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In the first part of my dissertation, I developed two approaches for selectively 

probing the SERS activities of individual hot spots, i.e., experimentally detect the SERS 

signals only for the molecules that are trapped within the hot-spot region in individual Ag 

nanoparticle dimers. Then, I performed a systematic investigation on the SERS activity of 

individual dimers composed of two closed spaced Ag nanoparticles. By utilizing Ag 

nanoparticles displaying a variety of well-defined shapes, sizes and orientations to 

construct the dimers, I were able to precisely correlate the detected SERS signals to the 

specific geometry of individual hot spots. 

 In the second part of this dissertation, I performed a systematic investigation on 

the galvanic replacement reaction between PtCl6
2- and Pd nanocrystals with well-defined 

shapes including octahedra, nanocubes, and nanorods. The resultant hollow Pd-Pt 

bimetallic nanostructures were employed as electrocatalysts for the oxygen reduction 

reaction (ORR). Our results demonstrated that the nanostructures derived from Pd 
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octahedra displayed the highest ORR activity, being 1.7 times more active based on 

equivalent Pt mass than the commercial Pt/C. I also conducted a mechanistic study on the 

galvanic replacement reaction between AuCl4
- and Pd nanorods. Differently from the Pd-

Pt system, a new type of hybrid nanostructure in the tadpole shape consisting of a Au 

head and a Pd tail was obtained due to a localized galvanic replacement mechanism. As 

an extension of my work to develop new electrocatalysts for the ORR, a template-

engaged reaction was utilized for the synthesis of RuSe2+δ nanotubes. The RuSe2+δ  

nanotubes were active towards the ORR and displayed no loss in activity in the presence 

of methanol, as opposed to commercial Pt/C.  

Finally, the template-engaged reaction was applied to the synthesis of Se@MSe 

(M = Zn, Cd or Pb) colloidal spheres having similar sizes but different compositions. 

They were utilized as building blocks to obtain 3D photonic crystals via self-assembly. 

Moreover, superparagametic properties could be obtained via the incorporation of Fe3O4 

nanoparticles into the a-Se cores. Taken together, this represents a versatile approach to 

the synthesis of magnetoactive spheres with similar dimensions but a variety of 

compositions and properties.  
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Chapter 1 

 

Introduction 

 

1.1.  Nanoscience and Nanomaterials 

Over the years, the quest for innovative knowledge to produce materials with 

suitable properties to meet the needs of emerging applications has been the driving force 

of our technological progress and the improvement of our quality of life. At present, 

nanoscience and nanotechnology offers the unique opportunity to the creation of new 

materials to fulfil currently challenging demands. In the energy sector, notable examples 

include the development of more environmentally friendly energy generation systems, 

such as fuel cells and solar cells with improved performances and at reduced costs.1 In 

medicine, nanoscience and nanotechnology is enabling the development of new 

approaches for ultrasensitive detection of chemical agents and disease biomarkers, non-

invasive and targeted therapies for cancer treatment, new contrast agents for clinical 

imaging diagnostics, and site specific drug-delivery systems displaying controlled release 

properties.2 In the information and communication industries, examples include the 

creation of new electronic and optoelectronic devices as well as memory storage systems 

displaying superior performances.3  

Nanoscience and nanotechnology encompasses the design, synthesis, 

characterization, and utilization of nanomaterials -- a novel class of materials in which at 
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least one of its dimensions is in the range of 1-100 nm.4 More specifically, nanoscience 

and nanotechnology involves relating the desired properties and relative performance of a 

material in a certain application to the morphology and structure of the atoms and phases 

in that material. In this dissertation, I will address the synthesis, characterization, and 

application of a variety of nanomaterials in areas such as i) surface-enhanced Raman 

scattering, ii) fuel-cell technologies, and iii) photonic crystals.  

 

1.2.  Surface-Enhanced Raman Scattering 

In the Raman effect, incident light is inelastically scattered from the molecules in 

a sample.5 The change in wavelength that is observed when a photon undergoes Raman 

scattering is attributed to the excitation (or relaxation) of vibrational modes of a 

molecule. Raman spectroscopy is then based on vibrational transitions that yield very 

narrow spectral features. In accordance with the Raman selection rule, the molecular 

polarizability changes as the molecular vibrations displace the constituent atoms from 

their equilibrium positions.5,6 The intensity of Raman scattering (PRS) is then proportional 

to the magnitude of the change in molecular polarizability:  

 

                            PRS ∝ N × σR × IL                                           (1.1) 

 

where N is the number of molecules within the probed volume, σR is the Raman cross 

section (determined by the polarizability derivative of the molecular vibration) and IL is 

the excitation laser intensity. Because different functional groups have different 
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characteristic vibrational energies, every molecule has a unique Raman spectrum. Thus, 

Raman spectroscopy has long been regarded as a valuable tool for the identification of 

chemical and biological samples as well as the elucidation of molecular structure. Despite 

such advantages, Raman scattering suffers from the disadvantage of extremely poor 

efficiency due to its inherently small cross sections (e.g., 10-30 - 10-25 cm2/molecule), 

precluding the possibility of analyte detection at low concentration levels without special 

enhancement processes. Consequently, Raman spectroscopy has been considered a 

technique for structural analysis, rather than a method for ultra-sensitive trace detection.7 

It is important to note that the characterization of the chemical structure of a single 

molecule and screening structural changes at the single-molecule level, for example, 

represents the ultimate limit in chemical and biomedical analysis.  

 There has been a renewed interest in Raman techniques in the past three decades 

owing to the discovery of the surface-enhanced Raman scattering (SERS) effect, which 

results in strongly increased Raman signals when probe molecules are adsorbed on or 

near nanometer-sized structures of metals such as silver (Ag) and gold (Au).8,9 The 

mechanism of SERS enhancement falls into two categories: chemical and 

electromagnetic enhancements. The chemical enhancement is related to chemical 

interactions, including charge-transfer, which may occur when the analyte molecules are 

directly adsorbed onto the metal surface. This interaction creates a charge-transfer state 

between the metal and the adsorbate that can increase the probability of Raman 

transitions via resonant excitation. This mechanism is both site-specific and analyte-

dependent, and it is thought to contribute an average enhancement factor (EF) on the 
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order of 102.10 The electromagnetic enhancement is a near-field effect and it occurs when 

the incident light is in resonance with the localized surface plasmon resonance (LSPR) 

mode of a metal nanoparticle.9,11 Excitation of the LSPR mode results in selective 

absorption/scattering of the incident light and generation of strong electromagnetic fields 

at the metal surface. These surface electromagnetic fields lead to large enhancement in 

the Raman scattering intensity (PSERS): 

 

         PSERS ∝ N × σR × IL × |E(νL)|2 × |E(νS)|2                      (1.2) 

 

where E(νL) and E(νS) refer to the field enhancement factors for the excitation and 

scattered frequencies, respectively. The electromagnetic enhancement mechanism 

requires analyte molecules to be confined within the surface electromagnetic fields, but 

not necessarily adsorbed to the metal surface.12 The EM can contribute an additional EF 

of ≥105,13 with the exact magnitude being dependent on a number of parameters, such as 

the excitation wavelength employed in the Raman scattering experiments as well as the 

size, shape and composition of the metal nanostructures (which determine the resonant 

frequency of the conduction electrons and the magnitude/concentration of surface 

electromagnetic fields).  

Despite the technological importance of SERS and the extensive efforts devoted 

to studying this phenomenon, attempts to understand its physical origin and thus 

maximize its potential have had limited success. Since the discovery of SERS in the 

1970s, this field has struggled to achieve reproducible measurements and to justify 
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discrepancies between results reported by different research groups. Most of these 

inconsistencies can be attributed to the lack of uniform nanoparticles with well-controlled 

shapes. In addition, most SERS experiments are performed with an ensemble of 

nanoparticles produced via uncontrolled aggregation, making it difficult to correlate the 

EF to a specific parameter. Recent advances in nanofabrication and the discovery of 

single-molecule SERS detection in 1997 for substrates composed of aggregated Ag 

colloids have generated a boom in this field, bringing SERS from a structural analytical 

tool to a structurally sensitive single-molecule probe.14,15 At present, SERS is the only 

way to detect a single molecule and simultaneously probe its chemical structure. 

It is generally accepted that the giant field enhancements that enabled single 

molecule detection in substrates comprised of Ag nanoparticles occurred only at 

particular sites, the so-called hot spots.16 Hot spots can be defined as junctions or gaps 

between two or more closely spaced particles in which enormous electromagnetic 

enhancements often arise in contrast to individual particles (Figure 1.1). Theoretical 

calculations indicate that the dimeric structure formed by placing two silver nanospheres 

next to each other with a gap of 1-2 nm can give a hot spot with a EF as high as 108.17 

These results demonstrate that hot spots hold the key to the understanding of the field-

enhancement mechanisms that enable SERS for single-molecule detection. In order to 

study the hot-spot phenomena, I report in Chapter 2 the utilization of individual dimers 

consisting of two closely spaced Ag nanoparticles having a variety of well-defined shapes 

as substrates for SERS. Even though Ag and Au are the most commonly used noble 

metals for fabricating SERS-active substrates, it is well-documented that Ag outperforms 
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Au by at least three orders in magnitude in terms of average EF, which is typically in the 

range of 106-107 and 103-104 for conventional Ag and Au colloids, respectively.12,18 As a 

result, I have focused on the utilization Ag nanoparticles in this research.  

 

1.3.  Direct Methanol Fuel Cells  

Fuel cells convert chemical energy directly into electrical energy with high 

efficiency and low emission of pollutants.19 A fuel cell is an electrochemical device that 

produces electricity from a fuel (at the anode) and an oxidant (at the cathode) that react in 

the presence of an electrolyte. In direct methanol fuel cells (DMFCs), methanol (CH3OH) 

is fed directly to the anode (Figure 1.2).20 The utilization of methanol as a direct fuel is 

especially attractive due to its low cost, large availability, and easy handling and 

distribution. The DMFCs rely upon the oxidation of methanol on a catalyst layer at the 

anode to form carbon dioxide: 

 

              CH3OH + H2O → 6H+ + 6e- + CO2                        (1.3) 

 

Positive ions (H+) are then transported across the proton exchange membrane to the 

cathode, where they react with oxygen to produce water: 

  

  3/2O2 + 6H+ + 6e- → 3H2O                              (1.4) 
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Electrons are transported through an external circuit from anode to cathode, generating 

power.20,21 Currently, platinum (Pt) and Pt-based alloys are employed as the catalysts for 

both half-reactions, i.e. methanol oxidation and oxygen reduction reaction (ORR).22 

Although Pt is an effective catalyst, several drawbacks associated with its utilization have 

hampered the widespread commercialization of DMFCs. For example, current proton 

exchange membranes are permeable to methanol. In this case, any methanol that 

accidently crosses through the membrane and reaches the cathode chamber will be 

oxidized in the presence of Pt. This is process is referred as methanol crossover and 

contributes to the loss of cell voltage potential.23  Also, Pt is very expensive, resulting in 

the high cost per kilowatt for such cells. Even though the Pt loading at the anode has been 

reduced to economically acceptable levels by allowing with ruthenium (Ru), relatively 

high Pt loadings are still required at the cathode in order to achieve a sufficient surface 

area and thus desired ORR activity.24 Currently, the major challenges that need to be 

addressed to enable the widespread utilization of fuel cells include the development of i) 

ORR electrocatalysts with high activity and reduced Pt loading and ii) methanol-tolerant 

ORR electrocatalysts or electrolyte membranes which have high ionic conductivity and 

low methanol permeability.20 In Chapter 3, I demonstrate that the Pt loading can be 

reduced at the cathode by employing hollow Pd-Pt bimetallic nanocrystals as 

electrocatalysts for ORR. In order to tackle the methanol crossover problem, I describe in 

Chapter 5 the application of RuSe2+δ nanotubes as an active and 100 % methanol-tolerant 

ORR electrocatalyst.  
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1.4  Photonic Crystals  

Photonic crystals are spatially periodic structures composed of dielectric materials 

with different refractive indices (Figure 1.3).25 This long-range order creates a gap in the 

photonic band structure that prohibits the passage of photons with a specific range of 

wavelengths.25,26 Therefore, a photonic crystals offers an opportunity to control the 

propagation of photons similarly to what a semiconductor does for electrons, allowing 

one to localize photons to specific areas, to manipulate a spontaneous or stimulated 

emission process and to guide the propagation of light. All of these properties can be 

applied to the fabrication of new types of optical filters, switches, and mirrors, as well as 

to improve the performance of semiconductor lasers and other electronic devices.27  

The effective manipulation and control of light propagation in all three 

dimensions requires photonic crystals presenting complete (or full) band gaps. A 

complete band gap is defined as one that extends over the entire Brillouin zone in a band 

structure. An incomplete one is often referred to as a pseudo gap (or stop band) because it 

only appears along a certain direction of propagation. In general, the development of a 

complete band gap strongly depends on the structural type of the lattice, the symmetry of 

the lattice points and the refractive index contrast. One of the major challenges in this 

field is the fabrication of photonic crystals with complete band gaps in the optical regime, 

which requires three-dimensionally periodic structures with lattice constants <1 µm. 

Although this fabrication task can be accomplished using conventional microlithographic 

techniques, a number of technical problems still need to be solved before this approach 

becomes practical for large-scale production.28 In contrast, self-assembly of colloidal 



 9

spheres with diameters ranging from 0.1 to 1 µm provides a simple and versatile method 

for producing the desired structures. The success of this route relies on the spontaneous 

organization of pre-designed building blocks into a lattice with long range order that is 

very close to or at a thermodynamic equilibrium state.29 In this research, I employed a 

self-assembly route for the fabrication of three-dimensional (3D) photonic crystals. In 

particular, I have focused on the synthesis and utilization of Se@MSe (M = Zn, Cd and 

Pb) colloidal spheres presenting high-refractive indices as building blocks to generate 3D 

opalline lattices via self-assembly, followed by characterization of their photonic 

bandgap properties. A detailed description of this project is presented in Chapter 6.  

 

1.5. Synthesis of Nanomaterials: the Template-Directed Approach   

The synthetic methods for the fabrication of nanoscale materials can be classified 

into two different groups: the “top-down” and the “bottom-up” approaches. The top-

down approach involves the utilization of advanced techniques such as e-beam or ion 

beam writing, proximal probe patterning, and X-ray or extreme UV lithographies to 

pattern nanoscale features.30-33 Although these techniques provide excellent control over 

morphology, dimensions, position, and orientation, they are severely limited in terms of 

throughput and cost. On the other hand, the bottom-up approach generates nanomaterials 

directly from atoms.34 In this approach, a precursor compounds is decomposed, reduced, 

or hydrolyzed to form nuclei that grow into the final nanostructure. The major advantage 

of bottom-up syntheses is that it allows the fabrication of nanomaterials at relatively low 



 10

cost and with high throughput, and together with the potential for high volume 

production.34 

The template-directed approach represents a versatile strategy for bottom-up 

synthesis of nanomaterials. In the template-directed approach, a pre-formed nanostructure 

is employed as a template for the synthesis of new nanostructures with a range of 

different compositions and properties. The template nanostructure can serve as a physical 

or chemical scaffold on which other materials are assembled (physical templating) or 

chemically converted (chemical templating) into the final nanostructure. In this case, the 

product displays a morphology similar or complementary to that of the original template. 

In the chemical templating, a pre-formed nanostructured material is employed as a 

reactant in a chemical reaction. This approach is usually referred as a template-engaged 

reaction and the morphology of the final product can be controlled by using starting 

templates with different shapes and/or by controlling the extent of the reaction. Examples 

of template-engaged methods include galvanic replacement and ion-exchange reactions. 

In this work, I employed the template-engaged approach for the synthesis of a variety of 

nanomaterials as described in Chapters 3-6. It is important to note that all starting 

materials employed in the template-engaged reactions were synthesized with well-

defined shapes and monodisperse sizes by bottom-up strategies recently described in our 

group.35-38  
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1.6.  Scope of This Work 

In the first part of this dissertation (Chapter 2), I report a systematic investigation 

on the SERS activity of individual dimers consisting of two closely spaced Ag 

nanoparticles having a variety of well-defined shapes and hot-spot configurations. I also 

present two different methods for detecting the SERS signals and their corresponding 

field enhancements exclusively for probe molecules trapped in the hot-spot region. In the 

second part of this research, I report on the use of a template-engaged reaction approach 

for the synthesis of Pd-Pt bimetallic nanocrystals (Chapter 3), Pd-Au nanotadpoles 

(Chapter 4), RuSe2 nanotubes (Chapters 5) and Se@MSe (M = Zn, Cd or Pb) colloidal 

spheres (Chapter 6). While the Pd-Pt bimetallic nanocrystals and RuSe2 nanotubes were 

employed as new electrocatalysts for the ORR in DMFCs, the Se@MSe colloidal spheres 

were applied as building blocks to fabricate 3D photonic crystals via self-assembly. Each 

Chapter begins with an introduction explaining the significance of each project and ends 

with a summary emphasizing the relevance of the results to their corresponding fields. 
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Figure 1.1. Electromagnetic field enhancement contours that were calculated for a dimer 

composed of two Ag nanospheres separated by 2 nm, for a plane that is along the inter-

particle axis and that passes midway through the two spheres. (A) Two-dimensional map 

of the electromagnetic field intensity showing the polarization of the incident light. (B) 

Three-dimensional plot where the axis perpendicular to the selected plane represents the 

amount of electromagnetic field enhancement around the dimer. As the SERS 

enhancement factor (EF) typically scales as |E|4, the expected EF for this example is on 

the order of 108 (adapted from ref. 17, copyright American Institute of Physics, 2004). 
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Figure 1.2. Schematic representation of a direct methanol fuel cell. Methanol is oxidized 

at the anode producing CO2 and H+ ions, which migrate to the cathode through the 

proton-exchange membrane to reduce O2 and produce H2O. Electrons are transported 

from anode to cathode through an external circuit to generate power (adapted from ref. 

20b, copyright Nature Publishing Group, 2006).  
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Figure 1.3. Illustration of one-, two-, and three-dimensional photonic crystals. The 

different colors represent materials with different dielectric constants. The defining 

feature of a photonic crystal is the periodic variation in the dielectric constant along one 

or more axes (adapted from ref. 25, copyright Princeton University Press, 2006). 
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Chapter 2 

 

Dimers of Silver Nanoparticle as Substrates for SERS: Probing 

the SERS Acitivity for Hot Spots Formed between Two Closely 

Spaced Nanoparticles 

 

2.1.  Introduction 

 The commonly employed method for producing SERS substrates containing hot 

spots for ultrasensitive detection relies on the uncontrolled aggregation of Ag or Au 

nanoparticles induced by a salt.1-5 While these aggregates can provide strong SERS 

signals, the poor reproducibility on the fabrication as well as the broad distribution in 

terms of size and shape for the nanoparticles imposes many challenges for effectively 

correlating the detected SERS signals to the specific attributes of a hot spot. As a result, 

although the hot-spot phenomenon has been extensively investigated, it still remains a 

poorly understood subject. 

In this context, individual dimers consisting of two nanoparticles represent an 

ideal system for quantitatively investigating the hot-spot phenomenon. In particular, the 

dimers enable one to easily correlate the SERS signals and their polarization 

dependencies to the hot-spot morphology.6,7 Also, enhancements strong enough for 

ultrasensitive analysis and even single-molecule detection have recently been reported for 
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dimers composed of Ag nanoparticles.8 A number of dimeric systems have recently been 

investigated as SERS substrates, including dimers constructed from rounded particles, 

nanoshells, nanowires, and nanowires decorated with nanoparticles.6-10 These studies 

suggest that the field enhancements are strongly dependent on the direction of the laser 

excitation polarization. Typically, the strongest enhancement occurred when the laser 

excitation was polarized across the interparticle junction, i.e., parallel to the hot-spot axis. 

Nevertheless, shape irregularity and surface roughness associated with the employed 

dimer nanoparticles still imposes some challenges to precisely calculate the number of 

molecules being probed and, consequently, the enhancement factor (EF) from an 

individual dimer and hot spot. As the EF provides a direct quantification of how much the 

Raman signals are enhanced in the SERS as compared to the ordinary Raman spectrum, 

an accurate estimate of its magnitude is crucial to the fundamental understanding of the 

hot-spot phenomenon.4  

In order to address this issue, I report on the utilization of a variety of dimers 

made of two closely-spaced Ag nanoparticles as substrates for SERS, followed by the 

estimation of their respective EFs. In my studies, the use of well-defined, uniform 

particles with smooth surface was critical to a meaningful correlation of the EFs and their 

dependence on laser polarization to the hot-spot structure. In Section 6.2, I describe the 

probing of the EF for the hot-spot formed in individual dimers comprised of two Ag 

nanopheres that were 30 nm in diameter. In Section 6.3, I report on a new strategy based 

on plasma etching for exclusively measuring the SERS signals from those molecules 

located in the hot-spot region formed between two Ag nanocubes that were 100 nm in 
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edge length. In Section 6.4, I describe the utilization of a new class of well-defined 

nanoparticle dimer as a substrate for SERS: an individual Ag nanowire decorated with a 

single Ag nanocube. Finally, in Section 6.5, I report on a systematic investigation on the 

SERS activity of hot spots displaying a variety of well-defined morphologies formed 

between two Ag nanospheres and two Ag nanocubes.  

 

2.2. Probing the Enhancement Factor for the Hot Spots Formed in 

Dimers of Silver Nanospheres  

 

2.2.1. Results and Discussion 

Figure 2.1 shows SERS spectra taken from a sample of an individual Ag 

nanosphere, two Ag nanospheres separated by ~600 nm and a two barely touching Ag 

nanospheres that had been functionalized with 4-MBT. Owing to the relatively small size 

(~30 nm in diameter) of the silver nanospheres, I expect that probe molecules outside the 

hot spot region will not contribute to the detected SERS signals.11 Hence, these dimers 

provide an ideal model system for investigating the enhancement factor and polarization 

effect of an individual hot spot. The top trace in Figure 2.1A shows the SERS spectrum 

taken from a single dimer with the laser polarization parallel to the longitudinal axis. The 

two characteristic peaks for 4-MBT at 1079 and 1594 cm-1 were clearly resolved, albeit at 

low intensity. The peak at 1079 cm-1 is due to a combination of the phenyl ring-breathing 

mode, CH in-plane bending, and CS stretching, while the peak at 1594 cm-1 can be 

assigned to phenyl stretching motion (8a vibrational mode).12,13 The low intensity reflects 



 23

the small number of molecules trapped in the hot spot region and the relatively smaller 

Raman cross-section for the 4-MBT molecules as compared to organic dyes usually 

employed in single-molecule SERS studies.2 Figure 2.1A also gives the SERS spectra 

recorded from two silver nanospheres separated by ~600 nm (middle trace) and a single 

silver nanosphere (bottom trace). In these two cases, there was no hot spot involved. In 

the case of two silver nanospheres separated by 600 nm, both of them were within the 

laser focal volume, and the total number of probed 4-MBT molecules should be similar to 

the case of a dimer. The absence of detectable SERS signals confirm that only 4-MBT 

molecules trapped in the hot spot region are responsible for the SERS peaks at 1079 and 

1594 cm-1. 

When determining the number of trapped molecules (Nhot-spot) in the hot spot 

region, I assume that the 4-MBT molecules will be absorbed as a monolayer with a 0.19 

nm2 molecular footprint onto a spherical cap having h = r/6.6 located on each silver 

nanosphere of the dimer (i.e., the interparticle region), as shown in Figure 2.1B. This 

approximation yielded Nhot-spot = 2510. This number represents a theoretical maximum 

number of molecules and is surely an overestimate, thus the EF reported here is likely an 

underestimate rather than an overestimate of the actual EF value. According to this 

approach, the EF of the hot spot was calculated to be 1.9×107. Alternatively, if I assume 

that the hot spot region is enclosed by two hexagonal (111) faces, Ntrap = 1904 and the EF 

became 2.5×107, which is also close to 1.9×107. It is important to note that 4-MBT does 

not exhibit any absorption bands around 785 nm, which excludes the possibility of any 

resonance Raman effects for the excitation laser employed in my study. Further 
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enhancement of the SERS effect can be achieved by employing probe molecules with 

resonance effects and/or by optimizing the laser wavelength employed in the 

measurements. 

Figure 2.2 illustrates the dependence of the SERS signals on the laser polarization 

for the silver nanosphere dimer. It can be observed that the 4-MBT peaks were 

maximized when the laser was polarized parallel to the longitudinal axis of the dimer. 

The 4-MBT signals were gradually reduced when the laser was rotated by 22.5 and 45° 

away from the longitudinal axis. At 45°, the area of the peak at 1079 cm-1 was reduced by 

a factor of ~3. Finally, the 4-MBT peaks disappeared when the polarization was off from 

the longitudinal axis by angles larger than 45° (e.g., 77 and 90°). 

 

2.2.2.  Summary 

With 4-MBT as a probe molecule, the enhancement factor for the hot-spot region 

of a silver nanosphere dimer was estimated to be 1.9×107. The SERS signals taken from 

the hot spot were polarization dependent; they were maximized when the laser was 

polarized parallel to the longitudinal axis and vanished when the polarization was in the 

orthogonal direction. These well-defined dimers hold great promise for ultrasensitive 

detection and even single-molecule detection by SERS and are expected to find a range 

of applications in fields such as life sciences, environmental science, and photonics. 
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2.3. Isolating and Probing the Hot Spots Formed between Two Silver 

Nanocubes  

Despite the advantages of using individual nanoparticle dimers as substrates for 

SERS, there are still limitations associated with their utilization for studying the hot-spot 

phenomenon. Due to the size and shape of the usually employed nanoparticles, SERS 

molecules absorbed inside and outside the hot-spot region can both contribute to the 

detected SERS signals.6-8,14 As a result, the experimentally determined enhancement 

factor (EF) represents an average enhancement from the entire surface of the dimer. In 

this regard, determination of EFs exclusive from the hot-spot region still remains a great 

challenge.  

In this section, I describe a new strategy based on plasma etching for exclusively 

measuring the SERS signals from those molecules located in the hot-spot region formed 

between two Ag nanocubes. In this approach, the dimer of Ag nanocubes was 

functionalized with SERS probe molecules and then briefly exposed to plasma etching to 

selectively remove those molecules outside the hot-spot region. With the aid of 

registration marks, I was able to experimentally determine the SERS enhancement factor 

associated with the hot spot at different orientations relative to the laser polarization. To 

our knowledge, this work represents the first attempt to isolate the hot spot formed 

between two Ag nanoparticles, followed by measurements of the SERS enhancement 

factor intrinsic to a hot spot. 
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2.3.1. Results and Discussion 

Figure 2.3 shows a typical SEM image of the sharp Ag nanocubes used in my 

SERS studies, which had an edge length of 100±5.7 nm. I chose them for a number of 

reasons. For example, they can be routinely synthesized with good uniformity in terms of 

shape and size distribution via the polyol method.15 Their sharp corners and relatively 

large dimensions ensure that I will be able to obtain strong SERS signals as compared to 

smaller or rounded particles.16 Also, they represent an ideal system for the isolation of the 

hot spot through plasma etching. I employed 4-methyl-benzenethiol (4-MBT) and 1,4-

benzenedithiol (1,4-BDT) as the SERS probe molecules because they are known to form 

well-defined monolayers on Ag surfaces via a strong Ag-S linkage with characteristic 

molecular footprints. These attributes are critical to estimating the total number of 

molecules being probed and therefore the EF.17 Moreover, these molecules are expected 

to be able to penetrate into the hot-spot region between two Ag nanocubes owing to their 

relatively small sizes.  

I started my measurements by investigating the effect of plasma etching on 

individual Ag nanocubes (Figure 2.4A). Specifically, I would like to know whether 4-

MBT molecules adsorbed on the surface of a Ag nanocube could be removed by brief 

plasma etching. I was also interested in understanding if the plasma etching would lead to 

any physical and/or chemical changes to the Ag nanocube, including its capability to 

enhance the SERS signals from 4-MBT re-deposited on the Ag nanocube. Figure 2.4B 

shows a set of SERS spectra taken from the same Ag nanocube, which was 

functionalized with 4-MBT, plasma etched for 2 min, and then re-functionalized with 4-
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MBT by immersing into its solution. With the assistance of registration marks, I was able 

to locate the same Ag nanocube (see the inset) and take SERS spectra from it during 

these steps. I also repeated the cycle of functionalization, etching, and re-

functionalization a number of times to see if plasma etching would eventually cause any 

irreversible change to the Ag surface. As clearly shown in Figure 2.4B, the initial 

spectrum (top trace) presents the characteristic SERS peaks for 4-MBT at 1072 and 1582 

cm-1.12 Here, the nanocube was oriented with one of its edges parallel to the laser 

polarization. The peak at 1072 cm-1 is due to a combination of the phenyl ring-breathing 

mode, CH in-plane bending, and CS stretching, while the peak at 1582 cm-1 can be 

assigned to phenyl ring stretching motion (8a vibrational mode).13 The broad band at 900-

1000 cm-1 came from the Si substrate. After the sample had been plasma etched for 2 

min, both the 4-MBT peaks disappeared from the SERS spectrum (second trace from the 

top), indicating complete removal of the 4-MBT molecules from the surface of the 

nanocube. Interestingly, both peaks of 4-MBT appeared again in the SERS spectrum 

(third trace from the top) after the etched sample had been re-immersed in the 4-MBT 

solution. No significant change was observed for the SERS peaks of 4-MBT when the 

first and third spectra were compared. This result suggests that the number of 4-MBT 

molecules that were re-deposited on the Ag nanocube after plasma etching was 

essentially the same as the number of molecules initially adsorbed on the Ag nanocube. It 

also implies that plasma etching merely removes the 4-MBT molecules from the surface 

of the Ag nanocube when the exposure time is relatively short. The complete cycle 

comprising of plasma etching and re-immersion in 4-MBT could be repeated up to three 
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times without observing major deterioration in the SERS spectrum. However, after the 

fourth cycle, no 4-MBT peaks could be detected. It is possible that surface oxidation after 

an extended exposure to the oxygen-based plasma will hamper the adsorption of 4-MBT 

onto the surface.  

The plasma etching could also be employed to change the probe molecules 

adsorbed on the surface of an individual Ag nanocube. This concept is illustrated in 

Figure 2.5. In the first step, the nanocube is functionalized with 4-MBT (probe-A). Then, 

the probe-A molecules are removed by briefly subjecting the sample to plasma etching. 

Finally, the sample is immersed in a solution containing 1,4-BDT (probe-B). Figure 2.6. 

shows the SERS spectra recorded from a sample going through these steps. In Figure 

2.6A, the nanocube was oriented with one of its edges parallel to the laser polarization. 

The initial spectrum (top trace) presents the characteristic peaks for 4-MBT at 1073 and 

1583 cm-1,12 which completely disappeared after plasma etching (middle trace). After 

immersion in a 1,4-BDT solution, the characteristic peaks for 1,4-BDT appeared in the 

SERS spectrum as a result of the adsorption of 1,4-BDT onto the nanocube. In this case, 

we observed a shift in phenyl ring stretching motion band (8a mode) from 1582 cm-1 (for 

4-MBT) to 1562 cm-1 (for 1,4-BDT).18 The same trend was also observed when the 

nanocube was orientated with one of its face diagonals parallel to the laser polarization, 

as shown in Figure 2.6B. In this case, the intensities of the SERS signals were much 

stronger as compared to those in Figure 2.6A. As previously reported by our group, the 

SERS signals taken from a single Ag nanocube had a strong dependence on the laser 

polarization, which could be attributed to the difference in near-field distribution over the 
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surface of a nanocube under different polarization directions.19 In addition to the shift in 

position for the 8a band from 1583 to 1562 cm-1, broadening was observed for the band at 

1072 cm-1 for 1,4-BDT as compared to 4-MBT. This is because the ordinary Raman 

spectrum of 1,4-BDT displays two bands in this region (1080 and 1065 cm-1), which tend 

to broaden and overlap in the SERS spectrum due to interactions between the Ag surface 

and the π-orbital system of the benzene ring.18 The SERS spectrum for 1,4-BDT also 

displayed a weak signal at 1180 cm-1 that could be assigned to the 9a vibrational mode 

(CH bending).18   

Figure 2.7 and 2.8 illustrate the effect of plasma etching over single a Ag 

nanocube functionalized with 1,4-BDT. In these cases, no changes in the SERS spectra 

were observed after plasma etching, Moreover, the SERS spectra didn’t change after 

immersing the sample in a 4-MBT solution. While 4-MBT interacts with Ag through one 

sulfur atom assuming a vertically tilted orientation with respect to the Ag surface, 1,4-

BDT interacts with Ag as a dithiolate in which the aromatic ring assumes a flat 

orientation.[13-15,17] Consequently, it is reasonable that the 4-MBT molecules, due to their 

vertical orientation, are more susceptible to the oxygen plasma and, therefore, can be 

more easily etched away from the Ag surface. In addition, the interaction between Ag and 

1,4-BDT (via 2 sulfur atoms) is expected to be much stronger than the interaction 

between Ag and 4-MBT (via 1 sulfur atom). Combined together, it is not hard to 

understand why the adsorbed 1,4-BDT molecules could not be displaced by 4-MBT. The 

scale bar in the inset corresponds to 100 nm. 

After the experimental details for surface functionalization and plasma etching 
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had been established for individual Ag nanocubes, I turned my attention to dimers of Ag 

nanocubes. In this case, I aimed at isolating the 4-MBT molecules located in the hot-spot 

region by exposing the sample to plasma etching under similar conditions as employed 

for the individual nanocubes. It is important to note that under the conditions used in this 

work, both 4-MBT and 1,4-BDT are expected to be present on the Ag surface as a 

complete monolayer. Therefore, for individual Ag nanocubes, the plasma etching was 

responsible for the removal of a 4-MBT monolayer adsorbed on the Ag surface. 

Similarly, for nanocube dimers, the plasma etching is expected to remove a monolayer of 

4-MBT molecules present on the surface. As the hot-spot region in the nanocube dimers 

comprises a narrow gap between two nearly touching nanocubes, the 4-MBT molecules 

in the hot spot can be considered as a multilayer resist relative to the oxygen plasma 

(Figure 2.9A). If each 4-MBT molecule has a 0.19 nm2 footprint, each 4-MBT molecule 

can be assumed to occupy a circular area of 0.249 nm in diameter on the Ag surface. As 

the nanocubes have an edge length of 100 nm, approximately 200 layers of 4-MBT 

molecules can be present in the hot-spot region along the vertical direction. Therefore, it 

will require a much longer time to remove the 4-MBT molecules located in the hot spot 

as compared to those molecules outside the hot-spot region. This scenario explains why 

plasma etching can serve as an effective method for isolating the hot spot formed 

between two Ag nanocubes. In order to demonstrate that no significant change took place 

on the surface of the nanocube dimers during plasma etching, the sample was also 

immersed in a 1,4-BDT solution after the hot spot had been isolated. 

Figure 2.9, B-D, shows the SERS spectra from a nanocube dimer that was 
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functionalized with 4-MBT (top trace), followed by plasma etching for 2 min (middle 

trace) and then immersion in a 1,4-BDT solution (bottom trace). In Figure 2.9B, the long 

axis of the dimer was parallel to the laser polarization. The SERS spectrum from the Ag 

nanocube dimer functionalized with 4-MBT clearly showed the characteristic peaks for 

4-MBT at 1072 and 1582 cm-1.12,13 The much stronger intensity of the SERS signals as 

compared to Figures 2.4B and 2.6A reflects a higher SERS activity for the dimer relative 

to the individual nanocubes due to the presence of a hot spot. I employed the peak at 

1582 cm-1 to estimate the EF as described in the experimental section.  Based on my 

assumptions, the EF for the initial nanocube dimer (EFdimer) functionalized with 4-MBT 

(Figure 2.9B, top trace) was 2.2×107. In comparison, the EF calculated for an individual 

Ag nanocube (EFcube) under the same polarization (Figure 2.6A, top trace) was 5.9×105. 

This indicates that the EFdimer was ~37 times higher than EFcube. After plasma etching 

(Figure 2.9B, middle trace), a slight decrease in the intensity was observed for the 4-

MBT bands at 1072 and 1582 cm-1. This slight reduction due to the removal of 4-MBT 

molecules from the region outside the hot-spot region indicates that the molecules in the 

hot spot were the major contributors to the SERS signals from the dimer. By assuming 

that only the 4-MBT molecules adsorbed in the hot-spot region were present in the 

nanocube dimer after plasma etching, the calculated EF for the hot-spot (EFhot-spot) was 

1.0×108. In this case, EFhot-spot was higher than EFdimer and EFcube by a factor of 4.5 and 

170, respectively. After the sample was immersed in a 1,4-BDT solution, all the peaks 

due to 4-MBT were replaced by the characteristic peaks of 1,4-BDT (Figure 2.9B, bottom 

trace), as it can be observed from the shifting of the 8a band to 1561 cm-1 and the 
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broadening of the 1073 cm-1 peak. This result indicates that, in addition to be adsorbed 

onto the faces of the nanocubes outside the hot spot, 1,4-BDT replaced the 4-MBT 

molecules in the hot-spot region. The stronger interaction between 1,4-BDT and Ag than 

4-MBT and Ag may provide the driving force for this process (Figure 2.7 and 

1.8).12,13,18,20 After complete replacement of 4-MBT by 1,4-BDT, EFdimer was 1.9×107, 

which is close to the initial EFdimer obtained with 4-MBT, indicating that no significant 

change on the surface of the nanocube dimers occurred as a result of plasma etching.  

Figure 2.9C illustrates the SERS spectra from the nanocube dimer in which the 

long axis of the dimer was at 45o relative to the laser polarization. The SERS signals were 

weaker compared to those in the spectra shown in Figure 2.9B as a result of inferior 

SERS activities under this configuration. The initial spectrum for the nanocube dimer 

presents the characteristic peaks for 4-MBT. EFdimer was calculated as 2.0×106, 

representing a 11-fold decrease as compared to the EFdimer calculated from Figure 2.9B. 

Comparatively, when the individual nanocube was orientated with a face diagonal 

parallel to the laser polarization (Figure 2.6A, top trace), EFcube was 2.3×106. The fact 

that EFdimer is close to EFcube under this configuration suggests that the molecules in the 

hot-spot did not contribute additionally towards the SERS signals observed for the dimer. 

This is also confirmed by inspecting the SERS spectrum after plasma etching (Figure 

2.9C, middle trace). In this case, a significant decrease in intensity for both the 1072 and 

1584 cm-1 peaks were observed as the 4-MBT molecules were removed from the region 

outside the hot spot. EFhot-spot was calculated to be 4.1×106, indicating that EFhot-spot is 

within the same order of magnitude as EFdimer and EFcube. After the sample was immersed 
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in a 1,4-BDT solution, all the peaks due to 4-MBT were replaced by the characteristic 

peaks of 1,4-BDT (Figure 2.9C, bottom trace) and EFdimer was calculated as 1.6×106, 

which agrees with the initial EFdimer obtained with 4-MBT. 

Figure 2.9D shows the SERS spectra for which the long axis of the dimer was 

perpendicular to the laser polarization direction. In this case, the SERS signals further 

decreased in comparison to Figure 2.9C, and were much weaker relative to Figure 2.9B. 

EFdimer was calculated as 6.8×105, which is close to the value of 5.9×105 obtained for 

single Ag nanocubes (Figure 2.6A), suggesting that the molecules in the hot spot did not 

make any additional contribution toward SERS signals observed for the dimer. After 

plasma etching, while the peak at 1072 cm-1 completely disappeared, the peak at 1583 

cm-1 became very weak and EFhot-spot became 4.4×105, which was on the same order of 

magnitude as EFdimer and EFcube. After immersion in 1,4-BDT, all the 4-MBT were 

replaced by the characteristic peaks of 1,4-BDT and EFdimer was found to be 5.4×105.  

Figure 2.10 summarizes the EFs obtained for the Ag nanocubes and their dimers during 

the steps of functionalization with 4-MBT, plasma etching, and immersion in 1,4-BDT.  

According to near-field calculations by the discrete-dipole approximation (DDA) 

method for Ag nanocubes 100 nm in size at 514 nm excitation,19 the near-field 

distribution is expected to be concentrated on the faces that form the hot-spot region 

when the laser polarization is parallel to the dimer long axis. This could lead to a SERS 

enhancement of 170 folds stronger for EFhot-spot as compared to EFcube. However, when 

the long axis of the dimer is at 45o and 90o relative to the laser polarization direction, the 

near-field distributions are expected to be mostly concentrated outside the hot-spot 



 34

region, i.e., at the corners and on the faces that are perpendicular to the dimer's long axis, 

respectively. This reduction of near-field distribution in the hot-spot region can be 

considered to be responsible for the significant decrease in the EFhot-spot when the long 

axis of the dimer is at 45o and 90o relative to the laser polarization. 

 

2.3.2.  Summary 

I have demonstrated a simple and versatile approach based on plasma etching for 

isolating and exclusively probing the hot spot in a dimer of Ag nanocubes. In this 

approach, the dimer of Ag nanocubes was first functionalized with 4-MBT and the hot 

spot was then isolated by exposing the sample to plasma etching. The plasma etching 

only led to the removal of molecules adsorbed on the surface outside the hot-spot region. 

Finally, the sample was functionalized with 1,4-BDT to demonstrate that the surface of 

the dimer did not undergo any significant changes during plasma etching. Based on this 

approach, EFhot-spot  was calculated as 1.0×108, 4.1×106, and 4.4×105 as the long axis of 

the dimer was oriented at 0 (parallel), 45, and 90 (perpendicular) degrees relative to the 

laser polarization, respectively. Likewise, EFdimer (without isolating the hot spot) was 

calculated as 2.2×107, 2.0×106 and 6.8×105, respectively. These results indicate that EFhot-

spot displayed a strong dependence on the laser polarization, increasing by a factor of ca. 

10 and 230 as the long axis of the dimer was rotated from 90 to 45 degrees and from 90 

to 0 (relative to the laser polarization). Similarly, EFdimer displayed an increase by a factor 

of ca. 3 and 30. By comparing EFhot-spot with EFcube,  EFhot-spot was increased by ca. 170 

folds when the dimer's long axis was parallel to the direction of laser polarization.  
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2.4. Measuring the SERS Enhancement Factors of Hot Spots Formed 

Between an Individual Ag Nanowire and a Single Ag Nanocube 

In this section, I wish to report on the utilization of a new class of well-defined 

nanoparticle dimer as a substrate for SERS: an individual Ag nanowire decorated with a 

single Ag nanocube. More specifically, I investigated two distinct dimer geometries: i) a 

sharp Ag nanocube having one side face nearly touching the side face of a nanowire 

(face-to-face configuration) and ii) a sharp Ag nanocube having one edge nearly touching 

the side face of a nanowire (edge-to-face configuration). In addition to measurement of 

EF for the dimers (EFdimer) and its correlation with the hot-spot structure, I compared my 

results to those obtained from individual nanowires and nanocubes. It is important to note 

that both finite Ag nanowires and sharp Ag nanocubes present interesting features that 

make them attractive as substrates for SERS. For example, they can be routinely 

synthesized with good uniformity in terms of shape, size distribution and surface 

smoothness by the polyol method.15,21 Individual nanowires, nanocubes and their dimers 

can be easily found under a dark-field optical microscope during SERS measurements. In 

addition, the dimerization between a nanowire and a nanocube is expected to generate a 

hot spot region with increased field enhancement as compared to individual 

components.10 Finally, because the SERS signals for sharp Ag nanocubes present strong 

laser polarization dependency, the relative orientation of the nanocube with respect to the 

nanowire side face in the dimers may provide another venue for the maximization the 

SERS intensities and their correlation with different hot-spot structures.19 
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2.4.1.  Results and Discussion 

Figure 2.11 shows SEM images of the Ag nanowires and nanocubes employed in 

my SERS studies. The Ag nanowires had a mean diameter of 95.2±8.8 nm and were 2-5 

μm in length. They are characterized by a pentagonal cross section and pyramidal tips. 

The sharp Ag nanocubes had a mean edge length of 141.7±3.8 nm. I employed 1,4-BDT 

as the SERS probe molecules because they are known to form well-defined monolayers 

on Ag surface via a strong Ag-S linkage with a characteristic molecular footprint.18 These 

attributes are critical to estimating the total number of molecules being probed and 

therefore the EF.12 Moreover, these molecules are expected to be able to penetrate into 

the hot-spot region between a Ag nanowire and a Ag nanocube owing to the relatively 

small size.   

I started my studies by evaluating the SERS properties of individual Ag 

nanowires and nanocubes. Figure 2.12A shows typical SERS spectra for an individual Ag 

nanowire that was 105 nm in diameter under two different laser polarizations: 

perpendicular and parallel to the longitudinal axis (top and bottom traces, respectively). 

Since I was interested in a systematic investigation of the SERS signals from the 

nanowires, the laser beam was focused at the center of the nanowire (relative to its 

longitudinal axis) in all my measurements. This was performed in order to ensure that a 

maximum number of SERS probe molecules can be located within the laser spot and 

avoid any signal contributions or fluctuations arising from the tips. This concept is 

illustrated in Figure 2.13, which presents SERS spectra for seven different Ag nanowires 

having similar diameters. Although their lengths varied from 2.5 to 4.8 μm, no significant 
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variation in the detected SERS intensities was observed. As shown in Figure 2.12A, the 

SERS spectra from an individual Ag nanowire present a strong laser polarization 

dependence, in which the signals were more strongly enhanced when the polarization 

direction was perpendicular to the longitudinal axis (transverse polarization, top trace). In 

this case, the characteristic 1,4-BDT peaks at 1069, 1181 and 1562 cm-1 could be easily 

resolved in the spectrum.18 Here, the peak at 1069 cm-1 is due to a combination of the 

phenyl ring breathing mode, CH in-plane bending, and CS stretching, while the peak at 

1181 cm-1 can be assigned to the 9a vibrational mode (CH bending). The peak at 1562 

cm-1 can be assigned to the phenyl ring stretching motion (8a vibrational mode).18 The 

broad band at 900-1000 cm-1 came from the silicon substrate. The shoulder at ~1600 cm-1 

is due to direct interactions between the Ag surface and the π-orbital system of the 

benzene ring in the 1,4-BDT molecule. This interaction occurs as the 1,4-BDT molecule 

binds to Ag as a dithiolate (via two sulfur atoms), in which the aromatic ring assumes a 

flat orientation with respect to the Ag surface. This shoulder peak at ~1600 cm-1 was 

intensified and more easily visualized in the spectra involving the nanowire-based 

dimers. Based on the area of the peak at 1562 cm-1, the EF for an individual nanowire 

(EFwire) was 6.4×105 in the transverse direction. Conversely, the 1,4-BDT peaks could not 

be detected in the SERS spectrum when the laser was polarized parallel to the 

longitudinal axis (longitudinal polarization, bottom trace). This strong polarization 

dependence for an individual Ag nanowire agrees with previously reported results and 

finite difference time domain calculations.22,23 For Ag nanowires of 50-100 nm in 

diameter, the transverse plasmon resonance is peaked at ~400 nm and could be excited by 
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the 514 nm laser source employed in my measurements.22-24 However, considering the 

large aspect ratio of the nanowires, it is unlikely that the longitudinal plasmon mode 

could be excited at this wavelength.    

Figure 2.12B shows typical SERS spectra for an individual Ag nanocube under 

two different laser polarization directions: along a face diagonal and along an edge (top 

and bottom traces, respectively). The SERS signals from the Ag nanocubes also present a 

strong dependence on laser polarization, which is consistent with our previous 

reports.19,25 As shown in Figure 2.12B, the 1,4-BDT signals were more strongly enhanced 

when the nanocube was oriented with one of its face diagonals parallel to the laser 

polarization direction. This strong dependence on laser polarization could be attributed to 

the difference in near-field distribution over the surface of the nanocube under different 

excitation directions.19 The EF for the nanocube (EFcube) was 3.0×106 and 5.8×105 for 

laser polarization along a face diagonal and an edge, respectively.  

After the SERS spectra for individual Ag nanowires and nanocubes had been 

investigated, I turned my attention to dimers comprised of an individual Ag nanowire 

decorated with a single Ag nanocube. It is worth pointing out that a variety of dimeric 

structures can exist in this system. For example, during dimerization, a Ag nanocube can 

approach a nanowire with one of its faces or edges nearly touching the side face of the 

nanowire. In addition, the nanocube can approach the nanowire at different locations, i.e., 

in the central region, close to or at the tips of the nanowire. This diversity of structures 

can complicate a systematic correlation between the hot spots and their corresponding 

field enhancements. In order to address this issue, I only concentrated on situations in 
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which the dimerization between a Ag nanowire with a Ag nanocube took place at the 

midpoint of the Ag nanowire (with respect to its longitudinal axis). This enables 

maximization of the signal intensities and estimate of the number of probe molecules 

located within the laser spot size (Nsers) by focusing the laser beam directly on the hot 

spot, i.e., at the nanocube-nanowire intersection. I was interested in two particular dimer 

geometries: i) a Ag nanocube with one side face nearly touching the side face of a Ag 

nanowire (face-to-face configuration) and ii) a Ag nanocube with one edge nearly 

touching the side face of a Ag nanowire (edge-to-face configuration).  

Figure 2.14 shows SERS spectra for two dimers presenting the aforementioned 

configurations. In Figure 2.14A, the dimer has a face-to-face configuration, in which the 

hot-spot region involves the narrow gap between a nanocube’s face and a nanowire’s side 

face. The inset in Figure 2.14A presents an SEM image of the probed dimer. The 

nanowire was 93 nm in diameter and 4.1 μm in length, while the nanocube had an edge 

length of 142 nm. The SERS spectra for the dimer were recorded for two different laser 

polarization directions: perpendicular and parallel to the long axis of the nanowire. It can 

be clearly seen that the SERS signals displayed a strong polarization dependence. When 

the laser was polarized perpendicular to the nanowire’s long axis (top trace), the SERS 

signals were strongly enhanced. In fact, the characteristic peaks for 1,4-BDT were so 

strong that the Si peak arising from the substrate in the 900-1000 cm-1 region essentially 

disappeared in the baseline. It is important to note that this polarization direction is 

parallel to the hot-spot axis. In this case, the stronger SERS intensities as compared to the 

individual components shown in Figure 2.12 are due to the formation of a hot spot 
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between the nanowire and the nanocube. Under this polarization, EFdimer was calculated 

as 1.4×107. This corresponds to an increase in EF of 22 and 24 folds relative to the 

individual EFwire and EFcube. When the laser polarization was parallel to the nanowire’s 

long axis (perpendicular to the hot-spot axis), the intensity of the SERS signals were 

significantly reduced (bottom trace). The EFdimer was calculated as 1.9×105, which is on 

the same order of magnitude as EFwire and EFcube. This result suggests that the molecules 

adsorbed in the hot-spot region did not make any additional contribution towards the 

SERS signals when the laser was polarized perpendicular to the hot-spot axis. The fact 

that EFdimer is smaller than EFcube can be explained as follows: Nsers for the dimer is higher 

than Nsers for the individual nanocube, as 1,4-BDT molecules are also adsorbed on the 

surface of the nanowire that is enclosed by the laser spot (outside the hot spot region). 

However, because the nanowires did not contribute to the detected SERS signals under 

longitudinal polarization, they did not contribute to Isers. Therefore, under this 

polarization, there is an increase in Nsers that is not accompanied by an increase of Isers for 

the dimer, leading to an overall reduction in EFdimer as compared to EFcube according to 

eq. 2.  

Figure 2.14B shows SERS spectra for a dimer having an edge-to-face orientation. 

The inset in Figure 2.14B shows an SEM image of the probed dimer. Here, the hot-spot 

region comprises the space between a nanocube edge and a nanowire side face. The 

nanowire was 108 nm in diameter and 3.1 μm in length, while the nanocube had an edge 

length of 138 nm. Similar to the dimer probed in Figure 2.14A, the SERS spectra 

displayed a strong dependence on laser polarization. When the laser was polarized 
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perpendicular to the nanowire’s long axis (top trace), the SERS signals were enhanced as 

compared to the individual components shown in Figure 2.12. In this case, EFdimer was 

calculated as 4.3×106, which is 3.3 folds smaller than the EFdimer obtained from Figure 

2.14A (top trace). Moreover, even though EFdimer is 6.7 folds higher than EFwire, it lies 

within the same order of magnitude as EFcube (polarization along a face diagonal), 

indicating that the hot-spot region contributed only moderately to the intensity of the 

detected SERS signals for the dimer having an edge-to-face configuration under 

transverse polarization.  

According to our DDA calculations for an individual Ag nanocube, the maximum 

E4 is roughly 4 folds higher for polarization parallel to a face diagonal than E4 for 

polarization along an edge.19 Since the near fields are concentrated along the laser 

polarization direction, it can be expected that the dimer having an edge-to-face 

configuration will display a stronger near field in the hot-spot region. However, there is 

another important factor that needs to be taken into consideration in order to explain the 

observed field-enhancements: the number of SERS probe molecules trapped at the hot-

spot region. The SERS intensity coming from a hot spot is determined by both the near-

field strength in the hot spot region and the number of molecules that will have their 

scattering cross-sections enhanced when they are subjected to the near field.  

A schematic representation of dimers probed in Figure 2.14 and their respective 

hot-spot configurations are shown in Figure 2.15. In Figure 2.14A (face-to-face 

configuration), the nanocubes are ~142 nm in edge length and they contribute ~37,340 

1,4-BDT molecules to the hot-spot region (based on a molecular footprint of 0.54 nm2 for 
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1,4-BDT). However, for the dimer in Figure 2.14B (edge-to-face orientation), the number 

of 1,4-BDT molecules trapped in the hot-spot region is expected to be much lower. For 

example, if I assume that only 1,4-BDT molecules enclosed by a 4 nm distance (from the 

nanocube surface to the nanowire surface) in the nanocube-nanowire junction are 

enclosed by the hot-spot region (Figure 2.15), the nanocubes only contributed ~2,900 1,4-

BDT molecules to the hot spot. This corresponds to a difference of 34,440 molecules (92 

%). Therefore, it is plausible to assume that when the hot spot possesses an edge-to-face 

orientation, the smaller number 1,4-BDT molecules trapped in the hot-spot region 

compared to the face-to-face orientation can lead to significantly lower scattering 

intensities. More specifically, the increased near field strength in the hot spot is not 

sufficiently large to compensate for the significant reduction in number of molecules 

trapped within the hot-spot region, leading to an overall decrease in the SERS intensities.   

When the laser polarization was parallel to the nanowire’s long axis, the intensity 

of the SERS signals was decreased and EFdimer was calculated as 7.9×105 (bottom trace, 

Figure 2.14B). Similar to what was observed for the dimer displayed in Figure 2.14A, 

EFdimer is within the same order of magnitude as EFcube, suggesting that the molecules 

adsorbed in the hot-spot region did not make any additional contribution towards the 

SERS signals when the laser was polarized perpendicular to the hot-spot axis. 

Figure 2.16 summarizes the EFs measured for individual Ag nanowires, 

nanocubes, and their respective dimers probed in Figures 1.12 and 1.14. It is clear that the 

highest EF was obtained for the dimer in which the Ag nanocube was oriented with one 

of its faces nearly touching the side face of a Ag nanowire. In this case, the face-to-face 
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geometry allows for the highest number of SERS probe molecules to be trapped within 

the hot spot. In general, when the laser was polarized perpendicular to the nanowire’s 

long axis and parallel to the hot-spot axis, a higher strength in near field is expected to be 

enclosed in the hot-spot region, leading to increased SERS signals for the dimers in 

comparison to EFwire and EFcube. However, when the laser was polarized perpendicular to 

the hot-spot axis, the near field is expected to be concentrated outside the hot-spot region, 

leading to a decrease in EFdimer, which becomes equaled to the EFs for the individual 

nanoparticle components. 

I have also tried to isolate and selectively probe the hot-spot region formed 

between a Ag nanowire and a Ag nanocube in a face-to-face configuration using my 

previously reported approach based on plasma etching (see Figure 2.17 and 2.18).25 In 

this case, the dimer was first functionalized with 4-MBT and the SERS spectrum was 

recorded. Then, the sample was plasma etched. As previously demonstrated in a dimer 

made of two sharp Ag nanocubes, the plasma etching was able to remove only the SERS 

probe molecules absorbed outside the hot-spot region, leading to the isolation of the hot 

spot.25 After plasma etching, the SERS spectrum was taken and the detected signals 

originated only from the probe molecules trapped in the hot-spot region. Finally, the 

sample was immersed in a different SERS probe, such as 1,4-BDT to confirm that no 

significant changes to the surface of the dimer took place during these steps and that the 

final spectrum resembles the initial with respect to its signal intensities. Figure 2.18 

shows the SERS spectra recorded for transverse polarization during each of these steps 

for a dimer having a face-to-face orientation (inset). The SERS spectrum from the dimer 
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functionalized with 4-MBT (top trace) clearly shows the characteristic 4-MBT peaks at 

1072 and 1582 cm-1.12,13 After plasma etching (middle trace), all the 4-MBT signals 

disappeared from the spectrum, indicating complete removal of 4-MBT molecules from 

the dimer, including those trapped in the hot-spot region. This result suggests that, in this 

system, the plasma etching did not enable hot-spot isolation. This can be interpreted in 

terms of the hot-spot geometry, as shown in Figure 2.19. In the dimers made of two sharp 

Ag nanocubes, the hot-spot region comprises a narrow gap between two nearly touching 

nanocube faces. Therefore, the 4-MBT molecules in the hot spot can be considered as a 

multilayer resist relative to the oxygen plasma, which allows for their incomplete 

removal and thus hot spot isolation during the plasma etching process. However, in the 

dimer comprising a nanowire and a nanocube, the 4-MBT molecules trapped in the hot-

spot region are readily exposed to the oxygen plasma owing to the pentagonal cross-

section of the nanowire, enabling their complete removal by plasma etching. After the 

sample was immersed in 1,4-BDT, all the characteristic peaks for 1,4-BDT were detected 

in the spectrum again, indicating that no significant changes took place on the surface of 

the dimers during the plasma etching.  

I also probed systems in which the dimerization between a nanocube and the side 

face of a nanowire took place at a position close to the tip of the nanowire instead of its 

midpoint. Figure 2.20 shows SEM images of the probed dimers together with their SERS 

spectra recorded with the laser polarization being parallel to the hot-spot axis. Similarly, I 

was interested in two particular configurations for the nanowire-nanocube dimers: i) face-

to-face and ii) edge-to-face. The signal intensities in the SERS spectra for the dimers 
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presented in Figure 2.20 are consistent with those in Figure 2.14. The SERS intensities 

were the highest for the dimer having a face-to-face configuration as compared to the 

edge-to-face orientation (see the insets and spectra i and ii, respectively). Interestingly, 

the signal intensities were further reduced for dimers comprised of a Ag right bipyramid 

(instead of a Ag nanocube) having one of its tips nearly touching the side face of a Ag 

nanowire, as shown in the insets and spectra iii and iv, respectively. In the dimer 

involving a right bipyramid, the hot-spot region can be described as the narrow gap 

between one of the bipyramid’s tips and the side face of the Ag nanowire (tip-to-face 

configuration). In this context, it can be expected that the number of 1,4-BDT molecules 

trapped within the hot-spot region would be further reduced in comparison to the dimer in 

which the nanocube approaches the nanowire in an edge-to-face orientation. These results 

also suggest that the number of molecules trapped in the hot-spot region played a key role 

in determining the SERS intensities in dimers comprised of an individual Ag nanowire 

and a nanocube or right bipyramid. Taken together, it is plausible that the gradual 

reduction in the number of molecules trapped within the hot-spot region (face-to-face, 

edge-to-face and tip-to-face configurations, respectively) was responsible for the 

corresponding decrease in signal intensities detected in the nanowire-based dimers (i-iv).  

 

2.4.2.  Summary 

I have measured the SERS EFs for dimers comprised of an individual Ag 

nanowire and a single Ag nanocube. My results showed that the largest field 

enhancement was obtained when the laser was polarized parallel to the hot-spot axis. 
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Moreover, the detected SERS intensities were dependent on the hot-spot structure, i.e., 

the relative orientation of the Ag nanocube with respect to the nanowire’s side face. The 

strongest enhancement was observed when the nanocube was oriented with one of its side 

faces nearly touching the side face of the nanowire (face-to-face configuration). In this 

case, the EFdimer was 1.4x107, which corresponds to an increase of 22 and 24 folds 

relative to an individual nanowire and nanocube, respectively. Conversely, when the 

nanocube was oriented with one of its edges nearly touching the side face of the 

nanowire, the EFdimer was 4.3x106, which represents a decrease of 3.3 folds as compared 

to the dimer having a face-to-face configuration. In these systems, the difference in the 

measured EFdimer could be explained based upon different hot-spot structures, in which 

the strongest EF was obtained when the hot-spot configuration allowed for a larger 

number of probe molecules to be trapped in the hot-spot region. The results presented 

herein indicate that, in addition to the concentration of near fields in the hot-spot region, 

the number of molecules trapped at the narrow gap between almost touching particles 

(interparticle hot-spot) plays an important role in determining the SERS intensities of 

dimers constructed from a Ag nanowire and a Ag nanocube. 

 

2.5. Measuring the SERS Enhancement Factors for Hot-Spots with 

Different Morphologies in Dimers consisting of Ag Nanospheres 

and Nanocubes  

In nanocube-nanowire dimers (Section 2.4.), I found that the different orientations 

of the Ag nanocube with respect to the nanowire’s side face played a central role over the 
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detected SERS EF.26 In this context, it is important to note that there have been very few 

investigations regarding how different dimer configurations, i.e., hot-spot morphologies, 

would affect the EFs.10a,26 As the near-field distribution and the number of probe 

molecules at the hot spot are dependent upon the particle shape and hot-spot morphology, 

such a systematic investigation would be very attractive not only for the fundamental 

understanding of the hot-spot phenomenon, but also from a practical aspect, providing a 

venue for the maximization of SERS signals coming from individual hot spots.  

In this section, I report on a systematic investigation of the SERS activity of hot 

spots presenting a variety of well-defined morphologies formed between two Ag 

nanospheres and two Ag nanocubes. Specifically, I investigated four distinct dimer 

geometries: i) two nearly touching Ag nanospheres; ii) a sharp Ag nanocube having one 

face nearly touching the face of another Ag nanocube; iii) a sharp Ag nanocube having 

one edge nearly touching the face of another Ag nanocube and iv) a sharp Ag nanocube 

having one edge nearly touching the edge of another Ag nanocube. In these systems, the 

hot spot region can be described as the narrow gap between: i) two spherical caps, ii) two 

nanocube faces, iii) a nanocube edge and a nanocube face and iv) two nanocube edges 

(cap-to-cap, face-to-face, edge-to-face and edge-to-edge configurations, respectively). 

Taken together, by probing the EFs for these dimeric structures (EFdimer) presenting well-

defined hot-spot morphologies, I expect to systematically investigate how the 

concentration of near fields and probe molecules at the hot-spot region impacts EFdimer 

relative to their individual nanosphere and nanocube counterparts. 
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2.5.1.  Results and Discussion 

Figure 2.21 displays SEM images for the Ag nanospheres and nanocubes 

employed in my SERS studies. The Ag nanospheres were 81.1±5.3 nm in diameter, while 

the sharp Ag nanocubes had an edge length of 100.7±5.7 nm. It is important to note that 

the utilization of Ag nanospheres and nanocubes as substrates for SERS is attractive for a 

number of reasons. For example, they can be routinely synthesized with good uniformity 

in terms of shape, size and surface smoothness by the polyol method.15,27 Due to their 

dimensions, individual nanospheres, nanocubes and their dimers can be easily found 

under a dark-field optical microscope during the SERS measurements. Also, as they 

present similar sizes, they allow for a direct correlation among the detected SERS signals, 

their corresponding EFs and specific hot-spot morphologies. Finally, Ag nanospheres and 

nanocubes are suitable building blocks to generate dimers presenting a variety of hot-spot 

configurations, in which hot-spot region can be comprised of rounded, flat and sharp 

surfaces.  

I started my study by evaluating the SERS properties of individual Ag 

nanospheres and nanocubes. Figure 2.22A shows typical SERS spectra for an individual 

Ag nanosphere under two different laser polarization directions: parallel and 

perpendicular to the nanosphere equatorial axis relative to the SEM image depicted in the 

inset (top and bottom traces, respectively). The SERS spectra for the Ag nanospheres 

display no laser polarization dependency, as no significant variations on signal intensities 

were observed for the different laser polarization directions. In both spectra, the 

characteristic 4-MBT peaks at 1072 and 1582 cm-1 could be easily resolved.17 Here, the 
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peak at 1072 cm-1 is due to a combination of the phenyl ring-breathing mode, CH in-

plane bending, and CS stretching, while the peak at 1582 cm-1 can be assigned to phenyl 

ring stretching motion (8a vibrational mode).12,13 The broad band at 900-1000 cm-1 came 

from the Si substrate. Based on the area of the peak at 1582 cm-1, the EF for an individual 

nanosphere (EFsphere) was 1.7×107 and 1.6×107 (top and bottom traces, respectively). 

Figure 2.23 displays the SERS spectra for 10 distinct individual Ag nanospheres. In all 

cases, no significant variations in the signal intensities were observed, indicating the 

SERS spectra for the Ag nanospheres were consistent and reproducible. Figure 2.22B 

shows typical SERS spectra for an individual Ag nanocube under two laser polarization 

directions: along a face diagonal and along an edge (top and bottom traces, respectively). 

The SERS signals from the Ag nanocubes presented a strong dependence on laser 

polarization, which is consistent with our previous reports.19,25 As shown in Figure 2.22B, 

the 4-MBT signals were more strongly enhanced when the nanocube was oriented with 

one of its face diagonals parallel to the laser polarization direction. This strong 

dependence on laser polarization could be attributed to the differences in the near-field 

distribution over the surface of the nanocubes under different excitation directions.19 The 

EF for the nanocube (EFcube) was 3.0×106 and 5.8×105 for laser polarization along a face 

diagonal and an edge, respectively.  

These results show that EFsphere was higher than EFcube when the SERS spectrum 

is taken for the individual nanosphere and nanocube supported over a Si substrate. This is 

an intriguing observation. Generally, theoretical calculations predict that sharp nanoscale 

features can provide stronger Raman scattering intensities than rounded counterparts as 
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they allow for a higher concentration of near fields (lightning rod effect).16 Therefore, the 

nanocubes can be expected to display a higher concentration of near fields at their surface 

(concentrated at the corners) as compared to nanospheres of similar size (concentrated at 

opposite sides of the equatorial axis). In fact, SERS measurements in solution agree with 

this prediction. We have previously shown that, for solution-based SERS measurements 

employing Ag nanospheres and nanocubes having similar sizes, EFcube were higher than 

EFsphere.28 Figure 2.24 displays SERS measurements performed in solution for the Ag 

nanospheres and Ag nanocubes employed in this work. According to the solution spectra, 

EFsphere and EFcube were 3.0×105 and 1.4×106, respectively, confirming that EFcube is 

higher than EFsphere in the solution-based SERS spectra.  

In order to explain the results observed herein for the supported nanoparticles, I 

have to consider the effect of the substrates over the plasmon resonance of the metal 

nanoparticles. It has been reported that an adjacent or an isotropically surrounding 

medium (metallic, semiconducting or dielectric) alters the plasmonic properties of a 

nanoparticle.29,30 In this respect, we have previously performed finite-difference time-

domain (FDTD) calculations to study the effect of an adjacent substrate (glass) over the 

plasmonic properties of an individual Ag nanocube that was 90 nm in edge length (Figure 

2.25).30 These calculations have shown that, the single dipole resonance associated with 

the solution spectrum splits into two peaks when the nanocube approaches the substrate 

(Figure 2.25A). More specifically, the dipole resonance broadens and splits into a peak at 

430 nm associated with large near fields away from the substrate and a peak at 550 nm 

associated with large near fields towards the substrate (Figure 2.25B and C). Thus, it is 
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plausible to assume that the near field distribution for the supported nanocube will have a 

significant contribution from large near fields pointing towards the substrate (Figure 

2.25C) under the 514 nm excitation wavelength employed in my SERS measurements. 

However, because the Ag nanocubes were functionalized with 4-MBT after they had 

been deposited over the substrate, the bottom face of the nanocube that is in contact with 

the Si surface is expected to not contain any 4-MBT molecules (see inset Figure 2.25C). 

Here, it is possible that the EF for the supported nanocube is lower than expected because 

there were no SERS probe molecules absorbed on the region containing a high 

concentration of near fields, i.e., region encompassing the near fields that point towards 

the substrate.  

Similar FDTD calculations for an individual Ag nanosphere showed that, 

differently from the nanocube, the presence of an adjacent substrate does not alter its near 

field distribution. In this case, only one dipolar plasmon resonance was observed as the 

nanosphere approached the substrate, in which the near-fields were concentrated along 

the equatorial position parallel to the laser polarization direction. As 4-MBT molecules 

are present along the equatorial positions in the sphere (region enclosed by the near field-

distribution), the signal intensities were not affected. In this context, the “damping” 

observed for the supported nanocube is significant enough to cause EFcube to be smaller 

than EFsphere. It is important to note that a complete study of the substrate effect over the 

SERS spectra of Ag nanoparticles of different shapes is currently being investigated in 

our group. Our preliminary results indicate that the SERS spectrum of a supported 

nanocube having 6 faces functionalized with a SERS probe display, indeed, stronger 
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field-enhancements as compared to supported nanospheres of similar size, which is in 

agreement with my observations. 

After the SERS spectra for the individual nanospheres and nanocubes had been 

investigated, I turned my attention to dimers composed of two Ag nanopheres and two 

Ag nanocubes, in which the hot-spot region displays a i) cap-to-cap, ii) face-to-face, iii) 

edge-to-face and iv) edge-to-edge configurations. Figure 2.26 presents the SERS spectra 

obtained for individual dimers displaying the aforementioned configurations and the 

insets show their corresponding SEM images. Here, the laser was polarized parallel to the 

dimer’s longitudinal axis, i.e., parallel to the hot-spot axis. Under this polarization, the 

characteristic 4-MBT SERS signals were enhanced as compared to Figure 2.22 due to the 

formation of a hot spot. Also, it can be clearly seen from the spectra that the SERS 

intensities gradually decreased from the (i) cap-to-cap towards the (iv) edge-to-edge 

configuration. Under this polarization, EFdimer for the cap-to-cap configuration (two Ag 

nanospheres) was calculated as 1.7×108. This corresponds to an increase of 10 folds 

relative to EFsphere. For the Ag nanocube dimers, EFdimer were calculated 2.0×107, 

1.5×107, and 5.6×106 for the face-to-face, edge-to-face and edge-to-edge configurations, 

respectively. This corresponds to an increase of 28, 9 and 2 folds, respectively, as 

compared to EFcube. According to these results, the highest field-enhancement was 

obtained for the dimer composed of two Ag nanospheres (cap-to-cap configuration). 

However, if we consider the relative increase on EFdimer with respect to EFsphere and 

EFcube, the highest field-enhancement was obtained for the dimer made of two Ag 

nanocubes displaying a face-to-face configuration. Moreover, the lowest field-
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enhancement was observed for the dimer presenting an edge-to-edge geometry. In this 

case, EFdimer was within the same order of magnitude as EFcube (polarization along a face 

diagonal), indicating the hot-spot did not significantly contribute to the obtained field 

enhancements.  

As I previously described in dimers made of an individual Ag nanowire and a 

single Ag nanocube, the SERS intensity coming from a hot spot is determined by both the 

near-field concentrations at the hot spot and the number of molecules that have their 

scattering cross-sections enhanced when they are subjected to the near fields, i.e., the 

number of SERS probe molecules trapped at the hot-spot region.26 A schematic 

representation of dimers probed in Figure 2.26 and their respective hot-spot 

configurations are shown in Figure 2.27. Here, the relative increase in EFdimer with 

respect to their individual nanoparticle counterparts could be directly correlated to 

number of molecules trapped within the hot-spot region (Nhot-spot). Based on the 

molecular footprint for 4-MBT and the dimensions of the nanocubes and nanopheres, 

Nhot-spot was ~105,263 for the face-to-face configuration. This corresponds to 20 % of 

total number of 4-MBT molecules in the dimer (Nsers). When the dimers presented a cap-

to-cap and edge-to-face configuration, Nhot-spot was reduced to 16,033 and 10,210 

molecules (8 and 2 % of Nsers), respectively. Finally, further reduction in Nhot-spot and took 

place for the dimer displaying an edge-to-edge orientation. Here, Nhot-spot was 5,894 

molecules (1 % of Nsers). In these systems, it is plausible that this gradual and significant 

reduction in Nhot-spot (face-to-face > cap-to-cap > edge-to-face > edge-to-edge) was 

responsible for the corresponding decrease in EFdimer with respect to their individual 
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nanoparticle counterparts. 

According to our DDA calculations for an individual Ag nanocube, the |E|max was 

estimated as 26.5 and 37.8 for laser polarizations along an edge and along a face 

diagonal, respectively.19 For a Ag nanosphere, |E|max was estimated as ~4.0.  As the near-

fields are distributed along the laser polarization direction, it can be expected that the 

concentration of near fields at the hot-spot region in the dimers probed in Figure 2.26 

decreases in the order: edge-to-edge > edge-to-face > face-to-face > cap-to-cap. This 

corresponds to the opposite trend with respect to the detected SERS intensities and 

EFdimer. Therefore, my results indicate Nhot-spot was the most important factor dictating the 

SERS intensities and their relative field-enhancements in the dimers probed in Figure 

2.26. More specifically, the increased concentration of near fields at the hot spot region in 

the dimer configurations that allow for sharp features to be located within the hot-spot 

region was not sufficiently large to compensate the associated reduction in Nhot-spot.   

Figure 2.28 presents the SERS spectra obtained for the dimers presenting cap-to-

cap, face-to-face, edge-to-face and edge-to-edge configurations in which the laser was 

polarized perpendicular to the longitudinal axis in the dimers, i.e., perpendicular to the 

hot-spot axis. It can be observed that the intensity of the SERS signals were significantly 

decreased for all dimers as compared to Figure 2.24. Here, EFdimer were calculated as 

1.5×107, 6.6×105, 1.9×106 and 3.0×106 for the cap-to-cap, face-to-face, edge-to-face and 

edge-to-edge configurations, respectively. These EFs are within the same order of 

magnitude as their corresponding single-particle counterparts, suggesting that the 

molecules adsorbed in the hot-spot region did not make any additional contribution 
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towards the SERS signals when the laser was polarized perpendicular to the hot-spot axis. 

Figure 2.29 summarizes all the EFs calculated for the individual nanospheres, nanocubes, 

and their respective dimers probed in Figures 2.26 and 2.28. When the laser was 

polarized parallel to the hot-spot axis, near-fields can be expected to be concentrated 

along the hot-spot region, leading to increased SERS signals for the dimers as compared 

to the individual nanospheres and nanocubes. However, when the laser was polarized 

perpendicular to the hot-spot axis, the near fields are expected to be concentrated outside 

the hot-spot region, leading to a decrease in EFdimer, which becomes equaled to the 

EFsphere and EFcube for the individual nanoparticle components.  

 

2.5.2. Summary 

I have measured the SERS EFs for individual nanoparticle dimers presenting a 

variety of distinct and well-defined hot-spot morphologies. In particular, I probed dimers 

comprised of two Ag nanospheres (hot-spot displaying a cap-to-cap configuration) and 

two Ag nanocubes (hot-spot displaying face-to-face, edge-to-face and edge-to-edge 

configurations). My results showed that the largest field enhancements were obtained 

when the laser was polarized parallel to the hot-spot axis. Moreover, the detected SERS 

intensities and were strongly dependent on the hot-spot morphology. The calculated 

EFdimer were 1.7×108, 2.0×107, 1.5×107, and 5.6×106 for the cap-to-cap, face-to-face, 

edge-to-face and edge-to-edge configurations, respectively. This corresponds to an 

increase of 10, 28, 9 and 2 folds, respectively, as compare to their individual nanoparticle 

counterparts. Although the highest EF was observed for the dimer displaying cap-to-cap 
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configuration, the highest increase in EFdimer as compared to EFsphere and EFcube was 

obtained for the dimer in a face-to-face configuration. In this case, a direct correlation 

between Nhot-spot and the relative increase in EFdimer as compared to EFsphere and EFcube 

was observed, in which the highest field enhancements were obtained for the 

configurations that allowed for a higher number of molecules to be trapped within the 

hot-spot region. The results presented herein indicate that, regardless of the concentration 

of near fields, the number of molecules trapped at the hot-spot region was the most 

important factor determining the field-enhancements in dimers constructed from Ag 

nanospheres and nanocubes. 

Overall, I developed in this chapter two approaches for selectively probing the 

SERS activities of individual hot spots, i.e., experimentally detect the SERS signals only 

for the molecules that are trapped within the hot-spot region in individual Ag 

nanoparticle dimers (Sections 2.2 and 2.3). To our knowledge, these demonstrations 

represented the first attempt to isolate the hot spot formed between two Ag nanoparticles 

with subsequent measurements of the SERS enhancement factor intrinsic to a hot spot. I 

also performed a systematic investigation on the SERS activity of individual dimers 

composed of two closed spaced Ag nanoparticles. For the first time in this field, by 

employing Ag nanoparticles displaying a variety of well-defined shapes, sizes, and 

orientations, I was able to precisely and systematically correlate the experimentally 

detected field-enhancements to the specific geometry of a hot-spot. My results 

demonstrated that the number of probe molecules at the hot-spot region was the most 

important factor to the detected field-enhancements for the dimers. In this case, the 
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highest field enhancements (EF ~107-108) were detected for dimer configurations that 

allowed for a higher number of probe molecules to be trapped within the hot-spot region.  

 

2.6. Experimental Section  

Chemical and Materials. Silver nitrate (AgNO3, 99%), poly(vinyl pyrrolidone) 

(PVP, Mw ≈ 55,000), Hydrochloric acid (HCl, 37%), Iron Nitrate (Fe(NO3)3, 98+%) and 

4-methylbenzenethiol (4-MBT, 98%) were all obtained from Sigma-Aldrich and used as 

received. 1,4-benzenedithiol (1,4-BDT, 98%) was obtained from Alfa Aesar. Ethylene 

glycol (EG) was obtained from J. T. Baker, and Ethanol (200 proof) was obtained from 

Pharmco Products Inc. All aqueous solutions were prepared with deionized water (18.1 

MΩ cm). 

  Synthesis of Ag nanosphere dimers (30 nm in diameter). Our developed 

approach was based upon the polyol process in which ethylene glycol (EG) serves as a 

solvent and a precursor to the reducing agent. By introducing a small amount of sodium 

chloride into the reaction solution,14 we could obtain single-crystal silver nanoparticles as 

a result of oxidative etching and at the same time induce dimerization due to a change to 

colloidal stability. In a typical synthesis, we obtained dimers consisting of silver 

nanospheres ~30 nm in diameter and separated by 1.8 nm in the solution phase with a 

yield >50%.  

Synthesis of Ag nanocubes 100 nm in edge length. The Ag nanocubes were 

synthesized according to our previously reported procedures.15 In a typical synthesis, 5 

mL of EG was placed in a 20-mL vial, capped, and heated with magnetic stirring in an oil 
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bath at 150 oC for 1 h. 0.75 mL of 12 mM HCl in EG was then quickly added into the 

vial, and the vial was recapped. After 10 min, 1.5 mL each of 94 mM AgNO3 and 147 

mM PVP, both dissolved in EG, were simultaneously added through a two-channel 

syringe pump (KDS-200, KD Scientific, Holliston, MA) at a rate of 22.5 mL per hour 

into the vial. The vial was then capped and continued with heating at 150 oC until the 

solution turned into an ocher color. Upon injection of the AgNO3 solution, the reaction 

mixture went through a series of color changes that included milky white, light yellow, 

transparent, red, and ocher. The final product, silver nanocubes with sharp corners, was 

obtained via centrifugation (30 min at 3,900 rpm) and washed with acetone once and 

ethanol twice to remove excess EG and PVP and finally re-dispersed in ethanol water for 

further use in the preparation of SERS substrates. 

Synthesis of Ag nanowires and nanocubes. The Ag nanowires and nanocubes 

were synthesized according to our previously reported procedures.15,21 For the Ag 

nanocubes, AgNO3 was reduced in EG at 140 oC in the presence of PVP and HCl. EG 

served as the solvent and source of the reducing agent (glycolaldehydes), while HCl acted 

as a oxidative etchant. In a typical synthesis, 25 mL of EG was placed in a 100-mL round 

bottom flask, capped, and heated with stirring in an oil bath at 140 oC for 1 h. HCl (5 mL 

of a 3 mM solution in EG) was then quickly added, and the vial was recapped. After 10 

min, AgNO3 (15 mL of a 94 mM solution in EG) and PVP (15 mL of a 147 mM solution 

in EG) were simultaneously added with a two-channel syringe pump (KDS-200, 

Stoelting, Wood Dale, IL) at a rate of 45 mL per hour to the stirring solution. The flask 

was then capped and heated at 140 oC. The reaction was allowed to continue overnight 
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before quenching in an ice bath and washing with acetone and water. A similar protocol 

(with the exception that the amount of HCl employed in the synthesis was 1 mL of 3 mM 

solution in EG) was  used to produce the Ag nanowires, which were then mixed with Ag 

nanocubes at a ratio of 1 to 1. The mixture was then washed with acetone and ethanol to 

remove EG and excess PVP, and then re-dispersed in ethanol for further use in the 

preparation of SERS substrates.  

Synthesis of Ag nanospheres 80 nm in diameter. The Ag nanospheres were 

prepared via the truncation of the Ag nanocubes in the presence of Fe(NO3)3.27 In brief, 

0.01 g of PVP was dissolved  in 1.5 mL of ethanol. A suspension containing the Ag 

nanocubes dispersed in H2O was added into this ethanol solution and kept under stirring. 

50 μl of 10 mM Fe(NO3)3 aqueous solution was added to this mixture and the reaction 

was allowed to proceed at room temperature for 2 hours. The final the product was 

collected by centrifugation at 10,000 rpm and washed three times with ethanol. The 

sample was then re-dispersed in ethanol for further for further use in the preparation of 

SERS substrates. 

Preparation of substrates for correlated SERS/SEM experiments. Samples for 

correlated SEM and SERS experiments were prepared by drop-casting an ethanol 

suspension of the Ag nanoparticles (nanocubes, nanowires and nanospheres) on a Si 

substrate that had been patterned with registration marks and letting it dry under ambient 

conditions. In this case, dimers could form spontaneously via aggregation during solvent 

evaporation. Functionalization with 1,4-BDT or 4-MBT was performed by immersing the 

substrate containing Ag nanocubes in a 5 mM ethanol solution (5 mL) of 1,4-BDT or 4-
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MBT, respectively, for 1 h. The sample was then taken out, washed with copious 

amounts of ethanol, and finally dried under a stream of air. All samples were used 

immediately for SERS measurements after preparation.  

Instrumentation. The SERS spectra were recorded using a Renishaw inVia 

confocal Raman spectrometer coupled to a Leica microscope with 50× objective (NA = 

0.90) in backscattering geometry. The 514 nm wavelength was generated with an argon 

laser coupled to a holographic notch filter with a grating of 1200 lines per millimeter. For 

the 785 nm wavelength, diode laser was used under similar conditions. The backscattered 

Raman signals were collected on a thermoelectrically cooled (-60 oC) CCD detector. The 

scattering spectra were recorded in the range of 800-2000 cm-1, in one acquisition, 30 s 

accumulations, and 0.5 or 0.7 mW (514 nm) or 1.5 mW (785 nm) at the sample. For 514 

nm laser excitation wavelength, the laser spot size was approximated as 730 nm using the 

following expression for a focused Gaussian beam, which is valid when a laser light is 

focused by a microscopy objective and the beam diameter is smaller than the back 

diameter of the objective: 

 

w0 = (4 × λ) /(π × NA)          (2.1)  

 

where w0 is the minimum waist diameter for a laser beam of wavelength λ, focused by an 

objective with a numerical aperture NA. In the spectra, the broad band at 900-1000 cm-1 

can be attributed to the Si substrate and was used in this work as a reference for intensity 

normalization. SEM images were taken using an FEI field-emission microscope (Nova 
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NanoSEM 230) operated at an accelerating voltage of 15 kV. Plasma etching was 

performed in a plasma cleaner/sterilizer (Harrick Scientific Corp., PDC-001) operated at 

60 Hz and 0.2 Torr of air, with power being set to high. In a typical process, the sample 

was placed in the plasma cleaner chamber and exposed to the oxygen plasma for 6 min. 

Since plasma etching is highly sensitive to many parameters, one needs to at least 

optimize the etching time/air pressure when this protocol is applied to a specific system. 

Calculation of the Enhancement Factors (EF). We employed the peak at 1562 

cm-1 (for 4-MBT) or the peak at 1582 cm-1 (for 1,4-BDT) to estimate the EF through the 

following equation:         

 

EF = (Isers × Nbulk) / (Ibulk × Nsers)             (2.2) 

 

where Isers and Ibulk are the intensities of the same band for the SERS and bulk spectra, 

Nbulk is the number of molecules probed for a bulk sample, and Nsers is the number of 

molecules probed in the SERS. The areas of the 1562 cm-1 or 1582 cm-1 bands were used 

for the intensities Isers and Ibulk. We chose this band because it was the strongest band in 

the spectra. Nbulk was determined based on the Raman spectrum of a 0.1 M 1,4-MBT or 

0.1M 1,4-BDT solution in 12 M NaOH(aq) and the focal volume of our Raman system 

(1.48 pL). When determining Nsers, we assumed that the 4-MBT molecules were adsorbed 

as a complete monolayer with a molecular footprint of 0.19 nm2.12,13 For 1,4-BDT, the 

molecular footprint was 0.54 nm2.18 These assumptions represent the theoretically 

maximum number of molecules and is therefore an overestimate. Thus, the calculated EF 
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will likely be an underestimate rather than an overestimate of the enhancement. A laser 

spot of 730 nm in diameter (eq. 2.1) was employed for calculating Nsers in the nanowires, 

nanocubes and their respective dimers. As 4-MBT and 1,4-BDT do not present any 

absorption bands matching the laser wavelengths used in this study, any possibility of 

resonance Raman effects can be ruled out from the calculated EFs.   
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Figure 2.1. (A) SERS spectra taken from (top) a dimer of silver nanospheres, (middle) 

two silver nanospheres separated by ~600 nm, and (bottom) a single silver nanosphere. 

The scale bars in the insets correspond to 50 nm. (B) A schematic showing my approach 

to estimate the number of probe molecules trapped in the hot spot (Ntrap) of a dimer. The 

hot spot region is assumed to comprise a cap on the surface of each nanosphere in the 

interparticle region of the dimer (red color). Ntrap is obtained by calculating the total 

surface area of the hot spot region (surface area of the two caps) and dividing it by the 

molecular footprint of a 4-MBT molecule. In my calculations, h = r/6.6 (where h is the 

height of the cap and r is the radius of the nanosphere). 
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Figure 2.2. SERS spectra taken from a dimer of silver nanospheres (same as the one 

shown in Figure 2.1A) under different orientations relative to laser polarization. The 4-

MBT peaks were maximized when the laser polarization was parallel to the longitudinal 

axis of the dimer. All spectra were taken with 785 nm excitation laser, 30 s accumulation, 

1.5 mW at the sample. The scale bar in the inset corresponds to 50 nm. 
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Figure 2.3. SEM image of the sharp Ag nanocubes employed in my SERS 

measurements. Their average edge length was 100 ± 5.7 nm. The scale bar in the inset 

corresponds to 100 nm. 
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Figure 2.4. (a) Schematic of the approach employed for removal and functionalization of 

a single Ag nanocube with 4-MBT via plasma etching and re-immersion in a 4-MBT 

solution. (b) SERS spectra from a single Ag nanocube functionalized with 4-MBT, 

followed by successive cycles of plasma etching and re-immersion in 4-MBT (from top 

to bottom, respectively). The exchange process could occur up to three cycles of plasma 

etching and re-immersion in 4-MBT solution. After the fourth round of plasma etching, 

the Ag nanocubes could not be re-functionalized with 4-MBT any further. The SEM 

image in the inset was taken after the fourth round of plasma etching; the slight 

truncation at corners is probably due to surface oxidation under extended exposure to the 

oxygen-plasma. The scale bar in the inset corresponds to 100 nm. 
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Figure 2.5. Schematic of the approach employed for the exchange between 4-MBT 

(probe-A) and 1,4-BDT (probe-B) on a single Ag nanocube. The Ag nanocube is 

functionalized with probe-A and then exposed to plasma etching to remove the absorbed 

probe-A molecules from the surface of the nanocube. In the next step, the nanocube is 

immersed in a solution of probe-B molecules. As 4-MBT and 1,4-BDT present different 

Raman signatures, the exchange process can be readily monitored by observing the shift 

in the 8a band (1550-1600 cm-1) for the benzene ring. 
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Figure 2.6. SERS spectra from a single Ag nanocube functionalized with 4-MBT (top 

trace), followed by plasma etching for 2 min (middle), and immersion in a 1,4-BDT 

solution (bottom). In (a) and (b), the laser was polarized along an edge and a face 

diagonal of the Ag nanocube, respectively. The scale bar in the inset corresponds to 100 

nm. 
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Figure 2.7. SERS spectra from a single Ag nanocube functionalized with 1,4-BDT (top), 

followed by plasma etching for 2 min (middle) and immersion in a 4-MBT solution 

(bottom). No major change in the SERS spectrum (middle trace) was observed after 

plasma etching. Also, the SERS spectrum did not change after immersing the sample in a 

4-MBT solution, indicating that the 1,4-BDT molecules could not be displaced by 4-

MBT.  
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Figure 2.8. SERS spectra from a single Ag nanocube functionalized with 4-MBT (top), 

plasma etching for 2 min (second trace), followed by immersion in a 1,4-BDT (third 

trace) and plasma etching for another 2 min (bottom). When 1,4-BDT molecules were 

adsorbed on the surface of the nanocube, they could not be easily removed via plasma 

etching. The scale bar in the inset corresponds to 100 nm.   
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Figure 2.9. (a) Schematic of the approach employed for probing the hot spot formed in a 

dimer of Ag nanocubes. The dimer was functionalized with 4-MBT and then exposed to 

plasma etching to remove the adsorbed 4-MBT molecules. In this case, only the 4-MBT 

molecules outside the hot-spot region (i.e., outside the two touching faces) were removed 

during the plasma etching. The nanocube dimer was then immersed in a 1,4-BDT 

solution, resulting in the complete replacement of 4-MBT by 1,4-BDT over its entire 

surface. (b-d) SERS spectra from a Ag nanocube dimer functionalized with 4-MBT (top), 

followed by after plasma etching for 2 min (middle) and then immersion in a 1,4-BDT 

solution (bottom). The laser was polarized at 0, 45 and 90 degrees with respect to the 

long axis of the dimer. The scale bars in the insets correspond to 100 nm. 
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Figure 2.10. Summary of the Enhancement Factors (EFs) calculated using Eq. (1) for the 

dimers and individual Ag nanocubes functionalized with 4-MBT, followed by plasma 

etching for 2 min and immersion in a 1,4-BDT solution. The arrow denotes the laser 

polarization direction in each case. The scale bars in the insets correspond to 100 nm. 
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Figure 2.11. SEM images of (A) Ag nanowires and (B) Ag nanocubes with sharp corners 

used for the SERS measurements. The average width of the Ag nanowires was 95.2±8.8 

nm and the pentagonal cross section can be clearly observed from the image in the inset. 

The average edge length of the Ag nanocubes was 141.7±3.8 nm. The scale bars in the 

insets correspond to 100 nm. 
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Figure 2.12. SERS spectra taken from (A) a single Ag nanowire and (B) a single Ag 

nanocube, respectively, which were functionalized with 1,4-BDT. The arrow indicates 

the laser polarization direction relative to the nanowire or nanocube in the inset. For a Ag 

nanowire, the SERS signals were more strongly enhanced when the laser polarization 

direction was perpendicular to the nanowire’s long axis, top trace in (A). For a Ag 

nanocube, the SERS signals were more strongly enhanced when the laser was polarized 

along a face diagonal, top trace in (B). The insets show SEM images of the Ag nanowire 

and Ag nanocube being probed for SERS. The scale bars in the insets correspond to 200 

nm. 
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Figure 2.13. SERS spectra for seven different individual Ag nanowires that were 

functionalized with 1,4-BDT. The laser polarization direction was perpendicular to the 

nanowire longitudinal axis in all spectra, as indicated by the double arrow. The numbers 

on the insets indicate the calculated EFwire for each spectrum. Although the nanowires 

present different lengths (varying from 2.5 to 4.8 μm), no significant changes in the 

detected SERS intensities and EFs were observed. This is because the number of probe 

molecules within the laser spot size was maximized in all cases by focusing the laser 

beam at the center of each nanowire, eliminating any potential fluctuations in Nsers that 

could arise from probing the regions close to the tips. The scale bar applies to all insets 

and corresponds to 200 nm.  
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Figure 2.14. SERS spectra taken from two dimers made of an individual Ag nanowire 

and a single Ag nanocube. In (A), the nanocube was oriented with one side face nearly 

touching the side face of the nanowire. In (B), the nanocube was oriented with one edge 

nearly touching the side face of the nanowire. In both cases, the nanocubes were 

positioned at the center region relative to the nanowire’s long axis. The samples were 

functionalized with 1,4-BDT and the arrows indicate the laser polarization directions 

relative to the dimers shown in the insets. The SERS signals were more strongly 

enhanced when the laser was polarized parallel to the hot-spot axis (top traces). The 

insets show SEM images of the dimers being probed for SERS. The scale bars in the 

insets correspond to 200 nm. 
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Figure 2.15. Schematic representation of the dimers probed in Figure 2.14. In (A), the Ag 

nanocube approached the nanowire with one side face nearly touching the side face of the 

Ag nanowire. The hot-spot region can be described by the narrow gap between the 

nanocube’s face and the nanowire’s side face (face-to-face configuration). In (B), the Ag 

nanocube approaches the nanowire with one edge nearly touching the side face of the Ag 

nanowire. In this case, the hot-spot region can be described by the narrow gap between 

the nanocube’s edge and the nanowire’s side face (edge-to-face configuration). As shown 

in the scheme, the number of probe molecules trapped in the hot-spot region is expected 

to be the lower for the dimer in an edge-to-face configuration. This smaller number of 

probe molecules in the hot-spot region is believed to be responsible for the observed 

reduction in the SERS intensities when the dimer displayed an edge-to-face geometry. 



 78

 

 

Figure 2.16. Summary of the SERS EFs obtained for an individual Ag nanocube, an 

individual Ag nanowire, and dimers consisting of a Ag nanowire and a Ag nanocube 

probed in Figure 2.14. The highest EF was obtained under transverse polarization for a 

dimer in which the Ag nanocube was oriented with one side face nearly touching the side 

face of a Ag nanowire (face-to-face orientation). In this case, EFdimer displayed an 

increase of 22 and 24 folds relative to EFwire and EFcube, respectively. For both dimers, no 

significant enhancement as compared to EFwire and EFcube was observed when the laser 

polarization direction was parallel to the long axis of the nanowire. The arrow denotes the 

laser polarization directions in each case. The scale bars in the insets correspond to 200 

nm. 
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Figure 2.17. SERS spectra from (A) a single Ag nanowire and (B) a single Ag nanocube 

functionalized with 4-MBT (top trace), followed by plasma etching for 6 min (middle), and 

immersion in a 1,4-BDT solution (bottom). In both cases, the laser was polarized perpendicular to 

the nanowire’s long axis, and along an edge or a face diagonal of the nanocube, as indicated by 

the arrows. The scale bars in the insets correspond to 200 nm. 
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Figure 2.18. Attempt to isolate the hot-spot region in a dimer made of a Ag nanowire and 

a Ag nanocube via my previously demonstrated plasma etching approach. In this case, 

the dimer presents a face-to-face configuration. The dimer was functionalized with 4-

MBT (top trace) and then exposed to plasma etching to remove the adsorbed 4-MBT 

molecules (middle trace). The dimer was then immersed in a 1,4-BDT solution, resulting 

in the complete replacement of 4-MBT by 1,4-BDT over its entire surface (bottom trace). 

The laser was polarized parallel to the hot-spot axis, as indicated by the arrow. The scale 

bar in the inset corresponds to 200 nm.  
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Figure 2.19. Representation of the cross-section region in a dimer containing (A) two 

sharp Ag nanocubes and (B) a Ag nanowire and a Ag nanocube. For a dimer made of two 

sharp Ag nanocubes, the hot-spot region comprises a narrow gap between two nearly 

touching nanocubes and, therefore, the 4-MBT molecules in the hot-spot can be 

considered as a multilayer resist relative to the oxygen plasma. In this case, removal of 4-

MBT molecules from the hot-spot region can be expected to require longer plasma 

etching times as compared to the 4-MBT molecules absorbed outside the hot-spot region. 

For a dimer made of a Ag nanowire and a Ag nanocube (B), the SERS probe molecules 

adsorbed at the hot spot region are readily exposed to the oxygen plasma, owing to the 

pentagonal cross section of the Ag nanowires. This enables the complete removal of 4-

MBT molecules (include those located in the hot-spot region) during plasma etching.  
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Figure 2.20. SERS spectra taken from four different dimers containing Ag nanowires, 

where i) the Ag nanocube was oriented with one side face nearly touching the side face of 

a Ag nanowire; ii) the Ag nanocube was oriented with one edge nearly touching the side 

face of a Ag nanowires; and iii, iv) the Ag right bipyramids were oriented with one of 

their tips nearly touching the side face of the Ag nanowires. The sample was 

functionalized with 1,4-BDT and the laser polarization direction was parallel to the hot-

spot axis. The spectra show that the SERS signals were more strongly enhanced when the 

dimer had a face-to-face configuration (top trace), which allowed for the largest number 

of probe molecules to be located in the hot-spot region. The insets show SEM images of 

the probed dimers. The scale bar applies to all insets and corresponds to 200 nm. 
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Figure 2.21. SEM images of the (A) Ag nanospheres and (B) Ag nanocubes employed in 

my SERS measurements. Their average diameter (nanospheres) and edge length 

(nanocubes) were 81.1±5.3 and 100.7±5.7 nm, respectively. The scale bars in the insets 

correspond to 100 nm.  
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Figure 2.22. SERS spectra from a single Ag nanosphere (A) and a single Ag nanocube 

(B). The samples were functionalized with 4-MBT and the arrows indicate the laser 

polarization direction relative to the nanosphere and nanocube, respectively. For the Ag 

nanosphere, no significant variation in SERS signal intensity was observed for different 

polarization directions. For the Ag nanocube, the SERS signals were more strongly 

enhanced when the laser was polarized along a face diagonal (bottom trace in B). The 

insets show SEM images of the probed Ag nanosphere and nanocube. The scale bars in 

the insets correspond to 100 nm.  
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Figure 2.23. SERS spectra taken from 10 individual Ag nanospheres. The laser 

polarization direction is indicated by the double arrow. In all cases, no significant 

variation in the SERS signal intensity was observed for the different Ag nanospheres. The 

scale bar applies to all insets and corresponds to 100 nm. The average EFsphere obtained 

from these spectra was 1.2×107. 
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Figure 2.24. SERS spectra recorded from aqueous suspensions of the Ag nanospheres 

(top trace) and Ag nanocubes (bottom trace) that had been functionalized with 4-MBT. 

The measurements were performed with an excitation wavelength of 514 nm. EFsphere and 

EFcube calculated from the solution-phase spectra were 3.0×105 (top trace) and 1.4×106 

(bottom trace), respectively. 
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Figure 2.25. (A) Finite-difference time-domain (FDTD) simulation (Ref. 30) illustrating 

how the extinction peak of a nanocube 90 nm in edge length splits as the nanocube 

approaches a glass substrate. (B) The peak at 430 nm is associated with near fields away 

from the substrate. (C) The peak at 550 nm is associated with near fields impinging on 

the substrate. The white line in (B) and (C) represents the substrate. The inset in (C) 

displays a schematic representation of the Ag nanocube functionalized with 4-MBT 

employed in my measurements. In this case, no 4-MBT molecules are expected to be 

present at the bottom face of the nanocube that was in contact with the substrate. 
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Figure 2.26. SERS spectra for dimers consisting of two Ag nanospheres or two Ag 

nanocubes with well-defined hot-spot structures: two Ag nanospheres (top trace) and two 

Ag nanocubes in a face-to-face (second trace from the top), edge-to-face (third trace from 

the top), or edge-to-edge (bottom trace) configuration. The samples were functionalized 

with 4-MBT and the laser was polarized along the longitudinal axis of each dimer, as 

indicated by the arrow. The insets give SEM images of the probed dimers. The scale bar 

applies to all insets and corresponds to 100 nm. 
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Figure 2.27. Schematic illustrations (top view) of the dimers probed in Figure 2.26 their 

corresponding hot-spot structures. The red color marks the hot-spot region for each 

dimer. In the dimer of nanospheres (A), the hot spot can be described by the narrow gap 

between two nearly touching semispherical caps (cap-to-cap configuration). In the dimers 

of nanocubes (B-D), the hot-spot region can be described by the narrow gap between: (B) 

two nearly touching side faces, (C) an edge and a side face, and (D) two nearly touching 

edges (face-to-face, edge-to-face, and edge-to-edge configurations, respectively). Nhot-spot 

refers to the number of 4-MBT molecules trapped in the hot-spot region, while Nsers 

refers to the total number of molecules adsorbed on the entire surface of the dimer. 
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Figure 2.28. SERS spectra for dimers composed of two Ag nanospheres or two Ag 

nanocubes with well-defined hot-spot structures: two Ag nanospheres (top trace) and two 

Ag nanocubes in a face-to-face (second trace from the top), edge-to-face (third trace from 

the top), or edge-to-edge (bottom trace) configuration. The samples were functionalized 

with 4-MBT and the laser was polarized perpendicular to the longitudinal axis of the 

dimer, as indicated by the arrow. The insets give SEM images of the probed dimers. The 

scale bar applies to all insets and corresponds to 100 nm. 
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Figure 2.29. Summary of the enhancement factors calculated for the individual Ag 

nanosphere, nanocube, and the dimers of nanocubes probed in Figure 2.26 and 1.28. The 

highest EFdimer was obtained for the dimer composed of two Ag nanospheres in a cap-to-

cap configuration. However, when we compare the magnitudes of EFdimer with respect to 

their single particle counterparts, the strongest field enhancement was obtained for the 

dimer consisting of two Ag nanocubes in a face-to-face configuration. 
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Chapter 3 

 

A Mechanistic Study of the Galvanic Replacement Reaction 

between PtCl6
2- and Pd Nanocrystals Enclosed by Different 

Facets 

 

3.1.  Introduction 

Galvanic replacement represents a remarkably simple and versatile route to the 

synthesis of bimetallic nanostructures with hollow interiors and ultrathin walls.1-6 In a 

galvanic replacement reaction, the electrical potential difference between the sacrificial 

template and the metal ions in solution provides the driving force for the reaction, i.e., 

oxidation and dissolution of the template accompanied by reduction of metal ions and 

deposition of resultant atoms on the template’s surface. The morphology of the final 

product can be controlled by using sacrificial templates with different shapes and/or by 

controlling the extent of replacement. As the most extensively studied system, we have 

demonstrated that Ag nanostructures with a variety of shapes, including nanocubes, 

nanospheres, nanorods, and nanowires, could react with Au(III) or Au(I), Pt(II), and 

Pd(II) salt precursors to generate bimetallic nanoboxes,2 nanocages,3 nanoshells,4 

nanorattles,5 and nanotubes.5,6 In addition to their tunable optical properties, these hollow 

nanostructures are of particular interest for catalytic applications as they can provide high 
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surface areas and large surface-to-bulk atomic ratios and thus enhance the catalytic 

activity as compared to their solid counterparts.7 

Although Platinum (Pt) is the most effective element for catalyzing the oxygen 

reduction reaction (ORR) in a proton-exchange membrane (PEM) fuel cell, high Pt 

loadings are required at the cathode in order to achieve a sufficient surface area and thus 

desired ORR activity.8-10 In an effort to decrease the Pt loading at the cathode, the 

galvanic replacement reaction has been recently employed for the one-step synthesis of 

hollow Pt nanostructures.11.12 Most of these studies have focused on the utilization of 

silver (Ag) and cobalt (Co) nanocrystals as sacrificial templates and PtCl4
2- or PtCl6

2- as 

the Pt source.3c,11,12 While the synthesis of the Ag and Co templates can be tightly 

controlled in terms of shape and size distribution, a good control over the morphology of 

the deposited Pt shell has not been achieved so far. In these systems, Pt deposition 

typically follows an island growth mode, yielding two typical morphologies: i) the 

formation of a dendritic or branched Pt shell and ii) deposition of small Pt nanoparticles 

on the surface of the sacrificial template. Interestingly, similar morphologies have also 

been reported when gold (Au) nanocrystals served as seeds for the growth of Pt.13 

Although these strategies yield Pt nanostructures displaying high surface areas, they still 

presents drawbacks for practical applications. For example, any residual Co or Ag in the 

product can oxidize during fuel-cell operation, leading to detrimental effects over their 

catalytic performances. More importantly, little is know about the mechanism of Pt 

deposition and the reported morphologies have been explained based on the large lattice 

mismatch between Pt and the template nanocrystal (Ag-Pt, Co-Pt and Au-Pt display 4.3, 
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10.0 and 4.2 % lattice mismatch, respectively). Recently, we have shown that Pd 

nanocrystals with well-defined sizes and shapes can serve as supports for growing Pd-Pt 

bimetallic nanostructures with controllable morphologies.14,15 The epitaxial deposition of 

a smooth Pt shell took place when Pd nanoplates were employed as nanocrystal seeds.14 

Conversely, the growth of Pt branches was observed upon the utilization of Pd 

cuboctrahedra as seeds (producing Pd-Pt nanodendrites).15 This observation suggests that 

the shape of the template nanocrystal and/or the employed reaction conditions play an 

important role over the Pt growth mechanism (Pd-Pt lattice mismatch is 0.77 %). As the 

ORR catalytic performance is related to the morphology, a systematic investigation on 

the mechanisms of Pt growth onto the surface of a specific substrate is highly desirable to 

design catalysts with maximized ORR activities.  

Here, I report on the use of galvanic replacement reaction for generating a variety 

of Pd-Pt bimetallic nanostructures. Compared to other galvanic replacement systems, 

very little is known about the mechanistic details involved in the heterogeneous 

nucleation and growth of Pt on Pd nanocrystals. I performed a systematic study on the 

galvanic replacement reaction between PtCl6
2-

 ions and Pd nanocrystals with well-defined 

shapes as sacrificial templates, including octahedra, nanocubes, and nanorods. Even 

though a galvanic approach has been recently employed to the synthesis of Pd-Pt hollow 

nanocubes and Pd-Pt bimetallic nanoparticles,7,16 this work represents, to the best of my 

knowledge, the first systematic investigation on the utilization of Pd nanocrystals with 

distinct and well-defined shapes as sacrificial templates. The use of Pd octahedra, 

nanocubes, and nanorods in this study is motivating for various reasons. Because Pd is 
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dissolved during the course of the galvanic reaction, hollow Pd-Pt nanocrystals can be 

obtained in a single-step, i.e., without any post-treatment procedure for the removal of the 

core. Also, these Pd nanocrystals can be readily synthesized in terms of good uniformity 

and size distribution via water- or polyol-based protocols developed by our group.17,18 

Owing to their well-defined morphologies and the minor lattice mismatch between Pd 

and Pt, their utilization as allows the systematic study on the effect of the shape (thus 

facets on the surface) of the template over the mechanism of Pt growth. Finally, Pd-Pt 

systems are especially attractive for ORR applications. It has been shown that deposition 

of Pt on a single-crystal Pd surface can considerably reduce the material cost while 

enhancing their catalytic activity.19,20 For instance, it has been demonstrated that a Pt 

monolayer supported on a Pd(111) surface had much higher activity for ORR relative to 

the Pt(111) surface.21 Very recently, we found that Pd-Pt bimetallic nanodendrites 

exhibited greatly improved ORR activity as compared to the commercial Pt/C and Pt-

black catalyst.15  

 

3.2.  Results and Discussion 

Figure 3.1 shows TEM and HRTEM images of the Pd octahedra, nanocubes, and 

nanorods that were employed as sacrificial templates for the galvanic replacement 

reaction with PtCl6
2-: 

 

2Pd(s) + PtCl6
2-

(aq)
 → 2Pd2+

(aq) + Pt(s) + 6Cl-
(aq)         (3.1) 
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It is clear that the nanocrystals in each sample had a uniform size and well-defined shape. 

The Pd octahedra were 20.0±1.5 nm in edge length by 24.5±1.8 nm (vertex-to-vertex 

direction). The nanocubes were 10.4±0.5 nm in edge length. The Pd nanorods were 

3.2±0.4 nm in width and 23.8±7.0 nm in length. Both HRTEM images and FFT 

operations confirm that the Pd octahedra were enclosed by {111} facets, while the 

nanocubes were enclosed by {100} facets. As the Pd nanorods had an octagonal cross 

section with the side surface enclosed by a mix of {100} and {110} facets, an individual 

nanorod can sit on the TEM grid against either one of the {100} or {110} facets.22 Figure 

3.1F shows a nanorod that grew along the [100] direction and lies on the TEM grid 

against one of its {100} facets.  

Figure 3.2 shows TEM images of the samples that were obtained after the Pd 

octahedra had reacted with different volumes of 0.4 mM PtCl6
2-. Specifically, after the 

addition of 0.9 mL of PtCl6
2-, small Pt islands (~1 nm in size) started to appear on the 

surface of the Pd octahedra (Fig. 3.2A). As more PtCl6
2-

 was added (1.8 mL, Fig. 3.2B), 

Pd oxidation together with Pt nucleation and growth on the surface of the octahedra was 

observed, producing a core-shell morphology. Here, the core was comprised of a hollow 

octahedron and the shell was made of Pt branches that cover the entire surface of the 

core. The Pd-Pt bimetallic nanocrystal (Pdoct.-Pt) presented an overall size of 35.0±3.0 by 

40.4±2.1 nm (edge length and vertex-to-vertex direction, respectively), indicating that the 

Pt shell was ~7 nm thick. Finally, after addition of 2.7 mL of PtCl6
2- (Fig. 3.2C), further 

growth of Pt on the template led to an increase of the shell thickness to ~11 nm and the 

overall size to 41.7±2.1 by 53.0±3.0 nm (edge length and vertex-to-vertex direction, 
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respectively). Figure 3.2D shows EDX spectra for the products depicted in Figure 3.2, A-

C. The Pt atomic percentages for the bimetallic nanocrystals obtained with 0.9, 1.8 and 

2.7 mL of 0.4 mM PtCl6
2-

 were 16.8, 72.5 and 84.6, respectively. This result is in 

agreement with the gradual consumption of Pd from the octahedral core concurrent with 

the deposition of Pt at the surface as the volume of PtCl6
2- added to the reaction mixture 

was increased during the replacement reaction.  

Figure 3.3, A and B, shows HRTEM images for the Pdoct.-Pt nanocrystals 

obtained after titration with 0.9 mL of 0.4 mM PtCl6
2- (shown in Fig. 3.2A). The epitaxial 

growth of small Pt islands on the surface of the Pd octahedron can be clearly observed at 

this stage. Figure 3.3, C and D, shows HRTEM images for the Pd-Pt nanostructures 

obtained after titration with 1.8 mL of 0.4 mM PtCl6
2- (shown in Fig. 3.2B). Even though 

there was a high Pt coverage on the surface of the Pd octahedron, epitaxial correlation 

was still observed for the branched arms of Pt that were formed directly on the surface of 

the Pd octahedron, as indicated by the HRTEM image and FFT operation (inset) in 

Figure 3.3C. Conversely, the Pt branches that did not grow directly from the surface of 

the Pd octahedron (i.e., those deposited on the surface of pre-formed Pt branches) did not 

present an epitaxial relationship with the Pd surface. The presence of several spots 

forming an incomplete diffraction ring in the FFT operation (inset in Fig. 3.3D) supports 

this observation and indicates that the Pt coating was polycrystalline. Based on these 

results, the galvanic replacement reaction between a Pd octahedron and PtCl6
2- can be 

understood as follows: in the early stages, Pt nucleation and growth occurred via the 

epitaxial deposition of small Pt islands on the surface of the octahedron. Then, as more Pt 
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atoms were produced via the reduction of PtCl6
2-, further nucleation and growth of Pt led 

to the formation of branched arms on the template. 

Figure 3.4 shows TEM images of the samples that were obtained after the Pd 

nanocubes had been titrated with different volumes of 0.4 mM PtCl6
2-. The use of Pd 

nanocubes as sacrificial templates led to similar results as those previously described for 

Pd octahedra. Here, the formation of small Pt islands on the surface of the Pd nanocube 

was observed at the early stages of the reaction (Fig. 3.4A, titration with 0.9 mL of 0.4 

mM PtCl6
2-). As the reaction progressed (titration with 1.8 mL of 0.4 mM PtCl6

2-), the 

formation of Pt branches that cover the entire surface of the nanocubes accompanied by 

Pd dissolution from the core was detected (Fig. 3.4B). The overall size for the Pdcube-Pt 

product at this stage was 25.2±1.9 nm (shell was ~7 nm thick). Interestingly, the Pt 

branches deposited at the surface of the nanocubes are less densely packed as compared 

to the Pdoct.-Pt nanocrystals depicted in Figure 3.2B. At the later stage of the reaction 

(titration with 2.7 mL of 0.4 mM PtCl6
2-), further Pt deposition led to an increase of 

particle size to 31.0±2.8 nm and shell thickness to ~11 nm (Fig. 3.4C). The atomic 

percentages of Pt obtained for the products during the galvanic reaction (Fig. 3.4, A-C) 

were 44.3, 69.5 and 81.6, respectively. The corresponding EDX spectra for the products 

are shown in Figure 3.4D. Although the Pdcube-Pt displayed a higher atomic percentage of 

Pt at the early stage of the reaction as compared to Pdoct.-Pt, (44.3% vs. 16.8%), the Pt 

atomic percentages for the Pdoct.-Pt and Pdcube-Pt nanocrystals were similar at the later 

stages.  
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Figure 3.5, A and B shows HRTEM images for the Pdcube-Pt product shown in 

Fig. 3.4A. Similarly to what was observed for the Pdoct.-Pt system, the formation of Pt 

islands on the surface of the nanocube was epitaxial and the Pdcube-Pt product was single-

crystal. Figure 3.5, C and D, displays HRTEM images for the Pdcube-Pt nanocrystals 

shown in Fig. 3.4B. Here, the Pt  branches that were formed directly at the surface of the 

Pd nanocubes displayed an epitaxial relationship with the Pd template, as shown by 

HRTEM and FFT operation (inset) in Figure 3.5D. These results indicate that the 

utilization of Pd octahedra and nanocubes as sacrificial templates for the galvanic 

replacement reaction with PtCl6
2- did not lead to significant differences for the 

mechanisms of Pt nucleation and growth. In these cases, with the exception of the shape 

of the core, the Pd-Pt products obtained after the galvanic replacement reaction displayed 

essentially the same morphology.  

Figure 3.6A shows a TEM image of the product obtained after Pd nanorods had 

been titrated with 1.8 mL of 0.4 mM PtCl6
2-

 under similar conditions as described for the 

octahedra and nanocubes (Pdrod-Pt). Here, Pd oxidation from the nanorods accompanied 

by the Pt deposition at their surface started to take place. The HRTEM images (Figure 

3.7, A and B) for the Pdrod-Pt sample produced at this stage reveals the epitaxial 

deposition of a thin Pt shell (~1 nm) over the entire surface of the Pd nanorod. After the 

addition of 2.7 mL of 0.4 mM PtCl6
2- (Figure 3.6B), Pt deposition over the entire surface 

of the nanorod led to an increase in width to 5.8±0.9 nm. However, Pt deposition did not 

yield a smooth layer over the surface of the nanorods. The TEM and HRTEM images for 

this Pdrod-Pt product (Figure 3.7, C and D) reveals the epitaxial deposition of a thin Pt 
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layer (1 nm in thick) together with the formation of Pt islands (bumps) over the surface of 

the nanorod. The Pdrod-Pt nanocrystal presented a core-shell structure and was single-

crystalline. At the late stage of the reaction (Figure 3.6C, titration with 3.6 mL of 0.4 mM 

PtCl6
2-), the product was dismantled into smaller fragments due to considerable Pd 

corrosion from multiple sites in the nanorod’s side surface. Differently from both the 

octahedra and nanocubes, no branched arms of Pt were observed on the surface of Pd 

nanorods. Owing to their small dimensions (specially their small width), it is plausible 

that the Pd oxidation from each individual nanorod (that lead to the formation of Pt 

nuclei) could not take place to the extent to enable the growth of Pt branches on the 

surface of the nanorods (Pd is consumed before the Pt branches can start to grow). 

According to the EDX spectra displayed in Figure 3.6D, the Pt atomic percentage for the 

Pdrod-Pt products shown in Fig. 3.6, A-C corresponded to 52.3, 71.3 and 83.2, 

respectively. Figure 3.8 presents TEM and HRTEM images and EDX spectra for 

products obtained after titration of Pd nanobars (enclosed by {100} facets) with different 

volumes of PtCl6
2-. It is clear that the utilization of Pd nanobars as sacrificial templates 

led to identical results as previously observed for the Pd nanocubes, indicating that shape 

anisotropy did not influence the Pt growth mechanism over the surface of the Pd 

sacrificial templates.  

According to the theory of heterogeneous nucleation, there are three types of 

growth mechanisms: i) layer-by-layer growth (Frank-van der Merwe mode); ii) island 

growth (Volmer-Weber mode); and iii) island-on-layer growth (Stranski-Krastanow 

mode).23 In layer-by-layer growth, small domains of the depositing material are formed 
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on the substrate during the early stages of deposition. As heterogeneous nucleation 

proceeds, the depositing material settles preferentially over the surface of the lowest 

unfilled material layer, leading to epitaxial growth monolayer-by-monolayer. In the 

island-growth, small islands of depositing material are formed over the surface of the 

substrate in the early stages. Then, as deposition progresses, the depositing material 

nucleates and grows preferentially into the existing islands of depositing material instead 

of over the surface of the underlying substrate. Finally, in the island-on-layer mechanism, 

layer-by-layer growth is predominant in the early stages of nucleation and growth. As 

deposition continues, a transition from layer-by-layer to island growth takes place.23 

When these concepts are applied to heterogeneous nucleation in colloidal synthesis, it is 

believed that lattice mismatch, supersaturation conditions, surface energies and the 

interaction between the depositing material and the substrate are the key factors that 

determine the growth mode.13a,24 As the experimental conditions were similar for all the 

template nanocrystals in the galvanic replacement reactions reported herein, the surface 

energy should be the most important parameter to explain the differences in growth 

modes detected for the nanorods with respect to the octahedra and nanocubes. In general, 

different growth mechanisms can be observed according to the values of overall excess 

energy Δγ:  

 

Δγ = γd + γi + γstrain - γs                                                  (3.2) 
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where γd and γs refer to the surface energy of the depositing material and substrate, 

respectively. γstrain refers to the positive strain energy induced by lattice mismatch. 

Finally, γi refers to the interfacial energy due to the formation of the interface between the 

depositing material and substrate. If the lattice the mismatch is small, layer-by-layer 

growth takes place when the sum of surface energy of the depositing material and 

interfacial energy equals the surface energy of the substrate: 

 

γs = γd + γi    (Δγ ≤ 0)                            (3.3) 

   

On the other hand, island-growth is favored when the mismatch between the two 

materials is relatively large (high γstrain) and/or the sum of surface energy of the depositing 

material and interfacial energy is bigger than the surface energy of the substrate: 

 

γs < γd + γi    (Δγ > 0)                           (3.4) 

 

Finally, in the island-on-layer mechanism, layer-by-layer growth is favored at the initial 

stages. As deposition progresses, Δγ becomes positive (due to an increase in γstrain, for 

example) and the growth mode transitions to island growth.    

The Pt deposition via an island growth mechanism on the surface of Pd octahedra 

and nanocubes is in agreement with the prediction from heterogeneous nucleation theory. 

Theoretical calculations suggest that Pt has higher surface energy than Pd (thus γs < γd). 

Although these calculations don’t include the effect of capping agents and ions during 
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solution phase synthesis, they can be used qualitatively as a general guideline. As the Pd 

octahedra and nanocubes are enclosed by low surface energy {111} and {100} facets, 

respectively, the term γs can be lowered so that, under my reactions conditions, γ111 and 

γ100 (Pd octahedra and nanocubes) was smaller than γd for the Pt nuclei, enabling the 

island-growth mechanism (eq. 3.4). Conversely, when the nanorods were employed as 

sacrificial templates in the galvanic replacement reaction, a layer-by-layer growth 

mechanism was observed at the early stages of the reaction (Fig 3.7, A and B). Then, as 

Pt deposition continued, a transition from layer-by-layer to island growth occurred. As 

the Pd nanorods display a side the surface enclosed by a mix of {100} and {110} facets, 

it is possible that the increased surface energy of the {110} facet relative to {111} and 

{100} was high enough to allow γs to become comparable to the sum γd + γi, inducing 

layer-by-layer growth during the early stages of the reaction (eq. 3.3). As the reaction 

progressed, the increased nucleation rates associated with the utilization of increased 

volumes of PtCl6
2- could favor the transition to island-growth mode. In this context, 

molecular dynamic simulations regarding the heterogeneous nucleation and growth of 

Argon vapor at polyethylene surfaces have demonstrated that a transition from layer-by-

layer to island-on-layer growth as the nucleation rate was increased by using higher 

supersaturation levels.25 Due to the minor lattice mismatch between Pd and Pt (0.77%), it 

is unlikely that the strain energy induced the transition to island growth.  

The Pdoct.-Pt, Pdcube-Pt and Pdrod-Pt bimetallic nanocrystals that were obtained after 

titration with 1.8 mL (Pdoct.-Pt and Pdcube-Pt) and 2.7 mL (Pdrod-Pt) of 0.4 mM PtCl6
2-

 

were tested as electrocatalysts for the ORR and their activity was benchmarked against 
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the commercial Pt/C catalyst (E-TEK, 20 % by wt. of 3.2 nm Pt nanoparticles on Vulcan 

XC-72 carbon support). Figure 3.9 shows cyclic voltammetry (CV) curves of these 

catalysts. The CV curves exhibited two distinctive potential regions associated with 

hydrogen adsorption/desorption processes between 0 < E < 0.37 V and the hydroxyl 

species adsorption/desorption processes beyond 0.6 V.26 The sharp peaks at 0.0-0.09 V 

detected for the Pdoct.-Pt and Pdcube-Pt samples can be assigned to hydrogen 

adsorption/desorption process at the Pd surface.19c,27 In this case, the more intense peak 

for the Pdoct.-Pt sample is due to the increased number of hydrogen adsorption/desorption 

sites at {111} as compared to the {100} Pd facets.27,28 The Pdrod-Pt sample does not 

display any sharp peaks in this region. This result agrees with the presence of a complete 

Pt layer covering the Pd nanorod’s surface. The calculated electrochemically active 

surface area (ECSA) per weight of metal was calculated as 67.1, 80.6 and 30.1 m2/gPt+Pd 

for the Pdoct.-Pt, Pdcube-Pt and Pdrod-Pt, respectively. These results indicate that both 

Pdoct.-Pt and Pdcube-Pt display high ECSAs that are comparable to that for the Pt/C 

catalyst (74.0 m2/g). The higher ECSA for the Pdcube-Pt as compared to the Pdoct.-Pt is in 

agreement with the less densely packed arrangement of the Pt branches at the surface of 

the nanocubes as compared to the octahedra (Fig. 3.2B and Fig. 3.4B).  It is important to 

note that, due to the small size of the Pt nanoparticles in the Pt/C catalyst, it is very 

challenging to obtain new catalysts displaying ECSA comparable to Pt/C. Here, I believe 

that the both the Pt branched morphology in Pdoct.-Pt and Pdcube-Pt nanocrystals and their 

hollow interiors were essential to obtain high ECSAs. This result confirms that the 

galvanic replacement reaction is an attractive approach to the synthesis of Pd-Pt 
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bimetallic nanocrystals for catalytic applications. The absence of Pt branches in Pdrod-Pt 

nanocrystals was responsible for its decreased ECSA as compared to the other catalysts. 

Figure 3.10A shows ORR polarization curves for the catalysts. The kinetic currents were 

calculated from the polarization curves by using the mass-transport correction and 

normalized with respect to the metal loading in order to compare the mass activities for 

the different catalysts, as shown in Figure 3.10B. Based on the total mass of Pd and Pt, 

the Pdoct.-Pt, Pdcube-Pt and Pdrod-Pt catalysts displayed mass activities of 0.115, 0.078 and 

0.029 mA/µgPd+Pt, respectively. This corresponds to an increase of 1.2 times in the Pdoct.-

Pt as compared to the Pt/C catalyst (0.095 mA/µg). The mass activities for Pdcube-Pt and 

Pdrod-Pt corresponded to 82 and 31 %, respectively, as compared to Pt/C. If only the mass 

of Pt is taken into consideration, the mass activities for the Pdoct.-Pt, Pdcube-Pt and Pdrod-Pt 

become 0.157, 0.104 and 0.041 mA/µgPt, respectively. In this case, the mass activity of 

Pdoct.-Pt and Pdcube-Pt were 1.7 and 1.1 times higher than that for Pt/C, respectively. For 

Pdrod-Pt, the electrocatalytic activity was corresponded to 43 % relative to Pt/C. The 

lower mass activities for the Pdrod-Pt nanocrystals could be directly associated with their 

significantly decreased ECSA. 

In order to gain further insight into the observed differences in ORR activity, the 

specific activities were calculated by normalizing the kinetic currents against the ECSA 

for each catalyst (Figure 3.10C). The specific activity for Pdoct.-Pt (0.171 mA/cm2
Pd+Pt) 

was 1.3 times higher than that for Pt/C. However, the specific activities for Pdcube-Pt and 

Pdrod-Pt were equal to 0.097 mA/cm2
Pd+Pt, corresponding to 75 % relative to Pt/C. It is 

well established that the ORR activity on low-index crystallographic facets of Pt in a non-
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adsorbing electrolyte such as perchloric acid increases on the order of Pt(100) << Pt(111) 

< Pt(110), with the difference in activity between Pt(111) and Pt(110) being minor.29 This 

difference in ORR activity most likely arises from the structure-sensitive inhibiting effect 

for the adsorption of hydroxyl species on Pt (hkl), which blocks the active site for O2 

adsorption and retards the ORR kinetics.24 As the formation of Pt branches directly at the 

surface of the template was epitaxial, it is plausible that Pdoct.-Pt product has a higher 

percentage of exposed {111} facets as compared to the Pdcube-Pt. Moreover, it is possible 

that the surface of Pd core also contributes to the ORR activities. It has been reported that 

the ORR activity of Pd and Pd-Pt alloys increase in the order Pd(100) < Pd(111) < 

Pd(110).28 Therefore, the preferential exposure of {111} facets at the surface of the 

octahedron core as compared to {100} facets at the surface of the nanocube core could 

also contribute to the higher specific activity for the Pdoct.-Pt product as compared to 

Pdcube-Pt. The fact that the Pdcube-Pt and Pdrod-Pt displayed the same specific activity 

suggest that, considering both the core and shell, the Pdcube-Pt displayed a similar overall 

ratio of exposed {111} with respect to {100} facets as the overall ratio of {110} and 

{111} with respect to {100} facets in the Pdrod-Pt.  

 

3.3.  Summary 

I have systematically investigated the galvanic replacement reaction between 

PtCl6
2- ions and Pd nanocrystals with well-defined shapes including octahedra, 

nanocubes, and nanorods. When Pd octahedra and nanocubes were employed in the 

galvanic replacement reaction, Pt deposition followed an island growth mechanism 
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generating branched arms of Pt on the surface of the template. In this case, the Pd-Pt 

bimetallic nanocrystals displayed a core-shell structure in which the core was composed 

of a hollow octahedron or nanocube and the shell was composed of Pt branches. 

Conversely, Pt deposition followed an island-on-layer growth mechanism when Pd 

nanorods were employed as sacrificial templates. Here, epitaxial deposition of a thin Pt 

shell containing a significant number of Pt islands (bumps) was detected over the surface 

of the nanorods. The different Pt growth modes observed for the nanorods, as compared 

to both octahedra and nanocubes, could be explained based on the presence of high 

surface-energy {110} facets on nanorod’s side surface. The Pd-Pt bimetallic nanocrystals 

obtained from the different Pd templates were tested as electrocatalysts for the oxygen 

reduction reaction (ORR). Owing to their branched morphology and hollow interiors, the 

Pdoct.-Pt and Pdcube-Pt nanocrystals possessed high ECSAs that were comparable to that 

for commercial Pt/C catalyst. The Pdoct.-Pt displayed the highest ORR activity, being 1.7 

times more active based on equivalent Pt mass than the commercial Pt/C catalyst. The 

results presented herein indicate that the galvanic replacement reaction represents a facile 

and versatile approach to produce Pd-Pt bimetallic nanocrystals with well-defined shapes, 

compositions and high surface areas. The optimization of the reaction conditions for each 

template nanocrystal is expected to enable further control over the Pt growth mechanism 

and, consequently, the morphology of the Pd-Pt bimetallic materials. A systematic study 

regarding the deposition of Pt in a variety of Pd seed nanocrystals by using different 

surfactants and reducing agents is currently being conducted in our group.  
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3.4.  Experimental Section 

Chemical and Materials. Ethylene glycol (EG, J. T. Baker, 99.9%), sodium 

tetrachloropalladate (II) (Na2PdCl4, Aldrich, 99.998%), chloroplatinic acid hydrate 

(H2PtCl6·xH2O, Aldrich, 99.995%), potassium bromide (KBr, Fisher Scientific), 

poly(vinyl pyrrolidone) (PVP, MW ≈ 55,000, Aldrich), Ascorbic acid (C6H8O6, Aldrich, 

99+%), Citric acid (C6H8O7, Fisher Scientific, 99.8%) acetone (EMD) and ethanol 

(Pharmco Products Inc., 200 proof) were all used as received. All aqueous solutions were 

prepared with deionized water (18.1 MΩ cm). The syntheses of the Pd template 

nanocrystals were carried out in a 25-mL three-neck flask equipped with a reflux 

condenser and a Teflon-coated magnetic stirring bar.  

Synthesis of Pd Octahedra. In a typical synthesis, 0.0445 g of PVP and 0.06 g of 

citric acid were dissolved in 8 mL of H2O and heated at 90 oC in air under magnetic 

stirring for 10 min. Then, a solution containing 0.0235 g of Na2PdCl4 in 3 mL of water 

was added dropwise to the reaction mixture using a glass pipette. This solution was 

heated at 90 oC in air for another 26 h before the product was collected by centrifugation 

and washed with acetone once and with ethanol three times to remove excess PVP. The 

final product was dispersed in 6 mL of ethanol. 

Synthesis of Pd Nanocubes. 0.105 g of PVP was dissolved in 8 mL of H2O. This 

solution was heated at 100 oC for 10 min (in air under magnetic stirring). Next, 0.057 g of 

Na2PdCl4 and 0.6 g of KBr dissolved in 3 mL of water was added dropwise to the reaction 

solution using a glass pipette. The reaction was allowed to proceed at 100 oC in air for 
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another 3 h. Finally, the product was collected by centrifugation, washed as described for 

the Pd octahedra and dispersed in 6 mL of ethanol. 

Synthesis of Pd Nanorods. 5 mL of EG was heated at 110 oC in air under 

magnetic stirring for 1 h. Meanwhile, 0.0486 g of Na2PdCl4 and 0.2574 g of KBr were 

dissolved in 3 mL of water, and 0.0916 g of PVP was dissolved in 3 mL of EG at room 

temperature. These two solutions were then injected simultaneously into the pre-heated 5 

mL EG using a two-channel syringe pump (KDS-200, Stoelting, Wood Dale, IL) at a rate 

of 45 mL/h. The reaction mixture was heated at 110 oC in air for another 1 h. Lastly, the 

product was collected by centrifugation, washed as described for the Pd octahedra and 

dispersed in 6 mL of ethanol. 

Synthesis of Pd Nanobars. 0.035 g of PVP, 0.02 g of ascorbic acid, and 0.2 g of 

KBr were dissolved in 8 mL of water. After this system had been kept at 115 oC in air 

under magnetic stirring for 15 min, 0.019 g of Na2PdCl4 in 3 mL of water was added 

dropwise to the reaction solution using a glass pipette. This system was kept at 115 oC in 

air for 3 h. The product was then collected by centrifugation, washed as described for the 

Pd octahedra and dispersed in 3 mL of ethanol. 

Galvanic Replacement Reactions. A fixed volume of the ethanol solution 

containing the sacrificial template nanocrystals (200 μL for octahedra and 100 μL for 

nanocubes, nanorods and nanobars) was dispersed in 5 mL of water containing PVP (1 

mg/mL) in a 50-mL flask under magnetic stirring. This system was heated at 100 oC for 

10 min and a specific volume (as indicated in the text) of 0.4 mM H2PtCl6 was added 

through a syringe pump at a rate of 45 mL/h under magnetic stirring. The solution was 
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heated for another 10 min and then cooled down to room temperature. Then, the solution 

was centrifuged and washed with water and ethanol three times to remove PVP before 

characterization. 

Instrumentation. Transmission electron microscopy (TEM) studies were 

performed with a Hitachi H-7500 microscope operated at 100 kV or with a Tecnai G2 

Spirit Twin (FEI) microscope operated at 80 kV. High-resolution TEM images (HRTEM) 

were taken on a JEOL field-emission transmission electron microscope (2100F) operated 

at 200 kV.  Filtered images were generated by inverse FFT with a Gatan Digital 

Micrograph program. Samples for TEM and HRTEM studies were prepared by drying 

drops of the aqueous suspension of the nanostructures on carbon-coated copper grids 

(SPI, West Chester, PA) under ambient conditions. Energy-dispersive X-ray spectroscopy 

(EDX, Genesis 2000, Mahwah, NJ) was performed at an acceleration voltage of 10 kV. 

Samples for EDX were prepared by drying drops of the aqueous suspension of the 

nanostructures on silicon wafer.  

Electrochemical measurements. The electrochemical measurements were 

performed at room temperature using a rotating disk electrode (Pine Research 

Instrumentation) connected to a PARSTAT 283 potentialstat (Princeton Applied 

Research). A leak-free AgCl/Ag/KCl (3 M) electrode (Warner Instrument) was used as 

the reference. The counter electrode was a Pt mesh (1 x 1 cm2) connected to a Pt wire. All 

potentials were converted to scales relative to the Reversible Hydrogen Electrode (RHE). 

To prepare the working electrode, 15 µL of the dispersion containing the catalyst was 

transferred to the glassy carbon rotating disk electrode. For all Pd-Pt nanostructures and 
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Pt/C catalyst, the catalyst loading was 3 µg based on the mass of the metal(s). Upon 

drying under air for 2 h, the electrode was covered with 15 µL Nafion dispersed in water 

(0.05%). After evaporation of water, the electrode was put under vacuum for 30 min 

before measurement. The electrolyte was 0.1 M perchloric acid diluted from a 70% 

commercial solution (ACS Reagent grade, Baker) using Millipore ultrapure water. The 

cyclic voltammetry curves recorded at room temperature in an Ar-purged (ultrahigh 

purity, Airgas) 0.1 M HClO4 solution with a sweep rate of 50 mV/s. The 

electrochemically active surface area (ECSA) was calculated by integrating the charges 

associated with hydrogen adsorption using 210 μC/cm2 for monolayer adsorption of 

hydrogen on Pt surface. The ORR measurements were performed at a sweep rate of 10 

mV/sec from 0.05 to 1.1 V at 1,600 rpm under flow of Ar. The Kouteck-Levich equation 

was applied to calculate the kinetic current density which can be described as:21 

 

                          1/j = 1/jk + 1/jd                                (3.5) 

 

where i is the experimentally measured current, jd is the diffusion-limiting current, and jk 

is the kinetic current. Thus, the kinetic current can be extracted from equation (3.5). For 

each catalyst, the kinetic current was normalized to the loading amount of metal (both Pt 

and Pd or only Pt) and ECSA in order to obtain mass and specific activities, respectively.  
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Figure 3.1. TEM and HRTEM images Pd nanocrystals employed as sacrificial templates 

for the galvanic reaction with PtCl6
2-: (A, B) octahedra, (C, D) nanocubes and (E, F) 

nanorods. The insets show FFT patterns of the HRTEM images, respectively. In (B), the 

hexagonal FFT pattern suggests that the nanocrystal was enclosed by {111} facets. In 

(D), the square pattern confirms that the nanocrystal was enclosed by {100} facets. In 

(F), the square pattern indicates that the nanorod sits on the grid against one of its {110} 

facets. 
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Figure 3.2. (A-C) TEM images of samples that were obtained by titrating the Pd 

octahedra with different volumes of 0.4 mM PtCl6
2-: (A) 0.9, (B) 1.8, and (C) 2.7 mL. 

The scale bars in the insets correspond to 10 nm. (D) EDX spectra of the products shown 

in (A-C). The Pt atomic percentages obtained for the samples depicted in (A-C) were 

16.8, 72.5 and 84.6, respectively.  
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Figure 3.3. HRTEM images of the samples obtained by titrating the Pd octahedra with: 

(A, B) 0.9 mL and (C, D) 1.8 mL of 0.4 mM PtCl6
2-. The insets show FFT patterns of the 

corresponding HRTEM images. In the early stage of the reaction (A, B), one can clearly 

observe the epitaxial growth of small Pt islands on the surface of the Pd octahedron. At a 

later stage (C, D), epitaxial correlation was only observed for the Pt branches that grew 

directly from the surface of the Pd octahedron. 
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Figure 3.4. (A-C) TEM images of samples that were obtained by titrating the Pd 

nanocubes with different volumes of 0.4 mM PtCl6
2-: (A) 0.9, (B) 1.8, and (C) 2.7 mL. 

The scale bars in the insets correspond to 10 nm. (D) EDX spectra obtained for the 

samples shown in (A-C). The Pt atomic percentage increased from 44.3 to 69.5 and 81.6 

as the reaction proceeded. 
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Figure 3.5. HRTEM images of the samples obtained by titrating the Pd nanocubes with: 

(A, B) 0.9 and (C, D) 1.8 mL of 0.4 mM PtCl6
2-. The insets display FFT patterns of the 

corresponding HRTEM images. Similar to what was observed for Pd octahedra, small Pt 

islands and branches were found to grow epitaxially on the surface of the nanocube in the 

(A, B) early stage and (C, D) late stages of the reaction, respectively. 
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Figure 3.6. TEM images for the Pdrod-Pt nanocrystals that were obtained by titrating the 

Pd nanorods with: (A) 1.8 and (B) 2.7 and (C) 3.6 mL of 0.4 mM PtCl6
2-

. The scale bar in 

the inset corresponds to 10 nm. (D) EDX spectra obtained for the samples shown in (A-

C). The Pt atomic percentage increased from 44.3 to 69.5 and 81.6 as the reaction 

proceeded.  
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Figure 3.7. HRTEM images of the samples obtained by titrating the Pd nanorods with: 

(A, B) 1.8 and (C, D) 2.7 mL of 0.4 mM PtCl6
2-. The insets display FFT patterns of the 

corresponding HRTEM images. In the early stage of the reaction (A, B), the epitaxial 

deposition of a thin Pt shell over the surface of the Pd nanorod can be observed. No 

significant island-growth was detected at this stage. As the reaction progressed (C, D), 

the epitaxial deposition of a thin Pt shell containing a large number of Pt islands (bumps) 

on the surface of the nanorods took place. The FFT pattern (inset in D) shows that the 

Pdrod-Pt nanocrystal was single-crystalline. 
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Figure 3.8. (A) TEM and (B) HRTEM image of Pd nanobars employed as sacrificial 

templates in the galvanic reaction with PtCl6
2-. In (B), a cubic pattern confirms that the 

nanobar is enclosed by {100} facets. (C-E) TEM images of samples that were obtained 

by titrating the Pd nanobars with different volumes of 0.4 mM PtCl6
2-: (C) 0.9, (D) 1.8 

and (E) 2.7 mL. The scale bars in the insets correspond to 10 nm. (F) EDX spectra 

obtained for the products shown in (C-E). The utilization of Pd nanobars as sacrificial 

templates in the galvanic reaction led to identical results as previously observed for the 

Pd nanocubes, indicating that shape anisotropy did not influence the Pt growth 

mechanism.  
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Figure 3.9. Cyclic voltammogram curves for commercial Pt/C (E-TEK, solid line), Pdoct.-

Pt (dotted line), Pdcube-Pt (dashed line) and Pdrod-Pt (triangles). The calculated ECSA for 

Pt/C, Pdoct.-Pt, Pdcube-Pt and Pdrod-Pt  were 79.8, 73.2, 86.6 and 32.6 m2/gPd+Pt, 

respectively, based on the total mass of metals. 
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Figure 3.10. (A) ORR polarization curves for commercial Pt/C (E-TEK) and Pdoct.-Pt, 

Pdcube-Pt and Pdrod-Pt bimetallic nanocrystals that were obtained after titration with 1.8 

mL (for Pdoct.-Pt and Pdcube-Pt) and 2.7 mL (for Pdrod-Pt) of 0.4 mM PtCl6
2-. In (A), the 

current densities were normalized in reference to the geometric area of a RDE (i.e., 0.196 

cm2). (B, C) Bar graphs illustrating the mass activities (B) and specific activities (C) 

obtained for the catalysts shown in (A). The mass and specific activities are given as 

kinetic current densities (jk) normalized in reference to the loading amount and ECSA of 

metal, respectively. 
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Chapter 4 

 

Facile Synthesis of Tadpole-Like Nanostructures Consisting of 

Au Heads and Pd Tails 

 

4.1. Introduction 

Hybridization provides an effective strategy for enhancing the functionality of 

materials.1 It is also possible to tune the electronic and optical properties of nanoparticles 

by forming a hybrid system.2 Palladium serves as a major catalyst in many industrial 

applications.3 It has been shown that incorporation of Au into Pd nanoparticles can 

reduce the material cost while enhancing their catalytic activity, selectivity, and stability.4 

Here I report the synthesis of Pd-Au hybrid nanostructures in a tadpole shape, with the 

head being a Au nanoparticle and the tail being a Pd nanorod. The synthesis is based 

upon the galvanic replacement reaction between single-crystal Pd nanorods and AuCl4
- 

ions. Different from previous systems that involved Ag-based templates and AuCl4
- ions,5 

the Au atoms resulting from the galvanic reaction did not coat the entire surface of a Pd 

nanorod to generate a core-sheath or hollow structure. Instead, the nucleation and 

deposition of Au was localized to the end(s) of a Pd nanorod, leading to the formation of 

a Pd-Au tadpole.  
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4.2. Results and Discussion 

Figure 4.1A shows a TEM image of the initial Pd nanorods that had an octagonal 

cross section, with the side surface enclosed by a mix of {110} and {100} facets. They 

had an average diameter of 4.0±0.3 nm and length of 17.4±2.4 nm (78% of them were 

rods). The nanorods were synthesized by reducing PdCl4
2- ions with ethylene glycol in 

water in the presence of poly(vinyl pyrrolidone) (PVP) and Br- ions.6 According to our 

proposed mechanism, cuboctahedral seeds were formed in the nucleation stage, whose 

surfaces were passivated by Br- ions.7 Oxidative etching due to the presence of oxygen 

(from air) and chloride (from PdCl4
2-) could break the cubic symmetry of a seed, leading 

to the formation of an octagonal nanorod.8  

Figures 4.1, B-D, shows TEM images of the products after the Pd nanorods had 

reacted with different volumes of 0.4 mM HAuCl4. Specifically, after the addition of 1 

mL of HAuCl4 (Figure 4.1B), both ends of each Pd nanorod started to be enlarged and 

became rounded due to the deposition of Au via the following reaction: 

 

                       3Pd(s) + 2AuCl4
-
(aq)

 → 3Pd2+
(aq) + 2Au(s) + 8Cl-

(aq)         (4.1) 

 

The nanorods shown in Figure 4.1B had an average diameter of 3.5±0.3 nm and length of 

18.4±2.9 nm (75% of them were rods). It is important to note that Pd oxidation can occur 

from any place on the entire surface of a nanorod, including the {100} and {110} side 

faces and the {100} ends. However, Au deposition only occurs at the ends (Figure 4.2). 

This can be attributed to the fact that the electrons resulting from oxidation of Pd tend to 
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be separated as far as possible (in this case, to the ends of a nanorod) due to a strong 

repulsion between them. Pd is also a good conductor, in which electrons can migrate 

freely.  

As more HAuCl4 was added, more Pd would be dissolved from the nanorod 

accompanying the further deposition of Au onto both ends. Interestingly, a transition 

from two-end to one-end growth was observed, producing a Pd-Au tadpole consisting of 

a Au head and a Pd tail (Figure 4.1C). In this case, Ostwald ripening occurred for each 

nanostructure that shifted Au from one end to the other. This behavior was first proposed 

for the growth of Au tips on CdSe nanorods and can be understood as the following:9a as 

the Au heads became bigger, their size difference also increased to create a driving force 

for Ostwald ripening.9 The presence of a Pd segment between the two Au heads greatly 

facilitates the ripening process as Pd is a good conductor for electrons. After further 

addition of HAuCl4 (Figure 4.1D), more Pd consumption from the rods caused deposition 

of more Au at the pre-formed Au heads, increasing their diameter to 11 nm. At the same 

time, it can be observed that the width and length of the Pd tails in Figures 4.1, C and D, 

(W/L: 3.4±0.4/11.9±1.8 and 2.9±0.4/11.6±2.5 nm, respectively; 75% of them were rods) 

were both reduced relative to the initial Pd nanorods (4.0 nm and 17.4 nm). 

When an excess amount of HAuCl4 was introduced, the Pd-Au tadpoles were 

dismantled into smaller/shorter Pd nanorods and spherical Au nanoparticles (Figure 4.3). 

At this point, even though the amount of HAuCl4 added was enough to consume all the 

Pd from the nanorods, complete Pd oxidation was not observed. This can be attributed to 

the coverage of side surface by Au atoms at a late stage of the reaction, preventing the Pd 
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nanorods from further oxidation. This is supported by STEM/EDS data (see discussion 

below), in which a small content of Au was detected along the Pd tail. It is worth pointing 

out that the samples shown in Figures 4.1, C and D, appear to present fewer Au heads 

than Pd tails. It is possible that after the transition from two-end to one-end growth, 

Ostwald ripening of the Au tips continued to take place resulting in fewer, large Au 

heads. It is also possible that each Pd nanorod was broken into several segments to 

double or triple its number. Figure 4.4 shows the UV-vis spectra taken from the solution 

at various stages of the reaction, clearly showing the evolution of a surface localized 

plasmon resonance (LSPR) peak associated with the Au nanoparticles. Because the LSPR 

peak of Pd nanorods (i.e., tails) is located in the UV region, it is expected that the 

coupling between these two SPR peaks is relatively weak and can be neglected.  

Figure 4.5A shows a high-resolution TEM image recorded along the [110] axis 

(with respect to the Pd tail). It can be observed that the hybrid nanostructure is a piece of 

single crystal. Due to a close matching between the {111} lattice spacings of Au and Pd 

(4% mismatch), the Au atoms could nucleate and grow epitaxially from the end faces of a 

Pd nanorod along the [100] direction, producing parallel fringes between the tail and the 

spherical head. The {111} fringes show a period of 2.24 and 2.36 Å, as expected for fcc 

Pd and Au, respectively. 

I also performed a STEM/EDS line scanning analysis to reveal the compositional 

variation along the long axis of the tadpole-shaped nanostructure (Figure 4.5B). As 

illustrated on the dark-field STEM image, the percentages of Pd and Au were determined 

for six different sites, a to f, where a is located at the bottom of the tail and f at the top of 
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the head. The results show that the tail (a to c) is indeed composed mostly of Pd. The 

atomic percentage for Au was 2.1%, 9.5% and 7.0%, respectively. The low percentages 

of Au in the tail can probably be attributed to the surface diffusion of Au along the Pd 

tail. This result also explains the incomplete oxidation of Pd observed at later stages of 

the galvanic reaction. Site d, which is from the region connecting the tail to the head, 

contains both Pd and Au (64.8% and 36.2%, respectively). Finally, the atomic 

percentages for sites e and f confirm that the heads contain mostly Au (~93%). Figure 4.6 

summarizes all major steps involved in the localized deposition of Au as a result of the 

galvanic replacement reaction.  

 

4.3. Summary 

I have demonstrated the synthesis of a new type of hybrid nanostructure in the 

tadpole shape consisting of a Au head and a Pd tail. The formation of such a morphology 

involved a localized galvanic replacement mechanism. In the earlier stages of the 

reaction, localized deposition of Au onto both ends of a rod was observed because the 

electrons tend to be pushed to the ends of the rod as a result of the repulsive forces. At a 

later stage, a transition from two-end to one-end growth occurred as a result of Ostwald 

ripening, leading to the formation of a Pd-Au tadpole composed of a Au head and a Pd 

tail. It is worth pointing out that this localized deposition of Au is unique for Pd 

nanorods. No such phase segregation was observed when Pd nanoparticles were used in 

place of the rods. A similar structure was also observed by Wetz et al.10 for the galvanic 

reaction between Co nanorods and Au compounds. However, these authors did not 
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provide detailed elemental analysis on each hybrid nanostructure; did not observe the 

transition from two-end to one-end growth; and did not recognize the importance of rod 

shape in promoting the localized deposition of Au. It is expected that these Pd-Au 

tadpoles, combining the properties from both Pd nanorods and Au nanoparticles, may 

find use in catalysis and LSPR sensing owing to the exceptional sensitivity of Pd towards 

H2. This method can also be extended to other metals, such as Pt, to produce a variety of 

Pd-based hybrid nanostructures. 

 

4.4. Experimental Section 

Chemicals and Materials. Ethylene glycol (EG, J. T. Baker, 99.9%), sodium 

palladium(II) chloride (Na2PdCl4, Aldrich, 99.998%), potassium bromide (KBr, Fisher), 

sodium chloride (NaCl, J. T. Baker), poly(vinyl pyrrolidone) (PVP, MW≈55,000, 

Aldrich), and ethanol (AAPER Alcohol and Chemical Co., 200 proof) were all used as 

received. 

Synthesis of Pd Nanorods. In a typical synthesis, 5 mL of EG was added to a 25-

mL three-neck flask equipped with a reflux condenser and a Teflon-coated magnetic 

stirring bar. This system was heated at 140 oC in air under magnetic stirring for 1 h. 

Meanwhile, 0.0486 g of Na2PdCl4 and 0.2574 g of KBr were dissolved in 3 mL of water, 

and 0.0916 g of PVP was dissolved in 3 mL of EG at room temperature. These two 

solutions were then injected simultaneously into the flask using a two-channel syringe 

pump (KDS-200, Stoelting, Wood Dale, IL) at a rate of 45 mL per hour. The reaction 

mixture was heated at 140 oC in air for another 3 h before the product was collected by 
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centrifugation and washed with acetone once and with ethanol three times to remove 

most of the EG and excess PVP.  

Galvanic Replacement Reactions. In a typical synthesis, a fixed amount (15 mM, 

200 μL) of Pd nanorods was dispersed in 5 mL of water containing PVP (1 mg/mL) in a 

50-mL flask under magnetic stirring. This system was heated at 100 oC for 10 min. A 

specific amount (as indicated in the text) of 0.4 mM HAuCl4 was added to the flask 

through a syringe pump at a rate of 45 mL per hour under magnetic stirring. The solution 

was heated for another 10 min and then cooled down to room temperature. After that, the 

solution was centrifuged and washed with saturated NaCl solution to ensure that all 

Pd(II) species were in the form of [PdCl4]2- to avoid the precipitation of PdCl2. Finally, 

the sample was centrifuged and washed with water several times to remove PVP and 

NaCl before characterization.  

Instrumentation. Transmission electron microscopy (TEM) studies were 

performed with a Phillips CM100 microscope operated at 100 kV. The TEM images were 

obtained with a Gatan digital camera. High-resolution TEM images (HRTEM) were 

taken on a JEOL field-emission transmission electron microscope (2100F) operated at 

200 kV.  Filtered images were generated by inverse FFT with a Gatan Digital Micrograph 

program. The STEM/EDS measurements were collected using a Vacuum Generator 

HB501 STEM microscope equipped with an EDS - Oxford ISIS 30mm ATW detector. 

Samples for TEM/HRTEM were prepared by drying drops of the aqueous suspension of 

the nanostructures on carbon-coated copper grids (SPI, West Chester, PA) under ambient 
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conditions. UV-visible (UV-vis) absorption spectra were taken on a Hewlett-Packard 

8452A spectrometer using quartz cuvettes with an optical path length of 1 cm. 
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Figure 4.1. TEM images of (A) Pd nanorods and (B-D) samples that were obtained by 

titrating the Pd nanorods with different volumes of 0.4 mM HAuCl4 solution: B) 1, C) 2, 

and D) 4 mL. The scale bars in the insets correspond to 20 nm. 
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Figure 4.2. STEM/EDS analysis at 4 different sites (a-d) along the Pd-Au hybrid 

nanostructure shown in Figure 4.1B. The STEM image indicates that Au was mainly 

deposited on both ends of the Pd nanorod. The enclosed table presents the EDS atomic 

percentages for Pd and Au at sites a-g. The EDS spectra taken from a, g and g are also 

included. 
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Figure 4.3. Titration of Pd nanorods with 10 mL of 0.4 mM HAuCl4. In this case, the Pd-

Au tadpoles were dismantled into Au nanoparticles and smaller/shorter Pd fragments. 

The scale bar in the inset corresponds to 20 nm. 
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Figure 4.4. UV-vis spectra taken from a suspension of Pd nanorods after they had been 

titrated with 1, 2, 4 and 10 mL of 0.4 mM HAuCl4. A broad peak around 560 nm 

developed as the volume of HAuCl4 was increased from 2 to 10 mL, clearly showing the 

evolution of a localized surface plasmon resonance (LSPR) mode associated with the Au 

nanoparticles either located at the tips of the Pd-Au tadpoles (Au heads) or de-attached 

from the Pd segments. 
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Figure 4.5. (A) High-resolution TEM image recorded along [110] for the Pd-Au tadpoles 

shown in Figure 4.1C. The insets show FFT operations for the Pd tail, Au head and for 

the overall tadpole. In all cases, a hexagonal pattern of 6 points is observed, as expected 

for both fcc Au and Pd in the [011] beam direction. (B) STEM/EDS analysis on 6 

different sites along the Pd-Au tadpole (a-f), as marked on the DF STEM image. The 

table shows the EDS atomic percentages for Pd and Au obtained for each position. The 

EDS spectra for points a and f are also included. 
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Figure 4.6. Schematic detailing all major steps involved in the galvanic replacement 

reaction between a Pd nanorod and AuCl4
- ions. In the first step, Pd atoms are oxidized 

from certain sites on the nanorod, producing electrons that are quickly pushed to the ends 

of the nanorod due to the strong repulsion between them. AuCl4
- ions are reduced by the 

electrons and epitaxially deposited onto both ends (two-end growth). As more Pd 

oxidation and AuCl4
- reduction take place, the Au tips grow and reach a critical size at 

which a ripening process shifts Au from one end to the other, leading to a transition from 

two-end to one-end growth and production of a Pd-Au tadpole. The driving force for this 

ripening process comes from the stabilization of one Au head relative to the other one on 

each nanorod when the size difference between these two Au heads becomes sufficiently 

large as the tips grow and reach a critical size. In this scenario, the difference in surface 

energy favors the growth of larger particles at the expense of smaller ones. The Pd 

nanorod can provide a conductive path for electron migration from one tip to the other. 

As Pd oxidation further continues, more Au atoms will be deposited onto the Au head, 

and this growth can continue until the Pd-Au tadpoles are dismantled into short Pd 

fragments and a Au nanoparticle. 
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Chapter 5 

 

Synthesis and Application of RuSe2+δ Nanotubes as a Methanol 

Tolerant Electrocatalyst for the Oxygen Reduction Reaction 

 

5.1. Introduction 

Recent concerns regarding fossil fuel shortage and global warming have placed a 

great demand for devices that can generate power at a high efficiency with little or no 

emission. Direct methanol fuel cells (DMFCs), in particular, have attracted great interest 

as an alternative power source to internal combustion engines in vehicles and to batteries 

for portable electronic devices.1-3 In addition to high costs associated with current 

DMFCs,4,5 the utilization of Pt at the cathode can cause significant performance losses 

due to methanol crossover between the anode and cathode.6,7 Therefore, the quest for Pt-

free cathode electrocatalysts that are both active towards the ORR and is insensitive to 

methanol represents one of the major challenges in the DMFC technology.2 

Several Pt-free catalysts have been proposed as ORR active materials.8-10 Among 

them, Ru-based selenides have emerged as the most promising alternatives to replace Pt-

based cathode materials. Ru-based selenides have shown with high tolerance to methanol, 

as well as good ORR catalytic performances.10-12, Although the importance of chalcogen 

additives toward ORR has been recognized, the mechanism behind their ORR activity 
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and methanol tolerance it is not fully understood. The Ru-based selenides typically 

employed as ORR electrocatalysts are composed of amorphous RuxSey cluster 

compounds. They are prepared by coating Ru nanoparticles with Se, a Ru-Se phase, a 

Ru-Se-O phase or Ru-C-O groups, which can be present as complete or incomplete thin 

shells.10,13 These RuxSey cluster compounds have been synthesized via a variety of 

methods and their composition and morphology generally varies with the protocols. The 

most common approach is via the thermolysis of Ru-carbonyls in organic solvents 

(xylene or 1,2-dichlorobenzene) in the presence of Se.14 In addition, RuxSey cluster 

compounds have been prepared via the reaction between Ru nanoparticles and seleneous 

acid (H2SeO3) or by the dissolution of RuCl3 in THF (C4H8O), followed by their 

reduction to produce Ru nanoparticles which are further treated with seleneous acid 

(H2SeO3).15 Precipitation methods based on RuCl3 and Na2SeO3 as precursors for Ru and 

Se, respectively, have also been described.16 As a final example, RuxSey catalysts 

supported on porous carbon have been produced via impregnation and reduction of Ru 

salts, followed by their reduction and treatment with H2SeO3 or SeCl4.17  

It is important to note that all these aforementioned synthetic procedures present 

many limitations. For example, the carbonyl approach involves multi-step chemical 

reactions that may lead to poor control over the chemical homogeneity and composition 

of the final material. Moreover, this method is limited for mass production due to the 

high costs of carbonyl precursors, questionable reproducibility and high toxicity of the 

solvents. Comparatively, colloidal and impregnation methods also employ toxic solvents 

and do not allow a tight control over the chemical homogeneity, composition, 



 148

morphology and reproducibility of the sample. Due to these synthetic limitations, the 

exact nature and composition of the RuxSey materials produced from the above methods 

are typically difficult to determine with precision and are often inferred from EXAFS and 

XPS data.10,13-17 Hence, the utilization of a fabrication approach that is simple, 

inexpensive, reproducible and that yields Ru-based chalcogenides with well-defined 

morphology, controllable shape, composition and chemical uniformity is very attractive 

from both fundamental (understanding of mechanism of ORR activity and methanol 

tolerance) and practical aspects (applications). 

I describe in this chapter the utilization of a facile and versatile ethanol-based 

synthesis to produce uniform RuSe2+δ nanotubes, followed by the investigation of their 

ORR activity and durability. My synthetic approach involves the utilization of uniform t-

Se nanowires as the starting material in a template-engaged reaction with elemental Ru 

(produced in situ) to generate t-Se@RuSe2+δ core-sheath nanowires, which, after removal 

of the unreacted t-Se cores, are converted into RuSe2+δ nanotubes.18 My approach has 

many interesting features. First of all, it can be easily scaled up for mass production, as it 

is simple, reproducible, inexpensive and does not require sophisticated techniques, toxic 

solvents or high temperatures. Secondly, the produced RuSe2+δ nanotubes present well-

defined composition, morphology and chemical uniformity, which is highly desirable for 

DMFCs applications. Finally, the 1-D morphology may lead to improved long-term 

stabilities.19 Due to the micrometer length size of the nanotubes, they do not require a 

support and are less vulnerable to dissolution, Ostwald ripening, and aggregation than 

their nanoparticles counterparts during fuel cell operation.20 
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5.2. Results and Discussion 

 

5.2.1.  Synthesis of RuSe2+δ Nanotubes  

The synthesis of RuSe2+δ nanotubes followed a template-engaged approach 

developed by group.18 The first step involved the preparation of t-Se nanowires via a 

sonochemical route. Then, the t-Se nanowires were used as starting material in the 

reaction with Ru(acac)3 in ethanol at 80 oC to produce t-Se@RuSe2+δ core-sheath 

nanowires. In this process, elemental Ru0 was generated in situ via the reduction of Ru3+ 

from Ru(acac)3 by ethanol, which then reacts with t-Se according to the following 

equation:  

 

2Se + Ru0 → RuSe2                   (5.1) 

 

Due to the low melting point of t-Se (~217oC)22 as compared to RuSe2, the 

unreacted t-Se cores could be removed by heating the samples at 230 oC for 10 min to 

yield uniform RuSe2+δ nanotubes. As previously demonstrated, the thickness of the 

RuSe2+δ sheath could be controlled by changing the Ru:Se molar ratio and by controlling 

the reaction time.18 Figure 5.1 shows electron microscopy images of the morphological 

changes involved in this template-engaged reaction. Figure 5.1A shows both SEM and 

TEM (inset) images of initial t-Se nanowires. It can be seen that the nanowires were 

uniform in size, together with smooth surfaces. The average width was ~53 nm and 
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>5µm in length. Figure 5.1, B-D, shows TEM and HRTEM images of the RuSe2+δ 

nanotubes produced by reacting the t-Se nanowires with Ru0 followed by selective 

removal of the unreacted t-Se cores. The contrast differences clearly depict a tubular 

morphology. It can be observed the wall thickness of the nanotubes was ~9 nm and their 

outer diameter was ~55 nm. The absence of well-defined phase contrast in HRTEM 

images (Figure 5.1, C and D) reveals the low crystallinity of the produced RuSe2+δ 

nanotubes. This is further confirmed by XRD (Figure 5.2a), in which no diffraction peaks 

assigned to RuSe2 was detected. It is important to note that the XRD for the initial t-Se 

nanowires contains sharp, intense diffraction peaks. Consequently, this result shows the 

complete removal of the unreacted t-Se cores in the RuSe2+δ product. Figure 5.2B shows 

EDX spectra recorded for the initial t-Se nanowires and the RuSe2+δ nanotubes product. 

As expected, the spectra for the t-Se nanowires contain only the peak assigned to Se. For 

RuSe2+δ, the EDX spectrum contains peaks from both Se and Ru. The corresponding Ru 

and Se atomic percentages are 28.8 and 71.2%, respectively, which is in reasonable 

agreement with 33.3 and 66.4% expected for RuSe2.  

 

5.2.2.  Evaluation of Electrochemical Performance  

In order to investigate and compare the effect of the presence of 0.1 M methanol 

on the ORR electrochemical characteristics and performance for both RuSe2+δ nanotubes 

and commercial Pt/C (TKK), I used two electrolyte compositions for each catalyst during 

the electrochemical studies: 0.1 M HClO4 and 0.1 M HClO4 containing 0.1 M methanol.  

Figure 5.3A shows the cyclic voltammograms (CVs) recorded for Pt/C (TKK) at 
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room temperature in a solution of O2-free 0.1 M HClO4 (solid curve) and in a solution of 

O2-free 0.1 M HClO4 containing 0.1 M methanol (dashed curve). In the absence of 

methanol, the CVs curves for Pt/C (TKK) showed the standard hydrogen adsorption 

potential peaks in the 0.05-0.4 V region.23 The electrochemical surface area (ECSA) was 

estimated to be 42.8 m2/g. The anodic/cathodic peaks observed above 0.6 V can be 

assigned to adsorption/desorption of surface hydroxyl (oxide) species. Significant 

changes can be observed in the CV for Pt/C (TKK) in the presence of 0.1 M methanol 

(dashed curve). First, there is a reduction in the area under the curve, corresponding to the 

hydrogen adsorption/desorption region (0.05-0.4 V), as a result of the reduction of the 

ECSA after methanol adsorption. Secondly, typical methanol oxidation peaks can be 

observed at 0.7 and 0.8 V, confirming that the Pt/C (TKK) catalyst is active towards 

methanol oxidation.24 As shown in Figure 5.3B, no such behavior was observed for the 

RuSe2+δ nanotubes. In this case, there was no change to the CVs curves as 0.1 M 

methanol was added to the electrolyte solution, demonstrating the inactivity of this 

material towards methanol oxidation. The CV curves for RuSe2+δ nanotubes differ 

substantially when compared to the Pt/C (TKK) catalyst. No peaks due to hydrogen 

adorption/desorption were detected in the 0.05-0.4 V region, indicating that the 

adsorption and desorption of hydrogen were suppressed. Also, significant anodic currents 

above ~0.9 V were observed. This anodic currents can be assigned to oxidation and 

partial dissolution of Se2- as well as adsorption/desorption of surface hydroxyl (oxide) 

species.25 The cathodic peak feature at ~0.49 V indicates the anodic dissolution of 

oxidation products (removal of Se surface oxides, for example).25 
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The ORR polarization curves for RuSe2+δ in the absence and in the presence of 

0.1 M methanol are shown in Figure 5.4A (solid and dashed curves, respectively). It can 

be clearly observed that no change to the polarization curves took place when methanol 

was introduced into the electrolyte, indicating that the RuSe2+δ catalyst was insensitive to 

0.1 M methanol. The cathodic currents produced in the ORR reach zero at 0.8 V and the 

half-wave potentials were 0.61 V. Figure 5.4B illustrates the ORR polarization curves for 

commercial Pt/C (TKK) catalysts. In this case, a significant decrease in the ORR activity 

in the 0.5-1.0 V region can be observed when 0.1M methanol was introduced into the 

electrolyte (dashed curve). In the absence of methanol, the cathodic current reaches zero 

at 0.95 V and the half-wave potential is 0.78 V. In the presence of 0.1 M methanol, these 

values shift to 0.84 V and 0.72 V, respectively.    

In order to quantify the ORR activities and the methanol tolerance for the RuSe2+δ 

nanotubes and compare with those from commercial Pt/C (TKK), kinetic current 

densities (jk) of the samples were obtained from the rotating disc electrode mass-transport 

correction. The kinetic current density was calculated according to the Koutecky-Levich 

equation:26  

 

1/j = 1/jk + 1/Bw1/2        (5.2) 

 

Where j is the measured current density, in mA/cm2 and w is the rotation speed, in rpm. 

The constant B is defined as 0.62nFACO2ν-1/6D2/3 (n is the number of electrons transferred 

per oxygen molecule and equals to four, F is the Faraday constant, A is the geometrical 
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area of the electrode, CO2 is the concentration of oxygen in the solution, ν is the kinematic 

viscosity of the solution, and D is the oxygen diffusion coefficient). B can be 

experimentally determined by calculating the slope in a 1/j versus 1/w1/2 plot. In my 

experiments, the value of B was experimentally determined as 0.14 cm2rpm1/2mA-1 using 

Pt/C (TKK) catalysts. Figure 5.4C shows the mass-specific kinetic currents (jmk) for the 

RuSe2+δ nanotubes and commercial Pt/C (TKK) catalysts in the absence and in the 

presence of 0.1 M methanol. In these cases, the jmk values at a specific potential provide a 

direct measure of the ORR activities of the two catalysts. It can be observed that jmk for 

Pt/C (TKK) was higher than the jmk for RuSe2+δ in the 0-0.8 V interval. However, there 

was considerable decrease in jmk for Pt/C (TKK) in the presence of 0.1 M methanol, while 

no significant changes were observed for the RuSe2+δ nanotubes. Figure 5.4D shows a bar 

graph displaying the jmk obtained from Figure 5.4C at 0.7 V. At 0.7 V, jmk for commercial 

Pt/C (TKK) and RuSe2+δ were 695.4 mA/mgPt and 22.8 mA/mgRu, respectively, 

indicating that the ORR activity for RuSe2+δ was ~30 times lower compared to Pt/C 

(TKK). In the presence of 0.1 M methanol, the jmk for Pt/C (TKK) dropped to 315.1 

mA/mgPt, which corresponds to a performance loss of ~55%. Conversely, jmk for RuSe2+δ 

increased to 25.3 mA/mgRu in the presence of 0.1 M methanol, representing a gain of 

~11% in the ORR activity. Even though the increase in current density was insignificant 

and could be within the typical errors of such measurements, this result demonstrates that 

RuSe2+δ was tolerant to 0.1 M methanol at 0.7 V. Upon the addition of 0.1 M methanol, 

the ORR activity for the RuSe2+δ nanotubes became ~12 times lower compared to Pt/C 

(TKK).  
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Durability tests by chronoamperometry were performed in order to investigate 

and compare the long-term stability of the RuSe2+δ nanotubes and Pt/C (TKK) catalysts. 

For the durability tests, the potential was fixed at 0.7 V. Figure 5.5, A and B, shows 

chronoamperometry curves for RuSe2+δ nanotubes and Pt/C (TKK), respectively, in the 

presence and in the absence of 0.1 M methanol. As shown in the chronoamperometry 

curves for the RuSe2+δ nanotubes (Figure 5.5A), the presence of 0.1M methanol did not 

cause significant changes to the detected j during the entire 0-1,800 s interval. No change 

to the current decay over time was observed either, indicating similar stability both in the 

presence and absence of 0.1 M methanol. While a slight decrease in the detected j was 

observed in the presence of 0.1 M methanol up to 850 s (the maximum decrease was 

6.0%), no loss in activity was observed after 850 s of operation. Even after 1,800s, the 

difference in the detected j with and without the addition of 0.1 M methanol was very 

small and within 5% under the measuring conditions. This indicates that the presence of 

0.1 M methanol did not affect the long-term stability of the RuSe2+δ nanotubes.  

 The chronoamperometry curves for commercial Pt/C (TKK) catalyst (Figure 

5.5B) show a significant decrease in detected j after 0.1 M methanol was added into the 

electrolyte solution. The graph illustrated in Figure 5.5C shows the detected j after 5 and 

1,800 s in the durability test. While no changes on the detected j were observed for 

RuSe2+δ upon the addition of methanol, the detected j for Pt/C (TKK) decreased 

considerably. Figure 5.5D illustrates the effects of the addition of 0.1 M methanol on the 

detected j for these two catalysts. For Pt/C (TKK), the j in the presence of 0.1 M 

methanol after 5 and 1,800 s corresponds to 67 % and 73 % of the j registered in the 
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absence of methanol, corresponding to a drop of 33 and 27 %, respectively. For RuSe2+δ 

nanotubes, the j in the presence of 0.1 M methanol after 5 and 1,800 s corresponds to 96 

and 100 % of the j registered in the absence of methanol, suggesting 100 % tolerance to 

methanol even after 1,800 s.  

The fact that the mass-specific ORR activity for RuSe2+δ is close to ~8 % of the 

activity of commercial Pt/C (TKK) in the presence of 0.1 M methanol makes this 

material attractive for DMFCs applications. While the prices for Pt have peaked at 2,200 

USD/ounce in 2008, Ru only costs 250 USD/ounce (~11 % of Pt price). Therefore, the 

utilization of increased loadings of RuSe2+δ nanotubes would allow one to obtain a 

cathode with ORR activity similar to the commercial Pt/C catalysts for the same price 

and with the advantage of being methanol tolerant. This would circumvent existing 

limitations and performance loss shown by current Pt/C catalysts due to methanol 

crossover. It is also important to note that the RuSe2+δ nanotubes described in this work 

are expected to present smaller electrochemical surface area than the commercial Pt/C 

(TKK). Thus, additional improvements on the RuSe2+δ ORR activities may be achieved 

by controlling the dimensions of the nanotubes and by using different morphologies with 

higher surface areas.   

Although most studies employing Ru-based selenides for ORR catalysis focus on 

cluster compounds based on metallic Ru, no definite conclusion regarding the nature of 

the catalytic active sites and the constitution of the RuxSey has been drawn. The results 

presented here show that the presence of metallic Ru is not a pre-requisite, as RuSe2+δ 

nanotubes (containing Ru4+) also present ORR catalytic activity and methanol tolerance. 
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Similarly to what is described for single-crystalline RuO2, RuS2, and RuTe2, the electron 

transfer for ORR in the RuSe2+δ nanotubes would involve the Ru4+ d-states, where the 

adsorbed oxygen molecule can directly exchange electrons with the catalyst upon 

cathodic polarization.27 In this case, the Ru4+ d-states would support the selective 

interaction with adsorbed molecular oxygen to the extent that methanol oxidation does 

not take place.  

 

5.3. Summary 

I have demonstrated the use of RuSe2+δ nanotubes as an active and methanol 

tolerant electrocatalyst for the ORR. In the presence of 0.1 M methanol, the mass-specific 

ORR activity for the RuSe2+δ nanotubes was ~12 times lower than that of Pt/C (TKK) at 

0.7 V. Durability tests showed that while the addition of 0.1 M led to significant 

performance loss for Pt/C (TKK), the RuSe2+δ nanotubes were 100% tolerant to 0.1 M 

methanol even after 1,800 s of operation. The results described herein indicate that the 

RuSe2+δ nanotubes are attractive for applications as Pt-free cathode electrocatalysts in 

DMFCs. Since they are methanol tolerant, high catalyst loadings may lead to mass-

specific ORR activity comparable to commercial Pt/C (TKK). Furthermore, additional 

improvements on the RuSe2+δ ORR activities may be achieved by controlling the 

dimensions of the nanotubes and by using different morphologies with higher surface 

areas.  
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5.4. Experimental Section 

Chemicals and Materials. Ruthenium(III) acetylacetate (Ru(acac)3, 97%), 

selenious acid (H2SeO3, 99.999%), hydrazine monohydrate (N2H4·H2O, 98%) and 

poly(vinyl pyrrolidone) (PVP, M.W.=55,000) were all purchased from Aldrich. Ethanol 

(CH3OH, 99.8%) was obtained from EMD. All chemicals were used as received. 

Synthesis of RuSe2+δ Nanotubes. The t-Se nanowires were synthesized using the 

sonochemical approach.21 In a typical procedure, an aqueous solution of selenious acid 

(4.2 mL, 1 M) was added dropwise to an aqueous hydrazine solution (10 mL, 3 M) under 

magnetic stirring in a 50-mL round bottom flask, yielding an orange suspension. After 20 

min, the spherical colloids of amorphous Se (a-Se) were filtered over 0.2 µm polymer 

membrane, rinsed with pure water, and dried under ambient conditions. The a-Se colloids 

(0.1 g) were then added to a 200-mL beaker containing 100 mL of ethanol. The beaker 

were sonicated for 30 s (1510R-DTH, Bransonic) and then kept in dark at room 

temperature for 12 h to generate uniform t-Se nanowires. The t-Se nanowires were 

centrifuged, washed with ethanol twice, and dried under ambient conditions. 

For the template-engaged synthesis of RuSe2+δ nanotubes, the t-Se nanowires (0.1 

g, 1.27 mmol), Ru(acac)3 (0.5g, 1.27 mmol) and 0.5 g of PVP were dispersed in 20 mL of 

absolute ethanol hosted in a 50-ml flask. The mixture was then heated at 80 oC under 

vigorous magnetic stirring for 72 h. After the reaction mixture had been cooled down, the 

product was collected as a brown precipitate through centrifugation. The sample was 

submitted to successive rounds of centrigugation and washing with ethanol to remove 

unreacted metal salts. Uniform nanotubes of RuSe2+δ could be readily obtained by 
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removal of the t-Se cores by heating the sample at 230 oC for 10 min, yielding a black 

precipitate.  

Instrumentation. Scanning electron microscopy (SEM) images were captured 

using a field-emission microscope (FEI NanoSEM, Hillsboro, OR) operated at an 

acceleration voltage of 15 kV. The samples were directly imaged without coating their 

surfaces with conductive layers. Energy-dispersive X-ray spectroscopy (EDX, Genesis 

2000, Mahwah, NJ) was performed at an acceleration voltage of 10 kV.  TEM images 

were acquired using a Hitachi H-7500 microscope operated at 100 kV. High-resolution 

TEM was performed using a JEOL JEM-2100F operated at 200 kV. TEM samples were 

prepared by drop-casting a dispersion of the products onto carbon-coated copper grids 

(Formvar/Carbon, 200 mesh, Ted Pella). X-ray diffraction (XRD) was performed on 

Philips PW-1710 diffractometer with a resolution of 0.02o
 in 2θ. 

Electrochemical measurements. The ORR electrochemical characteristics of the 

RuSe2+δ nanotubes were studied using a rotating disk electrode. The catalyst was 

prepared by dispersing the RuSe2+δ nanotubes in a mixture of distilled water, 2-propanol 

and 5% in weight Nafion solution (VH2O:Vpropanol:V5% Nafion=0.8 : 0.2 : 0.005) at 

concentration of 1 mg/mL. The dispersion was sonicated for 10 min to obtain the catalyst 

ink. 10 μL of ink (containing 10μg of RuSe2+δ) was drop-cast onto a glassy carbon 

electrode (5 mm in diameter) and dried under gentle airflows. The electrochemical 

properties were examined with a CHI 760 dual channel electrochemical workstation (CH 

instruments) using a three-electrode system, which consists of a rotating-disk working 

electrode, a Pt wire counter electrode, and a hydrogen reference electrode (Gaskatel, 
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HydroFlex). For the oxygen reduction reaction test, an Ag/AgCl reference electrode was 

used instead of the HydroFlex electrode but the data were converted to hydrogen 

reference electrode.  

Cyclic voltammetry (CV) was tested in O2-free 0.1M HClO4 and O2-free 0.1M 

HClO4 containing 0.1 M methanol at a sweep rate of 50 mV/s. For ORR polarization 

curves, the electrolyte was protected by O2 during test and consisted of either O2-

saturated 0.1 M HClO4 or O2-saturated 0.1 M HClO4 containing 0.1 M methanol. The 

electrode was rotated at rate of 1,600 rpm. The potential was swept anodically from 0 to 1 

V vs. RHE at a rate of 10 mV/s. For durability tests (chronoamperometry), the potential 

was fixed to be 0.7 V (vs. RHE). The electrode was rotated at rate of 1,600 rpm during 

the experiment. Each time before test, the potential was preconditioned at 0 V vs. RHE 

for 30 s. Aiming at the evaluation of RuSe2+δ catalyst performance, catalyst inks of 

commercial Pt/C (47% in weight of Pt, TKK) were also prepared and tested using similar 

procedures. The catalyst loading was 3 μg of Pt.  
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Figure 5.1. (A) SEM and TEM (inset) images of the t-Se nanowires employed in the 

template-engaged reaction with Ru(acac)3. (B) TEM images of the RuSe2+δ nanotubes 

produced by reacting Ru(acac)3
 with t-Se nanowires, followed by selective removal of the 

unreacted t-Se cores. The nanotubes had a wall thickness of approximately 9 nm. (C, D) 

HRTEM images of the RuSe2+δ nanotubes. The scale bars in the insets correspond to 50 

nm. 
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Figure 5.2. (A) XRD diffractograms and (B) EDX spectra taken from the t-Se nanowires 

and RuSe2+δ nanotubes shown in Figure 1, respectively. 
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Figure 5.3. CV curves of (A) commercial Pt/C (TKK, 46.7% by weight) and (B) RuSe2+δ 

nanotubes in acidic electrolyte solutions. Electrolyte: 0.1 M HClO4 (solid curves) or 0.1 

M HClO4 containing 0.1 M methanol (dashed curves).  
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Figure 5.4. ORR polarization curves for (A) RuSe2+δ nanotubes and (B) commercial Pt/C 

(TKK, 46.7% by weight) in the absence (solid curves) and in the presence of 0.1 M 

methanol (dashed curves). (C) Mass-specific kinetic current densities (jmk) for the 

RuSe2+δ nanotubes and commercial Pt/C (TKK) calculated from (A) and (B) using the 

Koutecky-Levich equation. (D) Bar graph showing the jmk obtained at 0.7 V. The 

numbers in the graph represent jmk and are expressed in mA/mgmetal.  
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Figure 5.5. Chronoamperometry curves for (A) RuSe2+δ nanotubes and (B) commercial 

Pt/C (TKK, 46.7% by weight) in an O2-saturate 0.1 M HClO4 and in an O2-saturate 0.1 M 

HClO4 containing 0.1 M methanol electrolyte. (C, D) Bar graphs illustrating the current 

densities (C) and the current density percentages in 0.1M methanol (D) for RuSe2+δ 

nanotubes and Pt/C (TKK) obtained from curves (A) and (B) after 5 and 1,800 s in the 

durability test. The current density percentages in 0.1M methanol were calculated relative 

to the respective current densities registered without 0.1M methanol in the electrolyte. 

 

 

 

 

 

 



 165

5.5. Notes to Chapter 5 

[1]   Steele, B. C. H.; Heinzel, A. Nature 2001, 414, 345. 

[2]   (a) Aricò, A. S.; Srinivasan, S.; Antonucci, V. Fuel Cells 2001, 2, 133. (b) Winter, 

M.; Brodd, R. J. Chem. Rev. 2004, 104, 4245. (c) Dresselhaus, M. S.; Thomas, I. L. 

Nature 2001, 414, 332. d) Wasmus, S.; Küver, A. J. Electroanal. Chem. 1999, 461, 

14. 

[3]  Shukla, A. K.; Raman, R. K. Annu. Rev. Mater. Res. 2003, 33, 155. 

[4]   (a) Liu, H.; Song, C.; Zhang, L.; Zhang, J.; Wang, H.; Wilkinson, D. P. J. Power 

Sources 2006, 155, 95. (b) Gasteiger, H.; Kocha, B.; Sompalli, B.; Wagner, F. T. 

Appl. Catal., B 2005, 56, 9. (c) Paulus, U. A.; Schmidt, T. J.; Gasteiger, H. A.; 

Behm, R. J. J. Electroanal. Chem. 2001, 495, 134. 

[5]   (a) Greeley J.; Mavrikakis, M. Nat. Mater. 2004, 3, 810. (b) Stamenkovic, V. R.; 

Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M. Am. Chem. Soc. 

2006, 128, 8813. (c) Yang, H.; Vogel, W.; Lamy, C.; Alonso-Vante, N. J. Phys. 

Chem. B 2004, 108, 11024. (d) Yang, H.; Alonso-Vante, N.; Leger, J. M.; Lamy, C. 

J. J. Phys. Chem. B 2004, 108, 1938. 

[6]   (a) Wang, B. J. Power Sources, 2005, 152, 1. (b) Sawai, K.; Suzuki, N. J. 

Electrochem. Soc. 2004, 151, A682. (c) Kallo, J.; Lehnert, W.; von Helmolt, R. J. 

Electrochem. Soc. 2003, 150, A765. 

[7]   Jusys, Z.; Behn, R. J. Electrochim. Acta 2004, 49, 3891. 

[8]   (a) Lefevre, M.; Dodelet, J. P.; P. Bertrand, J. Phys. Chem. B 2002, 106, 8705. (b) 

Baranton, S.; Coutanceau, C.; Roux, C.; Hahn, F.; Leger, J. -M. J. Electroanal. 



 166

Chem. 2005, 577, 223. (c) Matter, P. H.; Zhang, L.; Ozkan, U. S. J. Catal. 2006, 

239, 83. (d) Liu, L.; Kim, H.; Lee, J. W.; Popov, B. N. J. Electrochem. Soc. 2007, 

154, A123. 

[9]   (a) Alonso-Vante, N.; Tributsch, H. Nature 1986, 323, 431. (b) Alonso-Vante, N.;  

Jaegermann, W.; Tributsch, H.; Honle, W.; Yvon, K. J. Am. Chem. Soc. 1987, 109, 

3251. 

[10] (a) Colmenares, L.; Jusys, Z.; Behm, R. J. Langmuir 2006, 22, 10437. (b) 

Colmenares, L.; Jusys, Z.; Behm, R. J. J. Phys. Chem. C 2007, 111, 1273. (c) 

Zaikovskii, V. I.; Nagabhushana, K. S.; Kriventsov, V. V.; Loponov, K. N.; 

Cherepanova, S. V.; Kvon, R. I.; Bolnnemann, H. D.; Kochubey, I.; Savinova, E. R. 

J. Phys. Chem. B 2006, 110, 6881. (d) Fiechter, S.; Dorbandt, I.; Bogdanoff, P.; 

Zehl, G.; Schulenburg, H.; Tributsch, H.; Bron, M.; Radnik, J.; Fieber-Erdmann, M. 

J. Phys. Chem. C 2007, 111, 477. 

[11]  (a) Lee, J.-W.; Popov, B. N. J. Soild State Electrochem. 2007, 11, 1355. (b) 

Gonzales-Huerta, R. G.; Chavez-Carvayar, R. G.; Solorza-Feria, O. J. Power 

Sources 2006, 153, 11. (c) Suàrez-Alcàntara, K.; Rodríguez-Castllano, A.; Dante, 

R.; Solorza-Feria, O. J. Power Sources 2006, 157, 114. 

[12]  (a) Schulenburg, H.; Hilgendorff, M.; Dorbandt, I.; Radnik, J.; Bogdanoff, P.; 

Fiechter, S.; Bron, M.; Tributsch, H. J. Power Sources 2006, 155, 47. (b) Serov, A. 

A.; Min, M.; Chai, G.; Han, S.; Kang, S.; Kwak, C. J. Power Sources 2008, 175, 

175. 

[13] (a) Zhang, L.; Zhang, J.; Wilkinson, D. P.; Wang, H. J. Power Sources 2006, 156, 



 167

171. (b) Zaikowskii, V. I.; Nagabhushana, K. S.; Kriventsov, V. V.; Loponov, K. 

N.; Cherepanova, S. V.; Kvon, R. I.; Bönnemann, H.; Kochubey, D. I.; Savinova, E. 

R. J. Phys. Chem. 2006, 110, 6881. 

[14]  Alonso-Vante, N. Fuel Cells 2006, 6, 182. 

[15]  (a) Tributsch, H.; Bron, M.; Hilgendorff, M.; Schulenburg, H.; Dorbandt, I.; Eyert, 

V.; Bogdanoff, P.; Fiechter, S. J. Appl. Electrochem. 2001, 31, 739. (b) 

Schulenburg, H.; Hilgendorff, M.; Dorbandt, I.; Radnik, J.; Bogdanoff, P.; Fiechter, 

S.; Bron, M.; Tributsch, H. J. Power Sources 2006, 155, 47. 

[16]  Liu, G.; Zhang, H.; Hu, J. Electrochem. Comm. 2007, 9, 2643. 

[17] Zehl, G.; Schmithals, G.; Hoell, A.; Haas, S.; Hartnig, C.; Dorbandt, I.; Bogdanoff, 

P.; Fiechter, S. Angew. Chem. Int. Ed. 2007, 46, 7311. 

[18] Jiang, X.; Mayers, B.; Wang, Y.; Cattle, B.; Xia, Y. Chem. Phys. Lett. 2004, 385, 

472.  

[19]  Chen, Z.; Waje, M.; Li, W.; Yan, Y. Angew. Chem. Int. Ed. 2007, 46, 4060. 

[20]  (a) Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Science 2007, 315, 220. (b) 

Ferreira, P. J.; la O’, G. J.; Shao-Horn, Y.; Morgan, D.; Makharia, R.; Kocha, S.; 

Gasteiger, H. A. J. Electrochem. Soc. 2005, 152, A2256.  

[21] (a) Mayers, B.; Liu, K.; Sunderland, D.; Xia, Y. Chem. Mater. 2003, 20, 3852. (b) 

Gates, B.; Mayers, B.; Grossman, A.; Xia, Y. Adv. Mater. 2002, 14, 1749. 

[22] Chizhikov, D. M.; Shchastlivyi, V. P. Selenium and Selenides (E.M. Elkin, Trans.), 

Collet’s LTD, London and Wellingborough, 1968. 

[23] Gomez, R.; Orts, J. M.; Alvarez-Ruiz, B. L.; Feliu, J. J. Phys. Chem. B 2004, 108, 



 168

228. 

[24] Formo, E.; Peng, Z.; Lee, E.; Lu, X.; Yang, H.; Xia, Y. J. Phys. Chem. C 2008, 112, 

9970. 

[25] Cao, D.; Wieckowski, A.; Inukai, J.; Alonso-Vante, N. J. Electrochem Soc. 2006, 

153, A869. 

[26]  (a) Bard A. J.; Faulkner, L. R. Electrochemical Methods Fundamentals and 

Application, 2nd ed.; John Wiley & Sons: New York, 2001. (b) Schmidt, T. J.; 

Gasteiger, H. A.; Stäb, G. D.; Urban, P. M.; Kolb, D. M.; Behm, R. J. J. 

Electrochem. Soc. 1998, 145, 2354. 

[27]  Alonso-Vante, N.; Bogdanoff, P.; Tributsch, H. J. Catal. 2000, 190, 240. 

 

 

 

 

 

 

 

 

 

 

 

 



 169

Chapter 6 

 

Cation-Exchange: A Simple and Versatile Route to Inorganic 

Colloidal Spheres with the Same Size but Different 

Compositions and Properties 

 

6.1. Introduction 

Monodispersed colloidal spheres have received a great deal of attention due to 

their use as building blocks to fabricate photonic crystals by self-assembly.1,2 Most 

studies in this area have been focused on dielectric materials such as silica and 

polystyrene because it is feasible to synthesize them as monodispersed samples, in 

copious quantities, and with controllable dimensions. As limited by their low refractive 

indices, these two materials can only yield photonic crystals with relatively narrow and 

weak stop bands. In contrast, utilization of metals and semiconductors associated with 

higher refractive indices provides a promising alternative.3 Another advantage is that 

metals and semiconductors often have interesting electrical, optical, magnetic, and 

optoelectronic properties that can be further exploited to produce photonic crystals with 

tunable or switchable band gaps.4 However, it has been a great challenge to synthesize 

monodispersed colloidal spheres of metals and semiconductors that are uniform in size, 
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shape, composition, and structure. The major issue is that these materials tend to 

crystallize and grow anisotropically into non-spherical shapes.5-8  

Another technical barrier associated with the synthesis of colloidal spheres is the 

difficulty in producing particles with the same size but different compositions. Even 

though the size can often be controlled for an individual colloidal system, it is 

challenging to fine-tune the size so that a very close match will be achieved for colloidal 

spheres of different compositions. For instance, semiconductor colloidal spheres with the 

same size but different refractive indices can be employed as building blocks to fabricate 

photonic crystals with novel properties. In particular, spheres with a lower or higher 

refractive index than the major component can be regarded as dopants in a 3D photonic 

crystal, generating defect states in the photonic bands.9-11 Such a system can serve as an 

model to study the photonic band gap properties as a function of the concentration of 

“defects” and allow one to tailor the photonic structure of a particular system.12  

In this chapter, I am interested on the utilization of cation-exchange as a generic 

approach to produce monodispersed colloidal spheres of various semiconductors with the 

same size but different compositions. Ion-exchange reactions are attractive to this end 

because the morphology of the starting materials can be preserved during the exchange 

process.13-17 Inspired by our previous success with the synthesis of Se@CdSe colloids 

from Se@Ag2Se via cation-exchange,8c I decided to fully explore the potential of this 

approach by increasing the scope of cations used in the ion-exchange processes. More 

specifically, I describe in this chapter the synthesis of monodisperse Se@MSe (M=Zn, 

Cd, and Pb) core-shell colloidal spheres with the same diameter via cation-exchange with 
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the same batch Se@Ag2Se.18 Figure 6.1 shows a schematic of the approach. The unique 

feature of this route relies on the fact that the sizes of the products are determined by the 

size of the starting core-shell spheres and the balance between density and molar volume 

of ZnSe, CdSe, and PbSe relative to Ag2Se. I am interested in these materials for a 

number of reasons. Owing to their sizes and high refractive indices (>2.5), they are ideal 

candidates for fabricating photonic crystals with band gaps in the optical regime. In 

addition to their interesting properties (luminescence, thermoelectricity, and 

photoelectricity),18,19,4 the difference on their refractive indices can be directly exploited 

to fabricate 3D photonic crystal containing controlled defects in an effort to engineer 

their band structures. Finally, the ion-exchange process can be combined with other 

methodologies to add new functions to the core-shell spheres. For example, it is feasible 

to incorporate superparamagnetic nanoparticles into the a-Se cores to obtain 

magnetoactive colloidal spheres that can be addressed with an external magnetic field. 

Taken together, I envision a new platform that will enable the production of 

multifunctional colloidal spheres with a range of different compositions and properties. 

 

6.2. Results and Discussion 

 

6.2.1.  Synthesis of a-Se and Se@Ag2Se Monodispersed Colloidal 

Spheres 

The experimental procedure employed in this synthesis followed the method 

previously reported by our group.8a,b The formation of a-Se colloidal spheres occurs via 
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the reduction of selenious acid with hydrazine at room temperature (15-20 oC) in EG 

according to the following equation: 

 

                             H2SeO3 + H2NNH2 → a-Se(↓) + N2(↑) + 3H2O                           (6.1) 

 

Because the reaction took place below the glass-transition temperature of 

selenium (Tg = 32 oC), all Se was precipitated in the amorphous form. The size of the Se 

colloids could be controlled by changing the molar ratio between N2H4 and H2SeO3 

during the syntheses. The use of a viscous solvent like EG, instead of water, allowed a 

better control over the transport of elemental selenium, the number of nucleation events, 

and the growth kinetics, leading to monodispersed samples. After removal of hydrazine 

from the reaction mixture, the next step involved a reaction of the as-formed a-Se 

colloids with AgNO3 in EG at room temperature to yield Se@Ag2Se, which would serve 

as the starting material for the cation-exchange reactions. In this process, Ag+ was 

reduced by EG to Ag, which reacted with Se to form uniform colloidal spheres consisting 

of a-Se core and Ag2Se shell (Figure 6.1). In this case, the thickness of the resulting shell 

could be controlled by changing the molar ratio of AgNO3 to Se. Since hydrazine is a 

strong reductant, the removal of hydrazine before AgNO3 addition is crucial to avoiding 

the production of Ag precipitates and agglomerates in the reaction mixture. Figure 6.2A 

shows SEM image of the Se@Ag2Se spheres obtained using this protocol. They had a 

mean diameter of 325±4.2 nm. It is clear that the spherical particles were uniform in size 
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and their surfaces were free of irregularities. The TEM image in the inset indicates that 

the Ag2Se shell was ~30 nm thick, with a variation below 5 nm.  

 

6.2.2. Synthesis of Se@MSe (M=Zn, Cd, Pb) Colloidal Spheres via 

Cation-Exchange Reactions  

In order to perform the cation-exchange reactions, the Se@Ag2Se colloids were 

dispersed in methanol and PVP was added as a stabilizer to prevent any possible 

agglomeration during the cation-exchange process. Nitrate salts were employed as the 

precursors because they are highly soluble in methanol, the solvent used for all cation-

exchange reactions. 

For cation-exchange reactions carried out in aqueous solutions containing the 

respective salt precursors, a large difference in solubility provides the driving force for 

the ion replacement. Generally, the starting material present in a solution containing an 

appropriate precursor will spontaneously undergo cation-exchange to yield the product 

with a lower solubility. On the other hand, when the solubility of the desired product is 

higher than the solubility of the precursor material, new strategies are needed. As reported 

by Alivisatos and coworkers, excess Cd2+ ions and a small amount of TBP were required 

to enable the exchange between Cd2+ and Ag+ in nanocrystals (Ag2Se → CdSe).17 Our 

group has recently demonstrated that this method was also extendable to colloidal spheres 

with larger dimensions. In this case, TBP also played a pivotal role because no cation-

exchange was observed without TBP. It is believed that TBP can bind to both Ag+ ions in 

the shells and Cd2+ ions in solution forming intermediate complexes. In this context, the 
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stronger interaction between TBP and Ag+ allows the association of Cd2+ with the anion 

sublattice, leading to the replacement of Ag+ by Cd2+. Methanol seems to be required for 

the cation-exchange reactions. It may act as a ligand, together with TBP, in the formation 

of intermediate complexes. It is worth emphasizing that heating (to ~50 oC) was 

necessary to facilitate this process and allow the Ag+ → Cd2+ substitution. This is because 

the reverse reaction, i.e., the replacement of Cd2+ by Ag+
, is spontaneous due to the large 

difference in solubility between Ag2Se and CdSe (s=2.0x10-22 mol/L for Ag2Se and 

3.2x10-17 mol/L for CdSe).20 Similarly, ZnSe and PbSe have s=1.9x10-10 and 8.9x10-22 

mol/L, respectively; both are higher than that of Ag2Se. Based on these numbers, it is 

expected that the replacement of Ag+ by Zn2+ or Pb2+ will not be spontaneous at room 

temperature, similar to the replacement of Ag+ by Cd2+. Therefore, for the synthesis of 

both Se@ZnSe and Se@PbSe, I had to employ experimental conditions (i.e., a small 

amount of TBP together with heating to 60 oC) similar to those previously established for 

the Se@CdSe system. 

Figure 6.2 shows SEM and TEM images of the Se@Ag2Se spheres, together with 

the products derived from the cation-exchange reactions with Zn2+, Cd2+ and Pb2+. All 

samples display a spherical shape, and are characterized by monodispersed size and 

smooth surface. These features are reproducible and routinely achievable for all the 

samples described in this article. The Se@Ag2Se spheres were 325±4.2 nm in diameter, 

while the Se@MSe (M=Zn, Cd, Pb) spheres had a mean diameter of 315±4.7 nm. The 

shell thickness of the Se@MSe core-shell particles was determined to be 25 nm by TEM. 

It is clear that all the products of cation-exchange reactions, i.e., Se@MSe colloidal 
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spheres, had essentially the same diameter and shell thickness. This is a unique feature as 

it allows for the synthesis of semiconductor colloidal spheres with the same size but 

different compositions. In this case, the dimension of the core-shell particles is 

determined by the size of the starting Se@Ag2Se spheres. The reduction in shell 

thickness after cation-exchange can be attributed to the changes in unit cell symmetry and 

lattice constants. For the Se2- sublattice of each cation-exchange product, there was a 

slight decrease in the volume occupied by each individual Se2- anion relative to that of 

Ag2Se. These changes agree, within experimental errors, with the ~5 nm reduction 

observed for shell thickness.  

 The chemical transformations were followed using both XRD and EDX, as shown 

in Figures 2.3 and 2.4, respectively. The XRD pattern taken from the Se@Ag2Se sample 

can be assigned to the orthorhombic lattice of β-Ag2Se, with lattice constants being 

a=4.33 Å, b=7.06 Å, and c=7.76 Å. No peaks assigned to the a-Se cores were detected 

because of their amorphous nature. The XRD patterns of the Se@MSe (M=Zn, Cd, Pb) 

spheres indicate a complete cation-exchange between Ag+ and Zn2+, Cd+2, and Pb+2, 

respectively. All β-Ag2Se peaks disappeared after the cation-exchange conversion. For 

the Se@ZnSe colloids, XRD data shows the formation of hexagonal ZnSe (würzite 

structure). The lattice constants are a=3.99 Å and c=6.55 Å. For Se@CdSe, the XRD 

pattern can also be indexed to the hexagonal phase (würzite structure). The lattice 

constants are a=4.30 Å and c=7.01 Å. For Se@PbSe, all peaks can be assigned to cubic 

PbSe with a=6.12 Å. 



 176

Figure 6.4 compares the EDX spectra taken from Se@Ag2Se and the ion-

exchanged products. The EDX results also indicates a complete replacement of Ag+ by 

Zn+2, Cd+2, and Pb+2 ions in the cation-exchange reactions. For Se@Ag2Se, the 

corresponding atomic percentage of Se and Ag is 62% and 38%, respectively. All peaks 

assigned to silver in Se@Ag2Se colloids disappeared after the cation-exchange reaction, 

while peaks assigned to Zn, Cd or Pb arose. The atomic percentages obtained from EDX 

data for Se@ZnSe were Se=56% and Zn=44%. For Se@CdSe, the atomic percentages 

were Se=59% and Cd=41%. As for Se@PbSe, the atomic percentages were Se=63% and 

Pb=37%. These results are in agreement with a complete replacement of the Ag+ ions by 

Zn+2, Cd+2, and Pb+2. It is worth noting that the a-Se cores are slightly dissolved in the 

reactions involving Zn+2 and Cd+2 due to the medium solubility of a-Se in methanol, 

which was the solvent employed in these two systems. 

 The effectiveness in the cation-exchange between Ag+ and Cd2+ can be explained 

based on the crystal structures of Ag2Se and CdSe. The anion sublattice in Ag2Se 

(orthorhombic) and CdSe (würzite) have a topotactic relationship. The a- and b-axis of 

Ag2Se are almost the same as the a- and c-axis of CdSe. As a result, the matching of 

anion positions facilitates the in- and out-diffusion of Ag+ and Cd2+ through the lattice, 

leading to the formation of CdSe without substantial rearrangement for the Se2- sublattice 

and preservation of the anion sublattice connectivity. Our results indicate that a topotactic 

relationship between the anion sublattices is not necessarily required in order to achieve 

cation-exchange in colloidal systems, since ZnSe (würzite) and PbSe (cubic) do not 

exhibit any topotactic relationship with either Ag2Se or CdSe. This fact might explains 
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why a higher temperature was required to perform the cation-exchange reactions with 

Zn+2 and Pb+2 (60 oC) than for Cd+2 (50 oC). It is clear that the cation-exchange can be 

more easily performed when the starting and final solids display a topotactic relationship 

for the anion sublattice. When I tried to carry out the cation-exchange reactions with Zn+2 

and Pb+2 at 50 oC, the products always showed a silver content around 10% (atomic 

percent). Interestingly, a small increase of the reaction temperature from 50 to ~60 oC 

was sufficient to achieve complete conversion.  

All the cation-exchange reactions could not be completed at temperatures below 

50 oC, even with increase of TBP concentration. At higher temperatures (~70 oC), the 

colloids malformed and became irregular in shape (Figure 6.5). This observation suggests 

that the connectivity of the anion sublattice could be significantly disturbed at 70 oC, 

contributing to the shell’s collapse. Another aspect is that the reactions involving Zn2+ 

and Cd2+ took place faster than the reaction with Pb2+. For Zn2+ and Cd2+, the cation-

exchange could be achieved in 30 min. I allowed the reaction to proceed up to 2 h in 

order to assure that all the cation-exchange processes were completed. It was observed 

that the molar ratios did not change for periods longer than 2 h. On the other hand, the 

cation-exchange with Pb2+ required 4 h to complete. No significant effect on the cation-

exchange reactions rates was observed as the concentration of M(NO3)2 was increased 

from 0.12 to 0.5 M. This difference can be attributed to two main factors. Firstly, the 

reaction is faster for anion sublattices that have topotactic relationship. In this regard, 

würzite CdSe is the only structure having a topotactic relationship with β-Ag2Se. Since 

ZnSe also has a würzite structure, the ZnSe lattice resembles the CdSe structure. This 
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similarity could make the rate of ion-exchange more or less similar for Cd2+ and Zn2+. On 

the other hand, PbSe has a cubic lattice that does not have any topotactic relationship 

with either β-Ag2Se or CdSe, contributing to a more difficult cation-exchange. Secondly, 

ZnSe and CdSe (both würzite) have fairly lower densities than Ag2Se, while the densities 

for PbSe and Ag2Se are similar. It is expected that the cation-exchange process is more 

favorable for reactions that lead to products presenting lower densities than the starting 

material. 

 

6.2.3.  Crystallization of MSe (M=Zn, Cd, Pb) Hollow Spheres  

The monodispersity in size and spherical shape of these new colloidal spheres 

make them well-suited as building blocks to fabricate 3D photonic crystals by self-

assembly. To this end, I focused on the crystallization of CdSe hollow spheres, as well as 

its mixtures with ZnSe hollow spheres. The hollow spheres were prepared from their 

core-shell precursors by selectively dissolving the a-Se core with hydrazine at room 

temperature. Crystallization was achieved with the packing cells described in our 

previous publications.21 The hollow spheres are 390 nm in outer diameter, together with a 

shell thickness of 35 nm. Due to the large difference in refractive index for CdSe (2.54) 

and ZnSe (2.89), incorporation of ZnSe hollow spheres into the lattice of CdSe hollow 

spheres can be regarded as a simple method to fabricate photonic crystals with 

controllable levels of defects. Figure 6.6 shows SEM images of three different samples of 

colloidal crystals: pure CdSe hollow spheres; CdSe hollow spheres doped with 5% ZnSe, 

and CdSe hollow spheres doped with 20% ZnSe. It is clear that all of these samples 
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displayed a face-centered cubic (fcc) structure with the (111) planes oriented parallel to 

the surface of the glass substrate.  

Figure 6.7 shows the near-IR reflectance spectra recorded for these crystals after 

they had been dried in air. For CdSe hollow spheres, the spectrum displayed a peak at 

970 nm. No shift in the peak position was observed for the crystal fabricated from CdSe 

hollow spheres doping with 5% ZnSe hollow spheres. When the doping level was 

increased to 20%, the peak position was shifted to 990 nm. These results can be 

quantitatively explained based on the Bragg equation:22 

 

     mλmax = 2dhkl(n2 – sin2θ)1/2      (6.2) 

 

where m is order of diffraction; dhkl is the spacing between (hkl) planes; n is the refractive 

index of the crystal; and θ is the angle between the incident light and the surface of the 

diffraction planes (θ =10o in our measurements). For the fcc lattice, d111=4r/(6)1/2, where r 

is the radius of the spheres (r=195 nm). If a linear relationship between the refractive 

index (n) and the volume fraction (X) is assumed,23 the n for CdSe and ZnSe hollow 

spheres can be calculated according to the equations: 

 

                                nCdSe,sphere = ncoreXcore + nCdSeXshell                                                            (6.3) 

                                nZnSe,sphere = ncoreXcore + nZnSeXshell                                                                        (6.4) 
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Taking into consideration that the a-Se core had been completely removed before 

crystallization and assuming that the core as completely filled with air in the dry crystal, 

ncore=nair=1.0, Xcore=0.55, Xshell=0.45, nCdSe=2.54, and nZnSe=2.89. Equations 3 and 4 yield 

nCdSe,sphere=1.69 and nZnSe,sphere=1.85.  

The refractive index (nCdSe,crystal) for the crystal made of pure CdSe hollow spheres 

can then be calculated according to the equation: 

 

                          nCdSe,crystal = nvoidsfvoids + nCdSe,sphere(1- fvoids)                                           (6.5) 

 

where nvoids=nair=1.0 for the dry crystal and fvoids=0.26 for an fcc lattice (f=volume 

fraction in the crystal). Similarly, the refractive indices for the crystals made of CdSe 

doped with 5% ZnSe and CdSe doped with 20% ZnSe (nCdSe,dopedcrystal) can be calculated 

according to the following: 

 

     nCdSe,dopedcrystal = nvoidsfvoids + (nCdSe,sphereXCdSe,sphere + nZnSe,sphereXZnSe,sphere)(1- fvoids)   (6.6)              

 

where XCdSe,sphere=0.95 and 0.80 for the crystals doped with 5% and 20% ZnSe, 

respectively (XZnSe,sphere=0.05 and 0.20, respectively). Therefore, equations 5 and 6 yield n 

= 1.51, 1.51 and 1.53 for CdSe, CdSe doped with 5% ZnSe, and CdSe doped with 20% 

ZnSe, respectively. The band positions calculated from the Bragg equation are 956, 959 

and 971 nm, respectively. These results indicate that there is a red-shift of 15 nm for the 

peak position when the crystal was doped with 20% ZnSe hollow spheres. These values 
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are in reasonable agreement with our experimental results, in which a 20 nm shift was 

detected.  

 In addition to the red-shift of peak position, the spectra showed a gradual decrease 

in peak intensity as the concentration of ZnSe dopants was increased. This result can be 

attributed to an increased number of diffusive scattering sites introduced as optical 

defects in the opaline lattice as the concentration of ZnSe hollow spheres was increased.12  

 

6.2.4. Synthesis of Superparamagnetic Colloidal Spheres of Fe3O4/a-Se, 

(Fe3O4/Se)@Ag2Se, and (Fe3O4/Se)@CdSe  

Cation-exchange can also be combined with other procedures to synthesize 

colloidal spheres with superparamagnetic features.24 This can be achieved by 

incorporating Fe3O4 superparamagnetic nanoparticles into the a-Se spheres during their 

synthesis. The a-Se spheres can then be converted into Ag2Se, and further into CdSe by 

cation-exchange. Figure 6.8 shows a schematic of the synthesis. The success of this 

approach is built upon the ability to control the encapsulation of Fe3O4 nanoparticles into 

the a-Se spheres versus the pure deposition of a-Se by regulating the reaction temperature 

relative to the Tg (32 oC) of selenium.24 

In the first step, hydrazine, selenious acid, and the Fe3O4 nanoparticles were 

added to EG and kept at -10 oC. At this temperature, the reduction rate was very slow, 

enabling the Fe3O4 nanoparticles to act as exotic nuclei for a-Se growth. At this point, the 

product was mainly Se-coated Fe3O4 nanoparticles. In the next step, the temperature was 

raised to 43 oC and held for 7 min. At this point, the surface of a-Se spheres were 
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softened as a result of the glass transition temperature of selenium (Tg = 32 oC), allowing 

the incorporation of Fe3O4 nanoparticles into the growing a-Se spheres. Moreover, the 

increased reduction rate and growth allows further encapsulation of Fe3O4 nanoparticles 

into the a-Se spheres in this step. Finally, the temperature was decreased to 20 oC (below 

the Tg) in order to harden the surface of a-Se spheres, slow their growth, and avoid 

further encapsulation of Fe3O4 nanoparticles. This two-step procedure yields Fe3O4/a-Se 

colloidal spheres. In the next step, Fe3O4/a-Se serves as the starting material to react with 

AgNO3 in EG to generate (Fe3O4/Se)@Ag2Se in the same manner as discussed and 

described for Se and Se@Ag2Se spheres. Additionally, as shown in Figure 6.8, 

(Fe3O4/Se)@Ag2Se can be further cation-exchanged with Cd2+ to produce 

superparamagnetic (Fe3O4/Se)@CdSe spheres.    

Figure 6.9, A-C, shows SEM and TEM (inset) images of Fe3O4/a-Se, 

(Fe3O4/Se)@Ag2Se, and (Fe3O4/Se)@CdSe spheres, respectively. All samples show 

monodispersity in size, spherical shape, and smooth surface. The size of the Fe3O4/a-Se 

spheres shown in Figure 6.9A was 214±3.1 nm. After reacting with AgNO3, the size 

increased to 228±3.5 nm for (Fe3O4/Se)@Ag2Se. Finally, after cation-exchange, the size 

of (Fe3O4/Se)@CdSe spheres became 220±4.5 nm. The shell thickness, as revealed by the 

TEM images, was 30 and 26 nm for these colloidal spheres, respectively.  

The formation of (Fe3O4/Se)@Ag2Se and (Fe3O4/Se)@CdSe were also confirmed 

by XRD and EDX analyses. The results are similar to those reported for Se@Ag2Se and 

Se@CdSe. However, no iron signal was detected in these measurements. This is because 

the concentration of encapsulated Fe3O4 nanoparticles was not high enough to give rise to 
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any diffraction peaks on XRD and/or bands on EDX spectra assigned to Fe3O4. It is 

important to note that, in the presence of Fe3O4, the Ag+ → Cd2+ cation exchange was 

performed with a larger amount of TBP and at room temperature. In this case, the 

decrease in the reaction temperature was compensated by the increase of TBP. When the 

reaction was carried out at 50 oC with a normal amount of TBP, the colloidal spheres 

collapsed, instead of maintaining the spherical shape. This result indicates that some of 

the Fe3O4 nanoparticles had been incorporated into the Ag2Se shells. It is probable that 

this small amount of Fe3O4 nanoparticles acted as impurities, causing the shells to 

collapse at 50 oC during the cation-exchange process. 

Figure 6.9D shows optical microscopy images of the (Fe3O4/Se)@CdSe spheres. 

It can be seen that the spheres were randomly oriented when no magnetic field was 

applied. The inset shows parallel alignment of the spheres with respect to an external 

magnetic field. This result indicates that the superparamagnetic spheres could be 

effectively manipulated under an external magnetic field. In order to further characterize 

the magnetic properties, magnetization was measured for the (Fe3O4/Se)@Ag2Se and 

(Fe3O4/Se)@CdSe colloids. Figure 6.10 shows the typical M-H curves recorded at room 

temperature for both (Fe3O4/Se)@Ag2Se and (Fe3O4/Se)@CdSe. The variation of M as a 

function of H is characteristic of a superparamagnetic behavior. The saturation 

magnetization was found to be 0.18 and 0.12 emu/g for (Fe3O4/Se)@CdSe and 

(Fe3O4/Se)@Ag2Se, respectively. This difference can be attributed to the difference in 

density and molar mass between CdSe (5.67 g/cm3, 191.37 g/mol) and Ag2Se (8.25 

g/cm3, 294.7 g/mol). 
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6.3. Summary 

I have demonstrated the use of cation-exchange as a generic and effective 

approach to core-shell colloidal spheres characterized by the same size but a variety of 

compositions and properties. This work focused on the synthesis of Se@MSe (M=Zn, 

Cd, Pb) via the cation-exchange between the Ag+ in Se@Ag2Se and the M2+ in solution. 

All the products showed monodispersity in size, spherical shape, and smooth surface. In 

these systems, the large difference in solubility makes the reaction Ag2Se → MSe non-

spontaneous at room temperature. As a result, the cation replacement relied on the use of 

both TBP and elevation of temperature. Our results show that a topotactic relationship 

between the anion sublattices was not a prerequisite for cation-replacement, since both 

ZnSe and PbSe do not show topotactic relationship with respect to Ag2Se.  As a result, it 

is feasible to use cation-exchange reactions to significantly expand the scope of II-IV 

semiconductors that can be synthesized as colloidal spheres with sizes >100 nm. These 

colloids can be employed as building blocks for 3D photonic crystals. In this context, I 

have crystallized colloidal spheres having the same size but different compositions and 

refractive indices, i.e., CdSe hollow spheres and its mixtures with ZnSe hollow spheres 

prepared by selectively removing their a-Se cores with hydrazine. A gradual attenuation 

in the stop band was observed with increasing ZnSe concentration. Furthermore, a shift 

of 20 nm in the peak position was detected when the concentration of ZnSe in the mixture 

reached 20%. Finally, superparamagnetic feature has been successfully introduced into 

these colloidal spheres by incorporating Fe3O4 nanoparticles into the a-Se cores. This 

method provides a simple and versatile approach to the synthesis of magnetoactive 
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spheres with a variety of compositions and the same size, which are potentially useful as 

building blocks to fabricate photonic crystals that can be addressed using an external 

magnetic field.  

 

6.4. Experimental Section 

Chemicals and Materials. Selenious acid (H2SeO3, 99.999%), hydrazine 

monohydrate (N2H4·H2O, 98%), poly(vinyl pyrrolidone) (PVP, M.W.=55,000), silver 

nitrate (AgNO3, 99.9%), cadmium nitrate tetrahydrate (Cd(NO3)2·4H2O, 98%), lead 

nitrate (Pb(NO3)2, 99+%), zinc nitrate hexahydrate (Zn(NO3)2·6H2O, 98%), 

tributylphosphine (C12H27P or TBP, 97%) were purchased from Aldrich. Magnetite 

nanoparticles (Fe3O4, EMG 308 ferrofluid) were obtained from Ferrotec Corporation 

(Nashua, NH). Ethylene glycol (HOCH2CH2OH, EG, 99.9%) and methanol (CH3OH, 

99.8%) were obtained from Fluka and EMD, respectively. All chemicals were used as 

received. 

Synthesis of Monodispersed Amorphous Se (a-Se) Colloidal Spheres. In a 

typical procedure, a solution of hydrazine hydrate in EG (20 mL, 0.7 M) was added to 80 

mL of pure EG in a 250-mL round bottom flask. The temperature was maintained 

between 15 and 20 oC using a water bath. After 10 min under magnetic stirring, 20 mL of 

selenious acid solution (0.07 M, in EG) was introduced and the reaction was allowed to 

proceed for 1 h. 

Synthesis of Se@Ag2Se Core-Shell Colloidal Spheres. A solution containing 2.4 

g of PVP in 80 mL of EG was added to the above a-Se suspension. After complete 
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removal of hydrazine via vacuum distillation, a AgNO3 solution (0.1 g in 1.5 mL EG) 

was added dropwise in 10 min, leading to a color change from light red to dark brown. 

The reaction was allowed to proceed for 2 h. 210 mL of water was then added to the 

mixture and the core-shell particles were centrifuged and washed four times with water to 

remove EG and excess PVP. Finally, the product was dried by evaporation under ambient 

conditions. 

Synthesis of Se@MSe (M=Zn, Cd, Pb) Core-Shell Colloidal Spheres by Cation-

Exchange Reactions. The Se@Ag2Se spheres produced above (0.25 g) were washed 

three times with methanol and re-dispersed in 100 mL of methanol to be used for the 

cation-exchange reactions. For the synthesis of Se@MSe spheres, either 5 mL (for Zn) or 

10 mL (for both Cd and Pb) of the Se@Ag2Se suspension in methanol was added to a 80-

mL round bottom flask containing 35 mL of methanol and 0.6 g of PVP. After 5 min 

magnetic stirring, Zn(NO3)2·6H2O, Cd(NO3)2·4H2O, or Pb(NO3)2 pre-dissolved either in a 

1:1 water/methanol mixture (for both Zn and Cd) or water (for Pb) was added (0.85, 1.00, 

and 1.05 g in 5 mL, respectively). The reaction was performed at 60 oC for Zn and Pb and 

at 50 oC for Cd in an oil bath. When 50 μL of TBP was introduced dropwise, the color of 

the reaction mixture changed to dark yellow (for Zn) or to brown (for Cd), in 10 min. For 

Pb, the reaction mixture changed to dark grey instantaneously. 20 min later, another 5 mL 

of the Zn(NO3)2·6H2O, Cd(NO3)2·4H2O, or Pb(NO3)2 solution was added. The reaction 

was allowed to proceed for another 2 h in the case of Zn and Cd and for 4 h in the case of 

Pb. The solids were centrifuged and washed three times with methanol.  
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Synthesis of Monodispersed Fe3O4/a-Se Colloidal Spheres. In a typical 

procedure, 80 mL of EG, 20 mL of a hydrazine hydrate solution in EG (0.7 M) and 4 mL 

of a magnetite suspension in EG (0.5 mL of iron oxide nanoparticles dispersed in 40 mL 

EG) were placed into a 250-mL round bottom flask held at -10 oC. 20 mL of H2SeO3 (0.7 

M, in EG) was added to the reaction mixture. The color turned to light orange in 6 min 

and deep orange after 10 min. After 20 min at -10 oC, the temperature was increased to 

43 oC. The reaction mixture was kept at this temperature for 7 min. Then, the temperature 

was reduced to 20 oC to slow down the growth of a-Se and harden its surface. The 

reaction was allowed to proceed for another 30 min until the reaction mixture became 

orange red.     

Synthesis of Monodispersed (Fe3O4/Se)@Ag2Se Core-Shell Colloidal Spheres. 

A solution containing 2.4 g of PVP in 80 mL of EG was added to the above Fe3O4/a-Se 

suspension. All following steps for the preparation of (Fe3O4/Se)@Ag2Se were the same 

as those described for the synthesis of Se@Ag2Se spheres.  

Synthesis of (Fe3O4/Se)@CdSe Core-Shell Colloidal Spheres via Cation 

Exchange. All the steps for the synthesis of (Fe3O4/Se)@CdSe spheres via cation-

exchange from (Fe3O4/Se)@Ag2Se were similar to those described for the synthesis of 

Se@CdSe spheres from Se@Ag2Se except two variations in the experimental procedure: 

the reaction was performed at room temperature and the volume of TBP was 500 μL.  

Instrumentation. Scanning electron microscopy (SEM) images were captured 

using a field-emission microscope (Sirion XL, FEI, Hillsboro, OR) operated at an 

acceleration voltage of 5 kV. The samples were directly imaged without coating their 
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surfaces with conductive layers. Energy-dispersive X-ray spectroscopy (EDX, Genesis 

2000, Mahwah, NJ) was performed at an acceleration voltage of 10 kV. Transmission 

electron microscopy (TEM) images were obtained using a JEOL JEM 1200 EX II 

microscope operated at 120 kV. X-ray diffraction (XRD) was performed on Philips PW-

1710 diffractometer with a resolution of 0.02o
 in 2θ. The magnetic measurements were 

performed at room temperature using a SQUID Magnetometer MPMS-5S (Quantum 

Design, San Diego, CA). The applied field ranged from -10000 to +15000 Oe. The near-

IR reflection spectra were recorded using a fiber optic spectrometer (NIR-128, Control 

Development, South Bend, IN) with an incident/detection angle of 10o from the normal to 

the surface.  
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Figure 6.1. Schematic showing the synthesis of core-shell colloidal spheres of 

Se@Ag2Se by reacting a-Se with Ag; and the synthesis of Se@ZnSe, Se@CdSe and 

Se@PbSe via cation-exchange reactions. 
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Figure 6.2. SEM images of (A) Se@Ag2Se; (B) Se@ZnSe; (C) Se@CdSe; and (D) 

Se@PbSe colloidal spheres. The insets show TEM images of the corresponding sample 

after the a-Se cores had been removed with hydrazine. The outer diameter of the sphere 

in the inset was 325, 315, 315, and 315 nm, respectively. 
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Figure 6.3. XRD patterns taken from the as-synthesized samples of Se@Ag2Se, 

Se@ZnSe, Se@CdSe, and Se@PbSe colloidal spheres. 

 



 192

 
 

Figure 6.4. EDX spectra recorded from the as-synthesized samples of Se@Ag2Se, 

Se@ZnSe, Se@CdSe, and Se@PbSe colloidal spheres.  
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Figure 6.5. SEM images of (A) Se@CdSe and (B) Se@PbSe colloidal spheres prepared 

via cation-exchange with Se@Ag2Se at 70 oC. 
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Figure 6.6. SEM images of colloidal crystals assembled from hollow spheres of 390 nm 

in outer diameter and 35 nm in shell thickness: (A) CdSe hollow spheres; (B) CdSe 

hollow spheres doped with 5% ZnSe hollow spheres; and (C) CdSe hollow spheres doped 

with 20% ZnSe hollow spheres.  
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Figure 6.7. Near-IR reflectance spectra taken from the colloidal crystals shown in Figure 

5: (A) CdSe hollow spheres; (B) CdSe hollow spheres doped with 5% ZnSe hollow 

spheres; and (C) CdSe hollow spheres doped with 20% ZnSe hollow spheres. 
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Figure 6.8. Schematic illustrating the synthesis of (Fe3O4/Se)@Ag2Se and 

(Fe3O4/Se)@CdSe core-shell colloidal spheres with the superparamagnetic feature. 
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Figure 6.9. SEM and TEM (insets) images of (A) Fe3O4/Se; (B) (Fe3O4/Se)@Ag2Se; and 

(C) (Fe3O4/Se)@CdSe. The diameter of the particle in the inset was 228 and 220 nm, 

respectively. The a-Se cores had been selectively removed before TEM imaging. (D) 

Optical micrograph of (Fe3O4/Se)@CdSe colloidal spheres, which were randomly 

distributed on a glass slide when no magnetic field was applied. The inset shows 

magnetic alignment of these colloidal spheres after an external field was applied. The 

sample was prepared by slowly evaporating a drop of the suspension under a magnetic 

field. 
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Figure 6.10. Magnetization curves measured at room temperature for both 

(Fe3O4/Se)@Ag2Se (■) and (Fe3O4/Se)@CdSe (▼) colloidal spheres. 
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