interface.(237) The salt bridge between the charged residues at the C-terminus with

the lipid head groups are important for its binding to a membrane.(228) Second the

changes suggested the attenuated lytic activity of melittin on the surface of PFOB-

NEP because helical conformation(235) was found to be important for the hemolytic

activity of the peptide.

Our simulations suggested the attenuated penetration of melittin into the hydrophobic

interior of the monolayer of PFOB-NEP as a major molecular determinant for such

alterations and also suggested that preoccupied free volume by the intercalated PFOB

molecules, otherwise melittin could have been as deeply buried as in the control

bilayer, be the cause of the shallower penetration. The results implied that the

interaction of the core forming molecules could affect the binding of cargo molecules

to this emulsifying monolayer.

Our simulations demonstrate that the interaction of core forming peruorocarbon

molecules with the emulsifying phospholipids monolayer can directly affect the mode

of cargo binding to the perfluorocarbon-based nanoemulsion particles. Hence, sys-

tematic analysis may help to elucidate the optimal combinations of PFC molecules

and enclosing phospholipids for the most stable and efficient cargo loading to the

peruorocarbon-based nanoemulsion particles.
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Chapter 5

Membrane fusion between the

monolayer of PFC-NEP and the

outer monolayer of liposome

5.1 Introduction

Nanoscale particles, of 200 ∼ 300 nm in diameter, have been developed to sequester

loaded cargo until a specific target, recognized by the targeting surface ligands, is

reached. The delivery of therapeutic agents including drugs, imaging agents, and

macromolecules such as nucleic acids and proteins using nanoscale particles has advan-

tages over conventional small molecule treatment. Delivery using nanoscale particles

prevents premature degradation of the therapeutic agents, concentrates the agents at

a specific target tissue or cell type, and aids agents in crossing through biological barri-

ers such as epithelium, endothelium, and plasma membrane.(36) Nanoparticle design

must be precisely tailored to deliver each particular agent to its appropriate destina-

tion. To achieve efficient delivery to subcellular organelles, we must understand the

molecular mechanisms of how nanoparticles interact with plasma membranes.

Phagocytosis and endocytosis are the most common internalization mechanisms for

nanoparticles such as liposomes and polymer-based nanoparticles.(36) However, these

internalization mechanisms involve lysosomal degradation that attenuates therapeutic

efficiency and as such are not suited for the delivery of therapeutic biomolecules.

Alternative strategies have been developed where cargo molecules are directly inserted

into the cytoplasmic space through transient pores in the plasma membrane. Direct
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insertion methods include the conjugation of therapeutic cargo to cell-penetrating

peptides(37; 38), electroporation(39; 40), and therapeutic ultrasound with micro-

bubbles.(41; 42; 43) However, all of these methods have the potential to cause cell

damage by disrupting the plasma membrane.(38; 40; 44; 45; 46)

Perfluorocarbon-based nanoemulsion particles (PFC-NEP) that are stabilized by an

emulsifying phospholipid monolayer provide another delivery mechanism. This so

called “contact-facilitated” delivery mechanism involves neither lysosomal pathways

nor substantial perturbations in membrane such as pore formation. The delivery

mechanism is hypothesized to start with the formation of a hemifusion complex be-

tween the monolayer of PFC-NEP and the outer monolayer of target cell plasma mem-

brane. Cargo molecules then diffuse to the plasma membrane through the hemifusion

complex and are finally internalized by lipid raft mediated endocytosis.(238; 239; 47)

This mechanism would particularly useful for the delivery of biomolecules that are

highly susceptible to enzymatic reactions. However, the molecular details of this

mechanism are as yet undetermined due to experimental difficulties of structure de-

termination of small, fluid, and highly heterogeneous systems.

Molecular dynamics simulations have been widely used to determine membrane struc-

tures at both an atomistic(69; 78; 79; 80; 81; 82; 55) and coarse-grained level.(85;

86; 90; 87) Atomistic simulations are useful for collecting accurate structural de-

tails but often too costly for examining biologically important membrane behavior

such as self-assembly of lipids into bilayers or vesicles, bilayer phase changes, domain

formation, pore formation, and membrane fusion. Therefore, coarse-grained models

have been extensively used to simulate these mesoscopic phenomena. Theoretically

proposed membrane fusion mechanisms involving a hemifusion stalk(240; 241) were

validated by the appearance of proposed intermediate structures in coarse-grained

simulations.(71; 56) Furthermore, simulations have identified important structural

motifs, such as splayed lipids in inducing membrane fusion, which could not be pre-

dicted from the theories based on continuum models.(242; 55)

In this research, we have focused on the initial step of the contact-facilitated deliv-

ery mechanism,(47) where two monolayers form a hemifusion complex, which resem-

bles the hemifusion stalk.(50; 240) We have used coarse-grained molecular dynamics
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Figure 5.1: System configuration and constituting molecules. The structure of a
linked NEP and liposome and the structures of molecules contained in the system.
A) The structures of phospholipid (POPC), perfluoroocytlbromide (PFOB) and wa-
ter molecules, from top to bottom, presented at an atomistic (left) and coarse-grained
(right) level. The type is shown for each coarse-grained site. The CB type was specif-
ically developed to model PFOB. B) The initial structure of a fusion simulation, with
a PFOB-NEP and a liposome held in close contact through artificial links. PFOB is
shown in green and enclosing phospholipids are shown in red. The lipids constituting
the liposome are shown in blue. The geometry of the two particles is defined in the
bottom panel. RCM is the distance between the center of mass of each particle. ro is
the distance of phosphate group from the center of mass of each particle and rc is the
distance of lipid termini. 2zp is the distance between phosphate group of the outer
and inner monolayer.
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simulations to directly test hemifusion complex formation between a PFC based na-

noemulsion particle and a liposome that models a target cell. We also have tested

the dependence of nanoparticle-liposome fusion on particle size and lipid composition

in order to identify important structural (physico-chemical) features of the particles

required for optimization of fusion.

5.2 Methods

5.2.1 Development of a coarse-grained PFOB model

To simplify a model system, the MARTINI force field usually maps four atoms into a

coarse-grained bead, or interaction site. The MARTINI force field contains four main

types of interaction site: polar (P), non-polar (N), apolar (C), and charged (Q). The

main types are subdivided into 18 different subtypes based on their hydrogen bonding

capability and level of polarity. Within the 18 different subtypes, 10 different levels of

van der Waals interaction potentials are defined: super attractive, attractive, almost

attractive, semi attractive, intermediate, almost intermediate, semi repulsive, almost

repulsive, repulsive, and super repulsive.(88) These potentials were obtained by rang-

ing the energy parameter � from 5.6 ∼ 2.0 kJ/mol with a constant size parameter

σ of 0.47 nm. The only exception was the super repulsive potential where the size

parameter was increased (σ = 0.62 nm) to preserve the strongly unfavorable interac-

tion between charged (Q) and apolar (C) interaction sites. Despite its simplicity, the

MARTINI force field has been widely and successfully used to simulate mesoscopic

phenomena including membrane fusion, pore formation, self-assembly, and domain

formation. Further, the MARTINI force field is easy to implement and is transferable

for other small molecules. For these reasons, we developed a coarse-grained model of

a perfluorocarbon molecule, perfluorooctylbromide (PFOB), in accordance with the

MARTINI force field (see Table 5.1).

Intra-molecular interaction parameters PFOB was modeled by three interac-

tion sites, named as follows: BRC (BrCF2CF2CF2-), CBM (-CF2-CF2-CF2-), and
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CBE (-CF2-CF2-CF3) such that the coarse-grained model was a linear 3-particle sys-

tem, BRC-CBM-CBE. Bond length was determined based on the Lennard-Jones (LJ)

size parameter and bending angle was determined following the manner that the CG

lipid aliphatic chain was modeled in the MARTINI force field. To accelerate com-

putation, the MARTINI force field normally uses the same mass for all interaction

sites and ignores partial charges.(85) However, to preserve the asymmetric nature

of PFOB, we used the true mass and partial charges for each site in our force field

development and simulations, as discussed in section 5.4.1. These three sites were

modeled by the same interaction site type, CB, which was newly developed in this

work to preserve the stronger hydrophobic character of perfluorocarbons as compared

with hydrocarbons. The initial guess of the LJ parameters (σ = 0.47 nm and � = 3.5

kJ mol−1) was taken from the polar interaction site type C1 of the MARTINI force

field.(88)

The size (σ) and energy (�) parameters were systematically varied starting from the

initial guess to reproduce the density and heat of vaporization of liquid PFOB. The

final LJ parameters were σ = 0.5 nm and � = 3.5 kJ mol−1.

Inter-molecular interaction parameters To describe the interaction of PFOB

with other molecules such as lipids and water, the LJ parameters between CB and

other interaction sites were prepared using the constant size parameter of σ = 0.5

nm and different energy parameters (�) based on the level of attractiveness between

the two sites. The slightly greater than standard σ value imposes less favorable

interaction level for all pairs than the corresponding pairs with the apolar (C) site.

The super repulsive potential between a charged (Q) and CB was treated as in the

MARTINI force field, except using σ of 0.62 nm.

To accelerate computation, the MARTINI force field normally uses the same mass

for all interaction sites and ignores partial charges.(85) However, to preserve the

asymmetric nature of PFOB, we used the true mass and partial charges for each site

in our force field development and simulations as discussed in section 5.4.1.
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5.2.2 Simulations

Force field parameters

PFOB was modeled by the new coarse-grained model. Phospholipids: 1-palmitoyl-2-

oleolyl-phosphatidylcholine (POPC), and 1-palmitoyl-2-oleolyl-phosphatidylethanol-

amine (POPE) and water were modeled by the standard MARTINI force fields.(88)

The newest MARTINI force field defines the interaction level between the charged

sites (Q) and apolar sites (C) to be super-repulsive, which was repulsive in the previ-

ous version. The recent change was made to prevent the penetration of the ion sites

(Q) through the bilayers.(88) The modification, however, strongly inhibits membrane

fusion protrusion of lipid tails out of the membrane because the interaction between

apolar lipid tails and the charged head group sites (the choline and the phosphate

group) are super-repulsive.(242) This protrusion of hydrophobic tails out of the mem-

brane surface is a prerequisite for membrane fusion. Hence, the interaction level for

the pairs of the charged sites of lipid head group (the choline and phosphate group)

and the tails were adjusted from super-repulsive to repulsive to enable the protrusion

of hydrophobic tails in the fusion process we are modeling.

Initial structures

To generate a sphericial PFOB-NEP, a number of phospholipids, PFOB, and water

molecules were randomly mixed. A water shell of 5 nm in thickness surrounded this

mixture in all directions so that the hydrophobic molecules were isolated inside of the

simulation box and would not form a lamellar phase with their periodic images. The

system sizes and compositions that were successful in forming an intact PFOB-NEP

are listed in Table 5.2.2. The mean dimensions of the starting structure were 25.3 nm

x 25.3 nm x 25.3 nm along the x, y and z directions.

To generate a liposome, a small patch was taken from a large bilayer and put in a

simulation box. Water molecules were then added into the box so that the small

bilayer would be solvated in all directions. The lipid bilayer at this state is disk-

shaped and called as a bicelle. The composition of each liposome is listed in Table
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Table 5.1: Force field parameters for PFOB at a coarse grained level

Bond Stretching Parameters
bond kb(kJ mol−1 nm−2) r0(nm)

CB-CB 1250 0.5

Angle Bending Parameters
angle k0(kJ mol−1 rad−2) θ0(deg)

CB-CB-CB 25 180

Lennard-Jones Parameters for Non-Bonded Interactions
atom type σ (nm) � (kJ mol−1)

CB 0.5 3.5

Partial Charges for Long-Range Coulomb Interactions and Mass
atom name charge (q) mass

BRC -0.11 179.92
CBM 0.09 150.02
CBE 0.02 169.02

Table 5.2: Particles used for fusion simulations
Liposomes

Name Lipids Water Geometry
POPC POPE PC: PE ro (nm) rc (nm) 2pz(nm)

L1 709 710 5: 5 94040 8.4 6.2 4.2
L2 504 506 5: 5 94040 7.4 5.2 4

PFOB-NEP
Name PFOB Lipids Water Geometry

POPC POPE PC: PE ro (nm) rc (nm)
N1 1000 169 170 5: 5 77043 6.4 4.4
N2 1000 203 136 6: 4 77043 6.4 4.4
N3 1000 238 102 7: 3 77043 6.4 4.4
N4 1000 271 68 8: 2 77043 6.4 4.4
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5.2.2. The mean dimensions of the starting structure were 26.5 nm x 26.5 nm x 26.5

nm along the x, y and z directions.

The geometry of each particle tested for fusion is defined in Table 5.2.2. An example

initial structure for fusion simulations is shown in Figure 5.1B. To start the fusion

simulation, two spherical particles were placed in proximity with surrounding water

sites as shown in Figure 5.1B. Two lipids, one from each particle, were selected to be

connected by an intermediate water site.(72; 71) Artificial chemical bonds (linkers)

were created between the water and the phosphate sites of each lipid. The initial bond

lengths were usually greater than the equilibrium length of 0.5 nm. A series of short

simulations were performed to gradually reduce the bond length to the equilibrium

length as described below. The list of fusion pair between a liposome and PFOB-

NEP is introduced in Table 5.3.2. Five replica simulations were run for fusion pair to

enhance sampling efficiency.

Simulation parameters

Simulation for particle formation Molecular dynamics simulations and analyses

of trajectories were performed with GROMACS version 4.0 (92) As the first step in the

simulations, an energy minimization was performed using a steepest descent method

and the system was then gradually heated from 50 K to 303 K through a series of

short molecular dynamics (MD) simulations. After these temperature equilibration

steps, production simulations were run until the spherical PFOB-NEP and liposomes

were formed.

A distance cutoff of 1.2 nm was used for non-bonded interactions in combination with

the standard shift function in which both the energy and force go to zero at the cutoff

distance. The LJ potential is shifted from rshift = 0.9 nm to rcut and the electrostatic

potential is shifted from rshift = 0.0 nm to rcut. The simulation was performed in an

isobaric-isothermal ensemble (NpT) with the Berendsen pressure coupling scheme and

with coupling time of 4 ps. The temperature was kept at 303 K with the Berendsen

coupling scheme with the coupling time of 0.4 ps. Time stpe of 20 fs time step was

used to run a production simulation.

95



Table 5.3: Bulk properties of liquid PFOB. The references for each experimental bulk
properties are Riess et al.(21) and Andre et al. (19) for density (ρ), Riess et al. (21),
Gregor et al. (187), Faithful et al. (188) for heat of vaporization (∆vapH), Song et
al. (189) for the solvation free energy of CF4 in liquid n-hexane (∆G).

Properties Experiment Simulations
atomistic coarse-grained

ρ (kg L−1) 1.925 (± 0.007) 1.891 (± 0.001) 1.954 (± 7.424e-5)
∆vapH (kJ mol−1) 42.67 (± 1.276) 41.05 (± 0.26) 44.66 (± 6.89e-3)
∆G (kJ mol−1) 2.056 2.00 (± 0.02)

Simulation for particle fusion The same energy minimization and temperature

equilibration steps were repeated by applying the same simulation parameters as

described above. After the temperature equilibration, a series of short simulations

of 1 ns length were performed with decreasing the linker length by 0.2 nm after

each simulation until the equilibrium length of 0.5 nm was achieved. These short

simulations were followed by production simulations, each of which was performed

for at most ∼ 4µs. However, if a fusion complex was formed between the two particles,

we stopped the simulation to invest our limited computing resources into additional

replica simulations.
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5.3 Results

5.3.1 Testing the coarse-grained in-house PFOB model

PFOB bulk properties To determine the bulk thermodynamic parameters in-

cluding density and heat of vaporization, a simulation of a box containing 559 PFOB

molecules was carried out for 100 ns at 298 K. Another simulation of a single PFOB

in the same box was carried about for 100 ns at 298 K to compute the heat of vapor-

ization. The procedures to compute these thermodynamic quantities were described

previously .(218) As summarized in the Table 5.3, the density was 1.954 kg L−1 and

the heat of vaporization was 44.66 kJ mol−1 when a box of PFOB was simulated at

298 K with the developed parameters. The results showed reasonable agreement with

the experimental results of 1.925 kg L−1 for density and 42.67 kJ mol−1 for heat of

vaporization.

PFOB-water interfacial structure After preparing the LJ parameters, the phase

separation of PFOB in water was tested in the absence and in the presence of

emulsifying POPC monolayer. The results were compared to the structures from

previous atomistic simulations.(218) The density profiles showed good agreement

between coarse-grained and atomistic simulations, supporting our in-house coarse-

grained model (Figure 5.2).

5.3.2 Spontaneous emulsion and liposome formation

PFOB-NEP emulsion particles To test if PFOB-NEP emulsions will form spon-

taneously, the components (phospholipids, PFOB and water sites) of the system were

randomly mixed and simulated under equilibrium conditions. The emulsion formed

rapidly: even after accounting for approximately 4-fold faster time scale of the CG

model (88), formation occurs in less than a few hundred nanoseconds. As shown in

Figure 5.3, PFOB molecules aggregate while amphipathic phospholipids were expelled

to the surface of the growing PFOB particles. Finally, small PFOB particles merged

and became a single continuous entity in a toroidal shape. The hole in the middle
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Figure 5.2: Interface structure comparison between atomistic and coarse-grained sim-
ulations A) in the absence and B) in the presence of an emulsifying phospholipid
monolayer. A) The normalized number density profiles of water are shown in dotted
red (coarse-grained) and black (atomistic) lines along the interface normal direction.
Those of PFOB are shown in solid red (coarse-grained) and black (atomistic) lines.
B) The top panel presents the normalized number density profiles of water (red),
POPC monolayer (cyan), and PFOB (green) that were determined from an atomistic
simulation. The bottom panel presents the same data that were determined from a
coarse-grained simulation.
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Figure 5.3: Spontaneous emulsion formation. Snapshots were taken at every 1.5 ns
along the trajectory for the first 6 images (A-F). G was taken at 13.5 ns and H was
taken at 22 ns, by which time the PFOB-NEP formation was complete. PFOB is
shown in green, lipid tails in blue, and lipid polar head groups in red and orange.
Water particles are omitted for clarity.

gradually decreased and PFOB molecules took a spherical shape with phospholipids

covering the surface. The structure of a complete PFOB-NEP was defined by its

outer radius (ro), which is the distance between the center of mass and the peak of

phosphate group density, and rc, which is the distance between the center of mass

and the peak of terminal methyl carbon sites (Figure 5.1B).

We occasionally observed incomplete PFOB-NEPs that contained a water droplet

inside. The water droplet was also enclosed by a phospholipid monolayer, even after

significant length of simulation (close to 1 µs), and it did not disappear. These

structures would form when the system contained surplus lipids compared to the

amount of PFOB. Therefore, when this was observed, we ran separate simulations

after reducing the number of phospholipids to obtain complete PFOB-NEPs.
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Table 5.4: Summary of simulations and result for fusion events. aThe fusion mechanisms corresponding to each name are denoted
by a letter and are described in Fig. 5.8. bThe reaction coordinate of this fusion event couldn’t be determined.

Liposome - Liposome
Name System Size Simulation Length TS1 TS4 - TS1 Monolayer disruption a

(sites) (ns) (ns) (ns)
L1-L1 225000 4000 - -
L2-L2 214353 3500 - -

Liposome - PFOB-NEP
L1-N1-1 219757 1080 366 57 C
L1-N1-2 ” 3030 2533 95 B
L1-N1-3 ” 1150 584 71 A
L1-N1-4 ” 1449 1210 72 D
L1-N1-5 ” 730 484 75 D
L2-N1-1 214441 770 217 45 D
L2-N1-2 ” 1790 1427 47 D
L2-N1-3 ” 1200 160 50 D
L2-N1-4 ” 1183 994 48 D
L2-N1-5 ” 410 183 41 D
L2-N2-1 212623 710 199 39 C
L2-N2-2 ” 730 615 34 D
L2-N2-3 ” 750 147 49 D
L2-N2-4 ” 410 82 47 D
L2-N2-5 ” 806 436 45 D
L2-N3-1 212623 1720 1138 45 C
L2-N3-2 ” 1510 961 37 C
L2-N3-3 ” 700 425 49 B
L2-N3-4 ” 616 350 63 D
L2-N3-5 ” 3270 3050 63 B
L2-N4-1 212623 2000 1576 33 B
L2-N4-2 ” 4300 4000 -b -
L2-N4-3 ” 3500 2770 48 C
L2-N4-4 ” 1974 1512 56 B
L2-N4-5 ” 4300 - - -
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Liposomes Liposomes were spontaneously generated starting from bicelles.(90)

Transformation into a spherical liposome is the only way to stabilize the lipids in

a bicelle structure by reducing energetically unfavorable interactions between solvent

exposed lipid tails and water molecules. The L2 liposome (Table 5.2.2) used in our

simulation was the smallest that could be formed spontaneously from a bicelle. A

smaller bicell failed to form liposomes due to high curvature stress (data not shown).

In addition to ro and rc, the structure of a liposome is defined by 2pz, which is the

distance between two phosphate density peaks (Figure 5.1B).

5.3.3 Fusion simulations

To test the dependence of fusion between PFOB-NEPs and liposomes on lipid com-

position and particle size, respectively, a variety of PFOB-NEPs and liposomes were

generated as described. The tested liposome sizes were 8.4 nm and 7.4 nm in radius

(ro). The lipid composition of PFOB-NEP varied from 20 mol% to 50 mol% of POPE

with the remainder POPC. The details for the combinations of different PFOB-NEP

and liposomes are summarized in Table 5.3.2.

Fusion between the two particles was observed in all simulations except one simulation

(L2-N4-5) in the simulation time limit of ∼ 4 µs. All the fusion events followed the

process presented in the Figure 5.5. After the two monolayers were merged, PFOB

molecules moved into the intermonolayer space of the fused liposome and became

evenly distributed while the lipids from the PFOB-NEP were mixed into the outer

monolayer of the liposome. As a result of the fusion, the 2pz distance increased by 2

nm due to the absorption of PFOB (see p.143 figure 7.9).

Fusion process

To define different states along the fusion process, we used as a metric RCM, the

distance between the center of mass of PFOB molecules and the inner monolayer of

liposome. Figure 5.4 shows an example of how RCM changes over the course of fusion.

Four different states were defined based on the RCM. RCM fluctuated around its mean

value that was close to the sum of ro for each of the two particles. After a lag time,
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Figure 5.4: A reaction coordinate to define fusion process. The evolution of RCM,
the distance between the center of mass of each particle, is plotted as a function of
time. Once the fusion is initiated, RCM rapidly decreases to zeros. The time points
designated by arrows are when RCM starts to decrease (S1), when RCM is decreased by
25 % (S2), when RCM is decreased by 50 % (S3), and when RCM is decreased by 75%
(S4). RCM does not stably converge to zero but fluctuating after fusion is complete.
Time points E and F are somewhat arbitrarily chosen to show the structure of the
PFOB-NEP and liposome complex after fusion. The corresponding structures of the
two particles at each time point are shown in Figure 5.5. This exemplary RCM profile
was obtained from the fusion simulation L2-N2-1.

RCM started to drastically decrease, indicating the initiation of fusion (S1). Three

additional states were defined by the decrease of RCM by 25 (S2), 50 (S3), and 75

% (S4). The structure of the particles at each state are shown in Figure 5.5. At 25

% decrease (S2), the two monolayers are fully merged and the two particles have a

snowman shape with slight dent at the merged point (Fig. 5.5B). At 50 % decrease

(S3), the dent at the merged point is almost disappeared and the fused particle has

an elongated sphere shape (Fig. 5.5C). At 75 % decrease (S4), PFOB molecules

are distributed, though uneven, all around the intermonolayer space, and the fused

particle has a spherical shape with a slight bulge where the fusion event initiated

(Fig. 5.5D).
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     C) D) E)B)A) F)

Figure 5.5: Fusion process. The structures of the two particles over the course of
fusion are shown at the corresponding time points introduced in Figure 5.4. A) is at
S1, B) S2, C) S3, D) S4, and E) and F) show the structures at the points designated
as E and F in Figure 5.4. PFOB is shown in green, the lipids enclosing the PFOB
core in red, and the lipids forming the liposome in blue.

Beyond the S4 state (75 % decrease), PFOB evenly distributes in the intermonolayer

space and lipids of the absorbed PFOB-NEP mix with the outer monolayer of the

fused liposome. RCM is not sensitive to these changes and additional states were not

defined by changes in RCM. Instead, we employed the distance between the center of

mass of PFOB molecules and the emulsifying lipids of PFOB-NEP. The exemplary

profile is shown in Supplementary Materials (see p.144 Figure 7.10).

This profile showed that the homogeneous mixing took a long time and that a com-

plete sampling for these processes was beyond the limit of our computing resources.

Initiation of fusion

Figure 5.6 illustrates the molecular details of the initiation steps that correspond

to the events shortly before and after the first state (S1). Fusion started with a

local perturbation in the monolayer PFOB-NEP and progressed with the exposure of

hydrophobic compartment (either phospholipid tails or PFOB or both) to the contact

interface. The local perturbation in both monolayers created a narrow and very short

lived hemifusion complex. The expansion of this narrow pathway quickly followed

due to flow of PFOB molecules from the NEP to the intermonolayer space of the

fused liposome.
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To understand the role of the liposome and emulsion components in initiating fusion,

the composition of the interface region was assessed around the first state (S1). To

assess the composition, first the whole system was transformed by a translation and

rotation so that the molecular axis connecting the center of mass of each particle was

on the z-axis. Then the system was divided into thin slabs of 0.1 nm in thickness along

the z-axis. To locate the slab at the interface, the number of lipid sites (CG beads)

was counted for each slab. The contact interface was identified from the minimum

number of lipid sites.(55)

Thinning of the water layer at the contact interface To examine if the initi-

ation of fusion was accompanied by dehydration at the contact interface, the number

of water sites at the interface was counted. But in this case, we additionally applied a

distance cutoff of 3 nm from the z-axis so that the fluctuation in the bulk region would

not screen the change that occurred within small area at the beginning of fusion.

Figure 5.7A shows the changes in the number of water at the interface. The number

of water at the interface fluctuated in the range of 15 ∼ 22.6 at the interface. A

drastic decrease in the number was observed upon the fusion event, which showed

that the fusion was accompanied by dehydration at the interface.

Protrusion of hydrophobic moieties Protrusion of hydrophobic moieties to the

membrane surface is known to be a rate limiting step of membrane fusion.(242) To

explore the participation of hydrophobic molecules in initiating fusion, the appearance

of lipid tails and PFOB was assessed in the same manner by counting the CG beads of

each molecule at the interface. The lipids of PFOB-NEP and liposome were treated

separately.

As shown in Figure 5.7A, the appearance of lipid tails and PFOB followed the dehy-

dration at the interface. The sequence of appearance of these hydrophobic moieties

was various among different fusion events. Figure 5.7B shows the frequency to ob-

serve at the interface each hydrophobic moiety first, second, and third in sequence.

Interestingly PFOB was most frequently observed as the first hydrophobic moiety at

the interface and was followed by the lipid tails of PFOB-NEP.
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The appearance of next hydrophobic moiety at the interface followed no later than

100 ps, which corresponded the sampling frequency limit. To classify the different

modes of fusion initiation, if the appearance of additional hydrophobic moieties oc-

curred within 0.3 ns, their appearances were considered to be simultaneous. With

this additional condition, 23 fusion events were categorized into four different modes.

The abnormal fusion event observed in the simulation L2-N4-2 was excluded in this

analysis. The mode assigned to each fusion simulation is presented in Table 5.3.2,

and exemple structures of each mode are shown in Figure 5.8.

In mode A, PFOBs first appeared at the interface and the appearance of lipid tails

followed after 0.4 ns, which was observed only in one fusion event (L1-N1-3). In

mode B, PFOB and PFOB-NEP lipid tails first appeared at the interface, which was

followed by the appearance of liposome lipid tails after 0.3 ∼ 0.5 ns. This order was

found in 5 fusion events (L1-N1-2, L1-N1-4, L2-N3-3, L2-N3-5, L2-N4-1, and L2-N4-

4). In mode C, lipid tails from both PFOB-NEP and liposome were first observed at

the interface and the appearance of PFOB was delayed by 0.5 ∼ 0.9 ns. Four fusion

events belonged to this group (L1-N1-1, L2-N2-1, L2-N3-1, and L2-N3-2). In mode

D, which included the remaining 13 fusion events, all three moieties appeared at the

interface simultaneously.

5.3.4 Dependence of fusion on particle size and lipid compo-

sition

To determine the effect of particle size and lipid composition on this fusion process,

each fusion simulation was analyzed based on the reaction coordinates introduced

above. First the lag time dependence on the particle size was examined. The particles

had the constant lipid composition of POPC:POPE=1:1 and the radius of liposomes

varied from 8.4 (L1-N1) to 7.4 nm (L2-N1). Figure 5.9A shows an obvious trend

that greater particle size increased the fusion lag time. However, the difference is not

statistically significant at a 95 % confidence level.

Then the lag time dependency on lipid composition was examined while the particle

size was kept constant. To test the influence of negative spontaneous curvature, the

proportion of POPE decreased from 50 to 20 mol %. Figure 5.9B indicates that the
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smaller fraction of POPE increased the lag time. The lag time differences of L2-N4

from L2-N1 and L2-N2 were statistically significant at a 95 % confidence level.

On the other hand, following fusion processes after fusion was initiated occurred

almost indistinguishably and quickly (see see p.145 Figure 7.3 and p.146 Figure 7.12

in the Supplementary materials). The duration for the change from S1 to S4 was

statistically different between L1-N1 and L2-N1, which is only due to the greater size

of the L1 than L2.

5.3.5 Order parameter dependence on particle size and lipid

composition

Order parameters of lipid tails were examined to determine if particle size and different

lipid composition affected the flexibility of the tail conformation. The deuterium order

parameters (SCD) were computed with the following relation (243)

SCD =
2

3
Sxx +

1

3
Syy, (5.1)

where Sij is an element of an order parameter tensor S and is defined by

Sij =
1

2
�3cosθicosθj − δij� , i, j = x, y, z. (5.2)

In the equation, θi is the angle between the ith molecular axis and the sphere normal

that is defined by a vector from a center of mass of the particle to the phosphate

group of each lipid, and the bracket implies averaging over time and molecules. The

molecular axes are defined per CG bead along the tail. For the nth bead (Cn), the z

axis was defined by a vector from Cn−1 to Cn+1, the y axis by a vector perpendicular

to z and in the plane formed by Cn−1, Cn, and Cn+1, and the x axis by a vector

perpendicular to y and z.

The deuterium order parameters computed for each CG beads along lipid tails of a

liposome (L1, L2) and a PFOB-NEP (N1, N2, N3, N4) are shown in Figure 5.10. The

order parameters of palmitoyl (left) and oleoyl chain (right) are plotted separately.

It was observed that greater the particle size, was correlated with greater the order
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parameters, which indicated that conformational freedom was reduced as the particle

size increased. Even though decreasing the POPE fraction did not affect the tail order

substantially, the order parameters of oleoyl chain (C2 and C3), were statistically

greater in the particles containing reduced amount of POPE as shown in the Figure

5.11.
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A) B) C)

D) E) F)

Figure 5.6: Molecular details at the initiation stages. The molecular details between
the A and B stage shown in the Figure 5.5 are captured. A) Initial monolayer per-
turbation that led to the fusion. B) Disruption of the monolayer via the protrusion
of a lipid in alliance with PFOB molecules. C) Disruption of outer monolayer of the
liposome and creation of hydrophobic pathway connecting the two particles. D) Flux
of PFOB through the pathway to the hydrophobic lumen of the liposome and par-
allel stacking of lipid along the circumference at the initiation site. E) Widening of
the pathway and massive flux of PFOB-NEP. F) The initial hydrophobic pathway as
shown in C with other molecules omitted for clarity. Lipids and PFOBs that directly
involved in the initial monolayer disruption are depicted in darker colors and thicker
sticks and additional balls while the rest of the molecules are shown in thinner sticks
and faint colors. PFOBs are shown in green and light green colors with the enclosing
phospholipids in red and orange colors. The phospholipids of the liposomes are shown
in blue and light blue.
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Figure 5.7: Changes in chemical composition at the interface. A) The evolution of
the number of water (red) and each hydrophobic moiety (blue: lipid tails of liposome,
cyan: lipid tails of PFOB-NEP, green:PFOB) at the interface is plotted with S1 state
set at zero in time. This particular profile was obtained from the fusion simulation
L2-N4-1. B) The frequencies to observe the hydrophobic moieties at the interface
first, second, and third was plotted with the same color code used in A.

109



A)

D)

B)

C)

Figure 5.8: Different membrane disruption modes to initiate the fusion. A) Primary
action of PFOB prior to the protrusion of lipids. B) Protrusion of PFOB-NEP lipid
in alliance with FPOB molecules (solid red) C) Protrusion of lipids in the absence
of PFOB molecules. D) Collaboration among three molecules. The same color codes
and shapes are used as in Figure 5.6.
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Figure 5.9: Fusion dependence on the particle size and lipid composition. A) The lag
times for the fusion initiation are compared among fusion simulations that differ in
comprising particle size as shown in the Table 5.3.2 at a constant lipid composition of
POPC:POPE=5:5. B) The lag times are compared among the fusion events between
a liposome and various PFOB-NEPs that contained different amount of POPE from
50 to 20 mol% while the particle sizes were the same. The differences of the designated
pairs are statistically significant at a 95% confidence level.

111



1 2

0.18

0.2

0.22

0.24

*

*

1 2 3
0.1

0.15

0.2

0.25

* *

1 2 3

0.05

0.1

0.15 *
*

1 2

0.1

0.12

0.14

0.16

-S
C
D

-S
C
D

A) B)

C) D)

-S
C
D

-S
C
D

L1

L2

1 2 3

0.05

0.1

0.15

 

 

data1

data2

data3

data4

N1

N2
N3
N4

1 2 3

0.05

0.1

0.15

Figure 5.10: Lipid tail order parameters of Liposome and PFOB-NEP. The lipid tail
oders of sn-1 palmitoyl chain (A) and sn-2 oleoyl chain (B) of liposomes are plotted.
The lipid tail oders of sn-1 palmitoyl chain (C) and sn-2 oleoyl chain (D) of PFOB-
NEPs are plotted. The differences of the designated pairs are statistically significant
at a 95% confidence level.
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Figure 5.11: Statistically different tail orders among PFOB-NEPs. A) The tail orders
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of the designated pairs are statistically significant at a 95% confidence level.
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5.4 Discussion

To better understand the “contact-facilitated” delivery mechanism, we developed

force field parameters at a coarse-grained level, generated particles using equilibrium

simulations, and ran fusion simulations by placing a PFOB-NEP and a liposome after

physically linking them. We have observed 24 fusion events for different combinations

of PFOB-NEPs and liposomes, which strongly supports the contact-facilitated deliv-

ery mechanism. To authors’ best knowledge, this is the first demonstration of fusion

between liposomes and nanoemulsion particles enclosed by a phospholipid monolayer.

This process shared some features with the well-established fusion process between

two bilayers but also exhibited distinctive features as discussed below.

5.4.1 Force field parameters

The newly developed coarse-grained PFOB model was able to reproduce the bulk

thermodynamic properties of PFOB in reasonable agreement with experimental ob-

servations. The interface structures determined at a coarse-grained model in combi-

nation of this new model and the MARTINI force field showed good agreement with

the structure determined by atomistic simulations both in the absence and presence of

an emulsifying phospholipid monolayer. Additionally, the spontaneous formation of

PFOB emulsion droplets enclosed by a phospholipid monolayer starting from random

mixtures of PFOB, phospholipids, and water further supported our model.

Even though non-zero partial charges were assigned to the three interaction sites

to preserve the asymmetric nature of PFOB, PFOB behaved symmetrically without

showing preferential orientation near the PFC-NPE surface. The small partial charges

were not influential under these simplified simulation conditions. Hence, in the future,

simulation performance could be enhanced by excluding these charges with no penalty

to the simulation accuracy.
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5.4.2 System configuration

To observe fusion events within the limit of our computing resources, a few constraints

were imposed into the system configuration. First, very small sized particles were

used, which has been common for vesicle fusion simulations.(90; 244; 72; 71; 55)

Small size can both speed up the simulation and facilitate fusion between membranes

due to pronounced curvature. The smallest liposome size of ∼15 nm in diameter

corresponded to the minimum liposome size feasible in experiments.(245) The smallest

PFOB-NEP size ∼ 13 nm in diameter was far below the experimentally-observed

minimum PFC-NEP size of ∼ 50 nm in diameter.(27) By using these small sized

particles, we demonstrated the effect of local curvature on the surface PFC NEPs

and target cell membranes to initiate fusion. Indeed, recently it was reported that

synaptotagmin (fusion protein) could induce high local positive curvature with a

diameter of about 17.5 ± 3nm and reduce the energy required to initiate membrane

fusion.(246; 247)

Second, the two particles were placed very closely and connected by an artificial linker

that would maintain the initial close proximity between the two particles. Sponta-

neous apposition between the two particles are energetically hindered due to electro-

static repulsion and dehydration penalty and will occur only with the help of molecular

interactions such as ligand-receptor interactions. Including these additional macro-

molecules should make the system size and the simulation length far greater than

the current simulations, which is simply unaccessible by MD simulations. Therefore,

close apposition manifested by an artificial linker has been used in many recent fusion

simulations.(71; 72; 55)

It is known that the interaction of PFOB-NEPs with the target cells became much

more efficient in the presence of target cell specific ligands on their surface.(47; 248) It

is obvious that such ligand-receptor interactions would lead to close apposition of the

two particles as modeled in our simulations. Therefore, even though these artificial

linker constraints were employed to overcome the limited computing power, they also

described the geometry expected for receptor-mediated nanoemulsion interactions

with biological membranes.
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5.4.3 Different mechanisms for hemifusion complex forma-

tion

The 23 successful fusion events, excluding an abnormal fusion event (L2-N4-2), re-

vealed four different modes for the disruption of the monolayers (Figure 5.8) as listed

in Table 5.3.2. Three of the modes (A, B, and D) showed that PFOB played primary

roles in initiating membrane disruption and lipid complex formation. In mode A,

PFOB leaked, prior to the reorientation of lipids, into the interface and subsequently

triggered membrane disruption. In modes B and D, PFOB also facilitated the re-

orientation and protrusion of lipid tails by solvating the hydrophobic tails exposed

to surface. However, the boundaries between these modes were somewhat indistinct,

and in any mode the interplay between phospholipids and PFOBs was prevalent. This

aspect again emphasizes the critical role of PFOB for the initiation of fusion.

5.4.4 Transient hemifusion complex and complete absorption

of PFOB-NEP

“Contact-facilitated” delivery mechanisms originally hypothesized that the two parti-

cles would stay intact with a hemifusion complex spanning the gap and providing con-

tinuous hydrophobic surface between the two particles.(47) The hypothesis was based

on experimental observations as shown in Figure 5.12A as well as on the lipophobic

property of PFOB that would maintain emulsion core even after a hemifusion stalk

formed.

In contrast to the hypothesis, our simulations showed that hemifusion complexes are

very short-lived, quickly expanding radially to allow the massive flow of PFOB into

the intermonolayer space, finally leading to the complete absorption of PFOB-NEP

into the apposed liposome. The fusion process that ended with a complete absorption

of PFOB-NEP into the liposome disagreed with the original hypothesis.

A few distinctive conditions between the real and our in silico systems suggest the de-

terminants behind this molecular event. First of all, the small particle size generates

high curvature strain and surface tension that drive the system to minimize the surface

area for a given volume. In our simulations, the complete absorption was the only way
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A) B)

200 nm

Figure 5.12: Experimental observations supporting the contact-facilitated delivery
mechanism. A) Lipid streaming into the plasma membrane. Rhodamine-labeled
lipids (red) on the surface of nanoparticle diffused onto the adjacent cell expressing a
green cytoplasmic marker. Dark circular region is nucleus. Reprinted with permission
from Crowder et al. (248) B) The freeze-fracture transmission electron micrographs
of a PFOB-NEP and liposome in direct contact. Reprinted with permission from
Soman et al. (11)

to maximize such reduction in the total surface area. In reality, such a high curvature

strain can arise only locally at the expense of significant energy.(244; 56; 242; 71)

Second, our systems are extremely pure without including any proteins in both parti-

cles. The flow of PFOB into the apposed liposome separates the two monolayers and

thickens the membrane. In plasma membranes containing high fraction of transmem-

brane protein, thickening of membrane would not be as energetically favorable by

inducing hydrophobic thickness mismatch.(249) Additionally our simulations used a

single flexible linker to keep the two particles in close proximity while the close appo-

sition of PFC-NEPs to their target cells are mediated by multivalent ligand-receptor

interactions. It is geometrically unlikely to happen to have a ligand and receptor pair

in the same monolayer. Hence, the multivalent ligand-receptor interactions should

keep PFC-NEPs from being absorbed into the target cells.

The last two arguments gain support from the other experimental observation shown

in Figure 5.12B. In this experiment, the contact between the two particles was driven

by dehydration while they were concentrated upon centrifugation.(35) The figure

shows a PFOB-NEP and a model liposome in contact due to dehydartion. The

morphology of the contacted particles corresponds well to the intermediate fusion

state shown in Figure 5.5C. In the absence of ligand-receptor interactions, the highly

curved hemifusion complex was difficult to be maintained.
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5.4.5 Fusion dependence on particle sizes and lipid composi-

tions

It is well known that smaller liposomes are more fusogenic than larger ones due to

more flexible lipid tails and higher exposure of hydrophobic tails.(56; 250; 251) The

fusion between the monolayer of PFC-NEP and the outer monolayer of liposome

exhibited the dependency on the particle size in the same manner as in the fusion

between two bilayers. However, the dependency is yet to be confirmed by additional

replica simulations.

Lipids of negative spontaneous curvature are known to facilitate membrane fusion be-

tween the two outer monolayers because they can accommodate the highly negative

curvature (dent) that occurs during hemifusion stalk formation.(252) We observed this

dependency in our fusion simulations. Lower fractions of POPE (∼ 20 mol%) pro-

longed the lag time for the initiation of fusion compared to the PFOB-NEP contained

higher POPE fractions (50 and 40 mol%). The prolonged lag time was statistically

significant. In particular we did not observe fusion between L2 and N4 in one simula-

tion (L2-N4-5) with a low fraction of POPE molecules, until the simulation reached

the time limit of computing resources. Correlated increases in order parameters with

increasing liposome size and decreasing POPE proportion help to explain the cause

of the prolonged lag time, which is further discussed below.

5.4.6 Correlation of lipid tail order with fusion

In the previous study using atomistic models, significantly more ordered lipid tail

conformations were detected in the monolayer of PFOB-NEP than in the control

bilayer.(218) Unlike this previous observation, in this study we found that the tails

were significantly disordered in the PFOB-NEPs than in the liposomes. We believe

that different particle size attributes to this difference. Smaller PFOB-NEP with

much higher curvature contained less number of lipids in the same surface area. In-

deed, the area per lipid of PFOB-NEP (1.52 nm2) was substantially wider than those

of liposomes (1.25 nm2 for L1 and 1.36 nm2 for L2). Therefore, direct comparison to

the atomistic simulations in a planar geometry may not be proper.
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As expected, the lipids were more ordered in the larger liposome (L1) than in the

smaller one (L2). On the other hand, even though the area per head group was the

same among PFOB-NEPs (N1 through N4), the higher fraction of POPE caused the

lipid tails to become more disordered. The lag time enlongation was more sensitive

to the increased tail order of PFOB-NEPs (4.1-fold longer) rather than to that of

liposome (1.7-fold longer). It may suggest that membrane disruption be more fre-

quently initiated in the PFOB-NEP monolayer, acting as a rate limiting step, and in

turn the disruption of liposome outer monolayer be triggered. This is supported by

the fact that the hydrophobic moieties of PFOB-NEP including lipid tails and PFOB

were more frequently found as the first molecule at the interface than the lipid tails

of liposome.
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5.5 Conclusions

We have developed a coarse-grained PFOB model that preserved the thermodynamic

properties of pure PFOBs as well as the phase separation in water due to its strong

hydrophobicity. The validity of the model was confirmed by the spontaneous emulsion

formations starting from randomly mixed initial structures.

Our simulations using this in-house CG model directly showed that fusion could oc-

cur between the monolayer of PFOB-NEP and the outer monolayer of liposome. This

observation strongly supports the “contact-facilitated” delivery mechanism, which

was hypothesized to proceed by forming an intermediate structure similar to the

hemifusion stalk. Indeed, this fusion event between a PFOB-NEP and a liposome

shared many aspects in common with the well-resolved fusion mechanisms between

two bilayers. The fusion showed a similar dependence on the particle size and lipid

composition. The smaller the size and the higher the lipid content of negative curva-

ture, the faster the fusion. The fusion was initiated by forming a hemifusion complex

made of hydrophobic moieties protruded to the surface. Initial membrane disruption

and hemifusion complex formation were the rate-limiting steps while subsequent steps

occurred very quickly and barely differed among the observed fusion events.

We also observed distinctive features that were unique to this fusion process be-

tween a PFOB-NEP and a liposome. It appeared that freely mobile PFOB molecules

played critical roles to progress the fusion process. PFOB expedited the protrusion

of hydrophobic moieties from the PFOB-NEP to the interface region and therefore

facilitated fusion. PFOB molecules solvated lipid tails and helped the protrusion of

the tail to the polar interface. It was also often observed that PFOB molecules by

themselves flew into the polar interface and generated a hemifusion complex that

consisted of PFOB only. Finally it was clearly seen that the massive flow of PFOB

into the intermonolayer space of the apposed liposome led to the complete absorption

of the PFOB-NEP into the liposome.

Even though it was closely related to the fusion mechanisms between two bilayers, the

current work has laid a foundation for new studies to understand the delivery mecha-

nism of cargo molecules to target cell through membrane fusion. Systematic analysis
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to test the fusion dependency on particle size and lipid dependency as well as core-

forming perfluorocarbon molecules would help to better characterize the mechanisms

and to aid in the rational design of particles for optimal delivery.
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Chapter 6

Conclusions

6.1 Overview of the research

This thesis work was laid out to gain insight into the functional mechanisms of

perfluorocarbon-based nanoemulsion particles (PFC-NEPs) at a molecular level. Multi-

scale molecular dynamics simulations have been employed to elucidate the structural

details. Atomistic molecular dynamics simulations revealed the interface structure of

PFC-NEP, which was characterized by extensive intercalation of core-forming perflu-

orocarbon molecules into the emulsifying phospholipids monolayer. Another set of

atomistic simulations indicated that the intercalated perfluorocarbon molecules could

affect the cargo binding to the interface region. Coarse-grained (CG) simulations of

closely apposed PFC-NEP and liposome showed that they fused in a manner similar

to that of the fusion pathway between two bilayers. These CG simulations directly

supported the hypothesized “contact-facilitated” mechanism.

We have undergone a few problem-solving steps to progress the research. The first

problem was involved with determining the system configurations. Due to limitations

in computing resources, simplifications are inevitable. We have used small sized PFC-

NEPs and liposomes of less than 20 nm in diameter in order to test if fusion could

occur between the two particles. The sizes are much smaller than the minimum sizes

for both particles. This small size rather demonstrates how strong curvature strain

is required so that fusion can occur. Another important issue was the accuracy of

force field parameters. It was crucial to be aware of inaccurate force field parameters

to avoid this potential problem. We have used the OPLS-AA force field for protein

in combination with the Berger united lipid model, which was guided by the report
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that showed GROMOS united protein model exhibited overly favorable interactions

with the Berger lipid model.(77) We have modified the interaction potential between

CG lipid head groups and CG lipid tails. The newer MARTINI force field set their

interaction potential to be super-repulsive so that penetration of ions through a bilayer

would be prevented.(88) The modification, however, placed a much higher energy

barrier that prevented the protrusion of lipid tails to the surface and made the lipid

much less fusogenic. Hence we reversed the change so that protrusion of lipid tails

would be more probable.

6.1.1 Atomistic structure determination of PFC-NEP inter-

face

To model the PFC-NEP interface at an atomistic level, a perfluorocarbon molecule,

perfluorooctylbromide (PFOB), was modeled at a united atom level to be in accor-

dance with the Berger united lipid model. By using the in-house PFOB model, the

PFOB-NEP interface was constructed in a slab-geometry and two replica simulations

were performed. The system contained ∼53,000 atoms and was run for 150 ns. After

we obtained equilibrated PFOB-NEP interface structures, we ran other simulations

to examine cargo (melittin peptide) binding to this interface. Two replica simula-

tions were performed for PFOB-NEP interface with an embedded melittin peptide in

each monolayer. This system contained ∼40,000 atoms and was run for 300 ns. A

pure POPC bilayer and a POPC bilayer with an embedded melittin peptide in each

monolayer were simulated as control systems.

From the above-mentioned simulations, we have found that the core-forming PFOB

intercalated in between lipids forming the emulsifying monolayer on the PFOB-NEP

surface and that the monolayer became distinctive from the bilayer made of the same

lipid composition. The interface structure featured by the intercalations of PFOB

gained support from an experimental observation of tryptophan (Trp) fluorescence

quenching upon melittin adsorption onto PFOB-NEP surface.(35) It is because the di-

rect collision of bromine atoms with the Trp side chain is only realized when PFOB is

deeply inserted into the monolayer. The simulations with embedded melittin peptides

showed that the intercalated PFOB inhibited deeper penetration of melittin into the
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monolayer on the PFOB-NEP surface and caused significant changes in melittin struc-

ture. Reduced helical content was in accordance with experimental observation.(35)

The direct influence of PFOB on the melittin interaction with the monolayer indicated

that the interaction of core-forming perfluorocarbon molecules with the emulsifying

monolayer could affect cargo binding to this interface.

6.1.2 Coarse-grained (CG) fusion process

Testing “contact-facilitated” delivery mechanism involved much bigger systems and

required coarsening of molecules in the system. Therefore, three CG beads repre-

sented a PFOB and the force field parameters were developed to be in accordance

with the widely used MARTINI CG force field. A system for a fusion simulation con-

sisted of a spherical PFOB-NEP and liposome connected by a linker and surrounding

water beads. Seventeen fusion simulations were performed. The number of CG beads

in a system varied from 225,000 to 212,623 and the simulation length varied from 700

to 4,300 ns.

Twenty three successful fusion events were observed out of 25 simulations. The suc-

cessful fusion events proceeded along the following pathway: 1) disruption of the

apposed monolayers, 2) transient hemifusion complex formation, 3) merge of two

monolayers, and 4) complete absorption of the PFOB-NEP into the liposome. These

simulations revealed the critical roles of the core-forming perfluorocarbon molecules

over the course of the fusion event. First, PFOB accelerated the monolayer pertur-

bation and initiated the hemifusion complex formation. Second, the massive flow

of PFOB molecules via the initial hemifusion complex expedited widening of the

hemifusion complex and subsequent merge of the two monolayers. Finally, the re-

distribution of PFOB molecules at the inter-monolayer space of the fused liposome

triggered the complete absorption of the emulsifying monolayer of PFOB-NEP into

the outer monolayer of the liposome.

It is well known that small vesicle size, encompassing lipids of negative curvature

(phosphatidylethanolamine:PE) in the outer monolayer, and encompassing lipids of

positive curvature (lysophosphatidylcholine:LPC) in the inner monolayer accelerate

the complete fusion between two bilayers.(253) The fusion process observed in our
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simulations also appeared to be dependent on the particle size and the lipid com-

positions. The smaller the size and the higher the fraction of a lipid with negative

curvature, the shorter the lag time. The dependency corresponds to that of the fusion

between two bilayers and the correspondence implies that two fusion events proceed

in the same manner at least for the initial steps. But obviously the two fusion events

should diverge beyond the stage of hemifusion stalk formation because PFOB-NEP

does not have the inner monolayer to form a hemifusion diaphragm structure where

two inner monolayers form a disc-shaped bilayer.(253) Indeed, we instead observed

the expansion of the hemifusion complex and subsequent absorption of PFOB-NEP

into the liposome. The later processes that lead to a complete absorption may arise

due to extremely small particle size. We believe this high curvature would arise only

locally in the real physiological systems and would be alleviated upon the hemifusion

complex formation.

In conclusion, these simulations showed that two monolayers of the two particles

could form a hemifusion complex as proposed in the contact-facilitated delivery mech-

anism. In addition to that, the simulations showed the critical roles of perfluorocarbon

molecules in initiating fusion.

6.1.3 Impact

The importance of different perfluorocarbon molecules was manifested in determin-

ing emulsion particle sizes,(27; 254; 255) stability,(256) and oxygen solubility when

the particles were used as blood substitutes.(257) Recently, an extensive investiga-

tion has been carried out to develop multi-modal PFC-NEP so that different epitopes

can be visualized simultaneously,(14; 10; 258) which requires different PFC-NEPs

made of unique perfluorocarbons. Furthermore, customized PFC-NEPs are under

development for the delivery of a specific drug molecule; the mixture of perfluo-

ropentane and coconut oil was used to form NEPs for the delivery of apomorphine

for treating Parkinson’s disease.(259) Based on the need to develop diverse PFC-

NEPs, various perfluorocarbons have been utilized: perfluorodecalin,(260; 261; 262)

perfluoropentane,(259) perfluorohexane,(263) perfluorodecylbromide,(255) perfluoro-

15-crown-5 ether,(10; 14; 258) perfluorotributylamine,(261) and fluorinert.(261)
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Figure 6.1: The chemical structures of various perfluorocarbons.

Our simulations have shown that the core-forming perfluorocarbon molecules play

critical roles in cargo binding to the PFC-NEP interface as well as cargo delivery by

promoting monolayer disruption. The former role will depend on level of interaction

of PFC molecules with the emulsifying monolayer(203; 264; 210) and the latter will

depend on the physical property of the PFC molecules such as vapor pressure.(265)

Knowledge of these properties would suggest suited combinations of perfluorocarbons

and emulsifying molecules to achieve the best outcome either for imaging, delivery or

both.

6.2 Future work

Future studies would involve simulations at both atomistic and coarse-grained levels

to test proposed hypotheses from the current thesis work.
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6.2.1 Assess the influence of PFC intercalation on cargo bind-

ing

First, we have suggested that the mixing of perfluorocarbon is important for cargo

binding. This hypothesis can be tested by the combination of atomistic simulations

and experiments. The modulation of mixing would be achieved by varying the per-

fluorocarbon molecules in their length or shape. Experimentally it was shown that

relatively shorter length was required for perfluorocarbon molecules to mix with the

phospholipids monolayer.(210) Obviously the different shapes such as a linear or cir-

cular shape will differentially affect the interactions.(203)

127



Table 6.1: The physical characteristics of various perfluorocarbons. a All the physical properties were taken from the
website www.chemicalbook.com except a. The value of a was from the reference (266).

Name Molecular weight Density Melting Point Boiling Point
(g/mol) (g/mL) (◦C) (◦C)

Perfluorohexane 338.04 1.669 -4 58 ∼ 60
Perfluorooctane 438.06 1.766 -25 103 ∼ 106
Perfluorononane 488.06 1.799 -16 125 ∼ 126
Perfluorodecane 538.07 1.770 36 144

Perfluorododecane 638.09 > 1.5 75 178
Perfluorohexylbromide 398.95 1.871 -49 97
Perfluorooctylbromide 498.96 1.930 6 142
Perfluorononylbromide 548.97 1.900 27 159
Perfluorodecylbromide 598.97 1.862 65 185

Perfluorododecylbromide 698.99 11.856 87 ∼ 88 222
Perfluorobutylamine 671.09 1.883 -52 178

Perfluorodecalin 462.08 1.941 -10 142
Perfluoro-15-crown-5 ether 580.07 > 1.3 -44 ∼ -46 a 145

128



Figure 6.1 shows the chemical structures of various perfluorocarbons that can be

tested in this future study. Table 6.1 shows the physical properties of the perflu-

orocarbons in the Figure 6.1 and additional ones. The physical properties such as

melting and boiling points are important to form a stable liquid emulsion core. How-

ever, the properties drastically change depending on the chain length in the case of

linear PFCs. Therefore, the length cannot be varied over broad ranges. For practical

applications, it should be more meaningful to compare between linear and non-linear

perfluorocarbons. First, force field parameters are to be prepared and, the PFC-

interface will be generated in slab geometry. We expect that the shorter and linear

PFC molecules will intercalate into the monolayer more extensively.

Melittin peptide will be used as a model cargo. The structural changes of the peptide

on the surface of each PFC-NEP will be assessed and the results can be compared

to the experimental observations such as helical contents and tryptophan quench-

ing and blue shifted emission spectrum of tryptophan fluorescence. We expect that

highly intercalated PFC molecules will cause more significant alterations in melittin

conformation than the melittin bound to a control bilayer.

6.2.2 Prediction of 19F magnetic resonance imaging intensi-

fication

Essentially no detectable background makes 19F magnetic resonance imaging (MRI)

advantageous over conventional MRI that detects the different nuclear spin relaxation

of 1H of water. However, 19F MRI suffered from long image acquisition times due

to relatively long T1 relaxation time and MR signal attenuation due to short T2

relaxation time, which mainly originated from low concentration of 19F.(267)

The higher local 19F concentration at the targeted sites could be achieved by applying

perfluorocarbon (PFC) based nanoemulsion particles (PFC-based NEPs) with target

specific ligands on their surface.(267) Interestingly besides higher local 19F concen-

tration, significantly enhanced 19F magnetic resonance signal was obtained, provided

that gadolinium-based contrast agents were present on the surface of PFC-based

NEPs. (267; 268)
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The faster T1 relaxation of 19F nuclear spins is induced by the local magnetic field

fluctuations, which in turn was caused by the electron dipoles of Gd3+ ion. The

relaxivity of Gd3+ ion depends on the distance between the contrast agents and

resonance nuclei as well as the diffusion rate of the nuclei.(269)

Experimentally it is difficult to elucidate the distance between the Gd3+ ion and 19F

nuclei due to the lack of atomistic structure of PFC-NEP interface. Also the diffusion

coefficients of 19F nuclei, which should be different depending on their relative location

to the PFC-NEP surface, are hard to obtain experimentally. Our atomistic simula-

tions of PFOB-NEP interface in a slab-geometry could provide these missing pieces in

experiments. Figure 6.2A shows the structure of the modeled PFOB-NEP interface

and Figure 6.2B shows that the presumed mean position of Gd3+ ions, which is based

on their chemical structure, corresponds to the height of phosphate groups. Based

on this assumption, the distribution of fluorine atoms as a function of separation dis-

tance from the Gd3+ ion was computed and turned out to be continuously increasing

starting from ∼ 0.5 nm distance (see Fig. 6.3A). In addition to this distribution data,

our simulations provided the diffusion coefficients of 19F nuclei as a function of their

distance from the NEP surface, and the diffusion coefficients were neither constant

nor linear along the z-axis (see Fig. 6.3B). If these distance dependent parameters

could be implemented into the theoretical calculations, which have been developed

by Lingzhi in the Wickline group, the relaxivity would be more accurately predicted.

The implementation and following experimental verifications will be carried out.

6.2.3 Elucidate fusion dependence on lipid compositions at

a CG level

To date, we briefly tested the fusion dependence on the lipid composition. Our simula-

tions indicated promoted fusion rates when the PFOB-NEP contained higher content

of POPE of negative curvature. However, it needs additional replica simulations to ob-

tain statistical significance. Obviously systematic analyses can follow to further eluci-

date the influence of different lipids on this process. The MARTINI force field contains

the models of several different lipids; phosphocholines and phosphatidylethanolamine

with different tails, sphingolipids, charged lipids, and cholesterol.(270) Therefore, we

can test the roles of lipids of different spontaneous curvature, charge, and tail length.
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Figure 6.2: Potential position of Gd3+ ions on the PFC-NEP surface. A) A mod-
eled PFOB-NEP in a slab-geometry. The POPC monolayers with the head groups
oriented toward water regions and with lipid tails oriented toward PFOB region are
shown in blue. Water is shown in red and white and PFOB is shown in green. The
lower and upper boundaries for the area where PFOB molecules could visit were de-
termined by the mean choline group position of each monolayer. The area was divided
into the thin slabs (40) of 0.2 nm in thickness along the z-axis. B) The position of
gadolinium diethylene-triamine-pentaacetic acid-bis-oleate (Gd-DTPA-BOA: right) is
approximated based on its chemical structure. The position of a palmitoyloleoylphos-
phatidylcholine (POPC:left) lipid is shown for comparison. Gd3+ ions may locate at
the depth close to that of phosphate group. The water and PFOB regions are colored
in red and green respectively.
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Figure 6.3: Microscopic observation at the PFOB-NEP interface based on atomistic
simulations. A) The mean distribution of 19F atoms of PFOB around a phosphate
group that models the position of a Gd3+ ion. The 19F counts at close distances
are enlarged in the inset, which shows that 19F can approach as close as 0.5 nm. B)
The one-dimensional diffusion coefficients of PFOB molecules at each slab are plotted
along the z-axis.

Based on the lipid dependency of the fusion between two bilayers, we expect that

lipids of negative curvature (PE, cholesterol) will facilitate fusion while the lipids

of positive curvature (LPC) will hinder the process.(253) Future simulations will be

more useful to provide quantitative results, from which more precise formalism can

be derived for the lipid compositions.
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Chapter 7

Appendix

7.1 Supplementary Materials, Chapter 3

7.1.1 United atom PFOB model develoopment
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Figure 7.1: Fitting of RB function to the torsional energy profiles. A single point
energy was calculated at every 15 degree after optimization in vacuum. A) BrCF2-
CF2CF3 B) CF3CF2-CF2CF3
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7.1.2 United atom PFOB model testing

Density

The density of liquid PFOB at standard temperature was calculated from an 83 ns

NpT simulation of a box containing 216 PFOB molecules. The system reached equi-

librium quickly and the mean density and standard error were calculated by the block

averaging method described above. The density obtained with our PFOB parameters

was 1.891 ± 0.001 kg/L. This result deviated from the experimental measurements

of 1.925 ± 0.007 kg/L by less than 2% (21; 19). Our new parameters are an improve-

ment over previous PFOB parameters (181; 182) which gave density errors as large

as 7% for relevant perfluorocarbon species.

Heat of vaporization

The heat of vaporization was calculated according to equation 7.1 based on the rela-

tion of enthalpy changes (∆H) to internal energy changes (∆U) and pressure-volume

work (p∆V ) (271):

∆vapH = Eintra, gas − Etot, liq + RT. (7.1)

The change in internal energy was obtained from the difference of the intramolecular

energy of PFOB at the gas phase (Eintra, gas) and the total internal energy of PFOB

in the liquid phase (Etot, liq). Etot, liq was obtained from the bulk PFOB simulation

described above while Eintra, gas was calculated from a separate simulation of a single

PFOB molecule in a box with the same dimensions as used for the density calculation.

The last term (RT ) was estimated assuming an ideal PFOB gas (with thermal energy

RT ) and zero pressure-volume work when extracting PFOB from the liquid phase.

The experimental heat of vaporization was 42.67 ± 1.276 (kJ/mol) while the result

from our simulation was 41.05 ± 0.26 (kJ/mol), for an error of less than 4% (21; 187;

188).
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Solvation free energy

PFOB molecules make extensive interactions with lipid tails at the PFOB-water in-

terface. To ensure accurate modeling of this interfacial region, it was important to

reproduce the interaction energy of PFOB with lipid tails accurately. Therefore,

the desolvation energy of a united perfluoromethane (CF4) in a box of 421 liquid

n-hexanes was estimated using the parameters employed in our PFOB-NEP interface

simulations. The calculation was limited to CF4 due to the lack of experimental data

for hexane solvation of other longer-chain perfluorocarbons. The solvation energy was

calculated by thermodynamic integration (272)

∆G
0
TI

=

� 1

0

�
∂V (λ)

∂λ

�

λ

dλ, (7.2)

The integration is performed numerically along λ, a generalized coordinate which

defines the path from a reference state (λ = 0) to a state of interest (λ = 1). In this

case, we transition from a reference state, where CF4 experiences full non-bonded

interactions with its surroundings, to the state of interest, where those interactions

are turned off. The angular brackets in Eq. 7.2 indicate an ensemble average at a

particular λ value with potential value V (λ). This potential function was calculated

by a linear mixing of the two end-point potential functions. Soft-core potentials

were used to remove the singularity for vdW and electrostatic interactions when the

non-bonded interactions of the united perfluoromethane were set to zero (272; 92).

Thermodynamic integration was performed with 45 different λ windows (from zero

to one in 0.02 or 0.03 increments). Each λ window was equilibrated with energy

minimization followed by a 10 ps constant volume and a 10 ps constant pressure sim-

ulation. A production simulation at each λ value was carried out for 5 ns in the NpT

ensemble, and the last 3 ns of each production run was used to calculate the integrand

of Eq. 7.2. The calculated desolvation energy via thermodynamic integration was -

2.15 ± 0.03 kJ/mol, which deviates by less than 5% from the experimentally measured

solvation free energy of perfluoromethane in liquid n-hexane (2.056 kJ/mol) (189).

Simulations using previous parameter sets gave a solvation energy of -0.13 kJ/mol; an

error of 93% when compared to the experimental values. Additionally the solvation

free energy of all-atom perfluoromethane was also computed in the same way, and
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the result was -8.2513 ± 0.0501 kJ/mol. These results support our use of the new

united atom perfluorocarbon parameters in simulations of the PFOB-NEP interface

in conjunction with the current lipid model.

Phase separation of PFOB in water

The hydrophobicity of PFOB is an important characteristic to be preserved in our

force field parameters when simulating PFOB emulsions. To test the hydrophobicity

of PFOB, a system of randomly mixed PFOB and water molecules was prepared and

simulated in the NpT ensemble under the isotropic pressure coupling. PFOB and

water spontaneously separated and generated a sandwich configuration with a slab

of PFOB in the middle of the box (see Figure 7.2).

A. B.

D.C.

Figure 7.2: Spontaneous phase separation of PFOB in water. The snapshots were
collected at time 0 ns (A), 1 ns (B), 1.7 ns (C), and 2 ns (D).

The width δ was defined as the distance over which the density of one molecule type

changes from 90 % to 10 % of its bulk density at the phase separated interface;

this width gets smaller as the de-mixing between the two molecule types is stronger
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(273). As shown by the sharp interface in Figure 7.3, the widths δ were 0.36 nm for

PFOB and 0.45 nm for water at the pure PFOB/water interface. These widths are

comparable to the octane-water interface (approximately 0.3 nm) (273), indicating

that our parameters give a strongly hydrophobic PFOB species.

However, the width δ of the PFOB-water interface has not been measured exper-

imentally. Therefore, to make a direct comparison with experimental results, the

surface tension at the pure PFOB-water interface was calculated. The local pressure

tensor p(z) was calculated from the difference between kinetic energy and the virial

(or configurational stress) tensor in every slab along the surface normal, as described

by Lindahl et al. (178) and used by several other authors(274; 275).

p(z) =
�

i∈slice

mivi ⊗ vi −
1

∆V

�

j∈system

�

k<j

Fjk ⊗ rjkf(z, zj, zk). (7.3)

The first sum is taken over all particles in the slab while all the particle-pairs in the

system contribute to the second sum. The function f is used to determine the virial

contribution to the slab depending on the positions of two atoms with respect to

the current slab: if both atoms are within the slab then f = 1, if both are outside

on opposite sides then f = ∆z/|zj − zk|, and if exactly one of them is inside then

f = ∆z/2|zj − zk|.

To obtain local pressure tensors, the PFOB-water system was simulated in the NVT

ensemble starting from the fully equilibrated phase-separated structure. The simula-

tion parameters were same as those described above except for the use of the NVT

ensemble. Structures were sampled at every 2.5 ps and it was rerun by the special-

ized GROMACS version generously provided by Lindahl and Edholm (178). The

SHAKE algorithm was used instead of LINCS to facilitate the extraction of pair-

wise interactions (178). To obtain the pairwise interactions for vdW and electrostatic

interactions, a cutoff scheme was employed with 1.8 nm distance (275; 276). The

simulation was performed for 50 ns and the local pressure tensors were calculated

along the interface normal at 0.1 nm increments (274).

After the diagonal elements of the local pressure tensor were obtained, local pressure

was calculated from the difference between the lateral (pL) and normal (pN) pressure
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Figure 7.3: Structure at the PFOB-water interface. A snapshot of the phase-separated
PFOB in water is shown at the top. Water is drawn by white (oxygen) and red
(hydrogen) sticks, and PFOB is drawn by a green ball a nd sticks. The mass density
of PFOB is shown in green, and water in red at the bottom. The vertical dotted lines
show the width δ of the PFOB interface (δPFOB), and the vertical dashed lines show
the width δ of the water interface (δSPC). The width δ is 0.36 nm for PFOB interface
and that is 0.45 nm for water interface
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tensor components:

plocal(z) = pL(z)− pN(z) =
1

2
(pxx(z) + pyy(z))− pz(z) (7.4)
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Figure 7.4: Local pressure profile. The local pressures (PPP local = PPPL - PPPN) at each
slab along the normal of PFOB-water interface as are shown in the Figure 7.3. Mean
local pressures are shown with a solid black line and standard errors are in solid blue
lines. The regions of PFOB and water are designated with the vertical dotted lines
to mark the positions of interface.

The negative pressure was the maximum at the interfaces, implying the existence of

positive surface tension that the system has a tendency to minimize the interfacial

area.

Surface tension, the energy per unit area of the interface, was computed by integrating

the negative local pressure profile along the normal axis:

γ = −
�

plocal(z)dz. (7.5)

The computed surface tension at the PFOB-water interface was 41.23 ± 0.91 mN/m,

which was 80 % of the experimental result of 51.3 mN/m (21). In our study, the

NVT simulations were performed with the SETTLE algorithm that fixes the distances

between the oxygen and the hydrogen atom and between two hydrogen atoms of water.
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It was reported that the orientation of rigid bond along the interface normal increased

the deviation of pressure normal at the interface from the bulk value (277), and we

could observe bumps at the interfaces between PFOB and water. Therefore, the 20

% discrepancy might have arisen from the limitations of the method as reported in

the reference (277) in addition to the imperfect force field.

These tests of our PFOB model show that it reliably reproduces bulk as well as

interfacial PFOB properties and can be used to realistically model the PFOB-NEP

interface.

7.1.3 PFOB-NEP analysis
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Figure 7.5: Evolution of total cross-sectional area of membranes. The area of PFOB-
NEP batch 1 was shown in blue, batch 2 in green and that of the control POPC
bilayer in black.
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7.2 Supplementary Materials, Chapter 4
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Figure 7.8: Evolution of total membrane area. The standard error for each trajectory
for different block sizes (x-axis). The Control (black, dark gray, and light gray) and
the PFOB-NEP (red and light red) are plotted for block sizes upto 50 ns.
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7.3 Supplementary Materials, Chapter 5
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Figure 7.9: Changes in liposome geometry after fusion. The top panel shows the
number density of PFOB-NEP, the middle panel the number density of liposome,
and the bottom panel the density of fused liposome. The density of PFOB is shown
in green, choline group in blue, phosphate group in red, glycerol group in orange, lipid
tails in cyan, terminal methyl group in black. The increase is observed in the bilayer
thickness of the liposome after the fusion as a result of the absorption of PFOB into
the intermonolayer space of the bilayer.
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Figure 7.10: Second reaction coordinate. The second reaction coordinate is deter-
mined by the distance between the center of mass of PFOBs and the lipids forming
the emulsifying layer on the PFOB-NEP surface. The distance increases rapidly
when the fusion begins but then decays slowly and does not go back to zero for a
long time. This reaction coordinate is useful to measure the mixing of the lipids from
PFOB-NEP with the lipids of the outer monolayer of the fused liposome. Our fusion
simulations showed that it took substantial time to observe complete mixing of the
two lipids groups. This particular case (L2-N2-3) shows that 1 µs was not enough for
complete mixing. The two arrows designate the initiation state (S1) and the state of
75% decrease (S4) respectively.
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Figure 7.11: Time required to reach 75 % reduction (S4 state) from the beginnig
(S1 state) in the RCM . A) The time required to reach S4 was significantly different
between L1-N1 and L2-N1 pairs at a 95% confidence level.B) The time required to
reach S4 was indistinguishable among fusion pairs varying POPE proportions.

146



! ! !
"

#"

$"

%
&
'

!

!

" #""
"

(

#"

#(

)*+,!-./0

%
&
'

!

!

1$!2#

1$!2$

1$!23

1$!24

1#!2#

1$!2$

Figure 7.12: Superimposed reaction coordinates. Top panel: the reaction coordinates
of L1-N1 (red), L2-N1 (dark gray). Bottom panel: the reaction coordinates of L2-N1-
1, L2-N2-1, L2-N3-1, L2-N4-1 with the color codes shown in the panel. All reaction
coordinates are plotted beginning at 50 ns prior to the S1 state. Only marginal
differences are detected among them after superimposition, implying that the next
steps after initial membrane disruption occurred at indistinguishable rates.
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[97] R. A. Böckmann, A. Hac, T. Heimburg, and H. Grubmüller. Biophysical Jour-
nal, 85(3), 1647–55, 2003.

[98] P. Garidel and A. Blume. Langmuir, 15(17), 5526–34, 1999.

[99] Georg Pabst, Aden Hodzic, Janez Strancar, Sabine Danner, Michael Rappolt,
and Peter Laggner. Biophysical Journal, 93(8), 2688–2696, 2007.

[100] S. Ohki and K. Arnold. Journal of Membrane Biology, 114(3), 195–203, 1990.

[101] J. C. Franklin and D. S. Cafiso. Biophysical Journal, 65(1), 289–99, 1993.

[102] V. C. K. Chiu, D. Mouring, B. D. Watson, and D. H. Haynes. Journal of
Membrane Biology, 56(2), 121–32, 1980.

[103] S. Garcia-Manyes, G. Oncins, and F. Sanz. Biophysical Journal, 89(3), 1812–26,
2005.

[104] T. Fukuma, M. J. Higgins, and S. P. Jarvis. Physical Review Letters, 98, 106101,
2007.

154



[105] H. Binder, K. Arnold, A. S. Ulrich, and O. Zschörnig. Biophysical Chemistry,
90(1), 57–74, 2001.

[106] Y. A. Ermakov. Biochimica et Biophysica Acta, 1023(1), 91–7, 1990.

[107] M. J. Bedzyk, G. M. Bommarito, M. Caffrey, and T. L. Penner. Science,
248(4951), 52–6, 1990.

[108] P. L. Yeagle. Accounts of Chemical Research, 11(9), 321–7, 1978.

[109] I. Gambu and B. Roux. Journal of Physical Chemistry B, 101(31), 6066–72,
1997.

[110] A. A. Gurtovenko. Journal of Chemical Physics, 122(24), 244902, 2005.

[111] J. N. Sachs, P. S. Crozier, and T. B. Woolf. Journal of Chemical Physics,
121(22), 10847–51, 2004.

[112] P. T. Vernier, M. J. Ziegler, Y. Sun, M. A. Gundersen, and D. P. Tieleman.
Physical Biology, 3(4), 233–47, 2006.

[113] J. N. Sachs, H. Nanda, H. I. Petrache, and T. B. Woolf. Biophysical Journal,
86(6), 3772–82, 2004.

[114] A. A. Gurtovenko and I. Vattulainen. Biophysical Journal, 92(6), 1878–90,
2007.

[115] Y. Song, V. Guallar, and N. A. Baker. Biochemistry, 44(41), 13425–38, 2005.

[116] D. Van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C.
Berendsen. Journal of Computational Chemistry, 26(16), 1701–18, 2005.

[117] O. Berger, O. Edholm, and F. Jahnig. Biophysical Journal, 72(5), 2002–13,
1997.

[118] H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma. Journal of Physical
Chemistry, 91(24), 6269–71, 1987.

[119] T. P. Straatsma and H. J. C. Berendsen. Journal of Chemical Physics, 89(9),
5876–86, 1988.

[120] A. H. de Vries, A. E. Mark, and S. J. Marrink. Journal of the American
Chemical Society, 126(14), 4488–4489, 2004.

[121] E. Lindahl and O. Edholm. Biophysical Journal, 79(1), 426–433, 2000.

[122] T. Darden, D. York, and L. G. Pedersen. Journal of Chemical Physics, 98(12),
10089–92, 1993.

155



[123] M. Parrinello and A. Rahman. Journal of Applied Physics, 52(12), 7182–90,
1981.

[124] W. G. Hoover. Physical Review A, 31(3), 1695–97, 1985.

[125] J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen. Journal of Computational
Physics, 23(3), 327–341, 1977.

[126] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Clarendon,
Oxford, 1987.

[127] A. A. Chen and R. V. Pappu. Journal of Physical Chemistry B, 111(23), 6469–
78, 2007.

[128] B. Efron and R. J. Tibshirani. An introduction to the bootstrap. CRC Press
LLC, Boca Raton, FL, 1998.
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