Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-82-11
1982-07-01
ADS Syntax and Command Trees

Will D. Gillett and Takayuki Kimura

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Gillett, Will D. and Kimura, Takayuki, "ADS Syntax and Command Trees" Report Number: WUCS-82-11
(1982). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/890

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/890?utm_source=openscholarship.wustl.edu%2Fcse_research%2F890&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

ADS SYNTAX AND COMMAND TREES

W. D. Gillett

T. D. Kimura

Wucs-82-11

Department of Computer Science
Washington University
St. Louis, Missouri 63130

July, 1982

This work was supported by the NCHSR under Grant HS03892.

Page 1

1. Introduction

This report describes and relates the ADS syntax and the ADS
command trees. The ADS syntax describes the acceptable input to the ADS
Compiler, and the ADS command trees are the output of the Compiler. The
command trees represent the actual langusge interpreted by the ADS
Interpreter. The ADS syntax represents a meta-language for specifying
the ADS command trees, and this report defines the correspondence (or

translation) between the two languages.

Section 2 describes the notations used in this report; Section 3
presents the ADS syntax by use of a context-free grammar; Section 4
defines the ADS command trees as a function of the ADS syntax by use of

an attributed grammar.

2. Notations

A standard mechanism for describing the syntax of a language is a
context-free grammar. However, besides describing the syntax of a
language, we also want to describe its semantics. Unfortunately, =2
gimple context-free grammar is not capable of expressing semantics.

However, a simple extension known as an attributed grammar, is capable

of expressing our semantics. An attributed grammar will be used to

specify the translation from the ADS syntax to ADS command trees.

In order to describe the ADS command trees, several notations will
be used. A very visual notation is simply a drawing of the tree; this
will be called the tree form (Section 2.2). This notation will
sometimes be used for clarity, but requires a tremendous amount of space

{on a printed page). TFor brevity, an equally precise (but less

Page 2

intuitive) notation also will be used; this will be called the

linearigzed form (Section 2.3).

2.1 Attributed Grammars

Attributed grammars are a simple extension of conventional
context-free grammars; there are terminals, nonterminals, context-free
productions, and a starting symbol. However, each terminal and
nonterminal may have a fixed number of attributes. These attributes
represent the semantics or meaning of the corresponding symbol. In any
given production rule of the grammar, a given attribute may be defined
in terms of other attributes and/or constants. In this way, the
semantics of a specific occurrence of a nonterminal in the parse tree
can be defined in terms of the semantics of its component terminals and

nonterminals.

As an example of an attributed grammar, consider the arithmetic
expression grammar below. The attributes are notationally written as
subscripts on the nonterminals. An arbitrary symbol written as the
subscript is a surrogate or pilace holder for the actual value of the
attributes, which will be determined during the processing of an actual
input string. The actions in square brackets ([]) below each production
specify the relationship between the values of the attributes. The

'4-' symbol represents the assignment operator.

Page 3

Attributed Grammar for Arithmetic Expressions

(1) exp 1e= exp. '+' term
a, a, 25
[a1 &- a2 + a3]
(2) ! term
85
[81 &— a2]
H
o l*' .
(3) terma1 11= terma2 prim,
_ *
[a1 < a2 33]
(4) | prim
8
[a1 - a2]
H
(5) prim_ som W exp, DR
1 2
[a1 &= 32]
(6) | NUMBER

[a1 - value(NUMBER)]

In this grammar, 'NUMBER' corresponds to the generic terminal class
of character strings that denote numbers; any character string
belonging to this class is identified with NUMBER. The function 'value'

extracts the numeric value corresponding to the character string.

If the attributes (subscripts) and actions (things in square
brackets) are deleted from the attributed grammar, a standard

context-free grammar is obtained; this is known as the input grammar.

Of course, this could be used as a generative grammar, but we are
interested in it as a parsing grammar. We will use attributed grammars

to translate from one language to another.

Page 4

Conceptually, attributed grammars are used ag translation tools in

the following way:

1) The input grammar is obtained by deleting the attributes and
action symbols.

2) The input string to be translated is parsed using the input
grammar. Any parsing method is applicable. The result of the
parse is a parse tree.

3) The attributes specified in the attributed grammar are now
introduced into the parse tree by placing the values of the
attributes on each instantiation of the appropriate nonterminals
in the parse tree. This is normally done in a bottom-up manner.
The values of unassigned attributes are determined by use of the
actions associated with the productions. The attributes and
actions are local to a specific production and its corresponding
counterpart in the parse tree. In other words, the scope of the
value of the attributes and the actions that relate them are
restricted to one parent node and its immediate descendants in
the parse tree.

4) Once the values of all attributes have been determined, the
desired semantics (values of attributes) can be extracted from
the appropriate nonterminals of the parse tree. Usually, the
attribute of the top-most starting symbol is the desired

information.

As 8n example, consider the sbhove grammar for arithmetic
expressions and the input string '5+7%12'. The parse tree with

instantiated attributes is given by:

Parse Tree with Attributes

89
/N
/0N
exp. + term
8
A A
/ / P\
/ /1 N\
t * i
ermy tem, ¥ primg,
| I
1 |
| |
pr?ms prlm7 NU?BER
|
! | 12
NUMBER NUMBER
i I
5 7
Consider the occurrence of 'prim, ' in the parse tree.

12

Page 5

The value

12 corresponds to the attribute a1 in production (6) of the grammar.

Its value is determined by the corresponding action,

'a1 £~ value(NUMBER)', where NUMBER has the value 12. 1In the

occurrence of 'term84', the value 84 (attribute a1) is obtained by

applying the action of production (3), where a

= 7 and a

2 3

=12. Of

course, the value of the entire expression, 89, is the attribute of the

root node of the parse tree.

Conceptually, we have used the above attributed grammar to

translate from character strings representing arithmetic expressions to

numeric values.

More specifically, if the input string is '5+7%12°',

then the output value is 89.

2.2 Tree Form

Page 6

Al ADS command trees are binary trees whose structure can be
easily described by & simple graphic notation. The root node is
represented by the top node which has no ancestors. Internal nodes are
represented by & 'o' having one ancestor and two descendants, a left son
and a right son. Leaf nodes are represented by an arbitrary character

string having one ancestor and no descendants.

Example 1:

A) A tree with a left son of 'a' and a right son of 'b':

B) A tree with a left son of 'a' and a right son which is a tree with a

left son of 'b' and a right son of 'e¢':

L} L

¢) A tree whose left son is a tree with a left son of 'a' and a right

son of 'b', and whose right son is 'c¢':

Page 7

2.3 Linearized Form

Although the tree form is very expressive, it is rather verbose. A
more concise notation is to "flatten" the two~dimensional tree form into
a one-dimensional linearized form. In this notation, the list of (left)
subtrees along the (right) spine of the tree are written sequentially
from left to right. TIf the subiree is a leaf node, it is written
without parentheses; otherwise, it is embedded in parentheses. This

notational scheme is applied recursively to the (left) subtrees.

Example 2:

The linearized forms of the three trees of Example 1 are:
A) a b
B) abe

¢) {ab)c

An attributed grammar will be used to define the semantics of the
linearized form. In the semantics associated with this grammar, there
are two primitive functions, encode and create. Create returns an

internal node {tree) whose left son is the first argument and whose

right son is the second argument.

Example:

create(a,b) => o]

Encode returns an arbitrary but fixed encodement of the corresponding

TOKEN. In this context, TOKEN is a specific object of interest scanned

Page 8

from the input. If the TOKEN is a fixed constant, such as punctuation
or an operator, the encodement returned is a leaf node. If TOKEN is a
generic string, such as a symbol name or a variable, the encodement is a

tree representing the generic token.

The following attributed grammar defines the relationship

(translation) between the linearized form and the tree form.

Attributed Grammar for Linearized Form

(1) treet1 r= prim, treet2
[t, <- create(p,t,)]
(2) ! prim L 2
P
[t1 4-]
(3) prin rr= (* tree, ')
[p 4~ t]
(4) ! TOKEN

[p 4- encode(TOKEN)]

-

The input grammar specifies the legal input strings. The desired
transiation is the value of the attribute of the top-most occurrence of

'tree’ in the parse tree corresponding to a specific input string.

Example 3:

Input
String

A abe =3

B) a (be)d =5

¢) (a{be)de

Corresponding

Qutput

Page 9

The parse tree and attributes for example 3C above are given below.

In order fto avoid confusion between the parse tree and the attributes,

which are also trees, the actusl values of the attributes are not

presented in the parse tree itself.

Page 10

TOKEN primt
/o \e

tree
\ 's

Values of the Attributes

Page 11

t6 = t5
t7 = 'd
t8 = t7
t. =
9 0
/\
\
0 e
/' \
/A
I-bl Icl
Y10 =
0
/\
/ A\
‘a' ()
/\
/ 0\
0_ Id'
/\
/ N\
Ibl Icl
%1 = Yo
t12 = g
Y13 = b2
t =
14 o
/\
/A
) ‘e'
/\
/ 0\
lal 0
/\
/ A\
) 'aq'
/ \
/A
'b' 'cl
Consider the occurrence of 'primt ' in the parse tree and the
1
attribute value t1 = 'a'., Attribute t, in the parse tree

corresponds to the attribute p in production (4), and its value is

determined by the action 'p &- encode(TOKEN)'. Attribute t5 in the

Page 12

parse tree corresponds to the attribute t, in production (1), and its
value is determined by the action 't1 & create(p,tg)', where p

(t2 in the parse tree) has the value 'b' and t, (t4 in the parse

tree) has the value 'c'. Notice that the attribute on any specific
nonterminal is local to its specific instantiastion in the parse tree and
is not affected by any other instantiation of that nonterminal in the
parse tree. The value of the attribute (t14) of the root node of the
rarse tree is the desired binary tree. This is not surprising since
this is the intended meaning of the original input string '(a (b ¢) 4)

e'. Also notice that t10 corresponds to example 3B above.

1 The ADS Syntax Grammar

In the context-free grammar below, many tokens are used but left
undefined. Of course, these are defined at the lexical level. Before

presenting the grammar, 2 brief explanation of these tokens is given.

Token Comment

<! begin transaction

' end transaction

'N' the NII tree

i the logical value Truth

'F’ the logical value Falsehood

'y the statement separator; also used in conjunction with
the YIELDS and IMPLIES operators

ESCAPE a special symbol which indicates that the following

input is part of the system manipulation language, and
not part of the ADS language

'oF! request for output of a formula

'?g’ request for output of a symbol (binary tree)
'op’ request for output of a predicate

top' request for output of a transformer

" the assert statement symbol

'-{' the deassert statement symbol

f==' defines the association between an intensional
descriptor and a name

: ' transfers the intensional descriptor from one name to a
second name

]
]
]

c/o o l/t
I\l o t\l

Page 13

defines the association between an extensional
descriptor and a name

the APPLY operator; used to evaluste a transformer or
predicate at a point

the IS operator; used to test set membership through
use of a predicate name

parentheses for grouping

the BUILD operator; used to build binary trees
transparent and opaque quotes

the MU operator; extracts the intensional descriptor of
a name

the TAU operator; extracts the extensional descriptor
of a name

the YIELDS goperator; used for conditional evaluation of
symbols

the OR, AND, and NOT operators

the EQUALITY operator; used to compare symbols (binary
trees)

the DEFINED operator; used to determine if an
expression is defined

the TRUE operator; used to determine if a formula is
both defined and true

the IMPLIES operator; used for conditional evaluation
of formulas

the TYPE operator; used in forms to guarantee type

the EVALUATE operator; used to evaluate the meaning of
an expression

the LAMBDA operator; used to abstract symbols

the RHO operator; used to abstract formulas

the IOTA operator; wused to describe symbols

the FORALL operator

the THEREEXISTS operator

a symbol name

a formula name

a predicate name

a transformer name

a variable name

In the following grammsr, 'trans' is the starting symbol. Terminal

symbols (tokens) are placed in quotes and/or capitalized as shown in the

table above.

Nonterminals appear in lower case. This grammar is the

input grammar that corresponds to the attributed grammar presented in

the next section.

trans

statelist

state

query

update

definition

fact

ssfact

ssexp

A ———

B e ey o —— o — ke o o 88

e

=

Context-free Grammar for ADS

state

'¢' gtatelist '>°

state

state ':' statelist

update

query

ESCAPE

'?F' fexpE
'?8' sexpE
'?P' pexpE
'?T' texpR
'F' definition
"' fact
'~J' name
"' fact

SN '==' sexpE
FN '==' fexpE
TN "==' texpE
PN '==' pexpE
SN '===' SN
FN '===" PN
TN '===" TN
PN '===' PN
SN ':=' sexpPE
FN ':=' fexpE
TN ':=' texpE
PN ':=' pexpE
ssfact

fffact

ssexp ':='

L]

asexp ':=' tterm

stermE '.'

stermE .

Page 14

fffact

ffexp

dexp

sexp

sterm

sfact

sprim

iotaexp

fexp

fterm

ffact

R ———

-

W ——a

we

- A

ey Y T
-

- m——
-

A o —aa
-

- e——
&

ffexp ':=' fexpE
ffexp ':=' pterm
stermE '.' PN

stermE '.' ffexp

stermE '..' PN
stermE '.."' ffexp

sexp
fexp

sterm

stermE '’

.' texpE

|(t sexp |)|
sfact

sprim
'+' stermE stermE

INI
SN

NUM
VAR

1T¢¢ LI B

lexunit
lexunit '"'

'@' name

|#| SN

iotaexp

"(' fexpE '=>' sexpE ';' sexpE ')
'(' fexpE '=>' sexpE ')’

[N}

"(* 4" form ')' fprimE

fterm
fexpE 'V' ftermE

ffact
fterm 'A' ffact

ffact2
'~' ffact2

Page 15

ffact2

fprim

fprim?2

allexp

existexp

texp

tterm

tprim

Pexp

pterm

pprim

-e

—— g
e

M e e e e e e e —— g
-

WE o rme——p s sa
aw -

.- —eme—— a4
..

stermE '.' pexpE
stermE '=' stermE
gte?mE o' pexpR
prim

l(l feXPE I)l
fprim?2

lTl

IFI

FN

v#t N

l/l dexp I/l

"\' fexpE "\'

allexp

existexp

'(* fexpE '=>' fexpE ';' fexpE ')’
'(' fexpE '=>' fexpE ')’

(" 'Y form ')' fprimE
(* '3 form ')' fprimE

tterm
stermE ".' texpE

™
I#I TN
tprim

(" '\ form ')' stternE

pterm
stermE '.' pexpE

) 1

stermE ".." pexpE

PN
l#! PN
pprim

(" "' form ')’ fpprimE

Page 16

name

form

form1

sexpE

fexpE

texpE

pexpE

stermE

ftermE

fprimk

lexunit

e

e

——— i . et e

e

W —

LE
-

aw =
-

L3
]

SN
FN
TN
PN

form! ":' pexpE
formi

VAR
t(l fOI"l]'l l)l
'+' form? form!

sexp

fexp

texp

pexp

aterm

fterm

l[l SEXPE ']l

fprim

sexp
fexp

pterm
tterm

token

Page 17

Page 18

]
-

token

L=<

e >

e e e s e i s
-

..'<->“._J¢

“ = m e om w4 = om e e om e = o=
1
- =
-

n -
v

sttermE HEE sterm
tprim

fpprimE 11= fprim
| pprim
i E
H

4. Definition of ADS Command Trees

The above input grammar specifies the context-free syntax of the
ADS language. By adding attributes and actions that relate the values
of the attributes, the following attributed grammar is obtained. The
grammar below defines the relationship (translation) between the ADS
syntax and the ADS command trees. The value of the attribute of "trans'
in the parse tree of a specific input string is the desired translation,
i.e., it is the ADS command tree that corresponds to the specific input

string.

Attributed Grammar

for ADS

trans s1= state
[a1 G-

create(a2,'N')]

i <! statelist =~)«

a,]

create(ae,'N')]

create(ae,aB)]

a,]
a,]

special tree]

create(encode('?F'),az)]

create(encode('?s'),a2)]

[8.1 &=
i
statelist 1= state
a a
i 2
[a1 &=
! state, ';' statelist
2
[a1 &=
E
state $im update
2, a,
[a1 <-
1
H query
%2
[a, <-
| ESCAPE
[8'1 &=
H
. e=] L]
query, pa ?F fexpEa
1 2
[a1 &—
: rog! sexpE_
2
[a, <-
i ‘7P’ pexpE_
2

[a1 L

create(encode('?P'),a2)]

Page 19

updatea

definitiona

1

Ll

'9 L
?T texpEa2
[a1 4- create(encode('?T'),a2)]
'L definition
8
[a1 s create(encode('F-'),az)]
1 v
F— :E‘actaz
[81 4- create(encode('F"),az)]
'—* name
22
[a1 4= create(encode('-{'),az)]
e facta
2
[81 4- create(encode('-{'),a2)]
(-
SN '= sexpEa2
[81 4- create{encode(’'=="),
create(encode(SN),az))]
/*
0
/ \
/ 0\
<t=="> o
/\
/ 0\
{8N> <sexpE>
4
FN '=='f E
N exp a,
[a1 &~ create{encode('=="),)]
create(encode(FN),az)
TN 1]

= texpEa

2
[&1 4- create(encode('=='),]
create(encode(TN),az))

Page 20

PN ‘==

FN1 ===

TN1 ===

pexpE
&2
[a1 4- create{encode('=="'),
crea’ce(encode(PI*I),.512)):|
SN2
[a1 4~ create(encode('==="),
create{encode(SN1 e
encode(SNg)))]
/*
o
/ \
/ 0\
<'==='> o]
/' \
/A
<SN1> <SN2> ¥/
FN2
[31 4~ create(encode('==="),
create(encode(FNT),
encode(FNz)))]
TN2
[a1 4- create{encode('==="),
create(encode(TN1),
encode(TNz)))]
PN2
[a1 4~ create(encode('==="),

create(encode(PN1),
encode(PNz)))]

Page 21

fact
a

ssfact
a

SN ':=! sexpE,
2
[31 4- create(encode(':="'),
create(encode(SN) a))]

FN ':=" fexpE
[a 4- create(encode(':='),
create(encode(PN),a))]

N "=’
T texpEa2
[81 4- create(encode(':="),
create(encode(TN),a2))]

/-!t-
©
/\
/ 0\
Ce="> 0
/' \
/A
<TN> <texpE>

*/

PN ':=' pexpE
&2
[31 4- create(encode(':="),
create(encode(PN),az))]

ssfact
o)
[a1 - a2]

fffact
)
[a, - a,]

ssexpa2 te=" sexp,
[a

4- create(encode(':="),
create(ag,aB))]

—

ssexpa2 "i=' tterm,
[31 4- create(encode(':="),

create(az,aB))]

Page 22

ssex
pa

fffact
&

n

stermEa ‘LUTN
2
[a1 - create(encode('..."),
create(a,,encode(TN)))]

/*

/' \
/ N\
{stermE> <TN>
L

stermkE '." ssexp
a, a
[31 4- create(encode('..."),
create(a2,a3))]

ffexpa2
[81 4- create(encode(':="),
create(a2,a3))]

.='
: fexpEa

ffexp, ‘':=" pterm
2
[a1 4- create(encode(':="),
create(a2,a3))]

a

stermE ‘.U PN
&2
[31 &~ create(encode('..."'),
create(a,,encode(PN)))]

1 L}
stermEa . ffexpa

[a1 4- create(encode('...'),
create(az,a3))]

stermE 'eo! PN
&

Page 23

dexpa

sSex
pa

sterm
a

. o=
-

[a1 ¢- create(encode('..."),
create(az,encode(PN)))]

L
stermE, .. ffexp,

2
[a, 4- create(encode('..."),
L create(a_,a_))]
2'73
sexp
a, :
o &- 82]
fexp
82
[a1 4- az]
=
2
[a1 4= 52]
sterm
8
[a1 &= a2]
1
stermEa2 ', texpEa
[31 4- create(encode('.'),
create(a2,a3))]
(' sexp, ")'
-
[31 &= a2]
sfacta
2

[&1 &= 32]

Page 24

sfact
a

sprim
P a

- =
]

-

sprim
2
[a1 L a2]
* stermEa2 stermB,
[aT 4- create{encode('+'),

create(az,aB))]

|NI

[a1 4- encode('N")]
SN

[a1 4- encode(sN)]
NUM

[a1 £=- encode(NUM)]
VAR

[a1 4- encode(VAR)]
'Y Jexunit J00%

)

[a1 4- create(encode(""),az)]

"' Jexunit UL
82

[31 4- create(encode('"'),az)]
'@’ name

2

[a1 4&- create(encode('@'),az)]
l#. SN

[a1 4- create(encode('#'),encode(SK))]
iotaexp

82

[31 &= a2]

(! fexpE, '=>' sexpB, ';' sexpE, N

2

[a1 4- create(encode{'=>'),create(

Page 25

iotaex
pa

fexpa

fterm
a

1

az,create(33,84)))]

+ (fEXPEa2 =>' sexpE_ ')’
[a1 4- create{encode('=>"'),create(
az,create(a3,encode('UNDEF'))))]

-

vem 1 [} 1 L] 4 ’ a
. (" 9 forma2) fprimk_
[31 4~ create(encode('4 "),
create(az,a3))]
H
1= fterma
1
8, 4- a,]
: fexpEa2 "V' ftermE,
[a1 4- create(encode('V"'),
create(az,aB))]
H
ti= ffacta2
[a1 L= a2]
H fterma2 "A" ffact,

3
[a1 4~ create(encode('A"'),
create(az,EB))]

Page 26

ffact2
&

fprlma

-e

-

ffact2a2
[a1 - a2]

o ffact2
2
[a1 F2 create(encode('~'),a2)]

stermEa2 . pexpEa

[a1 4- create{encode('.'),
create(aa,aB))]
stermE. '=' stermE
a, a
[31 4¢- create(encode('="),
create(az,aB))]
L] 1t
stermEaz .+ PexpE
[31 4- create(encode('.."),
create(a2,33))]
fprlma2
[81 L a2]
1 t t ¥
(fexpEa2)
[a1 &= a2]
fpr1m282

[a1 ‘- a2]

Page 27

fpr1m2a

‘e

[31 4- encode('T')]
g

[a1 4- encode('F')]
FN

[a1 4= encode(FN)]
'#' FN

[a1 4~ create(encode('#'),encode(FN))]

A dexpa2 A
[a1 4~ create(encode('/'),a2)]

"\' fexpE '\’
&2
[a1 o= create(encode('\').&e)]

existexpa
2

[a1 &= a2]

t(l fEXPEa2 |_9l fexpEa |;o fexpEa4 |)|
[31 4- create(encode('—"'),create(

az,create(83,34)))]

(' fexpE, ! fexpE_ "y
2
[31 4- create(encode{'=>"'),create(
a2,create(a3,encode('UNDEF'))))]

Page 28

allexpa

existexpa

texpa

tterm
a

1

-

(" 'Y forma2)’ fprimE
[a, 4- create(encode('V'),

1 create(a2,a3))]

(o3 form, ')' fprimE,

[a1 4- create(encode('3"'),
create(a2,33))]

tterm
85

[a1 &= a2]

stermEa2 ".' texpE,
[a1 4~ create(encode('.'),
create(az,aB))]

™

[a1 4- encode(TN)]
|#! TN

[31 4- create(encode('#'),encode(TN))]
tprlma

2

[a1 “- a2]

Page 29

tprlma

pexp,

pterma

pprim_

-

o=
o

‘N form ") sttermB

[a 4- create(encode('\'),
create(az,aa))

pterma
[8.1 & 82]
stermEa 5 pexpE,

[a1 4- create(encode('.'),
create(az,a3))]

stermE LNt pexpE
2
[a 4- create(encode(’.'),
create(a '8 N

PR

[a1 4- encode(PN)]
‘#' PN

[a1 4- create(encode('#'),encode{PN))]
ppr:.ma2

[a1 G- a2]

(" '¢' form ')’ fpprlmE

[81 4- create(encode(Y,
create(a

Page 30

name
a

form
a

formi
a

-

cN

[a, 4- encode(sW)]
FN

[a1 4- encode(FN)]
™

[81 4- encode{TN)]
PN

[81 4- encode(PN)]
form1 's' pexpE

a, 8
[a, 4 create{encode(':'),
1 create(a, ,a_))]
2’73
form1a
2

[81 - a2]

VAR

[a1 4- encode(VAR)]

(! forma "y

2
[a1 &=-

'+! form1a form1

2
1

[a

a,]

a

4- create(encode('+'),
create(ae,aB))]

Page 31

sexpEa

fexpEa

t E
expE

pexpEa

-

0

[a

(2,

[a

s,

[a,

-

Page 32

stermE
a

ftermE
a

lexunit
a

1

Ll

-

sterma

fprima

[a

[a

sexp,
[,
fexpa
[a
pterma

[a,

4m

EAY
]

create(encode('['),az)]

Page 33

tokena

-

th

|a|

(a,

(e,

&m

a,]

2]

encode('1 ')]
encode(*V*)]
encode('3")]
encode('\')]
encode('p")]
encode('@')]
encode('#')]
encode('=>")]

encode(';")]

Page 34

sttermE
a

1

-

"#:}‘

sterma

tprlma

(e,
[a,

[,

(=,
[=,

(s,

encode(' A ")]

encode('V"')]

encode{'.")]

encode('..')]

encode('=")]

encode(':")]

encode('=>")]

Page 35

f pprlmEa1 13= fprim_
[a1 &= a2]
] +
i pprltﬂa2 :]
a, &- g
| E 1 2
)
[81 %- a2]

For example, consider the following input:
?P(()+xy:A) (x=N/\+xy..B)
Its corresponding parse tree and attributes are given below. Again,
because of the complex structure of the attributes, the values of the
attributes are not placed directly in the parse tree. Both the

linearized form and the tree form of the attributes are presented.

Page 36

Parse Tree

trans
i Ba4
|
state
| G4z
I
I
query
/\ P2
/ 0\
/ A\
7P pexpE
41
[
pexp
240
pterm
?39
I
pprim
/1 \%38 \
/0N \
/n\) \
¢ form fpprimE
/1 \% ey
/1A
f{l\ i
orm : pexpE fprim
/N \ % *36
; \ \ / \
i\ \ (/ \
VAR VAR pexp fexpE_)
o 3 T3
X y
I
pterm fexp
%2 7!
|
PN fterma
f /| \]33
A /1 \
/TN

Page 37

Page 38

1]
[a\]
02J o]
o &
e | = T -
4 + Ay
© =" =t
=1 3% 18} o -~
3] o o o4
3] 3] T o]
g £ S 5
o o
[- Q o« —_————————
+ + S~ (="
w o w0 1]
O un —
o o -~ o]
[o [3Y] o] 0 b~
M £33 a .T..a ma
+2 Gy m m Q Ul
[} [/l QPo——— == P == @ — &
~ + + Lo =
s 1] 10] /] w
~
[\ +
-
o
2]
m [aV] - o
o L -— -~
..uuw .I....I... [u] .T..a m&
S m o o=
] o =) ——
+ G 2y
L} 0 L1/ 0
aOJ
E
] 00 b~ \D
Lot a [l]
] y m + =
g .~
———— —— ————— e — . e g e e —— x
+ G =) =
1] 4] 1]

Attributes
a, =+ xYy
[a]
/' \
/ N\
I+| 0
/ \
/ 0\
X ¥y
a2=A
a, = az = a,
a5=:(+xy)A
o
/\
/ 0\
I:U o
/\
/A
o] A
/\
/ 0\
l+| 0
/\
/\
X ¥y
8 = X
89 = 38 = a7 = ag
8= N
813 = 240 T 84y T 89
314 ==xN
0
/\
/ N\
|___| o
/' \
/A

Page 39

16
17
20
21
24
25

27
28
30
31

32
33

15

1}
]
H

19

23
=+yx

26

29 7

= .. (+

)
>
N

14
818 T 4y
80 % 89y
0
/\
/N
l+l o
/\
/N
y X
825
8o8
¥y x)} B
[a]
/\
/ A\
Lt o
/ \
/N
0 B
/' \
/ 0\
I+' 0
/\
/ 0\
¥ X

Page 40

Page 41

a = a = a = 8a

37 ° 936 0 935 %34 T f33
8z =0 (: (+xy)) A (=xF) .. (+yx)B

(X L+) - (NX=) Y (V(£x+):)ddi=CTe

8Ly _ 6%y . Ofg _ ¥,
X £
\ /
\/
o] Wt
N\ /
\ /
g o]
N/
\/
0 [} [}
N/ .
\0/ A, , .)
\ \ / N/
\ o = \/
\ \\ // o\ }+,
\\ o \/
\ / v 0
A\ / \
\/ \/
o l\/l o [I |
N/ N/
\ / \/
o} Q
\ /
\ /
\ /
\/
\0/ 9
N/
\/

Yy o3sd

Page 43

/ \
/ N\
'?P’ o
/\
/N
"1 o
¢ /\
/A
/ \
/ \
/ \
) 0
/ \ /\
/ 0\ /A
l:| o IAI 0
/ \ / \
/A /N
0 A / \
/\ o \
/ 0\ /\ \
T+t 0 / 0\ \
/N = o \
/\ /' \ \
x v / 0
x 'N' /\
l/l\
. 0
/\
/A
o} B
/ \
VAR
+! 0
/\
/ 0\
y X

= a42

(?Po(: (+xy) &) A(=xN) .. (+yx) BN

Page 44

o]
/' \
\
o ln'l
/' \
/A
'?P! 0
/\
. /
' o
¢ /\
/ N\
/ \
/ \
/ \
0 0
/\ / \
\ / 0\
| I | o 'AI 0
/ \ /\
/A /A
o A / \
/\ o \
!/ \ /\ \
'+l 0 / \ \
/N =t 0 \
/ 0\ /\ \
x y /A 0
x 'N' /\
l/l
e o
/\
/! \
s} B
/\
l/\
+' Ie)
/\
/ 0\
¥ X

The attribute of trams, 844, is the desired ADS command tree.

Notice that there is a generic style to the encodement scheme for
the ADS command trees; whenever an operator is involved, it is always

brought to a superior pesition and made the most prevalent left subtree.

Page 45

In the ADS syntax, there are unary, binary and ternary operators; some
are prefix, and some are infix. In the command tree form, they are all

transformed to a prefix form.

5. Summary

The purpose of this report has been to define the ADS syntax and
the ADS command trees, and to formally specify the relationship between
them. 1In order to specify the translation, the formalism of attributed
grammars has been defined and used. A linearized form of the ADS

command trees has also been defined.

The conceptual structure of ADS, the formal semantics of the ADS
command trees, and the operational semantics of the ADS command trees

appear elsewhere.

	ADS Syntax and Command Trees
	Recommended Citation

	tmp.1465590965.pdf.DcHIp

