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ABSTRACT OF THE DISSERTATION

Infomation Processing for Biological Signals: Application to Laser Doppler

Vibrometry

by

Alan D. Kaplan

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, May 2011

Research Advisor: Dr. Joseph A. O’Sullivan

Signals associated with biological activity in the human body can be of great value in

clinical and security applications. Since direct measurements of critical biological ac-

tivity are often difficult to acquire noninvasively, many biological signals are measured

from the surface of the skin. This simplifies the signal acquisition, but complicates

post processing tasks. Modeling these signals using the underlying physics may not

be accurate due to the inherent complexities of the human body. The appropriate

use of such models depends on the application of interest. Models developed in this

dissertation are motivated by underlying physiology and physics, and are capable

of expressing a wide range of signal variability without explicitly invoking physical

quantities.

An approach for the processing of biological signals is developed using graphical

models. Graphical models describe conditional dependence between random variables
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on a graph. When the graph is a tree, efficient algorithms exist to compute sum-

marginals or max-marginals of the joint distribution. Some of the variables correspond

to the measured signal, while others may represent the hidden internal dynamics that

generate the observed data. Three levels of hidden dynamics are outlined, which

enable models to be constructed that track internal dynamics on differing time scales.

Expectation maximization algorithms are used to compute parameter estimates.

Experimental results of this approach are presented for a novel method of recording

bio-mechanical activity using a Laser Doppler Vibrometer. The LDV measures surface

velocity on the basis of the Doppler shift. This device is targeted on the neck overlying

the carotid artery, and the proximity of the carotid to the skin results in a strong

signal. Vibrations and movements from within the carotid are transmitted to the

surface of the skin, where they are sensed by the LDV. Changes in the size of the

carotid due to variations in blood pressure are sensed at the skin surface. In addition,

breathing activity may be inferred from the LDV signal.

Individualized models are evaluated systematically on LDV data sets that were ac-

quired under resting conditions on multiple occasions. Model fit is evaluated both

within and across recording sessions. Model parameters are interpreted in terms of the

underlying physiology. Pressure wave physics in a series of elastic tubes is presented

to explore the underlying physics of blood flow in the carotid. Mechanical movements

of the carotid walls are related to the underlying pressure, and therefore the cardio-

vascular activity of the heart and vasculature. This analysis motivates a model that

can be estimated from experimental data. Resulting models are interpreted for the

LDV signal.
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The graphical models are applied to the problem of identity verification using the LDV

signal. Identity verification is an important problem in which the claimed identity

is either accepted or rejected by an automated system. The system design that is

used is based on a loglikelihood ratio test using models that are trained during an

enrollment phase. A score is computed and compared to a threshold. Performance

is given in the form of False Nonmatch and False Match empirical error rates as a

function of the threshold. Confidence intervals are computed that take into account

correlations between the system decisions.
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Chapter 1

Introduction

In 1948, as president of the newly founded Biometric Society, R. A. Fisher, stated that

Biometry is “... the active pursuit of biological knowledge by quantitative methods

...” [1]. Since then, the field has expanded to incorporate a range of new sensing

devices, applications, and processing tools. In light of Fisher’s original statement and

subsequent developments, we define biometrics as the science of sensing, quantifying,

and processing data which originates from biological activity.

In its singular form, a biometric refers to a collection of three items: a particular

sensor, the manner in which it is used to collect biological data, and the data. In this

way, for example, we can talk about electrocardiograms (ECG) as a biometric, with

the understanding that a complete description would require sensor details, including

lead placement.

Applications of biometrics are numerous and diverse, encompassing both clinical and

security domains. For example, much work has been done on the use of ECGs for

the automated detection of ectopic heart beats. The successful deployment of such

technology could have a far reaching impact on the diagnosing and monitoring of
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patients, both in and out of the hospital. This is especially true today, given the

promise of high performance mobile devices.

The work presented in this dissertation is motivated by, and has been applied to, a

novel method for sensing cardiovascular activity using a Laser Doppler Vibrometer

(LDV). A major focus of this technology thus far has been its use in the security

applications of identity verification, which is seen as a critical component of security

systems in general. Many identity verification methods do not utilize biological data,

although the exploration of new methods, including LDV, which incorporate data

related to cardiovascular activity has increased recently within the scientific commu-

nity. In addition to the use of LDV for security applications, the technology holds

great promise for clinical use, due to the centrality of its measurements to the heart,

and the non-contact manner in which the measurements are made. In fact, both the

security and clinical general areas of application are complimentary.

1.1 The Individuals and the States

Biometrics, as defined and described above, is a highly important and vibrant area

of research. In some ways, data generated from biological systems differ significantly

from other classes of signals that electrical engineers typically work with. In the

communications field, an area where many of the signal processing and detection

techniques in common use originate, the problem is generally that of reconstructing a

transmitted signal at another location. Uncertainty in this problem stems primarily

from the medium in which the signal is transmitted, and the objective is to recover

any damage imparted to the transmitted signal during its transmission. Unlike this
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scenario, in biometrics, we often do not have as much knowledge about the mecha-

nisms that generate the signals (the source in the communications problem). This

renders many of the former techniques in need of refinement and reinvention for this

new class of problems. The wide variety of biological signals can, however, be charac-

terized in useful ways. We may describe a particular biological signal with respect to

a particular individual. Within that individual, the signal is dependent on a number

of internal states.

Individuality plays a major role in biometrics- ECG or LDV signals acquired from

different individuals will likely exhibit varying traits, and may even require separate

models and processing tools. This is generally a desirable trait for using biometrics for

identity verification. Within an individual, there are many possible dynamic states,

often characterized by physiological properties that are not directly measured. The

dynamic states are often the quantities of interest in clinical applications. Physio-

logical mechanisms and the laws of physics that govern their dynamics underlie the

quantification of biological activity, providing a rich base from which the development

of new tools and methods can stem.

In this dissertation, information processing tools are developed for biological signals

that are specific to an individual. Models are constructed that track state changes

within the individual, but the states alone are not enough to describe the data. The

following three random variables may be defined for a biometric:

1. d: data measured from the sensor.

2. x: state of the individual.

3. i: the individual.
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The joint Probability Density Function (PDF) is denoted as f (i, x, d). In this for-

mulation, the individual and the data are well defined, but the definition of state

depends on the application. For example, if the problem is the estimation of some

unknown physiological quantity, we may define the state to be this quantity. The

specific problem will also motivate the nature of the conditional dependence between

the random variables. Two models describing their conditional dependence are shown

illustratively as graphs in Figure 1.1. In the figure, the nodes (circles) represent the

random variables and the directed edges (arrows) represent condition dependencies,

where two nodes connected by an edge are dependent. In Model A, the joint PDF

can be factored as

Model A: f (i, x, d) = f (i) f (x|i) f (d|x) . (1.1)

For this model, the individual is independent of the data given the state. In this

way, the states are considered to be common among individuals. With respect to this

basic model,

f (i|d) ∝ f (i)

ˆ
x

f (x|i) f (d|x) , (1.2)

and

f (x|d) ∝ f (d|x)

ˆ
i

f (i) f (x|i) . (1.3)

In Model B, the joint PDF can be factored as

Model B: f (i, x, d) = f (i) f (x|i) f (d|i, x) . (1.4)

Unlike the first model, here the individual is not independent of the data given the

state. This model may be applicable when the state is not defined in terms of physio-

logical quantities, or when the states are not common among individuals. The models
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(a)

(b)

Figure 1.1: Graphs showing the conditional dependence between the individual, i,
the state, x, and the data, d for a biometric. In (a), the data are independent of the
individual given the state. This is not true for (b).

developed in this dissertation are of this type. With respect to this model,

f (i|d) ∝ f (i)

ˆ
x

f (x|i) f (d|i, x) , (1.5)

and

f (x|d) ∝
ˆ
i

f (i) f (x|i) f (d|i, x) . (1.6)

Two interconnected inference problems in biometrics are highlighted: inference about

the individual, and inference about the state of the individual. In most cases, the

PDFs associated with either model are not known, and need to be estimated from

sample data. This is often done by acquiring a set of data points {i, x, d}, and

estimating the parameters associated with a family of PDFs. Greater sample sizes

will lead to smaller estimation errors, and consequently improved performance.

The ideas discussed in this introduction are exploited in the development of informa-

tion processing tools for biometrics. Graphical models are used as a basic framework
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from which the tools are developed, not unlike the models described above. A com-

prehensive modeling approach is applied to LDV data, including a description of fluid

flow in distensible tubes.

1.2 Identity Verification and Biological Signal Mod-

eling

Identity verification plays an important role within the general context of security [2].

It is fundamentally important to know who is who before further action can be taken.

The two types of identity problems are those of identification and verification. In the

identification problem, the system needs to ascertain the identity of an individual on

the basis of some identity marker that is taken from the individual. In the verification

problem, the system uses an identity marker, along with a claimed identity, and must

either accept or reject this claimed identity.

Classical examples of identity markers are the fingerprint, handprint, face, and iris

[3, 4]. These traits have been proposed for use as identity markers in part because of

their presumed stability over time. There is evidence, however, that challenges this

assumption for iris images [5, 6].

Recently, the use of biological signals as identity markers has been proposed. Since

they are linked to the intrinsic function of the human body, biological signals may

require more advanced processing for use in identity problems. Also, they may convey

clinical side information that can be used simultaneously. For example, electrocardio-

grams [7, 8, 9] and heart sounds [10] have been explored for use in identity problem.
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Designing a system that uses biological signals presents challenges due to the dy-

namics that are typically associated with such signals, but stands to benefit from the

innate nature of the signal.

As alluded to in the previous section, the roles of identity and state of the individual

are inherently tied together. Thus, it may be advantageous to consider the clinical

applications of biological signals together with the security applications. Advances in

one area may influence the other.

1.3 Laser Doppler Vibrometry

Models that are developed in this dissertation are applied to measurements of skin

velocity overlying the carotid artery using a laser Doppler vibrometer. This is a novel

method of sensing cardiovascular activity in a noncontact and standoff manner. At

distances of several meters, we are able to collect pulses that may harbor critical infor-

mation pertaining to the function of the heart and vasculature. One of the processing

goals is to draw out relevant information for use in a clinical or security setting. In

many cases, contact with the individual may not be possible or desired. This allows

for the collection of biological data in a wide variety of operational settings. For

example, after natural disasters hit, the task of locating and probing the state of an

individual that is trapped or injured is critical. Clearly the ability to gather such

information in a timely manner is central to the survival of that individual. The laser

needs only a line of sight to the individual to begin recording a signal. Although the

data that are used in this dissertation are taken using an LDV targeted on the neck,

we have also experimented with other sites, including through clothing. It seems that
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Biological Signals

Graphical Models

Identity Verification

Figure 1.2: Intersecting themes of the dissertation.

at a minimum, the LDV can be used to detect the timing of heart beats and liveness

from almost any targeting vantage.

1.4 Outline and Contributions

The main themes of this dissertation follow along the various intersections of biological

signals (the substance), graphical models (the tools), and identity verification (the

application). Figure 1.2 shows a diagram of these three areas, and the resulting

intersecting areas. The two highlighted sections are the main focus of this dissertation.

Chapter 2 begins by describing the background tools and methods of graphical models.

A graphical model is one that is Markov with respect to a graph, and their prolific use

in many different applications is largely due to the existence of efficient algorithms

to perform inference and estimation when the graph is cycle-free. The sum-product

and max-product algorithms are described in this chapter, along with hidden Markov

models and nested hidden Markov models.

Chapter 3 begins by describing biological signals, and showing a few examples. In this

chapter, graphical models are applied to biological signals by defining a hierarchical
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structure of state changes that occur within an individual. This structure has three

levels, representing short, medium, and long term variability that is present in the

individual. The resulting model may incorporate a variety of dynamics that are

related to the measured signal.

In Chapter 4, the use of the LDV for making cardiovascular measurements is de-

scribed. The LDV senses movements of the skin surface overlying the carotid artery

along the neck. These movements are related to the underlying blood pressure, and

therefore may be informative as to the cardiovascular state of the individual. Prepro-

cessing tools are also given, including the short-time Fourier transform.

After introducing the LDV, Chapter 5 contains the evaluation and interpretation

of the models defined in Chapter 3 for the LDV. The model fit is quantitatively

evaluated under a variety of training and testing conditions. Model parameters are

interpreted in terms of the underlying physiology, and the use of the models for pulse

characterization and breathing estimation are demonstrated.

The underlying physics for the LDV signal is explored in Chapter 6. Fluid dynamics

in an elastic tube are considered as a model for blood flow in the carotid, and models

are constructed that are motivated by this analysis. A sequence of assumptions that

are necessary to claim that the LDV signal is proportional to the underlying blood

pressure is given. Although all of these assumptions are generally not valid, the

resemblance of the LDV displacement pulse has experimentally been found to be

similar to blood pressure waveforms. The models are estimated on LDV data and

interpreted.

Identity verification system design and results are given in Chapter 7. The system is

constructed using a normalized loglikelihood ratio test, in which models are trained
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for each individual in a central database. Performance is predicted using experimental

data, and confidence intervals are constructed taking correlations of the decisions into

account.

The contributions of this work are:

• Developed a method for applying graphical models to biological signals, with

physiological interpretations,

• Evaluated models for the LDV data for use in waveform analysis and breathing

estimation,

• Presented analysis for pressure waves in elastic tubes with respect to the indirect

measurement of pressure using the LDV,

• Evaluated ID verification systems using the LDV that do not treat pulses inde-

pendently,

• Constructed confidence intervals on performance curves for ID verification sys-

tems using the LDV.
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Chapter 2

Graphical Models and Algorithms

Graphical models are popular models that find use in diverse fields. They provide a

unified structure from which models, inference algorithms, and estimation algorithms

may be derived. The ability to visualize a model in the form of a graph is appealing,

both aesthetically and mathematically. Due to the generalizable nature of graphical

models, many books and review papers have been written about them [11, 12, 13].

Conditional dependence between random variables are encoded by graphical mod-

els. Some of these random variables may represent measured data, while others may

represent unknown quantities. Using the graphical structure of the model, and the

associated probability distributions, efficient algorithms exist for parameter estima-

tion and inference, that capitalize on the structure of the model. These algorithms

are especially efficient when the graph is a tree.

Applications of graphical models are various. A brief list may include:

• Error correcting codes [14, 15, 16],

• Genetics [17, 18],

• Speech recognition [19, 20, 21, 22],
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• Image modeling [23, 24, 25, 26],

• Radar [27, 28, 29],

• ECG processing [30] and heart rate analysis [31].

The review by Wainwright and Jordan [11] contains more examples. Algorithms for

performing inference on graphical models are essentially message passing algorithms

which compute sum or max marginal functions of a given function of many variables

[32, 33]. These algorithms compute and communicate “messages” from node to node

on graphs without cycles. If the graph has cycles, then partial message passing

may be used for portions of the graph that are cycle-free. Otherwise, a number of

approximate inference algorithms exist [34].

This class of models is used for the processing of biological signals because of the

flexibility in the design of models to capture a variety of underlying phenomenology.

The dynamics of internal processes in the human body responsible for the generation

of biological signals are usually unknown. In clinical applications, these may be the

desired quantities. In many cases it is difficult or impossible to directly measure this

central activity. Graphical models, through the use of hidden variables, allow us to

model those processes that we are unable to acquire directly. By constraining the

interactions between the measurements that we do make, we can make inferences

about those that are hidden to us.

In this chapter, graphical models are defined. There is enough detail to provide a base

for many of the subsequent methods in the dissertation. Basic definitions from graph

theory are provided. Then a model is defined on a graph, and finally, algorithms

for estimation and inference are presented. More detailed information on graphical

models can be found in the books by Jordan and Lauritzen [13, 12].
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2.1 Some Definitions from Graph Theory

We begin with the definition of a graph. A graph (or directed graph) G = (V,E) is

a collection of vertices (or nodes), V = {1, 2, . . . ,m}, and ordered pairs of vertices

called edges, E ⊂ V × V . The set of edges E may not contain multiple copies of the

same edge. An undirected graph is a graph whose edges are not ordered pairs; thus

the edges (a, b) and (b, a) are indistinguishable.

In the following definitions, consider an undirected graph G = (V,E).

• Two vertices a, b ∈ V are connected if and only if (a, b) ∈ E; this is denoted

a↔ b.

• The neighbors of a vertex a are the set of vertices N (a) = {b| (a, b) ∈ E}.

• A subgraph with respect to VS ⊂ V , is the graph GS = (VS, ES), where ES =

{(a, b) |a, b ∈ VS, (a, b) ∈ E}.

• A clique is a subset of the vertex set, C ⊂ V , such that (a, b) ∈ E for all

a, b ∈ C. The size of the clique is equal to the number of vertices in the clique.

• A path P is an ordered sequence of edges P = {(v0, v1) , (v1, v2) , . . . , (vk−1, vk)},

each one belonging to E; the path is said to join vertices v0 and vk. The notation

a↔ b means that there exists a path between the two nodes a and b.

• A graph is connected if a↔ b for all a, b ∈ V .

• A cycle is a path that starts and ends at the same node.

• A simple graph is an undirected graph such that a 6= b for all (a, b) ∈ E.

• A graph is a tree if it is connected and has no cycles.
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(a) (b) (c)

Figure 2.1: Examples of a graphs with four vertices. The graph in (a) has 5 edges:
Ea = {(1, 2) , (2, 1) , (1, 4) , (2, 3) , (4, 4)}. The undirected graph in (b) has 4 edges
Eb = {(1, 2) , (1, 4) , (2, 3) , (4, 4)}. The graph in (c) is simple and contains 3 edges,
Ec = {(1, 2) , (1, 4) , (2, 3)}.

The notation of separation between subgraphs is important in the subsequent defini-

tion of a graphical model. Let A, B, and C be distinct subsets of V . The subset B

separates two other subsets of nodes if it is impossible to construct a path from A to

C without going through nodes in B. More formally, B is said to separate A and C

if and only if {(a, c) |a ∈ A, c ∈ C, a↔ c} = ∅ with respect to the subgraph GA∪C .

Pictorially, graphs can be drawn with circles representing vertices, and arrows con-

necting them representing edges. An arrow from vertex a to vertex b means that

(a, b) ∈ E. See Figure 2.1 for an example of a graph drawn in this way. When

drawing undirected graphs, we use lines instead of arrows. This implies the lack of

directionality in undirected graphs. See Figure 2.1 for examples of undirected and

simple graphs.
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2.2 Random Vectors and Conditional Independence

Consider a random variable X, with realization x. The space on which x takes values

is X , and its PDF is fX (x). To simplify notation, we use the symbol f to denote joint

and conditional distributions in general, where the associated random variables can

be inferred from the arguments. For example, f (x1), f (x1, x2) are the distributions

for X1 and (X1, X2), respectively; while f (x2|x1) is the distribution of X2|X1. The

random vector

X =

[
X1 X2 . . . Xm

]T
(2.1)

has the distribution

f : ⊗mv=1Xv → R+, (2.2)

where ⊗mv=1Xv denotes the product space X1 ×X2 × . . .×Xm.

In general, there are many ways to factor f (x) depending on the ordering of the

random variables. One factorization is

f (x) = f (x1) f (x2|x1) f (x3|x2, x1) · · · f (xm|xm−1, xm−2, . . . x1) . (2.3)

A more simple expression may be obtained if any of the random variables are condi-

tionally independent. For example, if X1 is independent of X3 given X2 (written as

X1 ⊥ X3|X2), then f (x1, x3|x2) = f (x1|x2) f (x3|x2). Thus f (x3|x2) = f (x3|x2, x1)

and

f (x) = f (x1) f (x2|x1) f (x3|x2) f (x4|x3, x2, x1) · · · f (xm|xm−1, xm−2, . . . x1) . (2.4)
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Note that the third function in this product is a function of two variables, and not

three, like in the general case. The ability to simplify the joint distribution based on

conditional independence has important consequences for inference and estimation

algorithms.

If the random variables are independent, then f (x) =
∏m

v=1 f (xv), with x = (x1, x2, . . . , xm).

If the random variables form a Markov chain, X1 → X2 → · · · → Xm, then

f (x) = f (x1) f (x2|x1) f (x3|x2) · · · f (xm|xm−1).

2.3 Graphical Models

Consider a set of random variables, Xv, each one associated with a vertex of a simple

graph G = (V,E), where v ∈ V . The space on which realizations of the random

variables take values is denoted Xv. Denote the random vector of m random variables

for the graph as X, and a realization as x. When A is a subset of V , the random

vector over A is denoted XA, and a realization is xA.

Markov random processes can be characterized by a set of conditional independence

statements of the form XA ⊥ XC |XB. A Markov chain, for example, is a random

processX1, X2, . . . , Xn for whichXA ⊥XC |X i for any i where A = (X1, X2, . . . Xi−1)

and C = (Xi+1, Xi+2, . . . Xn). Below, we define the notion of a random vector being

Markov with respect to a graph, using the notion of graph separation defined in the

previous section. Then a graphical model is defined in terms of the factorization of the

PDF into a product of functions defined on the cliques of the graph. These functions

are called compatibility functions, and the domains of these functions is the product

spaces of their vertices: ψC : ⊗v∈CXv → R+. The Hammersley-Clifford Theorem
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connects the two definitions, and allows us to directly state the Markov properties of

a graphical model.

Definition 2.1. Let A, B, and C be distinct subsets of V . A random vector X defined

on the vertices of a graph G is Markov with respect to G if and only if XA ⊥XC |XB

whenever B separates A and C.

Definition 2.2. A graphical model is a distribution for the random vector X de-

fined on a graph G that factorizes as f (x) = 1
Z

∏
C∈C ψC (xC), where C is the set

of all cliques and Z =
´
⊗vXv

∏
C∈C ψC (xC) is a normalizing constant ensuring that

´
⊗vXv f (x) = 1.

The dependencies between the random variables may be expressed using a simple

graph. If two nodes in the graph are connected, then the corresponding random

variables are dependent. The following is the Hammersley-Clifford Theorem.

Theorem 2.1. If f is a graphical model for X on G, then X is Markov with respect

to G. Conversely, if X is Markov with respect to G, then there exists a graphical

model f for X on G.

Proofs of this theorem can be found in [35, 36]. For the case of trees, the cliques are

either the single vertices themselves, with compatibility functions ψv (xv), or pairs of

vertices, with compatibility functions ψa,b (xa, xb). The graphical model for X with

respect to a tree is the normalized product of the clique potentials. In this case the

PDF factorizes as

f (x) =
1

Z

∏
v∈V

ψv (xv)
∏

(a,b)∈E

ψa,b (xa, xb) , (2.5)
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since the cliques are the nodes themselves and pairs of nodes in the case of a tree.

One consistent definition of the clique potentials is

ψv (xv) = f (xv) , (2.6)

and

ψa,b (xa, xb) =
f (xa, xb)

f (xa) f (xb)
. (2.7)

Equivalently, we can have the functions in Equation 2.6 for all vertices a for which

|N (a)| = 1, and ψv (xv) = 1 otherwise. Then the compatibility functions for pairs of

connected vertices is ψa,b (xa, xb) = f (xa|xb) or ψa,b (xa, xb) = f (xb|xa).

2.4 Algorithms for Graphical Models on Trees

In this section, algorithms for computing marginal functions of a given function

f (x1, x2, . . . , xm) are described that are more efficient than brute force methods.

These algorithms are especially efficient when the function factorizes into a prod-

uct of functions of one or two variables, and capitalize on this factorization. For

example, consider a function over a discrete space that factorizes as f (x1, x2, x3) =

g (x1) g (x1, x2) g (x2, x3). The computation of

f (x2) =
∑
X1

∑
X3

f (x1, x2, x3) , (2.8)

requires |X1| |X3| computations. For functions of many variables with large domains,

this procedure quickly becomes unfeasible. Instead, we may take advantage of the
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factorization and instead compute

f (x2) =

(∑
X1

g (x1) g (x1, x2)

)(∑
X3

g (x2, x3)

)
. (2.9)

This requires |X3| + 2 |X1| + 1 computations. This is a large improvement when the

domains are large.

A graph may be defined for any function that describes its factorization. If each

variable of this function is represented by a node in a graph, we connect nodes with

undirected edges that are in one of the product terms. This leads to a graph where

each clique is the domain of one of the product functions in the factorization. Figure

2.2 shows the graph for the above example, where the corresponding clique potential

functions are:

ψ1 (x1) = g (x1) ,

ψ1,2 (x1, x2) = g (x1, x2) ,

ψ2,3 (x2, x3) = g (x2, x3) .

The algorithms in this section can be visualized as passing messages along the edges

of such a graph. Specific instances of these message passing alogirthms include the

forward-backward algorithm [37] and the Viterbi algorithm [38, 39], which is a special

case of computing the mode.
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Figure 2.2: Graph for a function that factorizes as f (x1, x2, x3) =
g (x1) g (x1, x2) g (x2, x3).

2.4.1 Computing Marginal Distributions

The algorithms described here are for computing marginal distributions, f (xa) asso-

ciated with a single vertex for a Markov random vector X with respect to a tree G.

Joint distributions over a subset of the variables can also computed in the process.

An efficient algorithm, known as the sum-product algorithm, can be used to com-

pute marginal distributions f (xA), where A is any subset of the nodes. A message is

defined from vertex a to vertex b according to

ma,b (xb) =

ˆ
Xa

ψa (xa)ψa,b (xa, xb)
∏

k∈N (a),k 6=b

mk,a (xa)

 . (2.10)

The integral is this expression represents a summation in the case of a discrete domain

Xa. Each message from node a to node b involves a summation over its domain and a

product over all other messages to node a, except for the message from node b to node

a. After all of the messages are passed, any marginal distribution can be computed

as

f (xa) =
1

Z
ψa (xa)

∏
b∈N (a)

mb,a (xa) . (2.11)

If a joint distribution is required, then the same messages are computed, except that

the integral in Equation 2.10 for variables in the desired joint distribution should be
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omitted. The messages may be functions of multiple variables in this case, and not

only a function of the variable associated with the node that the message is passed

from. Then, the joint distribution is computed by Equation 2.11 on any one of the

joint variables. For example, we can compute f (xa, xb) by

f (xa, xb) =
1

Z
ψa (xa)mb,a (xa, xb)

∏
i∈N (a)
i 6=b

mi,a (xa) , (2.12)

where

mb,a (xa, xb) = ψb (xb)ψa,b (xa, xb)
∏

k∈N (b),k 6=a

mk,b (xb) . (2.13)

2.4.2 Computing the Mode

For the random vector X, the mode is given by

x̂ = arg max
⊗vXv

f (x) . (2.14)

The mode may be computed using the max-product algorithm, which is similar to

the sum-product algorithm. In the sum-product algorithm, the variable that the

each message is passed from is summed out of the message. For the max-product

algorithm, we take the max instead of the sum. The messages are computed using

ma,b (xb) = max
Xa

ψa (xa)ψa,b (xa, xb)
∏

k∈N (a),k 6=b

mk,a (xa)

 . (2.15)

Some of the nodes may be left out of the mode computation if desired. In this case,

the max is computed over only those nodes of interest in the graph. To compute

the ith value of x̂, we compute the following max-marginal function, analogous to
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Equation 2.11:

g (xi) , max
⊗Xa
a6=i

f (x) (2.16)

=
1

Z
ψ (xi)

∏
b∈N (i)

mb,i (xi) . (2.17)

Finally, we compute

x̂i = arg max
xi∈Xi

g (xi) . (2.18)

The procedure of computing the maximizing values x̂i is sometimes called backtrack-

ing. These values are the mode of the random vector. More details on the max-

product algorithm can by found in the paper by Wainwright [40].

2.4.3 Inference on a Hidden Markov Model

The structure of a Hidden Markov Model (HMM) is shown in Figure 2.3. There

are 2m nodes in this model. Each of the xi nodes corresponds to a discrete random

variable Xi with support Xi. These random variables correspond to an underlying

process, and they form a Markov chain. Each of the yi nodes corresponds to a discrete

or continuous random variable Yi with support Yi. These nodes correspond to the

measured data.
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Figure 2.3: A Hidden Markov Model.

The compatibility functions are:

ψxi (xi) =


f (x1) , i = 1

1, else,

(2.19)

ψxi,xi+1
(xi, xi+1) = f (xi+1|xi) , (2.20)

ψyi (y) = 1, (2.21)

ψxi,yi (xi, yi) = f (yi|xi) . (2.22)

From Equation 2.5, the joint distribution of all of the random variables is

f (x,y) =
∏
v∈V

ψv (xv)
∏

(a,b)∈E

ψa,b (xa, xb) (2.23)

= f (x1) f (y1|x1) f (x2|x1) f (y2|x2) · · · f (xm|xm−1) f (ym|xm) .(2.24)

Often, we are interested in computing f (xi|y) and f (xi, xi+1|y). These marginal

distributions are important for the estimation of parameters in the expectation max-

imization algorithm. Since y is included in these marginal distributions, we do not
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need to compute the messages from yi to xi. From Equation 2.11

f (xi|y) =
1

Z
mxi−1,xi (xi|y1, . . . , yi−1)mxi+1,xi (xi|yi+1, . . . ym) f (yi|xi) . (2.25)

The right side of this equation is equal to 1
Z
f (xi,y), and f (xi|y) is computed using

the normalizing factor Z = f (y). This can be viewed as a two part computation. In

the first part, we compute backward messages, and in the second part, we compute

forward messages. The forward part is computed by

mx1,x2 (x2|y1) =
∑
x1

f (x1) f (x2|x1) f (y1|x1) , (2.26)

mx2,x3 (x3|y1, y2) =
∑
x2

f (x3|x2) f (y2|x2)mx1,x2 (x2|y1) , (2.27)

...
... (2.28)

mxi−1,xi (xi|y1, . . . , yi−1) =
∑
xi−1

f (xi|xi−1) f (yi−1|xi−1)mxi−2,xi−1
(xi−1|y1, . . . , yi−2) .

The backward part is computed by

mxm,xm−1 (xm−1|ym) =
∑
xm

f (xm|xm−1) f (ym|xm) , (2.29)

mxm−1,xm−2 (xm−2|ym−1, ym) =
∑
xm−1

f (xm−1|xm−2) f (ym−1|xm−1)mxm,xm−1 (xm−1|ym) ,

...
... (2.30)

mxi+1,xi (xi|yi+1, . . . ym) =
∑
xi+1

f (xi+1|xi) f (yi+1|xi+1)mxi+2,xi+1
(xi+1|yi+2, . . . , ym) .

In this way, any of the f (xi|y) may be computed. The joint distribution f (xi, xi+1|y)

is computed by

f (xi, xi+1|y) ∝ mxi−1,xi (xi|y1, . . . , yi−1) f (yi|xi) f (xi+1|xi) · (2.31)
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f (yi+1|xi+1)mxi+2,xi+1
(xi+1|yi+2, . . . , ym) .

The distribution of y is the normalizing constant for the distribution of xi, and may

be computed by

f (y) =
∑
xi

f (xi,y) , (2.32)

for any xi.

2.4.4 Inference on Nested Hidden Markov Models

Each of the f (yi|xi) in the HMM may be another HMM. We can denote levels of

HMMs using superscripts. The top level is x
(1)
i , y

(1)
i , the second level is x

(2)
i,j , y

(2)
i,j , and

so on. In this case, inference is performed in a straightforward manner. Whenever

computation of f
(
y
(p)
i |x

(p)
i

)
is required, an inference algorithm is performed on the

(p+ 1)th level.

Consider Figure 2.4, which shows a nested HMM containing two levels. The y
(1)
i

variables represent all of the variables in the corresponding HMM in the next level,

so that y
(1)
i =

(
x
(2)
i,1 , x

(2)
i,2 , . . . , x

(2)
i,n, y

(2)
i,1 , y

(2)
i,2 , . . . , y

(2)
i,n

)
. Only observed variables in the

bottom level represent the data, and these variables may be denoted simply as y(2).

First, consider the computation of f
(
x
(1)
i |y(2)

)
for any i. This is computed by mul-

tiplying forward and backward functions

f
(
x
(1)
i |y(2)

)
=

1

Z
m
x
(1)
i−1,x

(1)
i

(
x
(1)
i |y

(2)
1 , . . . ,y

(2)
i−1

)
mxi+1,xi

(
x
(1)
i |y

(2)
i+1, . . .y

(2)
m

)
f
(
y
(2)
i |x

(1)
i

)
.
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Figure 2.4: A nested HMM.

The forward part is computed by

m
x
(1)
1 ,x

(1)
2

(
x
(1)
2 |y

(2)
1

)
=

∑
x
(1)
1

f
(
x
(1)
1

)
f
(
x
(1)
2 |x

(1)
1

)
f
(
y
(2)
1 |x

(1)
1

)
, (2.33)

m
x
(1)
2 ,x

(1)
3

(
x
(1)
3 |y

(2)
1 ,y

(2)
2

)
=

∑
x
(1)
2

f
(
x
(1)
3 |x

(1)
2

)
f
(
y
(2)
2 |x

(1)
2

)
m
x
(1)
1 ,x

(1)
2

(
x
(1)
2 |y

(2)
1

)
,

...
...

m
x
(1)
i−1,x

(1)
i

(
x
(1)
i |y

(2)
1 , . . . ,y

(2)
i−1

)
=

∑
x
(1)
i−1

f
(
x
(1)
i |x

(1)
i−1

)
f
(
y
(2)
i−1|x

(1)
i−1

)
m
x
(1)
i−2,x

(1)
i−1

(
x
(1)
i−1|y

(2)
1 , . . . ,y

(2)
i−2

)
.
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Each of these steps requires computation of the lower level, f
(
y
(2)
i |x

(1)
i

)
, which uses

another sum-product algorithm via Section 2.4.3. The backward part is computed by

m
x
(1)
m ,x

(1)
m−1

(
x
(1)
m−1|y(2)

m

)
=

∑
x
(1)
m

f
(
x(1)m |x

(1)
m−1

)
f
(
y(2)
m |xm

)
, (2.34)

m
x
(1)
m−1,x

(2)
m−2

(
x
(1)
m−2|y

(2)
m−1,y

(2)
m

)
=

∑
x
(1)
m−1

f
(
x
(1)
m−1|x

(1)
m−2

)
f
(
y
(2)
m−1|x

(1)
m−1

)
·

m
x
(1)
m ,x

(1)
m−1

(
x
(1)
m−1|y(2)

m

)
, (2.35)

...
...

m
x
(1)
i+1,x

(1)
i

(
x
(1)
i |y

(2)
i+1, . . .y

(2)
m

)
=

∑
x
(1)
i+1

f
(
x
(1)
i+1|x

(1)
i

)
f
(
y
(2)
i+1|x

(1)
i+1

)
m
x
(1)
i+2,x

(1)
i+1

(
x
(1)
i+1|y

(2)
i+2, . . . ,y

(2)
m

)
.

In this way, any of the f
(
x
(1)
i |y(2)

)
may be computed. Computation of the joint

distribution f
(
x
(1)
i , x

(1)
i+1|y(2)

)
, similarly to the single HMM case, is computed by

f
(
x
(1)
i , x

(1)
i+1|y(2)

)
∝ m

x
(1)
i−1,x

(1)
i

(
x
(1)
i |y

(2)
1 , . . . ,y

(2)
i−1

)
f
(
y
(2)
i |xi

)
f
(
x
(1)
i+1|x

(1)
i

)
(2.36)

·f
(
y
(2)
i+1|x

(1)
i+1

)
m
x
(1)
i+2,x

(1)
i+1

(
x
(1)
i+1

)
.

The distribution of y(2) is the normalizing constant for the distribution of x
(1)
i , and

may be computed by

f
(
y(2)
)

=
∑
x
(1)
i

f
(
x
(1)
i ,y(2)

)
, (2.37)

for any x
(1)
i .

This procedure may be performed on any number of nested HMMs.
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Chapter 3

Models for Biological Signals

A model is an approximate description of data acquired under a specific set of con-

ditions. Since all models are approximate, there is no notion of a single true model.

Some models may be successful in certain applications, and others may be successful

in other applications. Trial and error plays an important role in the experimental

evaluation of models, and the prediction of performance for an application becomes

a critical component. However, this does not mean that model based design is an

entirely guess and check operation. There is a significant knowledge base related to

the underpinnings of biological signals. In many cases, quantitative analysis rooted in

the fundamental laws of physics which is common to engineering design is not avail-

able for the complicated physiological processes that are responsible for generating

biological signals. When they are available, they are often too complex for efficient

computation. Thus, model design benefits from, and can be built upon, previous

work, but often requires a flexible approach to incorporate many different views.

Processing biological signals is a challenging task due to the complexities of the human

body. Basic principles of physics may be used to construct models that are of great

use [41]. However, some of these models do not accurately represent the richness of
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the signal. Despite this, they are enormously useful for preliminary modeling and ac-

quiring a fundamental understanding of the underlying process. In other approaches,

digital signal processing tools from other domains are applied to either help remove

certain unwanted components of the signal [42, 43], or extract only the components

that are deemed necessary for some application [44]. These methods sometimes lack

a connection with the basic phenomenology. A special issue of the IEEE Transactions

on Biomedical Engineering [45] focused on signal processing and modeling for heart

rate series and related data.

The approach described in this dissertation is a combination of the two, and some-

times leaning more towards one direction than the other. Models are developed with

the underlying physiology at the core of the design, but ultimately the models may

deviate from this basis. In this chapter, examples for biological signals are presented,

including a description of the underlying physiology. Examples are given of the elec-

trical activity of the heart, blood flow through the arterial and venous systems, and

respiration. Commonality between these signals motivates a modeling framework

that utilizes the tools from Chapter 2.

3.1 Biological Signals

We begin by describing three different types of biological signals, resulting from dif-

ferent, but deeply related physiological processes. The first two involve the flow of

blood in the cardiovascular system. The nature of blood flow through the vessels is

impacted by numerous factors, such as the elasticity of the vessel walls, the blood

density, and the geometry of the vasculature. All of these factors affect the pressure

at any point along the vasculature, which is a mechanical quantity. In the second
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example, the measured activity is generated from the electrical activity of the heart.

The heart is the central organ in the cardiovascular system, and it is regulated and

activated electrically. Respiration, which may be the simplest of the three examples

functionally, may be the most difficult to quantify because it is partially autonomous.

Therefore, the underlying biological process may be difficult to infer from measure-

ments. These descriptions are valid under normal conditions for healthy individuals.

For some applications, however, it may be of interest to detect deviations from the

norm.

3.1.1 Examples of Biological Signals

Blood, which is the carrier of oxygen among other purposes, is provided to the tissues

of the body through the systemic circuit. It is pumped from the heart to the large

arteries, and enters progressively smaller vessels until the capillaries are reached.

These are extremely small vessels that aid the transfer of oxygen from the blood

to the tissues. Carbon dioxide is exchanged into the blood, where it is eventually

transported to the lungs and expelled. The resulting deoxyginated blood returns

through the veins, and enters the heart in the right atrium. In the heart, blood

from the pulmonary circuit is transferred to the systemic circuit. Figure 3.1 shows

a depiction of blood circulation1. When the atria contract, this blood flows into

the right ventricle. After ventricle contraction, it is forced through the pulmonary

arteries and enters the lungs, where the blood is oxygenated. This oxygen rich blood

returns to the heart into the left atrium, and goes into the left ventricle after the

atria contract. Once again, when the ventricles contract, blood is pumped into the

systemic arteries.

1Drawing in the public domain by Mariana Villarreal
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Figure 3.1: A drawing of the circulatory system.
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Figure 3.2: Blood pressure recordings of systemic arterial pressure, pulmonary arterial
pressure, and central venous pressure.

The heart pumps blood into both circuits simultaneously. Atrial contractions push

blood from the left and right atria into the left and right ventricles, respectively.

There is no pathway between the left and right halves of a healthy heart. Ventricle

contractions pump blood into the systemic and pulmonary arteries.

Blood pressure is highest in the arteries, although during the cardiac cycle the pressure

typically changes by approximately 60 mmHg there. As blood travels into smaller

vessels, the pressure drops, and the flow changes from being pulsatile to more regular.

The veins have the lowest pressure, and the highest volume. The pressure in the

pulmonary circuit is much lower than in the systemic circuit. Pulmonary arteries

fluctuate by approximately 20 mmHg during the cardiac cycle. Figure 3.2 shows

three blood pressure signals recorded simultaneously: arterial pressure, pulmonary

arterial pressure, and central venous pressure2.

The heart is stimulated electrically through the myocardium, which is the conductive

outer layer of the heart. An initial pulse is sent out from the sinoatrial node, which

2Data from the Massachusetts General Hospital/Marquette Foundation (MGH/MF) Waveform
Database
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is located in the right atrium. This pulse activates the heart, and the regular timing

of this pulse is the pacemaker of the heart. The atria contract soon afterwords. This

pulse travels through the myocardium, where it reaches the atrioventricular node.

Here it is delayed through slower conducting tissue, until the second pulse is released,

contracting the ventricles.

Measurements of the electrical activity of the heart can be made from the skin surface

using a pair of electrodes. These electrodes can be placed in many different configura-

tions, each one of which recording a different angle of the same phenomenon. Typical

electrode placement, such as the lead I configuration, measures the potential different

from the left arm to the right arm. Lead II measures the potential difference between

the left leg and the right arm. Figure 3.3 shows an example of three ECG leads 3.

As blood flows into the lungs, and through the capillaries of the lungs, oxygen is

exchanged to and from the alveoli via diffusion. The carbon dioxide is forced from

the alveoli through the bronchioles and into the trachea by the compression of the

lungs. Oxygen is fed into the alveoli through the same pathways, where it diffuses

into blood cells. Properties of the lungs that affect breathing and the exchange of

oxygen include the elasticity and maximal volume of the lungs. Figure 3.4 shows a

respiration signal.

3.1.2 Applications for Biological Signals

Biological signals find use in a wide variety of domains. From the above discussion, it

is clear that they harbor significant information about the physiological state of the

3Data from the Massachusetts General Hospital/Marquette Foundation (MGH/MF) Waveform
Database
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Figure 3.3: Three electrocardiogram channels: (a) lead I, (b), lead II, and (c) lead V.
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Figure 3.4: A respiration signal.

individual. Depending on the application, this information may be exploited in dif-

ferent ways. For each of the applications described below, a system may be designed

that utilizes one or more biological signals to make decisions about an individual.

The system may require the use of a human observer, or may operate on an auto-

mated basis. Since human judgment is subjective and frequently prone to error, an

automated system may perform better. In addition, there are often hidden compo-

nents to the signals that may require extensive computation to elicit. However, fully

computerized systems need to be thoroughly tested before deployment, and require

good models for the data.

In clinical settings, biological signals may be used to detect abnormalities, either in

terms of universal norms, or with respect to the individual patient. Such systems

may operate as one step in a screening process, or they may act exclusively. Oper-

ational choices depend on the specific application and the predicted performance of

the system. As one example, the ECG may be used to detect ischemic, or abnormal,

heart beats. If the sinoatrial node is not firing appropriately, this may be inferred

from the ECG. Having models that incorporate the activity of the sinoatrial node is

essential for this application.
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Another application is in first response scenarios, where an individual may be injured

or suffering from an immediate condition. In this case, probing the state of the

individual from a distance may be important, especially if the individual is in a

precarious environment.

Detecting the onset of disease is often critical for its successful treatment. In some

cases, the likelihood of acquiring a disease may be detected and if proper action is

taken, it can be avoided entirely. This preventive approach should be a vital part of

the health care system. Effectively, this is a transition of monitoring devices and pro-

cessing tools from the hospital into private homes, and on mobile devices. Due to the

proliferation of smaller and faster mobile devices, this possibility is quickly becoming

a reality. In this approach, a combination of efficient sensors, smart algorithms, and

communication systems combine to form a cohesive health assessment. The use of

information processing techniques for biological signals in this application is critical

to fully utilize what may be a less than optimal signal, compared to hospital settings.

There are numerous security applications as well. Detecting the state of the indi-

vidual, whether or not someone is fearful or nervous, for example, using a biological

measurement may be of great interest. The body’s response to nervousness is wide

spread. Blood pressure, for example, rises significantly when the individual is sub-

jected to various types of stressors. Another security application is the verification

or detection of identity. Some biological signals may contain individualized aspects,

such as respiration patterns, heart rate pattern, and other cardiovascular parameters.

In the identity verification scenario, an individual claims a certain identity, and the

system needs to either accept or reject this claim on the basis of a measured biological
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signal. This problem is addressed using the LDV signal in Chapter 7. In the iden-

tity detection scenario, the system needs to identify the individual using biological

measurements without any other input.

3.2 Motivation for a Structured Modeling Frame-

work

There are a number of approaches that can be taken in designing a system for any

of the applications mentioned above. Such a system can be thought of as providing

a judgment on the individual on the basis of measured data.

System performance is typically evaluated on the basis of experimental data. If the

physiological understanding is thorough and tractable, then the performance may

be analytically computed. This is rarely the case for biological signals, since the

underlying mechanics are often exceedingly complex. Therefore, for any system, we

may predict its performance on the basis of experimental data containing possibly

contaminated ground truth. Due to the nearly endless variety of possible systems, we

cannot approach the problem of system design merely by trial and error. The search

for high performance systems needs to have more structure.

In classical multiclass detection problems where the underlying probability distribu-

tions for the classes are known, the optimal decision boundaries may be computed.

In the problems of interest, the underlying distributions are not known. In fact, the

notion of a true distribution is troublesome. However, if the assumed distributions

are close fits to experimental data, then we have a well grounded motivation to use

these models in the system.
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This provides a link between finding well fitting models and system design for the

application of interest. Another advantage of modeling first is that the models may be

used in a variety of applications. Also, by starting from simple models and gradually

increasing complexity, we can gain an understanding of the underlying process that

generates the data, and consequently the use of the models in applications.

Commonalities between biological signals motivate a general framework for signal

models. The example signals described above are recorded simultaneously from the

same individual, and are driven, in part, by the same complex system. One aim

of this work is to develop information processing and modeling techniques that are

applicable to a wide variety of biological signals. This requires a basic understanding

of the commonality between these signals, which is a hint to the structure of the

model.

Cardiovascular signals are semi-periodic. There are segments of the signal that re-

peat at intervals equal to the inter-beat intervals. Although these segments are not

identical, they are often similar. Some of the models developed in this chapter and

evaluated in the next chapter capitalize on this periodicity. The respiration pulse

is also semi-periodic, at a larger period than the blood pressure and ECG signals.

The segments associated with each lung cycle contain information pertaining to the

respiratory system. We define each of these segments as a pulse, and this is valid

both for the cardiovascular and respiratory signals.
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3.3 Notation for the Data

We consider continuous, real valued signals acquired from an individual from time

t′ = 0 to t′ = tz, which can be viewed as the output of a biological system. There may

be multiple sessions recorded for the individual. The signal from session s is denoted

ys (t′). These signals are sampled and quantized, resulting in the discrete time signals

ys [t] = ys (tT ), where T is the sampling period and t ∈
{

0, 1, 2, . . . ,
⌊
tz
T

⌋}
. The set

of signal points from ta to tb inclusive is denoted as ys [ta : tb]. If we have multiple

sessions, then the data are a set of signals, (y1 [t] , y2 [t] , . . . , ym [t]).

The pulses for session s occur at times ps,1, ps,2, . . . , ps,ns , where ns is the number

of pulses from session s. Let their discrete counterparts be qs,1, qs,2, . . . , qs,ns , where

qs,i =
⌊ps,i
T

⌋
. The number of samples in the ith pulse is zs,i = qs,i+1 − qs,i. In this

way, the ith pulse can be extracted from the signal by ys,i [t] = ys [qi : qi+1 − 1], where

t = {0, 1, . . . , zs,i − 1}. When convenient, the time index may also be written as a

subscript, ys,i,t.

If the pulse lengths are identical, z = zs,i ∀s, i, then the pulses from one session can

be organized into a z × n data matrix as follows,

ys =



ys,1,0 ys,2,0 · · · ys,n,0

ys,1,1 ys,2,1 · · · ys,n,1
...

...
. . .

...

ys,1,z−1 ys,2,z−1 · · · ys,n,z−1


.
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In this case, there are mnz samples in the data. A single pulse is represented by a

column vector as follows,

ys,i =



ys,i,0

ys,i,1
...

ys,i,z−1


.

Figure 3.5 shows the data hierarchy for y. The arrows indicate physiological changes

that occur between portions of the data. Red arrows denote changes across sessions,

green arrows denote changes across pulses, and blue arrows denote changes within a

pulse. These changes are described in the next section.

3.4 State Based Modeling

Biological signals depend on many internal properties, which may include factors such

as heart rate, arterial stiffness, and breathing phase. In the clinical domain, the goal

may be to accurately estimate one or more of these properties in situations where it

may not be feasible to measure them directly. In some cases, it may be acceptable to

assume that these properties remain constant. For example, the arterial stiffness is not

likely to change over the course of several heart beats. If, however, measurements are

made over longer periods of time, then the models used should incorporate changes

in the underlying arterial properties. We can organize these underlying properties

into a hierarchical structure based on their duration of effect. Three such categories

are identified:

• Pulse: state changes with a pulse, short term
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Figure 3.5: Hierarchy of the data.
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Pulse Session Multisession

Sinoatrial electrical activity Breathing phase Drugs
Atrioventricular electrical activity Heart rate Weight

Ventricular ejection Mental stimulation Arterial plaque
Atrial blood pressure Physical exercise Vasculature geometry

Table 3.1: Categorized examples of the underlying properties for biological signals.

• Session: state changes across pulses within one recording session, medium term

• Multisession: state changes across multiple sessions, long term

Table 3.1 contains examples of these categories.

For any point in time, each of these properties has some value associated with it. We

may assume that the range of possible values is discrete; in this case, they belong to

some state. Over time, the state changes, and it may be possible to infer this change

from the measured signal. Collectively, we consider a set of states for each category

defined above. We can choose to include any subset of the three categories in a model,

so that there may be as many as three state types for each sample of the signal. The

state corresponding to ys,i [t] may be written as a triple: xs,i [t] = (xs, xi, xt), where

xs ∈ Xs is the multisession state, xi ∈ Xi is the session state, and xt ∈ Xt is the

pulse state. We will define probability density functions on portions of the data for

each state within a category. Biological signals are dependent on the state of the

individual, and their models therefore may need to account for this dependence.

In many cases, it is not practical to measure the state of the individual, although we

may be able to measure some of the underlying properties. Thus, they are largely

unknown to us. This presents a challenge when trying to model the signals. States

that are not directly measured are called hidden states, and ones that are measured

are called labeled states. The modeling framework presented in this chapter allows
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for a flexible construction of models that attempt to capture a variety of levels of

state changes.

A model may be trained from the data, by choosing to incorporate any combination of

the three state types. Thus, the model for an individual may contain three submodels.

We begin by choosing a model for a single pulse. In the next section, we describe

three such models. This model may or may not incorporate pulse states. Then we

may choose to include a session model for a sequence of pulses. Not choosing a session

model is equivalent to treating the pulses independently. Finally, a multisession model

may be chosen. Not choosing a multisession model is equivalent to treating sessions

independently.

3.5 Models

The models in this section are for testing data y, for which there are m sessions, n

pulses, and z samples per pulse. Training data, ỹ, are used to estimate parameters

of the model, for which there are m̃ sessions, ñ pulses, and z samples per pulse.

Three models for a single pulse, one model for a session, and one model for multiple

sessions are presented. A total of twelve different models may be constructed using

this framework. Table 3.2 lists these models, and organizes them into what state

types they are designed to capture.

If desired, the data may initially undergo a preprocessing step, such as a time-

frequency decomposition: y → y′. This may be useful for some applications, but

it does not change the model structure or the estimation algorithm for the param-

eters. However, the resulting models will be for the data in the processed domain.
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State Types Pulse Model Session Model Multisession Model

None
A - -
B - -

Pulse C - -

Session
A D -
B D -

Pulse & Session C D -

Multisession
A - E
B - E

Pulse & Multisession C - E

Session & Multisession
A D E
B D E

Pulse, Session, & Multisession C D E

Table 3.2: Eight model types.

Various types of transformations are not considered in this chapter, but are described

in the next chapter for LDV data.

The model descriptions below are for hidden states, and estimation procedures make

use of the iterative expectation maximization algorithm. Any combination of the state

types may be labeled. In this case, the Expectation Maximization (EM) algorithm

no longer becomes necessary for that state type. For these cases, the likelihood of the

state given the data f (x|ỹ) terms will be 0 or 1, depending on the label.

Recall that the data y consist of m sessions: y = (y1,y2, . . . ,ym). Each session

consists of n pulses: ys =
(
ys,1,ys,2, . . . ,ys,m

)
, and each pulse consists of z samples:

ys,i = ys,i,1, ys,i,2, . . . , ys,i,z (see Figure 3.5). Sections 3.5.1, 3.5.2, and 3.5.3 contain

descriptions of three different models for the pulse ys,i. Section 3.5.4 gives a model

for a session, where the pulses may be dependent on hidden or labeled states. The

model in Section 3.5.3 uses states that transition in a left to right manner, while

the states in the session model may transition to any other state. Finally, Section

3.5.5 contains a similar model for a sequence of sessions that track longer term states.
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These models may be combined by choosing a pulse model, and then choosing to

include state effects across pulses or sessions. For models with hidden states, the EM

algorithm is used [46, 47]. This algorithm requires inference to be performed on the

graph using the algorithms presented in Section 2.4.3. For more details on the EM

algorithm see Rabiner and Jordan [37, 13].

3.5.1 Pulse Model (A)

This model assumes that every sample of the pulse is drawn from a Gaussian random

variable,

ys,i,t = µ+ ωs,i,t, (3.1)

where the noise term is zero mean Gaussian, ωs,i,t ∼ N (0, σ2). The log density is

ln f
(
y;µ,σ2

)
=

m∑
s=1

n∑
i=1

z∑
t=1

(
−1

2
ln 2πσ2 − 1

2σ2
(ys,i,t − µ)2

)
(3.2)

= −mnz
2

ln 2πσ2 − 1

2σ2

m∑
s=1

n∑
i=1

z∑
t=1

(ys,i,t − µ)2 . (3.3)

There are 2 parameters in this model, and they are estimated using the training data:

µ̂ (ỹ) =
1

m̃ñz

m̃∑
s=1

ñ∑
i=1

z∑
t=1

ỹs,i,t, (3.4)

σ̂2 (ỹ) =
1

m̃ñz − 1

m̃∑
s=1

ñ∑
i=1

z∑
t=1

(ỹs,i,t − µ̂)2 . (3.5)
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3.5.2 Pulse Model (B)

In this model, the pulse has independent Gaussian components, but they may have

different parameters,

ys,i,t = µt + ωs,i,t, (3.6)

where the noise terms are zero mean Gaussian, ωs,i,t ∼ N (0, σ2
t ). The log density is

ln f
(
y;µ,σ2

)
=

m∑
s=1

n∑
i=1

z∑
t=1

(
−1

2
ln 2πσ2

t −
1

2σ2
t

(ys,i,t − µt)2
)

(3.7)

= −mn
2

z∑
t=1

ln 2πσ2
t −

z∑
t=1

1

2σ2
t

m∑
s=1

n∑
i=1

(ys,i,t − µt)2 . (3.8)

Maximum likelihood estimators for the 2z parameters in this model are:

µ̂t (ỹ) =
1

m̃ñ

m̃∑
s=1

ñ∑
i=1

ỹs,i,t, (3.9)

σ̂2
t (ỹ) =

1

m̃ñ− 1

m̃∑
s=1

ñ∑
i=1

(ỹs,i,t − µ̂t)2 . (3.10)

3.5.3 Pulse Model (C)

This model uses an HMM with z hidden variables, x = (x1, x2, . . . , xz) with identical

discrete domains:

xt ∈ {1, 2, . . . , q} , (3.11)

for any t. To draw a pulse from this model, the following steps are taken:

1. Draw x1 from f (x1),

2. Draw x2, . . . , xz from a Markov chain f (xt|xt−1),
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3. Draw samples ys,i,t from N
(
µxt , σ

2
xt

)
until a pulse is formed.

The model for the pulse given x is

ys,i,t = µxt + ωxt , (3.12)

where x1 → x2 → · · · → xz forms a Markov chain according to f (x1) and f (xt|xt−1),

and ωk ∼ N (0, σ2
k). The Markov chain is left to right, in the sense that f (xt = l|xt−1 = k) =

0 whenever l 6= k and l 6= k + 1 (see Figure 3.6). The log density is

ln f
(
y;p,µ,σ2

)
= ln

m∏
s=1

n∏
i=1

∑
x

p (x)
z∏
t=1

1√
2πσ2

xt

e
−

(ys,i,t−µxt)
2

2σ2xt , (3.13)

=
m∑
s=1

n∑
i=1

ln
∑
x

p (x)
z∏
t=1

1√
2πσ2

xt

e
−

(ys,i,t−µxt)
2

2σ2xt . (3.14)

The parameters are estimated using the EM algorithm which guarantees convergence

to a maximum likelihood estimate,

1. Initialize the parameter estimates: f̂ (0) (l|k), µ̂
(0)
k , σ̂

2(0)
k . Set a→ 1.

2. Use the graphical inference algorithm from Section 2.4.3 to compute

f (xt = k, xt+1 = l|ỹ) , f (xt = k|ỹ) .
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3. Update the parameter estimates by:

f (xt = l|xt−1 = k)(a) (ỹ) =

∑m̃
s=1

∑ñ
i=1

∑z−1
t=1 f (xt = k, xt+1 = l|ỹ)∑m̃

s=1

∑ñ
i=1

∑z
t=1 f (xt = k|ỹ)

, (3.15)

µ̂
(a)
k (ỹ) =

∑m̃
s=1

∑ñ
i=1

∑z
t=1 f (xt = k|ỹ) ỹs,i,t∑m̃

s=1

∑ñ
i=1

∑z
t=1 f (xt = k|ỹ)

, (3.16)

σ̂
2(a)
k (ỹ) =

∑m̃
s=1

∑ñ
i=1

∑z
t=1 f (xt = k|ỹ) (ỹs,i,t − µ̂k)2∑m̃

s=1

∑ñ
i=1

∑z
t=1 f (xt = k|ỹ)

.

4. Set a→ a+ 1. Check for convergence. Go to step 2.

In the case when the states x are labeled, the conditional distributions f (xt = k, xt+1 = l|ỹ),

f (xt = k|ỹ) are indicator functions taking on the following values:

f (xt = k|ỹ) =


0, xt 6= k,

1, xt = k,

(3.17)

f (xt = k, xt+1 = l|ỹ) =


0, (xt, xt+1) 6= (k, l) ,

1, (xt, xt+1) = (k, l) .

(3.18)

The above EM algorithm iterations turn into a single step, where the parameters are

weighted combinations of the labeled samples.

3.5.4 Session Model (D)

These are models for a sequence of pulses that capture variability from pulse to pulse,

and they require that one of the three pulse models is used. To draw a pulse from

this model, the following steps are taken:
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Figure 3.6: HMM topology for Model C.

1. Draw x1, x2, . . . , xn from a Markov chain f (xt|xt−1).

2. Draw pulses ys,i from a pulse model with parameters θ
′
xi

.

The Markov chain is full, in the sense that f (l|k) 6= 0 for all k, l. The log density is

ln f
(
y;p,µ,σ2

)
= ln

m∏
s=1

∑
x

p (x)
n∏
i=1

f
(
ys,i; θxi

)
, (3.19)

=
m∑
s=1

ln
∑
x

p (x)
n∏
i=1

f
(
ys,i; θxi

)
. (3.20)

The parameters are estimated using the expectation maximization algorithm,

1. Initialize the parameter estimates: f̂ (0) (l|k), θ
′(0)
k .

2. Use the graphical inference algorithm to compute: f (xt = k, xt+1 = l|ỹ), f (xt = k|ỹ).

3. Update the parameter estimates by:

p̂ (xt = l|xt−1 = k) =

∑m̃
s=1

∑ñ
i=1 f (xi = k, xi+1 = l|ỹ)∑m̃

s=1

∑ñ
i=1 f (xi = k|ỹ)

, (3.21)

θ̂k =

∑m̃
s=1

∑ñ
i=1 f (xi = k|ỹ) θ̂

′

k

(
ỹs,i
)∑m̃

s=1

∑ñ
i=1 f (xi = k|ỹ)

. (3.22)
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Figure 3.7: HMM topology for Models D and E.

This step requires estimating parameters in a pulse model (either A, B, or C).

For clarity, the estimates are repeated here for models A and B:

Model A: θ̂
′

k

(
ỹs,i
)

=
1

z

z∑
t=1

ys,i,t, (3.23)

Model B: θ̂
′

k

(
ỹs,i
)

= ys,i. (3.24)

Model C requires another EM algorithm to be performed.

4. Check for convergence. Go to step 2.

3.5.5 Multisession Model (E)

These are models for a sequence of sessions. One of the session models is embedded.

To draw a pulse from this model, the following steps are taken:

1. Draw x1, x2, . . . , xm from a Markov chain f (xt|xt−1).

2. Draw sessions ys from a session model with parameters θ
′
xs .

The Markov chain is full, in the sense that f (l|k) 6= 0 for all k, l. The log density is

ln f
(
y;p,µ,σ2

)
= ln

∑
x

p (x)
m∏
s=1

f (ys; θxs) . (3.25)

50



The parameters are estimated using the expectation maximization algorithm,

1. Initialize the parameter estimates: p̂(0) (l|k), θ
′(0)
k .

2. Use the graphical inference algorithm to compute: f (xt = k, xt+1 = l|ỹ), f (xt = k|ỹ).

3. Update the parameter estimates by:

p̂ (l|k) =

∑m̃
s=1 f (xs = k, xs+1 = l|ỹ)∑m̃

s=1 f (xs = k|ỹ)
, (3.26)

θ̂k =

∑m̃
s=1 f (xs = k|ỹ) θ̂

′

k (ỹs)∑m̃
s=1 f (xi = k|ỹ)

. (3.27)

This step requires estimating parameters in session model D, which in turn

requires estimating parameters in a pulse model.

4. Check for convergence. Go to step 2.
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Chapter 4

Laser Doppler Vibrometry

Measurements of the Carotid Pulse

A Laser Doppler Vibrometer (LDV) is a device which measures surface velocity on

the basis of the Doppler shift. A laser is targeted on the surface, and the change in

frequency of the reflected light is proportional to the velocity of the surface in the

direction of the beam. This reflected light is sensed in the same device. Laser Doppler

techniques have found use in measuring blood flow, called laser Doppler flowmetry,

for some time. This method requires contact with the subject, but is noninvasive, and

works by measuring the Doppler shift from illuminated blood cells traveling through

live tissue [48]. Some applications of this method include gastrointestinal [49], head

[50], and peripheral measurements of blood perfusion [51]. Aside from measuring

blood flow, laser Doppler techniques for measuring tissue surface velocity have not

been as common. One exception is the study of inner ear disorders [52, 53, 54]. In

[55], contact technique for measuring skin vibration is described. Experiments using

a noncontact LDV were performed in [56], in which quantitative comparisons were

made with electrocardiograms.
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4.1 Data Acquisition

A Polytec PSV-400 LDV with a 633 nm wavelength laser is targeted at a site on

the neck overlying the right carotid artery. This device uses a class II eye-safe laser.

We have chosen this site because we are able to detect a strong signal there. The

proximity of the carotid to the skin surface means that mechanical energy may be

sensed at the skin surface that originates from within the carotid due to the underlying

blood flow. A small patch of reflective tape was used to enhance the signal quality,

although subsequent tests without the tape indicate that the signal quality is nearly

identical in both cases.

Subjects were enrolled in this study with informed consent according to the regula-

tion of the IRB through Washington University School of Medicine. Broad health

information, including drug use, and history were recorded from all subjects. The

subjects varied in age between 18 and 66 years, and in demographics. After a brief

initial resting period, the recording sessions lasted 5 minutes, with the subjects at

rest during recording. The second session was recorded approximately one month

after the first, and a third session was recorded approximately five months after the

second. A total of 142 subjects are used from this protocol.

Another protocol was used in which a strain gauge is applied over the abdomen for

breathing information. The same LDV was used on 43 subjects for this protocol (22

females) ranging in age from 20 to 29 years, all non-smokers, with BMIs < 30, and

free from cardiovascular, pulmonary or other major diseases.
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4.2 Biological Basis

As a major vessel in the arterial tree, the carotid harbors significant information of

central cardiovascular activity. Its proximity to the skin surface makes it accessible

and thus an ideal targeting site. Mechanical vibrations, resulting from the underlying

blood flow and pressure waves in combination with the elasticity of the carotid walls

contribute to the measured signal. Other sources of mechanical activity are also

sensed, including activity from other parts of the body that is transmitted internally

to the measurement site, such as heart sounds. A variety of other movements including

those associated with respiration, speech and gross movements of the head, neck, and

body are also recorded.

Blood flow is a wave-like phenomenon in which a pressure wave originates from the

heart and travels through the arterial tree [57]. The wave speed varies across the

vasculature and is dependent on the elasticity of the arterial walls, but is typically 5

m/s on average, while the blood flow itself is at a much slower speed. Many of the

arteries are elastic vessels, and stretch and contract in accordance with the underlying

pressure. The pressure wave is reflected in numerous locations along its path due

to discontinuities and bifurcations, and the resulting pressure at a given location

is the constructive interference of multiple overlapping waves. Thus, the pressure

waveform contains significant information that is both clinically relevant and specific

to the individual. Information about the vessel wall elasticity and blockage that

may be causing extra reflections may be inferred from the pressure. The LDV signal

is not a direct pressure measurement, but it is clinically relevant. Quantitatively

connecting the measured signal with the underlying pressure is an important aim
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for the development of this technology. Analysis that contributes in this direction is

presented in Chapter 6.

4.3 Signal

A typical carotid LDV recording is shown in Figure 4.1, along with a simultaneous

ECG recording and a measurement of radial blood pressure. Most of the power in the

signal is contained within the band 0 Hz - 100 Hz, and there is approximately a 50 dB

drop across this band [58]. Each of the large velocity peaks in the data corresponds

to the initial activity of each heartbeat. Portions of the data which correspond to

the activity of a single heartbeat can be extracted, either in an automated basis

relying on LDV pulse signal features, or with the aid of an external signal, such as

a simultaneous electrocardiogram. These segments are called LDV velocity pulses, or

simply LDV pulses.

A prominent feature of the LDV pulse is the initial velocity peak coinciding with the

ejection of blood from the left ventricle. Figure 4.2 shows a single normalized LDV

pulse, and its normalized displacement pulse, called the LDV displacement pulse,

computed by taking the cumulative sum of the LDV velocity pulse. The LDV dis-

placement pulse is similar in shape to an arterial blood pressure waveform [59, 60],

and indeed shares many similarities to the underlying blood pressure pulse. In some

studies, the pressure-radius relationship in the carotid has been experimentally shown

to be approximately linear [61, 62]. This assumption is analytically explored through

the physics of fluid dynamics in Chapter 6. Due to the proximity (in many cases) of

the carotid wall to the skin surface, we expect that the LDV-sensed changes in dis-

placement associated with the pressure pulse will track the changes in the carotid’s
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Figure 4.1: Ten seconds of three signals recorded simultaneously: (a) carotid LDV
signal, (b) ECG, (c) radial blood pressure.
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Figure 4.2: An LDV velocity pulse and its corresponding LDV displacement pulse.
Both have been normalized by their sample means and sample standard deviations.

radius, and therefore of the underlying blood pressure profile. This observation is

further strengthened by considering physiologically relevant attributes that can be

extracted from the LDV pulse, such as an approximate measure of the left ventricu-

lar ejection time (LVET). LVET is the time interval between the opening and closing

of the aortic valve. We do not measure the LVET directly; instead we make infer-

ences about it from the form of the LDV pulses. The segment of the pulse waveform

corresponding to the closing of the aortic valve is marked in Figure 4.2 with a dotted

circle. We adopt the convention of labeling the pressure event associated with aortic

valve closure (i.e., end of the LVET) the incisura. The time interval between the

initial upstroke of the displacement waveform and the small notch corresponding to

the incisura can be used to approximate the LVET.

Over longer time intervals, breathing activity may be sensed in the LDV signal. This

activity is in a low frequency (approximately <0.5 Hz) portion of the signal, and may

be seen from the displacement waveform. The displacement is computed by taking

the cumulative sum of the velocity signal. In Figure 4.3, an LDV displacement signal
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Figure 4.3: Breathing activity in the LDV signal and a strain gauge: (a) an LDV
displacement signal over 25 seconds and the low frequency component, (b) a strain
gauge measurement over the abdomen.

and a simultaneous strain gauge placed over the abdomen are shown. The strain

gauge is used to measure respiratory effort.

Systematic changes are observed in the LDV pulse waveform from beat to beat, in-

cluding changes in the duration of LVET. In individuals at rest, this variability is

attributed to the respiration cycle, consistent with the hemodynamic changes asso-

ciated with inspiration and expiration. These effects are apparent only when the
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pulse signals are studied on a beat-to-beat basis, and are obscured by ensemble av-

eraging. There are other changes over successive pulses, varying in time course and

arising from multiple factors including autoregulatory reflexes, stress and metabolic

demands. The state of the individual, which refers to an unknown physiological con-

dition associated with each pulse, may change slowly or rapidly, and is inferred from

the measured signal.

4.4 Preprocessing

The LDV signal is sampled at 10 kHz, and downsampled to 1 kHz. A template

matching algorithm is used to extract LDV pulses. In some cases, manual adjustments

to the detection of the main peaks are made as necessary.

For some models, a short-time frequency decomposition is used. The goal is to con-

struct an instantaneous representation of the frequency contents of a signal. This

requires a synthesis window over which the Fourier transform is computed. There is

an intrinsic trade off between frequency resolution and time resolution. As the window

size increases, the frequency resolution increases, but the time resolution decreases.

On the other hand, as the window becomes shorter, the time resolution improves at

the expense of worse frequency resolution. Short-Time Fourier Transform (STFT)

methods have found application in many areas, such as speech processing.

The STFT is computed by,

X (nL, ω) =
∞∑

t=−∞

x [t]w [nL− t] e−jωt, (4.1)
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where w [n] is the window and L is the window shift. The window is nonzero inside

some support T , w [n] 6= 0 for −T < n < T . Since the STFT is an invertible

operation, we can reconstruct the original signal from its STFT, as long as L < T .

We will often use the magnitude STFT, defined by,

S (nL, ω) =

∣∣∣∣∣
∞∑

t=−∞

x [t]w [nL− t] e−jωt
∣∣∣∣∣ . (4.2)

Sufficient conditions for signal reconstruction from the magnitude STFT [63] are:

1. The window shift must be less than half of the window support: L ≤
⌊
T
2

⌋
,

2. The window length is greater than 2: T > 2,

3. The signal x [t] is one-sided,

4. The signal x [t] has at most T − 2L consecutive zeros between any two nonzero

samples,

5. The first L samples of x [t] are known, starting from the first nonzero samples.

These are not necessary conditions, but they are mild.

Three popular types of windows are the Gaussian, Hamming and Nuttall windows.

They are given by,

Gaussian: w (n) = e
− 1

2

(
α
n−1−N2
N/2

)2

, (4.3)

Hamming: w (n) = 0.54− 0.46 cos
2πn

N − 1
, (4.4)

Nuttall: w (n) = a0 − a1 cos
2πn

N − 1
+ a2 cos

4πn

N − 1
− a3 cos

6πn

N − 1
.
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Figure 4.4: The Gaussian, Hamming, and Nuttall windows are shown in (a), and
their spectra are shown in (b).

The values for the constants that are typically used are

α = 2.5,

a0 = 0.355768,

a1 = 0.487396,

a2 = 0.144232,

a3 = 0.012604.

Each of these windows trades off time resolution for frequency resolution. Figure 4.4

shows the three windows and their spectra. Of these windows, the Nuttall window

has the highest time resolution, but the lowest frequency resolution. An advantage of

this window, however, is that it has small sidelobes. The Hamming window has the

lowest time resolution and the highest frequency resolution. The Gaussian window is

in between the Nuttall and Hamming windows in both time and frequency resolution.

The Nuttall window is used in the spectral methods in this dissertation.
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Chapter 5

Experimental Evaluation of Models

for Laser Doppler Vibrometry

Based on the framework presented in Chapter 3, we consider 7 models, encompassing

the three types of state transitions described in that chapter. Each of the models

is trained and tested on the LDV data for each of the 142 individuals, over various

training and testing conditions. Table 5.1 lists these models, as well as the prepro-

cessing performed on the data, if any. The type refers to the combination of models

from the previous chapter. The states are assumed to be either hidden or labeled;

since we have only three sessions, we assume that the multisession states are labeled.

Model Preprocessing Type Pulse States Session States Multisession States

LDVA none A - - -
LDVB none B - - -
LDVBE none BE - - Labeled
LDVC STFT C Hidden - -
LDVCE STFT CE Hidden - Labeled
LDVBD none BD - Hidden -
LDVBDE none BDE - Hidden Labeled

Table 5.1: Modeled trained and tested on LDV data.
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Session 1a Session 1b Session 2a Session 2b Session 3a Session 3b

S1,1 Train (48) Test (48)
S1,2 Train (48) Test (48)
S1,3 Train (48) Test (48)

S2,2 Train (48) Test (48)
S2,3 Train (48) Test (48)

S3,3 Train (48) Test (48)

S12,2 Train (24) Train (24) Test (48)
S12,3 Train (24) Train (24) Test (48)

S13,3 Train (24) Train (24) Test (48)

S23,3 Train (24) Train (24) Test (48)

S123,3 Train (12) Train (12) Train (12) Test (48)

Table 5.2: Training and testing schedules.

For model evaluation, each session is divided into two halves (’a’ and ’b’) of 48 pulses

each. We use the training and testing schedule shown in Table 5.2 for each of the 7

models. The numbers in parenthesis are the number of pulses used from that session

for either training or testing purposes. In cases where multiple sessions are used for

training, the 48 pulses are divided evenly among the training sessions. There are

11 training and testing schedules, with 7 unique training sets resulting in a total of

49 unique models. To denote a specific model and schedule combination, we use a

dash between the model name and the schedule number. For example, Model LDVA

trained on schedule S1,1 is denoted LDVA − S1,1. The variety of training and testing

schedules allows us to compare how the models perform in varying conditions.

For a given model, the following steps are performed to evaluate the model fit:

1. Perform a preprocessing step, if any, on the training data: ỹ → ỹ′,

2. Estimate the model parameters using the estimation technique from Chapter 3:

θ̂ (ỹ′),
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3. Perform the same preprocessing step, if any, on the testing data: y → y′,

4. Compute the loglikelihood of the testing data given the trained model: Ls =

log f
(
y′|θ̂

)
.

The loglikelihood is a quantity that can be used to compare models with the same

preprocessing and that are tested on the same number of samples. Greater values

denote better fit. Table 5.3 shows the average loglikelihood score per sample across

the 142 individuals for the time domain models. The best models within session are

the LDVBD and LDVBDE models. Across sessions, the best model is the LDVB model.

The multisession models (E) do not help much. In fact training on two sessions and

testing on the second session is equally good on average when training only on the

second session. Training on two sessions and testing on the third, however, improves

the fit compared to training on only one session.

Confidence intervals are computed to provide a measure of accuracy, giving a 95%

confidence interval for each score. These are computed by assuming that the scores

computed from different individuals are independent. Since we assume that the scores

are independent, L will be approximately Gaussian by the central limit theorem. The

95% confidence interval is computed by, µ̂ ± 2σ̂, where µ̂ is the mean score for an

individual, and σ̂ is the sample standard deviation. The next chapter contains a

broader analysis of confidence intervals in the case of dependent samples for identity

verification. Table 5.4 shows the 95% confidence intervals for each of the models.
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Model S1,1 S1,2 S1,3 S2,2 S2,3 S3,3 S12,2 S12,3 S13,3 S23,3 S123,3

LDVA -8.8 -8.8 -9.0 -8.8 -9.0 -9.0 -8.8 -9.0 -9.0 -9.0 -9.0
LDVB -6.6 -7.4 -7.5 -6.6 -7.4 -6.6 -6.7 -7.1 -6.8 -6.8 -6.8
LDVBE - - - - - - -6.6 -7.2 -6.6 -6.6 -6.6
LDVBD -6.5 -7.8 -7.9 -6.5 -7.9 -6.5 -6.6 -7.4 -6.7 -6.6 -6.7
LDVBDE - - - - - - -6.5 -7.5 -6.5 -6.5 -6.5

Table 5.3: Average model fit in loglikelihood per sample for the 11 training and
testing schedules for time domain models.

Model S1,1 S1,2 S1,3 S2,2 S2,3 S3,3

LDVA ±2.2 ±3.0 ±3.0 ±3.0 ±3.0 ±3.0
LDVB ±0.6 ±1.7 ±1.5 ±0.6 ±1.8 ±0.6
LDVBE - - - - - -
LDVBD ±0.6 ±2.9 ±2.4 ±0.6 ±2.8 ±0.6
LDVBDE - - - - - -

Model S12,2 S12,3 S13,3 S23,3 S123,3

LDVA ±3.0 ±3.0 ±3.0 ±3.0 ±3.0
LDVB ±0.6 ±1.1 ±0.5 ±0.6 ±0.5
LDVBE ±0.6 ±1.2 ±0.6 ±0.6 ±0.6
LDVBD ±0.7 ±1.8 ±0.6 ±0.6 ±0.6
LDVBDE ±0.6 ±1.8 ±0.6 ±0.6 ±0.6

Table 5.4: Confidence intervals for the 11 training and testing schedules for time
domain models.
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5.1 Model LDVA

The first model, LDVA uses Pulse Model A with no session or multisession model.

This is a two parameter model, where the data y are assumed to be generated by

Equation 3.1. The fit for this model is the lowest of all the models, and the loglike-

lihoods are fairly consistent when training and testing on distinct sessions. Figure

5.1 shows score histograms for models S1,1 and S1,2. The similarity between these

histograms indicates that the fit is consistent across sessions, as can also be seen from

Table 5.3. The bottom histogram in the figure shows how many more individuals

from the S1,1 test there are than from the S1,2 for each score bin.

5.2 Model LDVB

Model LDVB uses Pulse Model B without any preprocessing. Figure 5.2 shows his-

tograms from S1,1 and S1,2. The scores from S1,2 are generally lower than those from

S1,1, showing the decrease in fit across sessions. Thus the improvement in fit over

model LDVA comes at the expense of a decrease in fit across sessions, although the

fit across sessions for this model is higher than the fit within session under LDVA.

To gain further insight, the best and worst fits for model LDVB − S1,2 are examined.

The best performing individual for LDVB − S1,2 is examined in Figure 5.3. The first

subfigure shows the model means along with pulses from the same session, while the

second subfigure shows the same means with pulses from the second session. For

this individual the score for LDVB − S1,1 is -6.2, and the score for LDVB − S1,2 is

-6.3, which is only a slight decreases. This across sessions fit is better than most

individuals had within session.
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Figure 5.1: Histograms across individuals for (a) model LDVA − S1,1, and (b) model
LDVA−S1,2. The histogram in (c) shows how many more individuals for LDVA−S1,1

there are than LDVA − S1,2 in each score bin.
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The worst performing individual for LDVB − S1,2 is examined in Figure 5.4. For this

individual the score for LDVB − S1,1 is -6.6, and the score for LDVB − S1,2 is -11.2.

This within session fit is the average fit within session. The reduction in fit across

sessions can be seen in the figure.

5.3 Model LDVC

Model LDVC uses Pulse Model C with 6 states, and a magnitude STFT in the

preprocessing step. This model is designed to track state changes within a pulse. A

Nuttall window was used, computing FFTs over 96 ms windows, sliding by 1 ms at

a time. Frequency bins up to 150 Hz were retained, resulting in 15 points that are

computed under each window frame. The number of states was chosen to account for

the main peak, the insicura, and time periods before and after these events.

5.3.1 Interpretation of Model LDVC

This model tracks state changes within a pulse in the magnitude STFT domain. The

mean training pulse for one individual along with its spectrum are shown in Figure

5.5. The pulse has been rescaled and shifted for presentation purposes.

After the model is trained, we then compute the most likely state sequence of the

mean pulse using the max-product algorithm from Chapter 2. The pulse has been

color coded according to the state sequence in Figure 5.6. In addition, the state tran-

sition probability matrix is shown. The algorithm partitions the pulse into sections

according to the model.
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Figure 5.2: Histograms across individuals for (a) model LDVB − 1, and (b) model
LDVB − 2. The solid red lines indicate the mean score and the dotted red line show
a standard deviation away from the mean. The histogram in (c) shows how many
more individuals for LDVB − 1 there are than LDVB − 2 in each score bin.
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Figure 5.3: Means for the best performing individual across sessions for models (a)
LDVB − S1,1 and (b) LDVB − S1,2 with several testing pulses.
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Figure 5.4: Means for the worst performing individual across sessions for models (a)
LDVB − S1,1 and (b) LDVB − S1,2 with several testing pulses.
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Figure 5.5: Mean spectrogram and pulse for an individual.
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4 0.986 0.015
5 0.985 0.015
6 1.000
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Figure 5.6: The result of the max-product algorithm on a mean pulse is shown in (a),
and the state transition probability matrix in shown in (b).
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We can use this for detecting pulses in an LDV signal that has not been labeled. First,

we need to modify the model to accommodate for the fact that it will not be run on

a single pulse, but on a raw signal. This is done by adding several buffer states. We

augment the state transition probability matrix to allow the model to transition from

state 6 to the new states, and back to state 1. This entails changing p (6|6) from 1

to 1− α, p (6|7) to α, p (7|7) to 1− α, p (8|6) to α and so on. Zero vectors are added

for the new means, and identity vectors are added for the new variances. Each new

state that is added guarantees that the model will spend at least another millisecond

on each pulse. This can change the most likely state sequence along the entire path.

The total number of states is determined adaptively by estimating the heart rate each

iteration of the algorithm.

Then the magnitude STFT needs to be computed on the signal. Frequencies below

2 Hz are removed to remove baseline wander components of the signal. After this

is done, the max-product algorithm computes the most likely state sequence for the

signal given the model. Two sets of numbers are computed from the resulting state

sequence. First, we find the time points where the model transitions from the last

state back to state 1. This should indicate the start of a new pulse. Secondly, we

compute the point that maximizes the signal within the region associated with state

2. This is approximately the location of the main peaks. However, since the models

were individually trained, state 2 may not be the best place to look for the main

peak. The algorithm runs as follows:

1. Start with the trained model f .

2. Add another state to the model.

3. Run the max-product algorithm on the data and save:
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(a) Transition times between pulses,

(b) Main peak locations.

4. Go to step 1 or go to step 4.

5. Choose one model from the collection generated from steps 2 and 3.

The number of states to add to the original model may be chosen based on the reliabil-

ity of the pulse detections. If the resulting interbeat interval sequence is implausible,

then the corresponding model may be discarded. Two examples are shown in Figure

5.7. Data that are used in these examples are distinct from the data used to train the

models, but are from the same session. The transitions are detected accurately, even

for atypical signals. Thresholding methods may not work correctly in cases where the

incisura is larger than the main peak. This algorithm, however, is able to recognize

that the incisura and the main peak belong to the same pulse because of the state

transitions in the model. The sequence of states across the whole signal is used to

differentiate between the incisura and the main peak even though they have similar

frequency content.

The main peaks are not always detected appropriately. This could be because state 2

was always used to find the main peak. Other methods could be used to find points

of interest within the pulses once they are segmented.

A few pulses are required for training of the model that is used. This could be done

manually or by another methods, such as a template matching algorithm. Then, the

model is trained, and run on the remaining data. Heart rates may be computed from

the detections. The advantage of this method over local methods which analyze the
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pulses independently, is that the algorithm is optimized over the entire sequence of

pulses to find the transition points.

5.4 Model LDVBD

Model LDVBD uses pulse model B and session model D with 4 states without any

preprocessing. This model is designed to track state changes that occur from beat

to beat. The choice of four states is motivated by prior knowledge. The subjects

were at rest, and the primary source of beat to beat variability was respiration, for

which we identified four epochs in the respiration phase: inhalation, end of inhalation,

exhalation, and end of exhalation. In the next subsection, the number of states is

varied. This model generally performs better than model LDVB within session, but

worse across sessions. The cause for this may be that the breathing patterns also

change across sessions.

5.4.1 Interpretation of Model LDVBD

A version of this work appeared in Kaplan, et al. [64]. To interpret the parameters

from this model, another data set is used that includes a strain gauge for measuring

respiration. LDV carotid pulse measurements were acquired from 43 subjects (22

female), ranging in age from 20 to 29 years, all non-smokers, with BMIs < 30, and

free from cardiovascular, pulmonary or other major diseases. In this section, we

present experimental results for two of these individuals for illustrative purposes.

Data from all of the subjects are also analyzed and breathing rate estimation results

are presented in Section 5.4.1.3. Models are trained for each subject and interpreted
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Figure 5.7: Examples of pulse segmentation using model LDVC on 5 seconds of data.
The black dotted lines are pulse transition between detections, and the red dotted
lines are main peak detections. The estimated heart rates are: (a) 97 bpm, (b) 89
bpm, (c) 65 bpm, (d) 85 bpm, (e) 103 bpm, and (f) 57 bpm.
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Figure 5.8: Histograms across individuals for (a) model LDVBD − 1, and (b) model
LDVBD− 2. The solid red lines indicate the mean score and the dotted red line show
a standard deviation away from the mean. The histogram in (c) shows how many
more individuals for LDVBD − 1 there are than LDVBD − 2.
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with respect to the most likely state sequence. Also, respiration rate is estimated for

each individual using the trained models, and compared to estimates derived from

abdominal strain gauge recordings.

Carotid LDV pulse signals were measured using a Polytec PSV 4004 LDV under

resting conditions. The subjects were seated and asked to remain motionless and

quiet for three minutes. The data under resting conditions were obtained as part of

a larger experiment, which investigated the effects of a number of cardiorespiratory

activating maneuvers as well as mental stressors, given in orders that were balanced

over subjects. Conditions were separated by at least 4 minutes of recovery time,

during which subjects viewed relaxing videos of aquatic life. An independent measure

of the electrocardiogram (ECG was obtained from bilateral chest electrodes), and

respiratory effort was measured with a strain gauge around the abdomen, using a

Biopac Tel100 system and associated transducers. The LDV signal is sampled at

10 kHz, then downsampled to 1 kHz. To lessen the effects of measurement noise,

harmonics with frequencies greater than 300 Hz are removed from the data by setting

the higher frequency components in the discrete Fourier transform to zero, and taking

the inverse transform. The simultaneous ECG recordings are used to extract 700 ms

LDV pulses, where the first sample of each LDV pulse is aligned to occur at the same

time as the peak of the QRS complex in the ECG signal. The R wave in the ECG

signal was extracted using a simple thresholding and peak detection method.

The pulses from each individual are separated into two groups, the first containing

100 pulses, and the second consisting of 50 pulses. We train a set of ten models for

each individual on the first group, with the number of states varying from 2 to 11.

Parameter initializations were set to a uniform transition probability matrix, constant

4www.polytec.com
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variance, and mean vectors taken from exemplar pulses spaced evenly in the pulse

sequence. Optimal state sequences were computed over both groups of pulses for

cross validation.

5.4.1.1 Model parameters

The subjects were at rest, and the primary source of beat to beat variability may be

respiration, for which we identified four epochs in the respiration phase: inhalation,

end of inhalation, exhalation, and end of exhalation. The ideal number of states

in the model is dependent on the pulse waveforms for the individual. A two state

model may be sufficient to characterize the dynamics for some individuals, but more

states may be needed for others. Although we instructed subjects to remain calm and

motionless during recording, we recognize that there may be a number of sources of

uncontrolled variability including anxiety as well as as recovery from other activities

during the laboratory session. For two individuals, we show three figures: the HMM

mean vectors (Figure 5.9), the transition probability matrices (Figure 5.10), and the

estimated state sequence compared to the strain gauge measurements (Figure 5.11).

As is evident in the figures, the HMM mean vectors indicate morphology changes due

to the state dependence. Note that the greatest variability occurs around the incisura.

Changes in LVET of 15 ms are present in these mean vectors, which is a significant

change consistent with respiratory dynamics [65, 66]. Other studies examine the effect

of respiration on heart rate, pulse transit time, and pre-ejection period [67, 68, 69].

This model allows for the analysis of respiration on waveforms. Amplitude variability

in the main peaks is also observed, which may indicate beat to beat changes in blood

pressure amplitude. The ability to measure such fine detail in the carotid pulse has
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Figure 5.9: HMM mean vectors for two individuals: a) individual A, and b) individual
B.

1 2 3

1 0.00 0.93 0.07
2 0.02 0.60 0.38
3 0.38 0.18 0.44

(a)

1 2 3

1 0.63 0.26 0.12
2 0.48 0.23 0.29
3 0.00 0.52 0.48

(b)

Figure 5.10: State transition probabilities for two individuals. a) State transition
probability matrix for individual A. b) State transition probability matrix for indi-
vidual B.

significant potential clinical use. Figure 5.10 shows the state transition matrices,

whose entries are probabilities rounded off to the nearest hundredths place. These

two individuals have dissimilar matrices, suggesting that the matrices are informative

to the individual.

5.4.1.2 State sequences

After the models are trained, the most likely state sequence is computed for each

subject. For most subjects, we observed that the state sequences generally exhibit

a nearly periodic pattern at a period roughly equal to typical respiration rates (0.2
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Hz). The state sequences were then compared to the strain gauge signals to further

evaluate and quantify this relationship.

As mentioned above, the beat to beat dynamics during rest are primarily due to

respiration effects. We first examine the optimal state path for an individual, and

show that we are tracking changes due to respiration by comparison with measure-

ments from the strain gauge. Using the trained HMM, the most likely state se-

quence, S?1 , S
?
2 , . . . , S

?
N is computed given the sequence of LDV pulses, where S?n ∈

{1, 2, . . . ,M}. To visually compare with the strain gauge measurements, we construct

an interpolated state signal, which is equal to the state number at time locations cor-

responding to the R wave peaks (marked in the figure by the X’s) in the ECG signal,

and intermediate values are interpolated linearly. Figure 5.11 shows both the strain

gauge and the state interpolation for the two individuals. An upward gauge trace in

the figure denotes inspiration as sensed in terms of abdominal expansion. Only the

first 100 pulses (the time interval before the dotted vertical line) were using for model

training. Data occurring after the dotted line were not used for training the models.

5.4.1.3 Estimating respiration rate

Due to the agreement in periodicity between HMM state sequences and respiration

cycles for many subjects at rest, it is of interest to quantify how well these models

can be used for respiration rate estimation.

Respiration, which is affected by both voluntary and involuntary influences, is an

integral part of the body’s cardiovascular control system. In respiration-based stud-

ies, subjects are sometimes asked to breathe at experimentally controlled rates. An
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Figure 5.11: Strain gauge measurements and optimal state paths for two individuals.
Note that two vertical axes are used in these figures. Data occurring before the dotted
vertical line were used for training. a) State path and strain gauge measurements for
individual A. Data occurring before the dotted vertical line were used for training.
b) State path and strain gauge measurements for individual B.

81



advantage to this procedure is that methods can be tested with careful control of res-

piration rate, providing that the subjects follow the breathing instructions accurately.

In our experiments, the subjects are not instructed on how fast to breathe, so they

are free to relax and do as they wish. The advantage here is the absence of the extra

stimuli, which may induce additional states (make the subjects stressed, etc.).

Our emphasis here is on comparing an estimate of the respiration rate derived from

the strain gauge with one derived from the hidden state models. The strain gauge

is an indirect measurement of respiration, measuring the expansion and constriction

of the abdomen. It is possible to breathe without observing the abdomen rise and

fall significantly. Also, the abdomen can move and stretch voluntarily. These factors

contribute to the uncertainty in the measurements. Still, the strain gauge performs

quite well in many circumstances.

Of the 43 strain gauge measurements, 4 were not usable because of noise artifacts and

they were not analyzed. We estimate the respiration rate from the strain gauge (rSG)

and the interpolated state sequence (rSS) for each individual, and compare them on

both the training and testing data.

Respiration Rate from the Strain Gauge First, the signal is filtered to remove

high frequency noise. The cut-off frequency is individual dependent (around 0.5 Hz),

and every case was verified manually to match in periodicity to the original signal.

Then the local maxima are located by taking the first derivative and finding the zero

crossings. The total number of full periods is divided by the time interval in seconds

to give respiration cycles per second. Figure 5.12a shows an example of the processing

steps for a sample individual.
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Respiration Rate from the LDV Derived State Sequence First, the optimal

state sequence is computed: S? = S?1 , S
?
2 , . . . , S

?
N using the Viterbi algorithm [38].

The next goal is to find repeating patterns in this sequence that may be periodic or

semi-periodic with respiration. Shifted versions of this sequence are compared with

the original sequence, and the level of disagreement between these two sequences is

computed based on a distance measure between the states. The distance measure

used between states i and j is a symmetrized divergence of the corresponding state

distributions,

di,j =
1

2
d
′

i,j +
1

2
d
′

j,i, (5.1)

where d
′
i,j is the relative entropy between PDFs from states i and j, given by,

d
′

i,j =
1

2

∑
t

(
σ2
i,t

σ2
j,t

+
(µi,t − µj,t)2

σ2
j,t

− lnσ2
i,t + lnσ2

j,t − 1

)
.

Using this measure on shifted versions of S?, a shift dependent distance function is

computed by,

D (τ) =
1

T − τ

T∑
t=τ+1

dS?t ,S?t−τ . (5.2)

The shift τ is in units of pulses (biological time). An example of this measure is

shown in Figure 5.12b.

Two approaches for estimating respiration rate from this distance function are now

described. If the underlying sequence is periodic with period Q, then so will the

shift-distance function: D (τ) = 0 for τ = αQ for integer α, since di,i = 0. If instead,

the underlying sequence is only approximately periodic, then this function will admit

a local minimum for τ near αQ for integer α. The local minima of D (τ), therefore,

represent time shifts for which the two sequences approximately match locally, and

indicate periodicity in the sequence. In the first approach, the shift corresponding to
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the first of these minima is selected to represent the periodicity of respiration. Using

the ECG, the average respiration period is computed by multiplying this shift by the

average interbeat interval.

The precision of this method is limited to integer values of the shift. To get subsample

precision, we can instead use the discrete Fourier transform. In the second approach, a

1000 point DFT is computed onD (τ) after subtracting the mean. Then the maximum

of its magnitude is located, and the corresponding frequency (beats−1) is taken as

the respiration frequency. The ECG derived mean IBI is again used to compute

respiration rate in Hz. Figure 5.13 shows an example of this computation for the

same individual shown in Figure 5.12.

Performance Evaluation The respiration rate is computed from the strain gauge,

rSG, and the HMM state sequence trained on LDV data, rSS, on ten models with an

increasing state space from 2 to 11. The error is computed as, rSG−rSS
rSG

, both on the

100 pulses used to train the HMMs, and on the following 50 pulses that were not

used in training the HMMs. Figure 5.14 shows scatter plots of rSG vs rSS for the

model with three states. Table 5.15 shows the results for five percentiles using the

first method, and Table 5.16 shows results using the DFT method. The rows marked

“Optimal” give the performance using the best performing number of states for each

individual. The DFT method gives lower error then the local minimum method in

the median, but has more outliers.

84



0 10 20 30 40 50
−2

−1

0

1

2

3

Time (s)

N
or

m
al

iz
ed

 U
ni

ts

(a)

0 10 20 30 40 50
0

500

1000

1500

2000

τ
D

(τ
)

(b)

τ

0 2 1 1 1 2 3 3 2 1 1 1 1 3 3 2 2 1 1 1 2 3 2 2 1
8 - - - - - - - - 2 1 1 1 2 3 3 2 1 1 1 1 3 3 2 2
15 - - - - - - - - - - - - - - - 2 1 1 1 2 3 3 2 1

(c)

S1 S2 S3

S1 0 679 3293
S2 679 0 689
S3 3293 689 0

(d)

Figure 5.12: Example of respiration rate estimation for one individual. In (a), the
strain gauge is processed to derived rSG. A total of 6 periods are detected and the rate
during this interval is rSG = 0.131 Hz. Figure (b) shows the shift function D (τ) for
the same individual. The initial part of the state sequence is shown in (c) along with
shifted versions of the sequence corresponding to the minima computed from D (τ).
Figure (d) shows the state distances used. A shift of 8 pulses was detected and used
with a mean IBI of 1.02 s, giving rSS = 0.123 Hz. The error for this individual is 6%,
which is near the 50th percentile (median).
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Figure 5.13: DFT of D (τ) used in computing rSS. A frequency of 0.13 is computed
for this individual (same individual in Figure 5.12), giving the estimate rSS = 0.128
Hz.
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Figure 5.14: Scatter plot of rSG vs rSS for the three state model for (a) the local
minimum method, and (b) the DFT method. The black line is the set of points for
which rSG = rSS.
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Number of States 10% 25% 50% 75% 90%

2 0.01 0.05 0.13 0.48 1.00
3 0.01 0.02 0.07 0.16 0.46
4 0.01 0.03 0.09 0.18 0.52
5 0.01 0.02 0.07 0.18 0.45
6 0.01 0.03 0.09 0.18 0.55
7 0.01 0.03 0.09 0.17 0.49
8 0.01 0.03 0.08 0.16 0.27
9 0.01 0.03 0.09 0.18 0.69
10 0.01 0.04 0.09 0.17 0.23
11 0.01 0.03 0.09 0.17 0.40

Optimal 0.01 0.02 0.05 0.09 0.17
(a)

Number of States 10% 25% 50% 75% 90%

2 0.02 0.04 0.08 0.59 1.00
3 0.01 0.03 0.06 0.13 0.38
4 0.01 0.03 0.07 0.09 0.49
5 0.02 0.03 0.07 0.12 0.41
6 0.01 0.03 0.07 0.09 0.36
7 0.01 0.03 0.07 0.10 0.22
8 0.02 0.03 0.06 0.09 0.36
9 0.01 0.03 0.07 0.13 0.67
10 0.01 0.03 0.06 0.09 0.16
11 0.01 0.03 0.07 0.11 0.24

Optimal 0.01 0.03 0.05 0.08 0.09
(b)

Figure 5.15: Respiration rate performance for the local minimum method. In (a), the
algorithm is evaluated in the same 100 pulses used for training the HMMs. In (b),
the following 50 pulses are used for estimating respiration rate.

87



Number of States 10% 25% 50% 75% 90%

2 0.01 0.06 0.14 0.47 1.00
3 0.01 0.02 0.06 0.14 0.27
4 0.01 0.03 0.09 0.18 0.52
5 0.01 0.02 0.07 0.19 0.45
6 0.01 0.03 0.09 0.18 0.55
7 0.01 0.03 0.09 0.18 0.51
8 0.01 0.03 0.09 0.18 0.30
9 0.01 0.03 0.09 0.17 0.67
10 0.01 0.04 0.09 0.17 0.24
11 0.01 0.03 0.09 0.18 0.44

Optimal <0.01 0.01 0.03 0.17 0.89
(a)

Number of States 10% 25% 50% 75% 90%

2 0.01 0.03 0.11 0.90 1.00
3 <0.01 0.02 0.03 0.25 0.92
4 0.01 0.02 0.03 0.52 0.92
5 <0.01 0.01 0.02 0.52 0.92
6 0.01 0.01 0.03 0.26 0.92
7 0.01 0.02 0.03 0.16 0.91
8 0.01 0.01 0.03 0.26 0.91
9 0.01 0.01 0.03 0.38 0.92
10 <0.01 0.01 0.02 0.13 0.72
11 0.01 0.01 0.02 0.14 0.84

Optimal <0.01 <0.01 0.01 0.05 0.15
(b)

Figure 5.16: Respiration rate performance for the DFT method. In (a), the algorithm
is evaluated in the same 100 pulses used for training the HMMs. In (b), the following
50 pulses are used for estimating respiration rate.
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5.4.1.4 Discussion

We begin with the state sequences as illustrated in Figure 5.11, which shows that the

state sequence generally tracks the record of respiration provided by the strain gauge.

For individual A, states 1 and 2 typically corresponded to low lung volume, and

state 3 often corresponded to maximal lung volume. For individual B, the situation

was reversed: state 3 corresponded to low lung volume, and state 1 corresponded to

maximal lung volume. Note that each heartbeat is associated with a time location by

the corresponding R wave in the ECG signal, even though a 700 ms segment of the

LDV data is used to estimate the model parameters. Also, since respiration phase is

continuous, there are changes occurring in the signals during each LDV pulse. From

the state sequences, we can see that state 1 is intermittent for individual A, while it

occurs more consistently for individual B.

In the state means, we observe that the incisura changes location, indicating a change

in the LVET. From Figure 5.9, the location of the inflection points near the incisura

vary by 5 ms to 10 ms. In other studies, LVET has been shown to decrease during in-

spiration and increase during expiration [65]. A reduction of LVET during inspiration

can be seen from the figures for both individuals.

Using Principal Components Analysis (PCA), we can further interpret the state

means. Using the first two principal components computed from each data set, each

pulse may be shown as a point in two dimensions. Figure 5.17 shows these results for

the two individuals used in Figure 5.9. Each pulse is coded in terms of the associated

state from the most likely state sequence. Even though the mean vectors may look

similar in some cases, we can see that the states correspond to different clusters in

the principal component space.
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Figure 5.17: PCA analysis for two subjects. The axes for plots (a) and (b) correspond
to different principle components, and each of the points represents one pulse. Figures
(c) and (d) show the PCA basis vectors for (a) and (b), respectively.
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The stationary distributions of the underlying Markov chains of the models give

the limiting distributions across the states. They are the distributions p? that sat-

isfy, Ap? = p?, where A is the transpose of the transition probability matrix given

in Figure 5.10. The stationary distributions for the two individuals are: p?A =[
0.15 0.50 0.36

]
, p?B =

[
0.41 0.32 0.27

]
. Thus we can see that for indi-

vidual B, the states occur more or less uniformly, while state 2 is the most likely

states for individual A. This is consistent with the preceding observations in the state

sequences.

In some cases, the respiration rate error was large. This resulted from a state sequence

that did not track the respiration cycle well. This can occur for a number of reasons.

If the individuals in this study were performing some prescribed activity evoking a

cardiovascular response, then the LDV pulse may be affected accordingly. Hidden

states, such as the ones defined in this paper might be used to separate the various

stimuli occurring in the body. If the number of states were increased, then perhaps

some of them could correspond to respiration, while others could correspond to other

physiological dynamics, such as mental stress. This could be a source of errors when

attempting to infer respiration from the HMM state sequence.

We observed subjects whose state sequences did not match the strain gauge measure

of respiration as well as the ones illustrated in the above figures. In some of the

subjects, several of the states are only seen a few times, and the state sequence

fluctuated between the other states in accordance with respiration. This indicates

that there was a change observed in the data that only occurred a few times. The

models can still be used to accurately estimate respiration rate for portions of the

measurements in these cases. Subjects for which the respiration rate estimation fails

entirely typically have one state which dominates for an extended period of time. This
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we attribute to all of the states other than one corresponding to extraneous activity,

and only one state corresponding to the resting condition.
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Chapter 6

Wave Propagation in Elastic

Tubes: Analysis and Models

This is a basic description of the physics involved in solving for the pressure distribu-

tion inside elastic tubes that are configured in a bifurcating tree structure. A concise

background of the application of this physics to problems of blood flow may by found

in the monograph by Westerhof [70]. Starting with the fluid dynamics of a finite ele-

ment in cylindrical coordinates, and utilizing a number of simplifying assumptions, a

solution for the pressure at every point in every elastic tube of a generic bifurcating

tree structure (Figure 6.1) will be found. Applying Newton’s second law of motion

gives the Navier-Stokes equation of fluid dynamics. This, together with the equation

of conservation of mass leads to a set of governing equations. After some simplifica-

tions, a wave equation and solution will be formulated for the situation of an infinite

elastic tube. Then, reflections due to the interconnection of tubes (as in Figure 6.1)

will be taken into account, and a solution of propagating waves with primary reflec-

tions is derived. Evidence of reflected pressure waves has been found in many studies

[71, 72, 73]. The analysis in this chapter, and specifically Section 6.1 is based on the

work of Zamir [57]. In the analysis of Wang, et al. [74], a model for the prediction
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Figure 6.1: A generic bifurcating tree.

of pressure waves based on an extensive network of reflection sites is presented. The

book by Nichols, et al. describes the physics of blood flow in light of the underlying

physiology [75].

A novel model that is motivated by this analysis is then developed. Before using this

model on LDV data, the relationship between the radius of an elastic tube and the

underlying pressure of moving fluid is examined. This relationship is used to consider

the use of the LDV as an indirect measurement of the underlying blood pressure in

the carotid. The models are trained on LDV signals and interpreted.

94



6.1 Pressure Waves in Elastic Tubes

6.1.1 Conservation of Mass and the Navier-Stokes Equations

The governing equations of fluid dynamics are the conservation of mass equation

and the Navier-Stokes equations. We use the cylindrical coordinates x, r, θ for the

axial, radial, and angular dimensions, respectively, and u, v, and w for components

of velocity in those respective dimensions. The conservation of mass equation is

∂u

∂x
+
∂v

∂r
+
ρv

r
+

1

r

∂w

∂θ
= 0. (6.1)

The Navier-Stokes equations in cylindrical coordinates:

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂r
+
w

r

∂u

∂θ

)
+
∂p

∂x
= µ

(
∂2u

∂x2
+
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2

)
, (6.2)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂r
+
w

r

∂v

∂θ
− w2

r

)
+
∂p

∂r
= µ

(
∂2v

∂x2
+
∂2v

∂r2
+

1

r

∂v

∂r
− v

r2
+

1

r2
∂2v

∂θ2
− 2

r2
∂w

∂θ

)
,

(6.3)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂r
+
w

r

∂w

∂θ
+
vw

r

)
+

1

r

∂p

∂θ
= (6.4)

µ

(
∂2w

∂x2
+
∂2w

∂r2
+

1

r

∂w

∂r
− w

r2
+

1

r2
∂2w

∂θ2
+

2

r2
∂v

∂θ

)
.

are derived by applying Newton’s second law to a set of constitutive equations which

relate the viscosity µ to the pressure field p. A derivation of these equations can be

found in Appendix A. These equations together with the equation of conservation

of mass (Equation 6.1) provide the governing equations for the most general case of

fluid flow in cylindrical coordinates.
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6.1.2 Simplifications

A number of assumptions are made in order to simplify the model (equations 6.1, 6.2,

6.3, and 6.4). First, we assume symmetry around the angular dimension θ,

w =
∂w

∂θ
=
∂v

∂θ
=
∂u

∂θ
=
∂p

∂θ
= 0. (6.5)

Applying this assumption eliminates Equation 6.4, and reduces the number of terms

in the other equations,

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂r

)
+
∂p

∂x
= µ

(
∂2u

∂x2
+
∂2u

∂r2
+

1

r

∂u

∂r

)
,

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂r

)
+
∂p

∂r
= µ

(
∂2v

∂x2
+
∂2v

∂r2
+

1

r

∂v

∂r
− v

r2

)
,

∂u

∂x
+
∂v

∂r
+
ρv

r
= 0.

The next assumptions are long-wave and fast-wave assumptions, which are defined

by,

u
∂u

∂x
, v
∂u

∂r
� ∂u

∂t
, (6.6)

u
∂v

∂x
, v
∂v

∂r
� ∂v

∂t
, (6.7)

∂2u

∂x2
� ∂2u

∂r2
, (6.8)

∂2v

∂x2
� ∂2v

∂r2
. (6.9)
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Applying these assumptions gives,

ρ
∂u

∂t
+
∂p

∂x
= µ

(
∂2u

∂r2
+

1

r

∂u

∂r

)
, (6.10)

ρ
∂v

∂t
+
∂p

∂r
= µ

(
∂2v

∂r2
+

1

r

∂v

∂r
− v

r2

)
, (6.11)

∂u

∂x
+
∂v

∂r
+
ρv

r
= 0. (6.12)

In these equations, the pressure is a function of axial direction, radial direction, and

time: p = p (x, r, t); and each component of velocity (u, v) is also a function of axial

direction, radial direction, and time: u = u (x, r, t) , v = v (x, r, t). The angular

component of velocity, w, is not present because of the symmetry assumption.

6.1.3 One Dimensional Wave Equation

It is desired to have a model for the fluid flow expressed as a one dimensional wave

equation. First, pressure and velocity are averaged along the radial dimension. Mul-

tiplying both sides of equations 6.10 and 6.12 by 2πr and integrating from r = 0 to

r = a,

2πρ

aˆ

0

r
∂u

∂t
dr + 2π

aˆ

0

r
∂p

∂x
dr = 2πµ

aˆ

0

r

(
∂2u

∂r2
+

1

r

∂u

∂r

)
dr,

2π

aˆ

0

r
∂u

∂x
dr + 2π

aˆ

0

r

(
∂v

∂r
+
v

r

)
dr = 0.

The radius of the tube is a, which is a function of time: a = a (t). Equation 6.11 is

no longer needed, since the radial dimension has been averaged out. The boundary

condition is: v (x = a, t) = ∂a
∂t

. The flow rate (q), wall shear stress (τw), and cross
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sectional area (A) are defined as,

q = 2π

aˆ

0

rudr,

τw = −µ
[
∂u

∂r

]
r=a

,

A = πa2.

The governing equations can now be written as,

∂q

∂t
+
A

ρ

∂p

∂x
=
−2πa

ρ
τw,

∂q

∂x
+
∂A

∂t
= 0.

Applying the inviscid flow assumption: τw = 0,

∂q

∂t
+
A

ρ

∂p

∂x
= 0, (6.13)

∂q

∂x
+ γ

∂p

∂t
= 0, (6.14)

where γ = ∂A
∂p

. Cross differentiating results in,

∂2p

∂t2
=

A

ργ

∂2p

∂x2
, (6.15)

∂2q

∂t2
=

A

ργ

∂2q

∂x2
. (6.16)
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The solution of these equation for a single harmonic with amplitude po and frequency

w is,

p (x, t) = poe
jω(t− x

co
), (6.17)

q (x, t) =
Apo
ρco

ejω(t− x
co

), (6.18)

where c2o = A
ρ
∂p
∂A

is the wave speed.

These solutions can be readily verified by substituting back into equations 6.13 and

6.14. The initial pressure is po = p (x = 0, t = 0), and is complex in general.

6.1.4 Primary Reflection

If there is a reflection at the end of the tube, the pressure and flow are a sum of a

forward moving wave (pf (x, t) = poe
jω(t− x

co
)), and the reflected, backward moving

wave (pb (x, t) = Bpoe
jω(t+ x

co
)). The amplitude of the reflected wave can be expressed

in terms of a reflection coefficient, R = pb(x=l,t)
pf (x=l,t)

, where l is the length of the tube.

Thus,

pb (x = l, t) = Rpf (x = l, t) = Rpoe
jω(t− x

co
).

Solving for the amplitude of the reflected wave,

Bpo = Rpoe
−j2ω l

co .

Thus, the reflected wave is,

pb (x, t) = Rpoe
jω(t+ x

co
− 2l
co

).
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After a similar analysis for the flow rate, the solution to the wave equations 6.13 and

6.14 with the primary reflection is,

p (x, t) = pf (x, t) + pb (x, t) = po

(
e−jω

x
co +Rejω

x−2l
co

)
ejωt, (6.19)

q (x, t) = qf (x, t) + qb (x, t) =
Apo
ρco

(
e−jω

x
co +Rejω

x−2l
co

)
ejωt. (6.20)

Equations 6.19 and 6.20 can be verified to be a solution of 6.13 and 6.14 by substitu-

tion.

6.1.5 Pressure in a Tree Structure

In a general tree structure (Figure 6.1), the goal is to find the pressure as a function

of axial position and time in every tube of the structure. Equation 6.19 gives this

pressure; however, it is necessary to compute the complex valued po for each tube.

Using a subscript notation a, b to designate a particular tube, as shown in Figure 6.1,

the notation γa,b = poa,b is adopted. Using Equation 6.19, the pressure at the end of

any tube, and the pressure at the entry of the next tube is,

p (x = 0a,b, t) = γa,b

(
1 +Ra,be

−jω
2la,b
ca,b

)
ejωt,

p (x = la−1,n, t) = γa−1,n

(
e
−jω

la−1,n
ca−1,n +Ra−1,ne

−jω
la−1,n
ca−1,n

)
ejωt.

The length, reflection coefficient, and wave speed of the tube j, k are lj,k, Rj,k, and

cj,k respectively. The index n is given by n =


b
2

, b even

b+1
2

, b odd

, which is apparent
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when examining Figure 6.1. Setting p (x = 0a,b, t) = p (x = la−1,n, t) ,

γa,b

(
1 +Ra,be

−jω
2la,b
ca,b

)
= γa−1,n (1 +Ra−1,n) e

−jω
la−1,n
ca−1,n .

Solving for γa,b ,

γa,b = γa−1,n
(1 +Ra−1,n) e

−jω
la−1,n
ca−1,n

1 +Ra,be
−jω

2la,b
ca,b

. (6.21)

Equation 6.21 provides a means of computing γa,b for every tube in the tree, given

the reflection coefficients of each tube, starting from the top of the tree and moving

down the tree. The initial value γ0,0 must be known.

6.2 Models

In the analysis given above, the pressure at any point in the structure of bifurcating

tubes is the superposition of an incident pressure wave, and a number of reflected

waves. In order for this relationship to hold, the following assumptions were made

about the fluid flow:

1. The vessel is symmetric about the angular dimension- this eliminates the angu-

lar dimension (Equation 6.5).

2. Long wave and fast wave assumptions (Equations 6.6-6.9).

3. Pressure and velocity are averaged along the radial dimension.

4. The flow is inviscid.
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This analysis motivates a computable model that expresses the pressure as a linear

combination of scaled and shifted wave functions. The wave function itself, along

with the time shifts and amplitudes may be estimated from training data.

6.2.1 Model Description

We seek a model for a pressure waveform, p (t) recorded at a site x = x0, assum-

ing that there are a number of reflections at other points in the system. The wave

equations derived in the previous section imply that there is an initial waveform that

is reflected at each of the reflection sites, with some possibly frequency dependent

coefficient. Thus, a copy of this waveform is filtered and then propagates back to-

wards the measurement site. This motivates a model for the pressure where p (t) is a

summation of scaled and shifted versions of some input waveform s (t),

p (t) ≈
I∑
i=1

ais (t− τi) . (6.22)

The time shifts and amplitudes may be collectively written,

a = (a1, a2, . . . , aI) , (6.23)

τ = (τ1, τ2, . . . , τI) , (6.24)

s = (s (1) , s (2) , . . . s (T )) , (6.25)

where T is the length of the waveform. This assumes that the reflection coefficients

are frequency independent. Putting this in the form of a noise model, we write each

waveform copy as,

pi (t) = ais (t− τi) + ωi (t) , (6.26)
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where ωi (t) ∼ N (0, σ2
i ). Then the whole pressure signal is,

p (t) =
I∑
i=1

pi (t) + ω0 (t) , (6.27)

with ω0 (t) ∼ N (0, σ2
0).

This model can be viewed in terms of a Linear Time-Invariant (LTI) system with the

input being the initial pressure wave, and the output is the pressure measured at any

point along the arterial tree. The impulse response of this system is,

h [t] = δ [t− τ0] +
I∑
i=1

aiδ [n− τi] , (6.28)

where τ0 is the time that the input wave takes to reach the measurement site, ai is

the reflection coefficient for the ith reflection, and τi is the time that the reflected

wave takes to arrive at the measurement site. The frequency response, computed by

taking the Fourier transform of h [t], becomes,

H
(
ejω
)

= e−jωτ0 +
I∑
i=1

aie
−jωτi . (6.29)

6.2.2 Estimation of Parameters

This model formulation suggests an Expectation Maximization algorithm, where pi (t)

are the complete data, and p (t) are the incomplete, or observed data. The loglikeli-

hood of the complete data is

ln f (p1 (t) , p2 (t) , . . . , pI (t)) =
I∑
i=1

T∑
t=1

(
−1

2
ln 2πσ2

i (t)− 1

2σ2
i

(pi (t)− ais (t− τi))2
)
.

(6.30)
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In computing parameter estimates, we proceed by computing the expected value of

the loglikelihood of the incomplete data given the complete data,

E [ln f (p1 (t) , p2 (t) , . . . , pI (t)) |p (t)] = (6.31)

= E

[
I∑
i=1

T∑
t=1

(
−1

2
ln 2πσ2

i −
1

2σ2
i

(pi (t)− ais (t− τi))2
)
|p (t)

]
(6.32)

=
I∑
i=1

T∑
t=1

(
− 1

2
ln 2πσ2

i (t)− 1

2σ2
i

(
E
[
p2i (t) |p (t)

])
(6.33)

−2ais (t− τi)E [pi (t) |p (t)] + a2i s
2 (t− τi)

)
. (6.34)

We can remove terms that do not involve the parameters to form the following ob-

jective function,

Q (a, τ , s) =
I∑
i=1

T∑
t=1

(
1

σ2
i

ais (t− τi)E [pi (t) |p (t)]− 1

2σ2
i

a2i s
2 (t− τi)

)
. (6.35)

The derivatives are

∂Q

∂ai
=

1

σ2
i

T∑
t=1

s (t− τi)E [pi (t) |p (t)]− ais2 (t− τi) , (6.36)

∂Q

∂τi
=

1

σ2
i

T∑
t=1

ais (t− τi)
∂s (t− τi)

∂t
E [pi (t) |p (t)]− a2i s (t− τi)

∂s (t− τi)
∂t

,

∂Q

∂s (t)
=

I∑
i=1

(
1

σ2
i

aiE [pi (t− τi) |p (t)]− 1

σ2
i

ais (t)

)
. (6.37)
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Setting the above equations to zero, and solving for the parameters, we obtain the

parameter updates,

âi =

∑T
t=1 ŝ (t− τ̂i)E [pi (t) |p (t)]∑T

t=1 ŝ
2 (t− τ̂i)

, (6.38)

ŝ (t) =

∑I
i=1

âi
σ2
i
E [pi (t− τ̂i) |p (t)]∑I

i=1
âi
σ2
i

. (6.39)

The time shift estimate satisfies,

T∑
t=1

âiŝ (t− τ̂i)
∂ŝ (t− τ̂i)

∂t
E [pi (t) |p (t)]− â2i ŝ (t− τ̂i)

∂ŝ (t− τ̂i)
∂t

= 0. (6.40)

The conditional expectation E [pi (t) |p (t)] is a function of the parameters, (ai, τi, s),

and may be computed by,

E [pi (t) |p (t)] = E [pi (t)] +
σ2
i

σ2
0 +

∑I
i=1 σ

2
i

(pi (t)− E [pi (t)]) , (6.41)

= ais (t− τi) +
σ2
i

σ2
0 +

∑I
i=1 σ

2
i

(pi (t)− ais (t− τi)) . (6.42)

For notational convenience, we define the function h ((a, τ , s)) , E [pi (t) |p (t)]. The

resulting estimation algorithm begins with an initialization and the parameters are

updated during each iteration:

1. Initialize the parameters: a(0), τ̂ (0), ŝ(0).

2. E-Step: Compute h
((
â(k), τ̂ (k), ŝ(k)

))
using Equation 6.42. Set k → k + 1.

3. M-Step: Compute one or more of the following,

(a) Compute parameter updates for â(k) using Equation 6.38.
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(b) Compute parameter updates for τ̂ (k) by performing a linear search to find

close solutions to Equation 6.40.

(c) Compute parameter updates for ŝ(k) using Equation 6.39.

4. Check for convergence. Go to step 2.

In the parameter updates for step 3, any of the three parameters may be computed.

Updates for â(k) and τ̂ (k) may be computed simultaneously over several iterations.

Once these parameters converge, several iterations are performed updating ŝ(k), and

so on.

6.3 Application to LDV

To apply the physics of fluid flow in elastic tubes from the previous chapter to the

LDV signal, we need to make a connection between the underlying blood pressure and

the LDV signal. From the resulting physics, the relationship between the tube radius

and the pressure is logarithmic. This has been validated experimentally [76, 77]. A

linear approximation is valid under small changes of the radius. The displacement

of the skin surface as measured by the LDV is related to the changing radius of the

carotid, but the nature of this relationship is largely unknown. This relationship

depends on the material nature of the tissue that lies in between the carotid and

the skin. The close proximity of the vessel to the skin, however, is motivation for

constructing a model that uses the physics outlined in this chapter.
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6.3.1 Pressure-Radius Relationship

We can approximate the pressure-radius relationship from the wave equation derived

in the previous chapter. The square of the wave speed in a given segment is,

c2 =
A

ρ

∂p

∂A
. (6.43)

Thus, the pressure as a function of the cross sectional area and the radius r is loga-

rithmic,

p = c2ρ lnA+ z, (6.44)

= c2ρ lnπ + 2c2ρ ln r + z. (6.45)

This can be approximated by a linear function around a nominal radius r0 as,

p̂ =
2c2ρ

r0
(r − r0) + c2ρ lnπ + 2c2ρ ln r0 + z. (6.46)

The error as a function of r is,

p− p̂ = 2c2ρ

(
ln
r

r0
− r − r0

r0

)
. (6.47)

Typical values for the wave speed and density are:

c ≈ 5 m/s, (6.48)

ρ ≈ 1060 kg/m3. (6.49)

Under the range of 80 mmHg to 120 mmHg for systolic and diastolic pressure, using

Equation 6.45, the radius ranges from 2.7 mm to 3.0 mm. Figure 6.2 shows this error
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Figure 6.2: Linear approximation error as a function of radius change from 2.85 mm.
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Figure 6.3: Model results for two subjects.

as a function of radius change from a nominal value of 2.85 mm. We can see that the

the linear approximation is an overestimate.

The model described in Section 6.2.1 was applied to the LDV data with six copies

of the wave function. Amplitudes were set to a constant value, and time shifts were

evenly distributed. Gaussian functions were used to initialize the wave function.

Figure 6.3 shows the results of applying this model to two subjects.
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Figure 6.4: Data images for an individual across two sessions.

6.3.2 State Effects

One important aspect of the LDV heartbeats is that they are dependent on certain

factors which may or may be directly measured in the signal. This is readily observed

in the data. A major source of these confounding factors is thought to be the effects on

blood pressure due to breathing. In this section, we discuss how the state (breathing,

or other) may affect the models developed thus far.

A number of heartbeats may be simultaneously plotted as an image by applying an

appropriate color mapping to the velocity LDV signals. Two such images are shown

in Figure 6.4 for the same individual across two sessions. In each of these figures, 100

heartbeats are shown, with the vertical axis representing the heartbeat number, and

the horizontal axis representing the time scale for every heartbeat.

Looking at Figure 6.4, which have the same color maps and pulses aligned, we can

see some of the within session variability and the across session variability present in

the signals. Both of the figures show variability within session that is approximately

periodic, with a period of roughly 5 heartbeats. A similar type of periodicity is
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present in many of the subjects we have in our database. Many features can be seen

in the first subfigure that contribute to this periodicity. For example, the main peak

changes in width and amplitude, and the time location of the trough around 400ms

changes. We believe that the main sources for this periodicity are effects due to the

breathing cycle and heart rate, which are correlated with each other. Across session,

for this subject, we can see various discrepancies and similarities. The stability of the

heartbeats across sessions is dependent on the subject.

The effect of state within session should be an important part of a model that de-

scribes how the LDV signal changes along the artery. A greater understanding of the

phenomenology could lead to simpler and better models. This line of thought has

motivated us to study LDV heartbeats using two simultaneous lasers targeted along

the carotid, thus providing us with data to use in testing and discovering models that

describe the dynamics of the signal. However, in these models, the dependence of

state on the heartbeats should be considered. Here, we discuss how the state of each

heartbeat might affect the model for the heartbeat.

For out application, we know that some of the assumptions that were necessary to

obtain the simplified fluid model may be less suitable than others. For example, the

carotid artery is not symmetric about its angular dimension. Determining the level of

appropriateness of the above assumptions to our application is an important part of

developing this model further. Nonetheless, it is informative to see how state might

affect this simple, linear model. If the compliance of the vessel changes as a function

of state (for example, breathing state), then the solution to the above model also

changes, since the wave speed is affected by the compliance. All of the parameters of

the model, in fact, may be a function of state in addition to any other dependencies

they may have (time, axial position, etc.).
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A good model, therefore, should incorporate the current state into its description of

the signal dynamics. This requires an estimate of the state for each heartbeat, given

the sequence of heartbeats. Another approach would be to select one state for each

individual, and only process heartbeats from this state for the biometric recognition

algorithms. Either approach requires state estimation.

We now look at how the model could be used to estimate state within a session. This

is one possible approach; however there may be other more suited methods as well.

Consider, the heartbeats shown in Figure 6.4. A periodic pattern can be seen by

eye, with a period of approximately 5 heartbeats. Certain features in the heartbeats

can help to classify the heartbeats into different states, assuming that these features

determine the state. For example, the width of the peak at 200 ms and the presence

or lack of the peaks at 380 ms and 450 ms can help determine the state of each

heartbeat.

We will manually take two heartbeats that are presumably from two different states,

and decompose them into a sum of scaled and shifted Gaussian functions. They are

shown in blue and red in Figure 6.5. The mean heartbeat across all 100 heartbeats

is shown in black. The algorithm was run to optimally (in the mean squared error

sense) determine the time locations, amplitudes, and widths of ten Gaussian shaped

functions for the three signals shown in Figure 6.5. The resulting modeled signals

are shown on the right side of Figure 6.5. It should be noted that more accurate

representations of the heartbeats is possible by increasing the number of copies to use

in the model, however it seems that ten pulse copies may be enough for the following

purpose.
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Figure 6.5: Figure (a) shows two pulses from different states, and the the mean pulse.
Figure (b) shows the modeled signals from the two states and the mean.

The mean signal is used as a reference to aid in comparing both of the other two

heartbeats. Each of the copies for the mean signal are shown in Figure 6.6. The

dotted lines show the time locations of each copy of the mean signal, and they are

repeated in the same figure for the other two signals. The features mentioned earlier,

namely: the width of the peak at 200 ms and the presence of the peaks at 450 ms

and 510 ms are captured by this technique. This representation of the signal seems

to be informative for the estimation of state of the heartbeat. Also, the copies can

be used to model the dynamics of the heartbeats. It could also be beneficial to use

the same signal representation for different related tasks.

6.3.3 Adjustments for Widening

Contrary to the above model, a pressure wave may change not only in amplitude, but

also in shape as it is reflected [75]. According to Nichols, et al. [75], the reflected wave

is widened; this is thought to be due to dispersion effects of the blood. Figure 6.7

shows three examples of LDV displacement signals in which the initial and primary

reflection waves show clearly distinct peaks (Nichols, et al. [75] also pick out the initial
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Figure 6.6: Model estimates for (a) the mean pulse, (b) state 1, and (c) state 2.
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Figure 6.7: Examples of LDV displacement pulses.

reflection by eye). We also observe the widening effect- especially in the primary

reflection, suggesting that the LDV pulse is directly related to the underlying blood

pressure for these individuals. In other cases, the initial and primary reflection waves

have merged into one peaks, likely caused by a wave velocity that is too high for them

to be separated.

Figure 6.8 shows results of models that also accommodate for changing widths in the

copies for the three examples of Figure 6.7. The initial part of the signal (roughly

50 ms) is used to initialize the input waveform, since during this time there likely
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have not been any reflections yet. Here we use a Gaussian point spread function on

each reflection to widen and smooth each copy. Each copy uses three parameters:

the amplitude, time location, and the full width half maximum of the point spread

function. Additionally, the input waveform must be specified.
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Figure 6.8: Initializations and final converged results of the algorithm for three sub-
jects. The black curves are LDV data, the blue curves are individual waves, and the
red curves are the sum of the individual waves.
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Chapter 7

Identity Verification Using Laser

Doppler Vibrometry

Identity recognition is an important and difficult security problem. Information,

called an identity marker, is collected from an individual and used to access the

identity of that individual at a later time, when the true identity is unknown. The

initial phase, called the training phase, when the true identity is assumed to be known,

may occur on one or several occasions. The goal is to design a system which can

process the identity marker and make decisions about the identity of the individual.

More specifically, in the problem of identity verification, the system must either ac-

cept, resulting in a match decision, or reject, resulting in a nonmatch decision, the

claimed identity of an individual. In this chapter, we assume that every individual

is in the database, but this is not required, and a third decision may be made corre-

sponding to this situation. A different, but related problem is that of identification,

in which no identity is claimed. The system must determine the identity of the in-

dividual solely on the basis of the identity marker. This type of recognition is not

considered in this work.
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Generally, characteristics of a good identify marker include: robustness, distinctive-

ness, availability, and acceptability [2]. Robustness is the property that the measure-

ments do not change over time, distinctiveness is the variety of the data within the

population, availability is the ability and ease of data acquisition, and acceptability

refers to the individual’s consent to being measured (see Wayman, et al [2] for more

details). These properties, and experimental verification and recognition error rates,

are typically used to access the utility of a specific biometric.

Different identity markers have differing levels of dependence on physiology. Some,

including fingerprint, iris, and face, are not dependent on crucial physiological pa-

rameters. Others (for example, speaker verification) are more affected by both short

term and long term changes in the human body. From the perspective of robustness,

a deeper dependence on physiological traits is a drawback since human physiology is

highly dynamic. However, physiologically dependent biometrics have several advan-

tages over ones that are not affected by physiological factors:

1. They are difficult to counterfeit, because they are related to crucial body func-

tion.

2. They are of almost certain liveness. The existence of the biometric marker can

be guaranteed.

3. They may provide useful supplementary information relating to factors such

as stress and health in addition to information used principally for identity

verification and recognition.

A major disadvantage of physiological methods is that they will often be dependent

on many internal factors, which may or may not be directly measured. In addition,
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the nature of this dependence may be complex or unknown. If the data being acquired

have short term variations (i.e. changes within the course of a single measurement

session), then a sequence of observations may be necessary to capture this variation.

This chapter describes the use of the LDV signal for identity verification, using the

models developed in Chapters 3 and 5. Long term cross session variations of this signal

have been addressed in Lai et al [78]. A related measurement, the electrocardiogram,

has been recently proposed for biometrics [7, 79], however the methods discussed in

this paper are based on mechanical effects, not electrical ones. Graphical models have

been applied to ID verification problems in written signature [80, 81], keystroke [82],

and gait recognition [83].

7.1 Motivation

The two fundamental traits of an identity marker are stability and discriminability.

Stability refers to the trait that the marker remains constant over time, and discrim-

inability refers to the differences in the marker for different individuals. The stability

aspect may be evaluated using the results developed in Chapter 5, in which each

model was tested on data from the same individual with varying training and testing

schemes. It was shown that some individuals performed well across sessions with

respect to the models, while other individuals did not perform as well. Thus, the

stability is individual specific.

The notion of stability and discriminability may be defined relative to specific mod-

els. Indeed, the main objective of designing a model based ID verification system
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Figure 7.1: An example of stability within session (a), and discriminability across
individuals, (b). The pulses are aligned by their main peaks.

is choosing the appropriate models. This may be done with respect to the underly-

ing phenomenology, or dictated by experimentally verifying certain models. Model

LDVA, for example, indicated that the signal has a strong level of stability. However,

it is also true that the discriminability is poor with respect to this model, thus ID

verification will not perform well using LDVA.

Discriminability is more difficult to access experimentally, because we need to compare

combinations of training a model on an individual, and testing on another individual.

Before systematically addressing this important issue in terms of recognition perfor-

mance, we look at an example of stability and discriminability. Figure 7.1 shows ten

consequtive pulses from one individual, and single pulses from ten different individ-

uals. From this figure, it seems as though there may be enough discriminability to

perform identity verification using the LDV. Thus, the results from Chapter 5 are

relevant for this application.
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7.2 System Design and Performance Prediction

The system is designed using a training phase, which may include multiple sessions.

During this phase, one model is trained for each individual in the database. In addi-

tion to the individual models, a null model is also trained. This model represents the

average individual, and is used for score normalization purposes. After the training

phase is complete, the system is ready for operation, where an individual will claim

a certain identity s. The system then computes a score according to,

g (y, s) = log f (y|θs)− log f (y|θ0) . (7.1)

This is the loglikelihood ratio between the claimed model with parameters θs and the

null model with parameters θ0. This score is then compared to a threshold, τ , for

the decision [84],

d (y, s, τ) =


0, g (y, s) < τ,

1, g (y, s) ≥ τ,

(7.2)

where a 0 corresponds to a nonmatch decision and a 1 corresponds to match decision.

The system is completely specified by the models (which include any preprocessing

that may be needed), and the threshold.

7.2.1 Error Rates

When evaluating a recognition system, we compute empirical False NonMatch Rate

(FNMR) and False Match Rates (FMR). In addition to these values, we would also

like to have an idea of how accurate these rates are for the target population in the

form of confidence intervals. The FNMR is the probability that an incorrect decision
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is made when the query is truthful,

rn = Pr (d (y, s, τ) = 0|s = s?) , (7.3)

where s? denotes the true identity. The FMR is the probability that an incorrect

decision is made when the query is untruthful,

rm = Pr (d (y, s, τ) = 1|s 6= s?) , (7.4)

These error rates are estimated using experimental data by simulating the two cases:

s = s? and s 6= s?. The experimental data consists of two data sets for each individual,

ỹ(s) : training data for subject s, (7.5)

y(s) : testing data for subject s. (7.6)

Let N be the total number of individuals in the data set, and the score matrix is an

N ×N matrix whose (i, j) entry is,

Pi,j = g
(
y(i), j

)
. (7.7)

The decision matrix is a binary matrix of the same size that contains the decisions,

Di,j = d
(
y(i), j, τ

)
. (7.8)

Thus, each entry in D is the system’s decision for the simulated case where individual

i claims to be individual j. The FNMR is estimated from the diagonal entries of D
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by counting the number of times that a true identity claim was rejected,

r̂n =
1

N

N∑
s=1

(1−Ds,s) . (7.9)

The FMR is estimated from the off-diagonal entries of D by counting the number of

times that a false identity claim was accepted,

r̂m =
1

N2 −N

N∑
i,j
i 6=j

Di,j. (7.10)

Note that there are significantly more tests involved in the computation of r̂m than r̂n.

Both of these error rates may be viewed as functions of the threshold. The following

properties hold true for r̂n (τ) and r̂m (τ):

1. r̂n (τ) is a nondecreasing function, and r̂m (τ) is a nonincreasing function,

2. r̂n (τ) and r̂m (τ) are bounded below by 0 and bounded above by 1,

3. There exists a threshold τmin for which r̂n (τ) = 0 and r̂n (τ) = 1,

4. There exists a threshold τmax for which r̂n (τ) = 1 and r̂n (τ) = 0.

For a given threshold, estimates of the two error types are computed. By sweeping

the threshold and computing these estimates at every value of the threshold, we may

obtain performance curves that show the tradeoff between the FNMR and FMR. One

point of interest on these curves is the Equal Error Rate (EER). This is the error

rate for which r̂n (τEER) = r̂m (τEER) ≡ r̂EER. Since r̂n (τ) and r̂m (τ) are computed

by stepping the threshold through a discrete range of values, τEER will not be one

of the thresholds computed. Instead, linear interpolation between the thresholds
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surrounding τEER is used to approximate r̂EER. This improves as the number of

discrete values for which the threshold is swept through increases.

7.2.2 Confidence Intervals

While we evaluate our recognition systems on a relatively small test sample of indi-

viduals, we would like to characterize their performance on a different (likely larger)

target population. This is a difficult task without any further information on the

target population. If the test population is independent of the target population,

then we cannot gain any information on the target population. However this is not

likely the case for us, since we have a wide variety of individuals in our database, cov-

ering many demographic and health brackets. We need to make assumptions about

the relationship between the target and test populations, and draw clear statistical

conclusions about the target population.

Now we would like to gain an understanding of how the error rates change as a

function of the test population size, N . This will enable us to characterize the per-

formance of our recognition system on a larger population, perhaps of size 2N , 10N ,

or 100N . We write r̂n (N) and r̂m (N) to emphasize the dependence on population

size for a fixed threshold. In this report we will use a method for computing confi-

dence intervals on the error rates following closely the analysis used in the paper by

Schuckers [85]. The essential point of that paper is that we can compute the variance

of the empirical error rates given certain assumptions about correlations between the

recognition system outputs, Di,j. This requires treating Di,j as a random variable.

Both variances V ar (r̂n (N)) and V ar (r̂m (N)) will be shown to approach 0 as the
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test population size increases. Confidence intervals are computed in a straightfor-

ward manner under the additional assumption that r̂n (N) and r̂m (N) are normally

distributed. Other methods for computing confidence intervals include bootstrapping

[86] and nonparametric density estimation [87, 88, 89].

We use the following covariance structure for Di,j:

Cov (Di,j, Di′,j′) =



σ2
n, i = j = i′ = j′,

σ2
m, i = i′ 6= j = j′,

ρ, i 6= j, i′ 6= j′, (i, j, i′, j′) share at least one common value,

0, otherwise.

(7.11)

The “false nonmatch variance”, σ2
n, represents the variability in the recognition system

output when testing and training on the same individual. The assumption here is that

this number is the same for every individual. Similarly, the “false match variance”,

σ2
m, represents the variability in the recognition system output when testing and

training on different individuals. This value is the same for all pairs of different

individuals. Finally, the “false match covariance”, ρ, is a measure of the covariance

between two tests, each one using testing and training data from different individuals,

where at least one individual’s data is used in both tests. See Table 7.1 for a summary

of Equation 4. Note that each of the three parameters cannot be greater than 0.25.

The covariance structure can be made more complicated if desired. In Schuckers [85],

a total of 8 parameters are used. The method of estimating these parameters, as

outlined below, remains the same.

We compute sample estimates of the covariance parameters σ2
n, σ

2
m, ρ from the test

population by averaging over the corresponding pairs of tests (see Table 7.1). For σ2
n,
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i j i′ j′ Cov (Di,j, Di′,j′)

a a a a σ2
n

a a b b 0
a b a b σ2

m

a b a c ρ
a b b a ρ
a b b c ρ
a b c a ρ
a b c b ρ
a b c d 0

Table 7.1: All possible covariances between tests. The indices a, b, c, d are distinct.

we average over all N pairs of tests such that all of the training and testing data are

from the same individual to get,

σ̂2
n =

1

N − 1

∑
s

(Ds,s − µ̂n)2 , (7.12)

where,

µ̂n =
1

N

∑
s

Ds,s. (7.13)

Similarly, we have,

σ̂2
m =

1

N2 −N − 1

∑
i,j
i 6=j

(Di,j − µ̂m)2 , (7.14)

where,

µ̂m =
1

N2 −N
∑
i,j
i6=j

Di,j. (7.15)

The main difficulty in computing ρ is counting how many pairs we have that match

the criterion for this covariance. Let us first define an indicator function, R (i, j, i′, j′),

whose arguments are indices. This function is defined to be 1 when the arguments
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meet the criterion for ρ defined in Table 3, and is 0 otherwise. We have,

ρ̂ =
1∑

i,j,i′,j′ R (i, j, i′, j′)− 1

∑
i,j,i′,j′

R (i, j, i′, j′) (Di,j − µ̂m) (Di′,j′ − µ̂m) . (7.16)

The number of cases where R (i, j, i′, j′) = 1 is equal to (N2 −N) (4N − 7). Now we

compute the variance of the empirical false nonmatch rate,

V ar (r̂n (N)) = V ar

(
1

N

N∑
s=1

(1−Ds,s)

)
(7.17)

=
1

N2

∑
i,j

Cov (Di,i, Dj,j) (7.18)

=
σ2
n

N
. (7.19)

We see that the variance approaches 0 with increasing population size, N . The rate

of this decrease is controlled by σ2
n. The variance of the empirical false match rate is,

V ar (r̂m (N)) = V ar

 1

N2 −N

N∑
i,j
i6=j

Di,j

 (7.20)

=
1

(N2 −N)2

∑
i,j
i 6=j

∑
i′,j′
i′ 6=j′

Cov (Di,j, Di′,j′) (7.21)

=
σ2
m + ρ (4N − 7)

N2 −N
. (7.22)

Now the role of ρ can be interpreted. Setting ρ = 0 is equivalent to assuming that

the N2−N tests used in computing r̂m are independent. Otherwise, ρ represents the

correlation between false match tests involving the same individual. We plug in the

sample estimates into these equations to compute the sample error rate variances.
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Then, we can compute 95% confidence intervals as,

r̂n ±
2σ̂n√
N
, (7.23)

r̂m ±
2
√
σ̂m + ρ̂ (4N − 7)√

N2 −N
. (7.24)

7.2.3 LDV

The same models that were developed in Chapter 5 may be used for the ID verification

problem, with the same training and testing schedules. This time, however, the testing

data will be used to predict the performance of an ID verification system using the

models trained on the training data. The results from Chapter 5 are useful in this

domain as well, where we are primarily interested in three scenarios:

• Performance within session (schedules S1,1, S2,2, S3,3),

• Performance across sessions, training on one session (schedules S1,2, S1,3, S2,3),

• Performance across sessions, training on two sessions (schedule S12,3).

The cases of training on multiple sessions, and testing within session are not of great

interest for this problem, since the performance is quite good within session training

on one session. Also, as shown in Chapter 5, the model fit does not improve on

average in this scenario. In this chapter, we consider the LDVB and LDBBD models.

In addition to these models, we use describe a cepstral based HMM system.

The sequence of steps that are performed to generate performance curves are:

1. Train one model each each individual using the training data,
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2. Train the null model,

3. Compute the score matrix P from Equation 7.7,

4. Sweep through the threshold τ ,

(a) Compute the decision matrix D (τ) from Equation 7.8,

(b) Compute the error rate estimates, r̂n (τ) and r̂m (τ),

(c) Compute a 95% confidence interval using Equations 7.23 and 7.24,

5. Compute the EER.

7.3 Models LDVB and LDVBD

In model LDVB, each pulse is assumed to be drawn from a Gaussian distribution with

independent components. Model LDVBD adds transitions from pulse to pulse, which

are primarily due to the breathing cycle during resting conditions. These models are

tested for use in an ID verification system, resulting in a prediction of performance.

From a physiological point of view, the hypotheses being tested are:

1. LDVB: The morphology of the carotid pulse, as captured over several heart beats

using the LDV, contains information related to the functioning of the heart and

cardiovascular system, and is of rich enough detail to provide a basis for ID

verification.

2. LDVBD: The morphology of the carotid pulse and the dynamics due to breathing

and other short term effects, as captured over several heart beats using the LDV,
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Figure 7.2: The grand mean LDV pulse used in the null model.

contains information related to the functioning of the heart and cardiovascular

system, and is of rich enough detail to provide a basis for ID verification.

Quantitative answers are provided through experimental tests, and the results are

interpreted in terms of empirical error rates and confidence intervals. The results may

also be considered with respect to a specific application. This may entail computing

the error rate trade-off at specific points other than the EER.

The null model used for these tests is a grand average pulse model B, from Chapter

3. The grand mean that is used in this model is shown in Figure 7.2.

The resulting EERs within session are 1% or less, but performance degrades as we test

across sessions. Performance curves for LDVB−S1,1, LDVB−S1,2, and LDVB−S12,3

are given in Figure 7.3. The decreasing curves are the FMR estimates, and the

increasing curves are the FNMR estimates. Note that the FMR are smooth compared

to the FNMR curves. This is due to the increased sample size from which they are

computed.
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Figure 7.3: Empirical FNMR and FMR curves for the LDVB − S1,1, LDVB − S1,2,
and LDVB − S12,3 systems.

From this figure, we can evaluate how the stability and dicriminability changes with

respect to the three cases outlined in Section 7.2.3. Namely, the within session, across

sessions training on one session, and the across sessions training on two sessions

performance. The two FMR curves from S1,1 and S1,2 are nearly overlapping. This

indicates that the level of discriminability has not changed from session 1 to session

2. The degradation in performs come entirely from the FNMR curve shifting to the

left. This indicates that the stability has decreased, as expected from the results in

Chapter 5. The FNMR curve from S12,3 is in between the FNMR curves from S1,1 and

S1,2. Thus, the stability has improved by training on an additional session. Also, the

FMR curve has shifted to the right, indicating that the discriminability has decreased

by training on two sessions. There is a tradeoff between stability and discriminability

that becomes apparent when examining these curves.

More detailed error curves are shown in Figure 7.4 for the same scenarios. Confidence

intervals were computed for 20 values of the threshold, and they are shown as bands

in the figure in dashed black lines. The bands widen towards the middle of the

curves and become narrow towards the ends. Of course, at the endpoints, where
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Figure 7.4: Performance curves with 95% confidence bands for model (a) LDVB−S1,1,
(b) LDVB − S1,2, and (c) LDVB − S12,3.

rn = 0, rm=1 = 1 and rn = 1, rm=1 = 0, the confidence bands have no width. In the

zone where the confidence bands intersect, an EER confidence region appears. For

both the LDVB and LDVBD systems, this zone ranges approximately 5% above and

below the computed EER when testing across sessions. When testing within session,

the zone is much narrower and spans approximately 0.5%.

Table 7.2 shows the empirical EERs for all 11 schedules. Training on session 1, we see

that testing on session 2 performs better than testing on session 3. This may be due
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Model S1,1 S1,2 S1,3 S2,2 S2,3 S3,3 S12,2 S12,3 S13,3 S23,3 S123,3

LDVB >0.00 0.20 0.25 0.01 0.22 >0.00 0.03 0.15 0.02 0.02 0.04
LDVBD >0.00 0.21 0.27 0.01 0.24 0.01 0.02 0.19 0.01 0.01 0.02

Table 7.2: Empirical equal error rates for models LDVB and LDVBD over the 11
training and testing schedules.

to the longer gap between training and testing sessions. More data is necessary to

determine the cause precisely. From Table 7.2, model LDVBD performs better than

LDVB within session, except for session 3. Across sessions, model LDVB performs

better. FNMR and FMR curves for model LDVBD are presented in Figure 7.5.

The additional information captured by model LDVBD helps to uniquely identify

each individual. However, across sessions, this model is too detailed for use in ID

verification. When breathing patterns change across sessions, the model interprets

this as an indication that the data are from a different individual.

In screening applications, we may not be as interested in the EER as in low FMR

operation points. The purpose of a screening is to quickly reduce the total number of

people that need to undergo additional verification. It is important in this application

that the probability that someone is untruthful about his/her identity is not passed

through to the next stage. This may be a useful technique in public places with high

volumes of people, where it is known beforehand that most of the people are truthful

about their identity. Table 7.3 shows the FNMRs for FMRs of 1%, 0.5% and 0.1%

on across session tests. Training on a single session, we may reduce the number of

people that go to the next stage by approximately 20%. At an FMR of 1%, almost

half of the people will not need to go through additional screening. The table also

shows performance for the S12,3 schedule.
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Figure 7.5: Performance curves with 95% confidence bands for model (a) LDVBD −
S1,1, (b) LDVBD − S1,2, and (c) LDVBD − S12,3.

1% 0.5% 0.1%

LDVB − S1,2 53% 61% 80%
LDVB − S12,3 42% 54% 78%
LDVBD − S1,2 54% 66% 79%
LDVBD − S12,3 51% 56% 82%

Table 7.3: FNMRs for set FMRs of 1%, 0.05%, and 0.01%.
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7.4 Cepstral HMM

7.4.1 Background

STFT representations of the LDV data have been used for ID verification with the

LDV [58, 90], using a similar system design. In these methods, the log magnitude

STFT is performed on each pulse using a Hamming window of length 96 ms, and an

overlap of 80 ms. A template, c, is computed by averaging the log magnitude STFT

matrices across the training pulses for each individual. During testing, the following

score is computed for each testing pulse, b,

g = −
∑
i,j

(c (i, j)− b (i, j))2 − (c (i, j)− b0 (i, j))2 , (7.25)

where b0 is a null spectrogram. If multiple testing pulses are used, then the mean of

their scores is used. This score is then compared to a threshold for the decision. It

was found that the performance was steady after four testing pulses. Across sessions,

the estimated EER was 11%. Several additional improvements were made to this

system, including:

• Training on two sessions,

• Informative component selection,

• Separating the pulse into two portions based on the incisura location.

After these improvements, the across sessions EER was lowered to 6%. See the paper

by Chen [90] for more details.
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Signal variability is a major issue in speaker recognition [91], and in recognition

based on LDV data. Spectral features [92], and the combination of HMMs with

spectral features [91, 93, 94] has been found to be useful to combat this variability

in speaker recognition. Among the 15 methods and papers surveyed by Campbell

[93], none published before 1991 use HMMs and all published after 1991 do, showing

the prevalence of HMMs for speaker recognition in more recent years. The success of

these models in speaker recognition provides a motivation to pursue similar methods

for LDV data.

The STFT has also been successful in applications of speech recognition. In those

systems, a HMM is used on a modified STFT called cepstral coefficients. Within each

window, the cepstrum is computed instead of the magnitude FFT. Several definitions

of the cepstral coefficients exist. The one that is used here is,

F−1 {log (|F {y}|)} . (7.26)

The system presented in this section use cepstral coefficients combined with an HMM

(model LDVBD).

7.4.2 Results

Here we describe some results using a cepstral based HMM for LDV. Within each pulse

we compute cepstral coefficients in a sliding Hamming window with 50% overlap. Five

window lengths are considered: 700ms, 350ms, 175ms, 70ms, and 35ms. The models

are trained on session 1, and tested on session 2, and the scored are normalized using

a null model that represents the average individual. Keeping the number of states
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Window
length

Time bins
per pulse

EER (%)
95%

FNMR
FNMR
overlap

95%
FMR

FMR
overlap

700 ms 1 14.41
[8.55,
20.27]

39%
[12.20,
16.62]

1%

350 ms 3 13.33
[7.60,
19.07]

43%
[11.44,
15.23]

3%

175 ms 7 11.27
[5.94,
16.59]

-
[9.79,
12.74]

-

70 ms 19 12.68
[7.07,
18.28]

45%
[10.79,
14.56]

9%

35 ms 39 16.90
[10.59,
23.21]

32%
[13.66,
20.15]

2%

Table 7.4: Equal error rates with varying window lengths and 2 states. Also, 95%
confidence intervals are given for the false nonmatch and false match rates. The
overlap indicates the probability of the error rate being lower than that of the best
performing model with a window length of 175ms.

constant (2 states), the models with 175ms length windows resulted in the lowest

EER of 11.27% (see Table 7.4). Then, keeping the window length constant at 175ms,

we vary the number of states, from 1 to 5 (models with 1 state assume that the pulses

are independent). From this experiment, the best performing model is one with 3

states, resulting in an EER of 10.04% (see Table 7.5).

Also included in Tables 7.4 and 7.5 are 95% confidence intervals on the error rates,

along with the probability that each error rate is less than the best performing model’s

error rate in that group (we call this the overlap). This helps us to decide if one model

should be preferred to another model. If the overlap is large, then the performance

between the two models cannot be distinguished. If the overlap is small, then the

model with the lower error rate should be preferred.

The confidence intervals for the false nonmatch rate (FNMR) are wider than those for

the false match rate (FMR). Generally, this is because there are more tests involved in

determining the FMR than the FNMR. As described later in this report, correlations
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Number of
states

EER (%)
95%

FNMR
FNMR
overlap

95% FMR
FMR

overlap

1 10.56
[5.39,
15.74]

48%
[9.12,
12.01]

23%

2 11.27
[5.94,
16.59]

45%
[9.79,
12.74]

5%

3 10.04
[5.02,
15.06]

-
[8.65,
11.43]

-

4 10.88
[5.70,
16.06]

46%
[9.42,
12.34]

12%

5 11.43
[6.10,
16.76]

44%
[9.89,
12.97]

4%

Table 7.5: Equal error rates with varying number of states using a window length
of 175ms. Also, 95% confidence intervals are given for the false nonmatch and false
match rates. The overlap indicates the probability of the error rate being lower than
that of the best performing model with 3 states.

between false matches widen the FMR confidence interval. Consulting with Tables

7.4 and 7.5, we see that the overlap percentage of the FNMR is too large to help us

decide between the models; instead we will use the FMR to help use decide between

the models. In Table 7.4, we see that none of the overlaps are greater than 10%. This

leads us to have high confidence that the 175ms is best among those considered, at

least for the FMR. In Table 7.5, we see significant overlap among the FMR as well as

the FNMR, so we do not claim to decide the best number of states. Figure 7.6 shows

the performance curves for the best performing model, along with the confidence

bands.
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Figure 7.6: The performance curves for the cepstral HMM and 95% confidence bands.
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Chapter 8

Conclusions and Future Work

Biological signals are often indirect measurements of desired quantities. Using these

types of signals either for clinical applications or security applications may require the

use of empirically tested models. A commonality between many biological signals is

they are semi-periodic, and dependent on the state of the individual. The models that

were developed in this dissertation are designed to track the state of the individual.

Doing so requires an appropriate time frame to consider variability in the signal.

An LDV system was used as a novel method for sensing cardiovascular activity

through mechanical movements of the skin surface overlying the carotid. Models

for the pulse and models that incorporated state changes across pulses were evalu-

ated on three sessions of data. The fit of the pulse models decreased as tests were

made across sessions. This is due to longer term state changes that were occurring in

the individual, although for some individuals, the pulses did not show great variability

across sessions. Models that include transitions from pulse to pulse generally track

the breathing phase when trained under resting conditions. These models performed

better than the pulse models within session, but worse across sessions. This is due
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to the added changes in breathing patterns that may be occurring across sessions.

Within session, the breathing patterns were fairly constant.

Models were also trained across multiple sessions of data. Training Gaussian models

using two sessions effectively averages the pulses across those sessions. These models

performed better than models that treated each session as a separate state. This is

because there were not enough long term states to accurately predict future sessions.

An interesting question is to determine whether adding more sessions will improve

these models.

In the log-magnitude STFT domain, models were constructed to include short term

variability in the LDV pulse. These models utilize a left to right state topology in

which each pulse must transition from the first state to the last state, passing through

all states in between. Considering other topologies that allow for skipping states is a

possible future direction. These models were used to segment raw sequences of LDV

signals by determining when the final states were reached for each pulse.

The LDV signal is related to the underlying physics of blood flow. This line of analysis

was explored within the fluid dynamics of elastic tubes. Under certain assumptions of

symmetry and wave properties, the resulting pressure wave follows a one dimensional

wave equation. Additional assumptions are necessary to relate the skin displacement

to the carotid’s radius, which in term is nearly proportional to the underlying pressure.

Testing these assumptions is an area of future work. Under experimental settings,

the LDV displacement pulse is representative of typical blood pressure waveforms.

Modeling the LDV pulses in the STFT domain holds the greatest promise for ID

verification using the LDV. An HMM was used to models changes across pulses. Sim-

ilar models are used for speech recognition problems. An EER of 10% was obtained
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training on one session using a three state HMM. From the work of Chen [58] on this

problem, an EER of 11% was obtained by training on one session using a lognormal

model of STFT coefficients. Splitting the pulse into two parts, the first centered on

the main peak, and the second centered on the incisura dropped the EER down to

9%. Training on two sessions reduced the EER to 6%. Similar methods may improve

performance on the HMM models as well.

Reporting confidence levels is especially important when sample sizes are small. Con-

fidence was reported using a correlation method that does not assume that all tests are

independent. Only tests involving different individuals are assumed independent. Us-

ing this method, a 95% confidence range of approximately ±5% was computed. This

number seems to be roughly equivalent for all of the methods that were attempted.

8.1 Future Work

8.1.1 Modeling for LDV and Biological Signals

The models that were explored in this dissertation were shown to track physiologically

relevant states within a pulse and across pulses. However, the multisession models

that treat each session as a separate state did not yield interesting results, other than

to point out that there were not enough sessions for data driven modeling of long term

state effects. If more sessions were recorded, would it be possible to develop models

that track long term state changes? This may be experimentally performed through

shorter intervals between sessions, perhaps daily or a few times a day. Learning the

signal variability with such a data set would prove invaluable for clinical and security
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applications. Also, this may enable models to be built for specific clinical conditions

across individuals.

The number of states used in the graphical models was manually selected based on our

physiological understanding of the underlying dynamics. Since the data were recorded

from individuals at rest, this was a satisfying choice. There may be other dynamics

which we do not expect, however, especially in non-resting conditions. One approach

to selecting the number of states could be to implement a penalized loglikelihood.

The penalty could be linear in the number of states, as suggested by the Bayesian

Information Criterion [95, 96].

HMMs are versatile models. The hidden Markov chain may be constructed of higher

order, but a higher order Markov chain can always be made equivalent to a first order

Markov chain by expanding the state space. The Gaussian model for the observed

variables given the hidden state has been experimentally shown to be useful for the

LDV signal, but a different model may also be beneficial. One example is the learning

of a tree structure for each pulse. The Chow and Liu algorithm [97] gives a consistent

algorithm for learning the structure of a tree when the true distribution is a tree

by computing pairs of sample mutual information. These pairs are then used as the

weights in a maximum-weight spanning tree problem. This algorithm may be used

on the LDV pulse to potentially uncover interesting patterns within a pulse.

8.1.2 Underlying Physics of LDV Signals

In this work, the link between the LDV signal and the blood pressure in the carotid

was explored. This is an important aspect of the development of this technology for

clinical use, and perhaps for security applications as well. There is a large body of
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work on the physiological function of the cardiovascular system, which can be accessed

if this link is well understood.

One possible step could be to design a simulation of the LDV pulse based on physical

parameters, such as the heart rate, and elasticity of the carotid walls. Then, models

may be estimated on the simulated data initially. The simulated data may also be

compared to the real data to see if the models are realistic.

The assumptions that were presented in this work have not been tested. Some of

them are more reasonable than others, but this may be tested in a number of ways.

Simulated data may be generated by controlling which assumptions are relaxed, and

then compared with real data. Another possible direction could be to measure the

blood pressure simultaneously, possibly on animals.

8.1.3 ID Verification Using the LDV

The LDV may be especially useful in pre-screening applications. This requires a

different operating point for the system, other that that which produces the EER.

A systematic assessment of the system sensitivity to threshold changes would be

beneficial to this application. Systems that do not require pulse segmentation would

also be beneficial, since errors that are made in pulse extraction will propagate to the

system decision.

Assessing a wider variety of subject conditions, including varying postures is also

important for this problem. All of the data used in this dissertation were made from

the seated position, but the standing position may cause significant changes in the

signal. Also, the data may be recorded while the subjects are walking. In addition,
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the data were recorded using a piece of reflective tape. Analyzing the performance

using LDV signals collected directly from the skin is important future work.

Another direction for future work is to address the dependence of the proposed ID

verification system on the state of the individual. Perhaps controlling for heart rate

or blood pressure may improve performance. This may be experimentally quantified

by classifying the subjects according to state before evaluating system performance.
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Appendix A

Fluid Dynaimcs

The Navier-Stokes equations are derived from the conservation of mass and a set of

constitutive equations. This derivation follows along the lines of Zamir [57].

A.1 Conservation of Mass

Cylindrical coordinates are a natural choice for this problem, since the tubes will be

approximated as cylinders. The three axis: axial, radial, and angular are represented

by the symbols: x, r, θ. Components of a velocity vector in the cylindrical space

are represented by the corresponding symbols: u, v, w. The volume of an arbitrary

volume element with infinitesimal dimensions (δx, δr, δθ) located at a radial distance

of r is,

V =
(
π (r + δr)2 − πr2

) δθ
2π
δx = π

(
r2 + 2rδr + δr2 − r2

) δθ
2π
δx ≈ rδrδθδx.

The mass of this volume is equal to its volume multiplied by its density: M = ρV .

Since, in general, the density is a function of time, the partial derivative of the mass
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with respect to time is: ∂M
∂t

= ∂ρ
∂t
rδxδrδθ. Without going into the details, applying

conservation of mass by balancing the flow of mass in and out of each dimension of

the volume element gives,

−
(
∂ (ρu)

∂x
+
∂ (ρv)

∂r
+
ρv

r
+

1

r

∂ (ρw)

∂θ

)
rδθδrδx ≈ ∂ρ

∂t
rδθδrδx.

As the infinitesimal dimensions approach a point,

∂ρ

∂t
+
∂ (ρu)

∂x
+
∂ (ρv)

∂r
+
ρv

r
+

1

r

∂ (ρw)

∂θ
= 0.

Making the assumption that the density is constant in space and time: ∂ρ
∂t

= 0, ∂ρ
∂x

=

0, ∂ρ
∂r

= 0, ∂ρ
∂θ

= 0,

∂u

∂x
+
∂v

∂r
+
ρv

r
+

1

r

∂w

∂θ
= 0. (A.1)

Equation A.1 is the equation of conservation of mass that will be used in this analysis.

A.2 Navier-Stokes Equations in Cylindrical Coor-

dinates

Newton’s second law of motion, for each dimension in cylindrical coordinates is,

max = Fx,

mar = Fr,
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maθ = Fθ.

Here, ax, ar, aθ are components of an acceleration vector, and Fx, Fr, Fθ are compo-

nents of an applied force vector. Dividing both sides by the volume (V ) gives,

ρax = fx,

ρar = fr,

ρaθ = fθ,

The right-hand side is now in units of force per unit volume, fx = Fx
V
, fr = Fr

V
, fθ = Fθ

V
.

The acceleration components are equal to the derivative of corresponding velocity

components with respect to time together with terms that take into account the

curvature of the geometry,

ax =
Du

Dt
=
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂r
+
w

r

∂u

∂θ
,

ar =
Dv

Dt
− w2

r
=
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂r
+
w

r

∂v

∂θ
− w2

r
,

aθ =
Dw

Dt
− vw

r
=
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂r
+
w

r

∂w

∂θ
− vw

r
,

The forces per unit volume (fx, fr, fθ) are expressed in terms of nine stresses

τxθ, τxr, σxx, τrθ, σrr, τrx, σθθ, τθx, τθr,

148



three that act on each of the three dimensions. They are not discussed in detail here

for the sake of brevity, but their relationship to the forces are given by,

fx =
∂σxx
∂x

+
∂τxx
∂r

+
τrx
r

+
1

r

∂τθx
∂θ

,

fr =
∂τxr
∂x

+
∂σrr
∂r

+
σrr
r

+
1

r

∂τθr
∂θ

,

fθ =
∂τxθ
∂x

+
∂τrθ
∂r

+
τrθ
r

+
1

r

∂σθθ
∂θ

.

This formulation is in terms of stresses, which are difficult to measure in practice. We

would like to find a relationship between the stresses and the pressure field to derive

a more practical model. A set of empirically derived equations, the “constitutive

equations”, are used for this purpose, which formulate a linear relationship between

the stresses and the pressure, involving partial derivatives of the velocity components.

They are given by,

σxx = −p+ 2µ
∂u

∂x
,

σrr = −p+ 2µ
∂v

∂r
,

σθθ = −p+ 2µ

(
1

r

∂w

∂θ
+
v

r

)
,

τxr = τrx = µ

(
∂u

∂r
+
∂v

∂x

)
,

τxθ = τθx = µ

(
∂w

∂x
+

1

r

∂u

∂θ

)
,

τrθ = τθr = µ

(
∂w

∂r
− w

r
+

1

r

∂v

∂θ

)
.

In these equations, the pressure field is denoted by p. When the velocity components

are equal to zero, the pressure satisfies −p = σxx = σrr = σθθ. When the velocity
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components are not equal to zero, then the following is assumed: p = −σxx+σrr+σθθ
3

.

Combining the equations for the components of acceleration and the equations for

the forces into Newton’s second law of motion gives the Navier-Stokes equations in

cylindrical coordinates,

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂r
+
w

r

∂u

∂θ

)
+
∂p

∂x
= µ

(
∂2u

∂x2
+
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2

)
, (A.2)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂r
+
w

r

∂v

∂θ
− w2

r

)
+
∂p

∂r
= (A.3)

µ

(
∂2v

∂x2
+
∂2v

∂r2
+

1

r

∂v

∂r
− v

r2
+

1

r2
∂2v

∂θ2
− 2

r2
∂w

∂θ

)
,

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂r
+
w

r

∂w

∂θ
+
vw

r

)
+

1

r

∂p

∂θ
= (A.4)

µ

(
∂2w

∂x2
+
∂2w

∂r2
+

1

r

∂w

∂r
− w

r2
+

1

r2
∂2w

∂θ2
+

2

r2
∂v

∂θ

)
.

These equations together with the equation of conservation of mass (Equation A.1)

provide the governing equations for the most general case of fluid flow in cylindrical

coordinates.
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