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Formal Specifications of
ADS, An Abstract Database System

1. Introduction

This technical report describes the formal aspects of a semantic database
model, ADS, which can be used as a fundamental building block in the develop-
ment and/or analysis of information systems. ADS is a formal model of infor-
mation, and in the form presented here, it is not directly implementable for
use within an information system.

ADS can be used in several different ways. As a formal model, it can be
used as a specification tool for stating the semantics of an information system;
this is useful for analysis of an information system and for comparison between
different information systems. With some modifications (to restrict its power),
ADS can be implemented and used as the kernel of an information system. If such
a kernel is developed, a significant interface system must also be developed to
"buffer" the end-user from the rather terse notation used by ADS. 1In any event,
ADS is not intended to be used directly by any end-user. In the remainder of
this report, the term "user" refers to any process that communicates directly
with ADS and does not designate the end-user.

Section 2 presents some fundamental concepts about our notion of a data-
base system. Section 3 presents an overview of ADS. Sections 4, 5, 6 and 7
present formal definitions, a meta-language for ADS, the syntax of ADS and

the semantics of ADS, respectively. Section 8 presents some examples.



2. Fundamental Notions

A database is a collection of symbols denoting a collection of judgements
(in the broadest sense of the word) made by a community of users about their
knowledge of a portion of the world in which they share an interest. Our use of
the word judgement includes the report of gimple measurements as well as a decision
requiring wisdom or skill. Because of the symbolic representation of these
judgements, a database is a linguistic entity with which there exist associated
rules of syntax and semantics. A database model is a model of the linguistic
structure of the symbolism by which judgements are represented.

Note that a database is not a model of the world.; rather, it is a model of the
user's view (knowledge) of the world. Recognition of the difference is essential
in constructing a conceptual model of a database. What matters is not the
correspondence between the database and the real world, but between the database
and the user's view of the world. While reality stays the same, the view of
reality may change, and vice-versa. A database model must be able to reflect
such a change instead of forcing a particular view of the world onto the users.
When there exists more than one view of the same reality within the same user
community, it is a database system that preserves the consistency among the
different views representable in the database.

A database system, of which a database is a part, is a communication

mechanism through which the users can share mulitiple views of the world. Two users
communicating through a database system may be the same process at two different
time instances, or they may be two distinct processes which might be geograph-
ically distant from one another. The utility of a database system stems, first,
from its capability to check and enforce the agreements among the users on

judgements about the world, and secondly, from its capability of conveying



the records of judgements from one point in time/space to another.

Since all judgements are represented in the database by symbols, the agree-
ments on judgements can be reduced to the agreements on symbol usage; i.e., a
grammatical rule and an interpretation rule of the symbolism. A way of viewing
the world is defined by symbol usage. A fundamental function of a database system
is to check the consistency, both syntactic and semantic, of a newly entered
declaration (symbolic representation of a judgement) with the declarations that
already exist in the database. 1In order to perform this function, a database
system must contain the syntactic and semantic rules of symbolism assumed by the
users.

Furthermore, the system should be able to change these rules under the user's
direction, reflecting the changes in the user's view of the world.

There are two kinds of judgements that a user can communicate to the data
base system: intensional judgements and extensional ones. From a logical point
of view, an intensional judgement involves general terms and 'concepts', and an
extensional one involves specific terms and 'individuals'. The former represents
the user's view of how the world is supposed to be, and the latter represents
the user's view of how the world actually is. 1In linguistic terms, an intensional
judgement entails a user's commitment to particular rules of symbol usage (possi-
bly by updating the existing rules), and an extensional one implies am actual
usage of symbols. Extensional judgements are required to be consistent with
intensional judgements in the same way that actual use of symbols must be consis-
tent with the prior commitment to a particular grammar. A database system
checks this consistency and rejects inconsistent judgements. In this regard,

a database system can be considered as a language processor (eg., a compiler)



with a significant amount of intelligence.

It should be noted that whether a particular judgement is extensional or
not depends upon the level of abstraction from which the decision is to be
made. The situation is similar to the one encountered in deciding whether a
particular symbol belongs to an object language, or a meta-language, or a meta-
meta-language, and so on. For example, if a user has decided how syntactic
and semantic rules of symbolism should be stated, and has entered this judgement
to the database system as declaration A (an intensional one), then declaration
B, which makes a particular change in grammar, can be considered as an extensional
one with respect to A; however, B can be considered as an intensional one with
respect to a judgement involving a symbol usage. It is also important to note
that the above observation is relevant only when the database is capable of
accepting and representing judgements about symbolism in general, and about the
symbolic representation of other judgements within the database in particular,

i.e., a self-referencing capability.

3. Abstract Database System Overview

The Abstract Database System (ADS) is a mathematical model of a database.
The model presented here has the self-referencing capability and is a single~user
model. The model serves several purposes: (1) It is a stepping stone to a
more general model for a multi-user community where different but important issues,
such ‘as concurrency control, access control and 'external views' of different
users, must be addressed. (2) The validity of the observations made in the pre-
vious section about modeling a database can be tested. (3) While ADS is a mathe-
matical model, it can indicate the nature of the resources required for implemen-—

ting a database system whose design is based on a similar model. (4) Since ADS



is intended to be 'elementary' in the sense of Kent [4]), it can serve as a
reference point in comparing the power and limitations of known 'secondary' or
'vernacular' models such as those proposed by Codd [3], Chen [2], Senko [6],
Smith and Smith [7], Abrial [1], and Schmid [5]. (The examples given at the
end of this appendix demonstrate this point.)

The model is called '"abstract' because it is a mathematical model, and has
no physical structure associated with it. This is not to say, however, that
the implementability or feasibility of the final model has been neglected. On
the contrary; we are well aware of which aspects of ADS have straightforward
implementations and which do not. Our selection of features to include in ADS
has been significantly affected by implementation constraints.

In the remainder of this section we will give an informal overview of the
ADS, and in the following three sections, a particular ADS based on the set of
binary trees will be described mathematically.

In its most general form, an ADS is a state machine (automaton) depicted

as in Figure 1.

celC

USER ¢ gl I

wes

Figure 1: ADS as a state machine.

where: T (information state space): the (infinite) set of information states,

C (commands): the set of input symbols,

2 (objects): the set of output symbols,

¢ (interpretation): the next state functiom, i.e., ¢:CxI+QxI.

The user enters a sequence of judgements and queries into the system by



choosing a sequence of commands. Each command is interpreted by ¢, and if the
command is 'consistent' (to be defined later) with the current information
state, then the command is accepted (otherwise rejected), and the user is so
notified. If the command represents a user judgement, either intensional
or extensional, ¢ will record it by changing the information state. If the
command represents a user query, ¢ will construct a response and display it to
the user without modifying the information state. Thus, the information state
in the ADS corresponds to the conventional concept of 'database'. It should
be pointed out here that the information state is encoded by symbols denoting
intensional judgements as well as extensional ones; i.e., the information state
can be thought of as containing the syntactic and semantic rules by which
¢ interprets the symbols contained in the information state.

The next level of the ADS description specifies the structure of I, ¢, &,

and ¢.

For each ADS, there exists a base language B in which the information

structure (or the content of the database) is represented- {(or encoded). The
language B is an object language in the sense that it has its own syntax but no
semantics by itself. It is simply a set of patterns, and any algebraic system
can be a base language as long as the set satisfies a certain set of axioms (to
be given later). In the particular ADS to be described in the following sections,
we have cﬁosen the set of all binary trees as the base language, mainly because
it is the simplest algebraic system satisfying the required property and also
it is a well-known set.

An information state, a member of I, is represented by a finite set
of expressions from B. The interpretation of those expressions is carried out

by ¢ based on the semantic rules represented in the information state itself.



Since the information state is modified by user transactions, the semantics of
an information state is under the user's control and changes dynamically. The
structure of ¢, on the other hand, depends upon the structure of B, but it is
independent of user transactions.

The user expresses his/her judgements and queries in the first order
language C, which is syntactically a sublanguage of B with the semantics defined
by both ¢ and the current information state. The syntax of C is fixed for each
ADS. The views of the world that the user can communicate to the system are
primarily dictated by the syntax of C.

As far as the ADS is concerned, a view of the world is significant, when
and only when it is representable in terms of the elements of B, the subsets of
B, and the relationships among them. That is to say, the universe of discourse
for an ADS, denoted by @ and called the set of objects, consists of elements
{of B), sets (of elements) and assertions (logical values).

The semantics of C and the information state are defined on the domain of
these objects.

The domain of ¢ is actually a superset of C and is called the language L.

The alphabet of L is called the symbols I and is partitioned into logical symbols

A, variables V, and names N.

Under the interpretation of ¢, logical symbols, such as logical connectives,
quantifiers and the equality sign, have the usual fixed meanings. The range of
variables is over B, i.e., over the elements. A name denotes an object, when so
defined by the user.

The language L contains another sublanguage called descriptors D. A

descriptor also denotes an object. The association between a descriptor and



its denotation (object) is inherent in the structure of the descriptor, while
the association between a name and its denotation is purely incidental and only
the user can establish the association.

An information state is a collection of user defined names of objects,

called the proper names P, along with the two attributes, the intension u, and

the extension Tt.

The intension of a proper name is specified by a descriptor which is given
by the user when the name is defined. The extension of a proper name can be de-
fined only after the name and its intension have been defined. The extension
must always be consistent with the intension in the following sense: let n
be a proper name, u(n) be its descriptor, t(n) be its extension, and ¢(u(n)) be
the object described by the descriptor u(n). If n is an element name, then it
must be that if t(n) is defined then t(n) = ¢{u(n)). If n is a set name, then
it must be that t(n) < ¢(u(n)). If n 1is an assertion name, then it must be
that t(n) = ¢(u(n)).

Generally speaking, the intension of a name specifies what the name
can possibly mean. The extension specifies what the name currently means.

A user command to ADS can be either an update command or a query command.
An update command changes the information state by either adding a new judgement
or cancelling an old one. An update command can be also gither intensional,
i.e., defining a new name with its descriptor, or extensional, i.e., assigning
an extension to an already defined name. A query command is an expression in L
which denotes an object. The system displays the specified object.

A transaction is an indivisable sequence of update commands. The user can
enter any sequence of update commands within a transaction and change the infor-
mation state as long as the set of assertions in the information state whose ex-

tensions are defined satisfy the following invariant condition at the end of the



transaction.

Let a be an arbitrary assertion name. If t(a) is defined (i.e., the user
had assigned the extension), then $(u(a)) = 1(a), i.e. ¢ evaluates the
descriptor u(a) to the same logical value as t(a).
Thus, the set of assertions whose extensions are defined by the user plays the
same role as the 'constraint set' in the conventional database model.

The initial information state is an important part of the ADS definition.

It must contain an appropriate set of objects (and proper names) in order that

the user may exploit fully the system capabilities, in particular, the self-

referencing capability.

4. TFormal Definitions

In this section we will define an ADS utilizing the set of binary trees

as the base language. A meta-language for L is given in the next section.

(1) Binary Trees.
Let B be the set of all binary trees defined by the following production
rules on the alphabet {0,1}:
(a) 0 ¢ B,
(b) if a, BeB, then 1laR € B,
(c) nothing else is in B.
Note: B = {0, 100, 11000, 10100, 1100100, ...} represents {-,A &% N, M, ...}
Let TX be the set of all binary trees with the leaf nodes in X, where X
is an arbitrary subset of B, i.e., the production rules for Tk are as follows:
(a) if a € X, then a € Ty

(b) if o,B € TX then laB e TX

(c) nothing else is in TX'
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Notes: (1) TX < B for any X < B.

@ 3= T,
(3) B can be considered as an algebraic system <B, +, {0}>
where +: BxB + B is a binary operator, and {0} is a generator of
B satisfying the following axioms:
(a) (Vu,v,x,5y & B)( +(u,v) = +(x,y) =>(u = xAV = ¥))
(b) (¥x,y e BY( +(x,y) ¢ {0})
(c) (¥xeB-{0}) @y,zeB) ( x = +(y,2))

Furthermore let

2 7 {True, False}: the set of logical values

232 {X|X € B}: the set of all subsets of B
R=2yBuU 2B: the set of objects

Now, we are ready to define an ADS.

(ii) Abstract Database System based on B: ADSB.
ADSB is an 8-tuple <B, £, L, D, C, I, ¢, Io>, where

B=T base language (the set of binary trees)

{0}’
I & B: symbols (a decidable and uniquely deconcatenable* subset of B).
=AUV UN (disjoint union of A, V, and N)

where A: 1logical symbols,

V: wariables,

N: names (constants),

L & T_: language (a collection of structured sets of symbols)

*no member of I is a subtree of another member of E.



descriptors (a descriptive sublanguage of L for denoting objects)

D =D, yDd,yDg

where DA: assertion descriptors,
DE: element descriptors,
DS: set descriptors.
commands (a prescriptive sublanguage of L for denoting user
commands)
C = CU 1] CQ
where C,.: update commands,

u
CQ: query commands.

Ig{<P, u, v > | pen: proper names;

p: P = D: intension of proper names;

t: P + Q (partial): extension}.

information states

where if <P, p, v > ¢ I,

then t(a) < 2, for a ¢ A

t(e) © B, for e ¢ E

w(s) & 2B, for se§
where A 3 u_l(DA) assertion names,
E x u-l(DE) element names,
-1
S L (DS). set names.

$: LXxI » Q@ x (I Y Q) (partial): interpretation of L

where ¢: DA x T+ 2
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IO g I: initial information state

Note: Since B, £, A, V, N, L, D, C, P, u, T, A, E, 8, ¢ are
all subsets of B (with proper encoding for u, T, ¢),
these sets can be made available to the user by including
their names and the proper descriptors in the initial

information state.

5. A Meta-language for L

The language L is defined as a subset of B, and it is awkward to talk
about its syntax and semantics directly. Therefore, we introduce a meta-language
for L, denoted by L, whose mapping to binary trees is straightforward.

The syntax of | will be given first, then the evaluation function of L,

representing the semantics of L and the structure of ¢, will be given afterwards.

5.1 Syntax (BNF) of L

Logical symbols (A): (, ),.A(¥), E(&), LX),
IV, #e), Fo~b s 24,
=, ==, =>, <=, TAU(T), MU(W),
PHI(9)

Variables (V): any alphanumeric word

Names (N)}: any alphanumeric word (in the BNF, P is classified

into A_NAMES, E_NAMES, and S_NAMES)

The following is an LALR(1l) grammar for the meta-language L.



1) COMMANDS
session ::= command list

command list ::=command |
command list ; command

command ::= transaction |
query

It

transaction ::= < update list >

update list

]

update
update_list ; update]

update ::= - definition l
~ fact ]
~{- defined __ name ]
~i= fact
2) QUERIES
query ::= ? expression

3) DEFINITIONS and FACTS
definition ::= name == e _expression
defined name ::=name

fact ::= A NAME <- a_expression
E NAME <- e expression
S NAME <- ( s expression ) |
S NAME <- e expression

4) EXPRESSIONS

expression ::= a_expr
e_expr
8_expr
f expr

a_expression ::=a_express [
a _designator

e expression ::=e express |
e designator

§_expression ::=s express |
s designator



a_express :!:= a descriptor l
e_expression = e expression
e_expression # s_expression
( a_expression => a_expression ; a expression )

e express ::=  VARIABLE [
e descriptor |
" lexical unit
' lexical _unit '
+ e _expression e expression

8_express ::= s descriptor

f expr ::= TAU ( e _expression ) |
PHI ( e expression )

a_expr ::= a_express |
a desig

e_expr ::= e _express |
e desig

S_expr :i= s_express |
s desig

5) DESIGNATORS

a designator ::=a desig |
f expr

e_designator ::=e desig |
f expr

s_designator ::=s desig ]
f expr

a_desig ::= A NAME |
T
F

e desig ::= E NAME
NIL |
MU ( e expression )

s desig ::= S_NAME |

|

NULL

14



6) DESCRIPTORS

a_descriptor ::=( orm ) ( a expression ) |
( ) (

a_expression )
e _descriptor ::=( I form ) ( a expression )

s_descriptor ::=( L form ) ( a_expression )

7)  FORMS
form ::= forml # type |
form2
forml ::= VARIABLE |
+ forml forml
form2 ::= + form3 form3
+ form3 form?2
+ form2 form3
form3 ::= ( VARIABLE # type )
8) MISC,
type ::= s _expression

lexical unit ::=form2 |
expression

name ::= A NAME

E_NAME
S_NAME

5.2 Semantics for L (Specification of ¢)
Let IS=<P,u,T>el be an arbitrary information state. Let [§] be the
evaluation of § € L under IS; i.e., [&] i $(8,I8) where § ¢ | and IS e I.
The evaluation function [ ] is defined recursively for each component

of L; we adopt the following notations:

n,n 0,0 3 an arbitrary name, e name, s name, or a name.

8

d,de,d ,da: an arbitrary descriptor, e descriptor, 8 _descriptor, or
8 a descriptor.

15
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€ _exXpr,s_expr,a expr: an arbitrary e expression, $_expression, or

YsYl,st"'sYn:

X X 3

X, X ..
L) 2°? * 2 tn

l’

B2t sEysannst

a(xl,xz,...,xn):

B(lexza' . sxn):

B(Yl,st---sYn)=

1} COMMANDS

[command 1list]

[transaction]

[<]

[>]

[update list]

a expression.
arbitrary expressions.
arbitrary variables.
arbitrary types (sets).

an arbitrary form with n > 1 typed variables (xi e t,
is assumed). 1

an arbitrary a expression containing n > 1 free variable.

the result of free substitution of y, for in B(xl,x sesesX ),
1 <k <n. PFree substitution is alléwed for any variable n
not contained in a double quote (). Free substitution

places a quote around the substituted expression.

= [command.] then
[commandz] then

[commandn]

where command, is in command list in the sequence
indicated (no response to the user).

% [<] [update list] [>]
save a copy of the current information state
in saved IS (no response to the user).

=]

Let RESP = A, ¢(u{assert)) = t(assert)
{assert & A NAMES|
t{assert is defined}

if RESP then respond (accept)

else respond (reject)
replace IS by saved IS

]

[update.,] then
[updatez] then

[updaten]

where updatei is in update list in the sequence
indicated (noc response to the user).



2) UPDATE COMMANDS

[F-n==g_expr] E_ig n € P then respond (reject)
else if [e expr] £ E DESC then
E NAMES” = E NAMES U{n}
w'(n) = [e_expr]
77 (n) = UNDEF
respond (accept)
else if [e expr] € A DESC then
A NAMES” = A NAMES U{n}
u'(n) = [e_expr]
v°(n) = UNDEF
respond (accept)
else if [e expr] e S DESC then
S NAMES” = S_NAMES U{n}
k" (n) = [e _expr]
1°(n) = UNDEF
respond {(accept)
else respond (reject)

[~Fn]

|

P’ = P-{n}
respond (accept)
else respond (reject)
[|—ne<-e_expr] if n_ ¢ E NAMES and
T(ne) = UNDEF and
[e expr # (La)(B)] = True
(where o and B are such that
u(n,) = (1a)(B))
then
T7(n,) = [e_expr]
respond (accept)
else respond (reject)

=l

if n_ £ E NAMES and
—-—-e — ——
T(n_) = [e expr]
e A
then

[~}—ne<-g_expr]

=g]

T°(n_) = UNDEF
e
respond (aceept)
else respond (reject)
[}-na<—q_expr] if n, € A NAMES and

T(n_) = UNDEF and
o (CIEe)
[u(@,)] = [a_expr]

]

then
T’(na) = [a_expr]
respond (accept)
else respond (reject)



Pv}-na<—s_expr]

[Fns<—e_cxpr]

[~F n <-e expr]

[Fn_<-(s_expr)]

[~k ng<-(s_expr)]

3) AQUERY COMMANDS

[?expression]

=]

=i

=d]]

=]

A

ifn
== "a

then

else

if ng

then

else

if n
—= s

then

else

if n

then

else

if n

then

else

18

€ A NAMES and
T(n Y = [a expr]

T (n } = UNDEF
respond (accept)
respond (reject)

e S_NAMES and
[e_expr] e [u(n))]

T (n ) = T(n W{[e exprl}
respond (accept)
respond (reject)

e § NAMES and
[e expr] € T(ns)

T (n) = T(n) - {[e_expr]}
respond (accept)
respond (reject)

e S5 _NAMES and
[s expr] exists and
[s expr]{][u(n Y] # ¢ (the empty set)

() = t(n ) U(ls_exprlnfulm)])
respond (accept)
respond (reject)

€ 5 NAMES and
(s expr] exists and
[s expr]r]T(n Yy £ @

T (n ) = T(n ) - [s_expr]
respond (accept)
respond (reject)

if [expression] is defined then

else

respond ([expression])
respond (reject)
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4) DESCRIPTORS
Let a(zl,zz,...,zn) be an arbitrary 'form' where either z, = "xi" (i.e.,

a is a forml) or z, = "xi € typei" (i.e., a is a form2)., Let NysMgsee st be

i

arbitrary e expressions. Define an intrinsic function RANGE as follows:

RANGE(a(zl,zz,...,zn)) = 1if o is a form "forml € type" then
return ({[a(nl,nz,...,nn)]
305N 0050 D faln,n,,...50 )] € [typel})
else /* fiust be form2 */
return ({[a(n ,ng,...,n,)]]
ERPEAPPRPRPL n;] e [type;1})

Intuitively RANGE(0) represents the subset of B that can be 'bound' to the

z ).

form a(zl,zz,..., N

[(A a(z),2,, 0052 ) (B(X) 1 %y5 00 D] 3

1£_Vla(nl,n2,---,nn)] a_RANGE(a(zl,zz,---,zn))
[8(n;50,5+.-5M )] = True

then respond” (True)

else respond (False)

[(E a(zl,zz,...,zn))(B(xl,xz,...xn))] x
i_an s ,o--,nn B[G(T'I L] PP ¢ )] ERANGE:(G-(Z 3Z90se32 ):
Y 2 ana’ acng,n,30. 5007 2 Tree et
then respond (True)
else respond (False)

[(L a(zl,zz,---,zn))(B(xl,xz,---,xn))] =

respond ({[a(N,;,Nnseessn_ )] € RANGE(0.(Z. 42, ,¢..2 ))I
[B(ni,ng,...,nz)] = Truel}) s n

[(z a(2y5255-052 )) (B(xX,%,50005% )] 3
ifan,n,,...,n 9 [aln,n,,...,n,)] €RANGE@(Z ,2,5...,2 )
172 and [B(ﬂl,nz,%..?nn)]'= True 1°"2 n
then respond ([o(n SUTREERY D
else respond (UNDE}) n

5) EXPRESSIONS

[TAU(e_expr)] = if [e expr] € P and

t([e_expr]) # UNDEF
then respond (t([e_expr]))
else respond (UNDEF)

[PHI(e expr)] respond {([[e expr]])

(=g}



6) A EXPRESSIONS

[na] % Af n, € A NAMES then
if T(na) = UNDEF then
respond ((u(n )1])
edse respond (t{(n’))
else respond (UNDEF)

[T]

respond (True)

(=34

[F] 5 respond (False)
[g_exprl=g_expr2] 5 if [q_gxprl] = UNDEF or
[e_expr,] = UNDEF

then respond (UNDEF)
else respond ({q_gxprﬂ = [q_gxprz])

[e_expr # s _expr} K.ii [s_expr] exists then
respond ([e _expr] e [s expr])
else respond (UNDEF)

[q_exprl=>a_gxpr2;a_gxpr3] 3
if [a expr.] # UNDEF then
if [a"expr.] = True then respond ([a_pxprz])
else respoiid ([;_gxprB])
else respond (UNDEF)

7) E_EXPRESSTIONS

[variable] 3 respond (UNDEF)
["lexical unit"] 3 respond (lexical unit)
['lexical unit'] = respond (lexical unit)

respond (Lle_expr,l[e_expr,])

=]

+
[ e_expr, e__exprz]

[n.] if n, € E NAMES then

A if t(n_ ) = UNDEF then respond (lum 1)
else respond (t(n ))
else respond (UNDEF)
[NIL] % respond {4}
[MU(e expr)] 3 if [e expr] ¢ P then

respond (u([e expr]))
else respond (UNDEF)



8) S EXPRESSIONS

[ns] z_ii n_ e S_NAMES then
if T(ns) = UNDEF then
respond ([u(n_)])

else respond (UNDEF)

[B] respond (the set of all binary trees)

[NULL]

=1

respond (the empty set)

=N

6. Examples

In this section, examples are presented to show the flavor and utility
of the ADS, For ease of understanding, the examples are kept simple, and
certain aspects of the model are not present (e.g. the concept of deleting
judgements is not represented).

Example 1 is a fairly "dry" presentation of how the Lisp functions of
car and cdr might be implemented. It is included to show how arbitrary structures
are manipulated.

Example 2 deals with a simple database involving cars, their colors,
and their manufacturers. It presents this database in the form of a
relational or record oriented model (probably most familiar and easy to

understand).



Throughout this section, we assume that the initial information state
Io contains the following:
'E NAMES', 'A NAMES', 'S NAMES' ¢ t(S _NAMES)

T(E_NAMES), T(A NAMES) = { }

Example 1: Some Lisp Functions

(1) <
(2) F car=="(L Hxyz # B) (x = z)'";
+ accept
(3) F cdr=="(L +txyz # B)(y = 2)";
+ accept
(4) F-caar=="(L+++xyzW # B (x =w";
-+ accept
(5) F cdar=="(L ++txyzw # B)(y = w)";
-+ accept
(6) F cadr=="(L +Hxtyzw ¥ BY(y = w)'";
> accept
(7) F cddr=="1(1, Hxtyzw # B)(z = w)'";
+ accept
(8)  Fa=="(I x # B)(D)";
»+ accept
(9) F a<= +NIL 4NIL NIL +NIL NIL;
-+ accept
(10) F-b=="(I x # B) (+ax # car)";
+ accept
(11) F—c=="(I x # B) (+bx # cdr)"™;
+ accept
(12) Fd=="(I x # B)(+ax # cdar)":
+ accept
(13)  Fe==MU("a");
+ accept
(14) F e<~ +NIL NIL
+ accept
(13) >3
-+ accept
(16) ? TAU("B");
-+ UNDEF
a7z ? by
-+ +NIL +NIL NIL
(18) ? ¢

- +NIL NIL



(19) ? d;

=+ +NIL NIL
(20) ? (L x # E_NAMES) (PHI(x)=e);
+ {c,d,e}
(21) ? (L x # E NAMES) PHI(x)=e =>
(x="e'=>F;T);F);
+ {c,d}
(22) ? (L x # E NAMES) ((I u # B)
(+ PHI(x) u # cdar) =
(Iv# B)Y(+ PHI(x) v # cdr))
+ {a}

Discussions of Example 1

Lines 2-7 define several of the selection functions available in Lisp.

The patterns which they define are:

car cdv caar
A A
¥ 4/ 4 /{\A‘:’
tel- X ‘1" YW
x 4y .7
cday
cadr cddv
W
‘ % J
v . \ \
x 94-7 1 X 2
9.2 g -

As an example, consider cdr. The right subtree of cdr (z) selects the

right subtree (y) of the left subtree (J\).
Xy

Line 8 defines an element name, a, whose intension (and therefore also
its extension) can be any binary tree. Line 9 associates the name 'a' with

the specific binary tree
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Lines 10-12 logically define functions (with input parameters b, ¢ and d,
respectively) which use the previously defined patterns to select the car, cdr
and cdar from the input parameter. Note that only their intensions are defined.

Line 13 defines a new element name, e, with the identical intension of
that of a. Line 14 associates a different member of B with e.

Since the extension of b have not been specified, line 16 indicates that
it is undefined., However, the intension of b, ¢ and d are well defined and are
shown in lines 17-19.

Line 20 asks '"What element names have the same 'interpretation' as that
of e?" The answer, of course,is ¢, d and e. Line 21 asks "What element names
other than e have the same 'interpretation' as that of e?" Line 22 asks "What
element names have an 'interpretation' such that its cdr is the same as its

cedar?"

Example 2: Car-color-maker database (a la Codd)

car = record u v W attribute
u: name name color maker domain
v: color Cl blue Chev
w: maker c2 red Chev
end C3 blue Chev
C4 red Ford
(1) <
(2) F-name=="(L x # E_NAMES) (T)";
+> accept
(3) F color== MU("name™);  maker== MU("name");
+ accept
(4) F Cl=="(I x # B)(T)";
+ accept
(5) F C2==MU("C1™); F C3==MU("CL"); F C4==MU("C1™);
+ accept
(6) }-name<-"Cl"; }-name<—"C2"; F name<-"c3"; }-name<_"c4"; 4
+ accept
(7 F—blue==MU("Cl"); F—red== ("Cc1'"); }-yellow==MU(“C1");
+ accept

(8) F-color<-"red"; F—color<-"blue"; F‘color<—"yellow"; 3
+ accept
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9) I Chev==MU("C1"); F Ford==MU("c1");

-+ accept2
(10) [—maker<—"Chev"; I—maker<-"Ford";
+ accept
(11) F car=="(L +(u # TAU("name™))
+(v # TAU("color"))
(w # TAU("maker")))
(T)Il
<+ accept
(12) >;
-+ accept
(13) ? car; ’
~+ {a set containing
4x3x2 binary trees}
(14) ? TAU("car");
-+ UNDEF
(15) <
(16) F car<- + "C1'" + "blue" "Chev";
-+ accept
(17) }-car<— + '"C2" + "red" "Chev';
-+ accept
(18) f-car<-— + "C3" + "blue" "Chev';
+ accept
(19) }-car<- + "C4M" + "red" "Ford";
+ accept
(20) F car<- + "C5" + "blue" "Ford"
o -+ reject
>3
> accept

(22) ? TAU("car");

+ {+Cl+blue Chev,
+C2+red Chev,
+C3+blue Chev,
+C4+red Ford}

(23) <

(24) ]—mycar=="(I x # TAU("car™))
(x # (L +utvw # B)(u = "C2"))";

=+ accept

(25) F yourcar=="(I x # TAU("ecar"))

x # (L +utvw # B)
((v="red"=>w="Ford";F)))"
(26) -+ accept
>3

+ accept

27 ? mycar;
=+ +C2+red Chev

(28) ? yourcar;

+ +C4+red Ford
(29) <
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(30) F name_of=="(L +rutvwz # B)(u = z)";

+ accept
(31) F—colo;_pf=="(L +Hutvwz # B)(v = z)'";
+ accept
(32) }-makq_pf=="(L Hutvwz # B){(w = z)"
-+ accept
(33) >
-+ accept
(34) ?+mycar "blue" # color of;
+ False
(35) ?tmycar "red" # color of;
-+ True
(36) ?2(I x # maker) (+yourcar x # maker of);
+ Ford
(37) (L +(x # color)(y # name))
(3 z # maker) ((+mycar Z # maker of=>
+y+xz # TAU("car");F));
+ {+ blue C1,
+ red C2,
+ blue C3}
(38) ?(L x # TAU("color"))(A y # TAU("car™))
((+yx # color of=>F;T))
+ {yellow}

Discussion of Example 2

Lines 2-3 define sets whose extensions will contain the names, colors and
makers of the cars in the database. Lines 4-5 define element names; these are placed
in t(name) in line 6. Lines 7-10 complete the definitions of color and maker in a
similar manner.

Line 11 defines the intension of the set name car to be 3-tuples whose
components are selected from T(name), T(color) and T(maker), in that order; there
is no restriction on the relationship between components in the tuples (such as
"Ford does not make yellow cars"). The intension of this set corresponds to
the cross product of the three sets t(name), t(color) and t(maker), as indicated
by line 13; however, t(car) is currently undefined, as indicated by line 14.

Lines 16-19 define specific cars. Line 20 is rejected because C5 is not

a member of t(name), and thus the triple cannot be "bound' to the form of car.
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Line 24 defines mycar to be that element of tT(car) such that its name is CZ2.
Line 25 defines yourcar to be that element of t(car) that is a red Ford.

Lines 30-32 define patterns for selecting the name of, color of, and
maker of specific aars. Line 34 asks "Is mycar blue?"; the answer is "No".
Line 35 asks "Is mycar red?"; the answer is "Yes". Line 36 asks "Who is the
maker of yourcar?"; the answer is Ford. Line 37 asks "What are the colors and

names of the cars made by the maker of mycar?" Line 38 asks "What colors are

associated with none of the cars?"
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