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ABSTRACT OF THE DISSERTATION 
 

Integrated Genomics of Susceptibility to 
 

Therapy-related Leukemia 
 

by 
 

Patrick Cahan 
 

Doctor of Philosophy in Biology and Biomedical Sciences (Computational Biology) 
 

Washington University in St. Louis, 2009 
 

Professor Timothy Graubert, Chair 
 
 
 

 Therapy-related acute myeloid leukemia t-AML is a secondary, generally incurable, 

malignancy attributable to the chemotherapeutic treatment of an initial disease. Although there is 

a genetic component to susceptibility to therapy-related leukemias in mice, little is understood 

either about the contributing loci, or the mechanisms by which susceptibility factors mediate their 

effect.  An improved understanding of susceptibility factors and the biological processes in which 

they act may lead to the development of t-AML prevention strategies.  

 In this thesis work, we identified expression networks that are associated with t-AML 

susceptibility in mice.  These networks are robust in that they emerge from distinct methods of 

analysis and from different gene expression data sets of hematopoietic stem and progenitor 

lineages.  These networks are enriched in genes involved in cell cycle and DNA repair, 

suggesting that these processes play a role in susceptibility.  By integrating gene expression and 

genetic information we prioritized network nodes for experimental validation as contributors to 

expression networks and t-AML susceptibility. 

 Network analysis and node prioritization required a comprehensive map of genetic 

variation in mouse, which was not available at the outset of this thesis work.  Specifically, DNA 

copy number variations (CNVs), defined as genomic sequences that are polymorphic in copy 

number and range in length from 1,000 to several million base pairs, were largely 

uncharacterized in inbred mice.  We developed a computational approach, Washington University 

Hidden Markov Model (wuHMM), to identify CNVs from high-density array comparative genomic 
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hybridization data, accounting for the high degree of polymorphism that occur between mouse 

strains.  Using wuHMM we analyzed the copy number content of the mouse genome (20 strains) 

to a sub-10-kb resolution, finding over 1,300 CNV-regions (CNVRs), most of which are < 10 kb in 

length, are found in more than one strain, and span 3.2% (85 Mb) of the reference genome.  

These CNVRs, along with haplotype blocks we derived from publicly available SNP data, were 

integrated into susceptibility expression network analysis.  In addition to addressing questions 

regarding t-MDS/AML susceptibility, we also used this data to assess the potential functional 

impact of copy number variation by mapping expression profiles to CNVRs.  In hematopoietic 

stem and progenitor cells, up to 28% of strain-dependent expression variation is associated with 

copy number variation, supporting the role of germline CNVs as key contributors to natural 

phenotypic variation. 
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Therapy-related Acute Myeloid Leukemia (t-AML) 

 

Acute myeloid leukemia (AML) is a clonal malignancy characterized by the accumulation of 

immature leukocytes in the bone marrow.  The associated disruption of hematopoiesis in AML 

patients reduces the number of red blood cells (anemia), neutrophils (neutropenia), and platelets 

(thrombocytopenia), and leads to complications arising from the loss of proper function of these 

cell types.  Untreated AML is fatal, but with chemotherapy the survival rate for those under 65 is 

approximately 40%1.  Frequent chromosomal abnormalities in AML include t(8;21), resulting in 

the AML1-ETO fusion gene, translocations involving chr11q23, which harbors the Mixed-Lineage 

Leukemia (MLL) gene, to a variety of other sites, t(15;17) resulting in the PML_RARα fusion 

gene, and structural re-arrangements of chr16.  However, none of these events are sufficient to 

cause leukemia.  The identification of cooperating mutations promises to lead to a better 

understanding of this heterogeneous disease and, eventually, to improved treatments.  Important 

advances in this field are being made by whole genome re-sequencing efforts, where mutations 

in genes not previously linked to cancer have been identified2,3. 

 Therapy-related acute myeloid leukemia (t-AML) is a secondary malignancy attributable 

to the chemotherapeutic and/or radiotherapeutic treatment of a variety of diseases, including 

hematological and solid tumors.  Therapy-AML does not exclusively reflect a predisposition to 

sporadic AML because t-AML occurs in patients treated for autoimmune disorders such as 

rheumatoid arthritis and multiple sclerosis (Karran 2003).  The incidence of t-AML ranges widely 

depending on study and primary disease. Of breast cancer survivors, 1.7% develop secondary 

bone marrow diseases4.  Of lymphoma and Hodgkin disease patients, 5-20% go on to acquire t-

AML5.  Although arguably distinct diseases, 80% of t-AML cases are preceded by therapy-related 

myelodysplastic syndromes and in this thesis I will refer to them as a single entity (t-AML).  

Therapy-AML typically appears three to ten years after initial chemotherapy.  Common 

cytogenetic events associated with t-AML are loss of all or part of chromosomes 5 and/or 7 

(70%)6.  Therapy-AML comprise 5-20% of all AML cases and their prevalence is increasing along 

with the population undergoing chemotherapy7,8.  t-AML are generally incurable9. Median survival 
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time from diagnosis is eight months and survival time for associated with the combined chr5/chr7 

loss karyotypes is 5 months10.  It is 11 months for those with no karyotypic abnormalities6.  

Currently, hematopoietic stem cell transplant (HCT)  the only cure but often is infeasible and risky 

as there is a 49% transplant-related mortality11.  Complete remission of t-AML occurs in 28% of 

patients treated versus 65-80% in primary AML12.  Differences in response are due to a variety of 

factors, including persistence of primary disease, tissue/organ damage by treatment (bone 

marrow stroma, depletion of HSC), immunosuppression and resulting infections.  Because t-AML 

is a  clinically induced malignancy, it is, by definition, preventable.  Therefore, a long-term goal of 

t-AML research is to gain sufficient understanding of susceptibility factors in order to make 

worthwhile the personalization of chemotherapeutic regiments based on t-AML risk.  Also, 

because t-AML shares many characteristics with its primary counterpart, an understanding of t-

AML susceptibility may provide insight into the etiology of primary AML and progression from 

MDS. 

 Approximately 75% of t-AML cases are associated with prior alkylator treatment (i.e., 

melphalan, busulfan, thiotepa)10.  The therapeutic effect of alkylator agents is believed to result 

from the formation of DNA adducts and single and double-strand breaks, which trigger apoptosis 

or growth arrest13.  The precise mechanisms of action are unclear, as are the effects of alkylators 

on RNA and protein.  Topoisomerase II inhibitors (i.e., etoposide, doxorubicin, mitoxantrone) also 

cause therapy-related leukemias distinct from those induced by alkylators: there is a shorter 

latencies (1-3 years), a preceding phase of MDS is infrequent, and tumors often contain chr11q23 

translocations and other translocations, but not complete or partial loss of chr5/7.  The focus of 

the current work is susceptibility to alkylator-induced AML.  However, it is likely that many of the 

methods and resources developed here will be directly applicable to investigate the susceptibility 

to secondary malignancies due to topoisomerase II exposure. 

 Therary-AML is not due entirely to the stochastic nature of therapy-induced mutations.  

Contributing factors to this complex phenotype include the primary disease8, the cumulative dose 

of chemotherapy14, and genetic background15.  There are rare, familial cancer predisposition 

syndromes with mutations in TP5316, XPD17, or NF118 that increase t-AML susceptibility. Beyond 
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these rare cases, it has been hypothesized susceptibility is a complex trait in that inherited 

polymorphisms in multiple genes each contribute a small amount to overall susceptibility status.  

Based on the presumed genotoxic mechanism of alkylators, genes involved in DNA repair19, 

response to oxidative stress20, and drug metabolism21 have been investigated as mediators of 

susceptibility in candidate gene studies.  While many studies have been performed, the results 

have been either conflicting, inconclusive, or find relative weak effect sizes22.  A notable limitation 

of most candidate gene studies to date is that they have focused on polymorphisms believed to 

result in (non-conservative) changes in the protein sequence. 

 Perhaps the most promising approaches to identify genes and pathways involved in 

susceptibility are unbiased, genome-wide methods.  One of the first genome-wide studies was 

performed leveraging genetic variation across an inbred panel of mice as a disease susceptibility 

model23.  In this study, eight to twelve individual mice from each of 20 inbred strains were treated 

with the alkylating agent N-nitroso-N-ethylurea (ENU), a potent mutagen with a propensity to 

cause AT:TA transversions and AT:GC transitions24. Mice were monitored for the development of 

MDS and AML for up to 16 months post ENU exposure.  Myeloid tumors varied by strain, 

supporting the hypothesis of a strong genetic component in t-AML susceptibility (estimated to be 

0.10).  This study also used the in silico mapping method to identify two genomic intervals 

associated with susceptibility.  A follow-up study of an F2 cross of susceptible and resistant 

parental strains identified thirteen quantitative trait loci (QTLs) associated with the t-AML traits, 

including leukemia-free survival time, white blood cell count, and spleen weight25.  These studies 

have demonstrated that susceptibility in inbred mice is not purely stochastic.  Further, they have 

identified candidate loci.  Although the QTLs do not coincide between the two studies, they have 

served as starting points to identify quantitative trait genes.  A limitation of these approaches (and 

in mapping any QTL) is the difficulty in narrowing QTLs down to quantitative trait genes, which 

can take many years and has been successful in approximately 20 out of over 2,000 QTLs 

reported as of 200526. 
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Integrated genomics 

 

Relatively unbiased, genome wide approaches such as genome-wide association studies 

(GWAS) hold great promise to reveal much about complex traits in human populations.  They are 

similar to candidate gene studies in that they compare the relative frequencies of polymorphisms 

between case and control groups.  Unlike candidate gene studies, GWAS use panels of markers 

that span the genome and capture a large fraction of SNP variation (this varies depending on the 

population assayed and platform used).  Recent genome wide association studies have identified 

candidate susceptibility loci for several cancers: 29 in prostate cancer27-33, 13 in breast cancer34-

38, 10 in colon cancer39-41.  Most loci identified to date are non-overlapping between cancer types, 

suggesting that tissue specific forces are important in cancer susceptibility42.  In contrast to 

sporadic cancers, for cancers associated with exposure (i.e., lung cancer) only a handful of loci 

have been found: 3 in lung cancer43-45 and 3 in bladder cancer46,47.  Whether this means that 

susceptibility to exposure-based cancers has a more modest genetic component remains to be 

determined.  In a recent GWAS, more associations with t-AML were detected than would be 

expected by chance, even given the relatively small number of individuals in the study48 (80 

cases, 150 controls).  None of the three validated candidate SNPs had previously been 

implicated in susceptibility previously.  A drawback to GWAS studies, especially in light of the 

apparent complexity of cancer susceptibility, is the low power to detect weak effects.  A second 

drawback is that even when association studies are successful, mechanisms linking candidate 

variants to susceptibility are not readily apparent.  For example, the ApoE E4 genotype has been 

known as a risk factor for late-onset Alzheimer’s for more than ten years and yet the mechanism 

by which it contributes to the disease remains unknown49. 

 Evidence is accumulating that many genetic contributors to complex traits are not protein-

coding changes50.  If true, then the only other class of genetic events that can effect phenotype 

must, at some level, impact expression (i.e. eQTLs). Combining information from expression 

profiling experiments and genetic association studies can identify such events (i.e. eQTLs that 

contribute to disease/complex traits) involved in myocardial calcification51, atherosclerosis52 and 
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obesity (proposed in 53, candidates discovered in 54, causal genes validated in 55).  By augmenting 

these approaches with network analysis, it is possible to extend the insight of integrated studies 

to a better understanding of the molecular underpinnings of complex phenotypes56,57.  These 

approaches can be further extended by comparing networks across species, which has practical 

benefits in terms of initial tests of candidate targets58.  The work described in this thesis applies 

an integrative genomics approach to identify and prioritize genetic and transcriptional networks 

underlying t-AML susceptibility (Figure 1).   

 

DNA copy number variation 

 

In contrast to previous integrated genomics work, this thesis explicitly includes information on 

DNA copy number variations.  Copy number variants (CNVs), currently defined as genomic 

sequences greater than one kilobase that are polymorphic in copy number59, have been identified 

in diverse species including human, chimp, rat, mouse, and drosophila60-79.  In the short interval 

since the discovery of wide-spread copy number variation in apparently healthy individuals, there 

has been rapid expansion of both CNV detection techniques and their application across a range 

of biological samples and species.  From these studies, it is apparent that copy number variation 

exceeds single nucleotide polymorphisms (SNPs) as a source of genetic variation, and that many 

CNVs contain or overlap genes and, thereby, may have functional effects.  However, the role of 

copy number variation in mediating both ‘normal’ phenotypic variation and disease susceptibility 

is only beginning to emerge.  Fundamental questions about the nature and impact of CNVs 

remain unanswered, mainly due to methodological constraints.  In this thesis work, we set out to 

determine the copy number variable content of the mouse genome so that this information could 

be included in the integrated genomics study of t-AML susceptibility.  Further,  we estimated its 

functional impact, as measured by gene expression profiling in vivo.   

 At the time this thesis work began, the genome-wide discovery of CNVs was limited to 

large (>20 kb) events due to technological constraints.  In order to accurately assess the impact 

of copy number variation on phenotype, as well as to learn more about their fine structure and 
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origins, it is necessary to reliably detect CNVs of all sizes and accurately determine their genomic 

boundaries.  Currently, the most common genome-wide approaches to identify CNVs are array-

based.  These platforms include bacterial artificial chromosome (BAC) array comparative 

genomic hybridization (aCGH)80,81, long oligonucleotide arrays 82-84 and single nucleotide 

polymorphism (SNP) genotyping arrays85.  A critical aspect in selecting a platform for CNV 

detection is effective resolution, which we define as the length of the shortest CNV that is 

detectable at an acceptable false positive rate (FPR).  A number of factors contribute to 

resolution, including probe density (i.e., the number of probes that interrogate a region of the 

genome), probe specificity and sensitivity.  Due to their high probe density, long oligonucleotide 

arrays theoretically have the highest resolution and genome coverage of the three array-based 

platforms86,87.  However, the higher level of noise of these platforms86,88 has hampered efforts to 

mine these data for novel CNVs using available analytical tools, which were designed for BAC-

array analysis.  At the time this thesis work began,  there was only one published account of a 

method designed specifically for detecting CNVs from such data89 but there has been no 

comprehensive analysis of the achievable genome-wide resolution of these platforms.   As a 

prerequisite to mapping common CNVs in inbred mice, estimating their impact on expression, 

and including them in integrated genomics studies of t-AML susceptibly,  we first set out to 

develop a method for detecting CNVs specifically from long-oligo aCGH data.  This CNV 

detection work constitutes the first phase of this dissertation project, as described in the next 

chapter 

 

 

 

 

 

 

 
6



SNP-based 
Haplotypes 

cis-eQTLs Differentially 
expressed genes 

CNVs

Broad SNPs 

BXD 
expression 

Anchor 

Anchored 
coexpression 

networks 

GO/KEGG 
enrichment

Network association 
with susceptibility 

t-AML resistant, susceptible, unknown 

RNA DNA

t-AML 
candidate 
genes and 
networks 

 

 

 

 

 
7



Figure 1: Flow chart of integrated genomics methodology for identification of candidate network 

underlying susceptibility.  DNA and RNA are collected from 20 inbred strains of mice, 15 of which 

vary in susceptibility to alkylator induced AML.  DNA is hybridized to aCGH arrays for detection of 

CNVs.  SNPs genotypes downloaded from a public repository (Broad) are used to generate a 

haplotype map of 48 classical inbred strains of mice (superset of the 20 strains assayed for CNV).  

RNA is used for gene expression profiling to (1) determine genes that are differentially expressed 

between t-AML susceptible and resistant strains, and (2) to map expression traits to CNVs and 

haplotypes, in cis.  Expression quantitative traits that do not replicate in independent data are 

removed from further analysis.  Genes that are both differentially expressed between susceptible 

and resistant strains, and are linked to a validated eQTL are termed ‘anchors’.  Anchored 

coexpression networks are derived for each anchor by identifying all genes that have significantly 

correlated expression profiles to the anchor.  Networks are trimmed of all genes that do not have 

reproducible association with anchor gene expression in independent data.  Anchored 

coexpression networks are prioritized for downstream experimental assessment by GO/KEGG 

enrichment and association with t-AML susceptibility. 
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ABSTRACT 

Copy number variants (CNVs) are currently defined as genomic sequences that are 

polymorphic in copy number and range in length from 1,000 to several million base pairs.  

Among current array-based CNV detection platforms, long-oligonucleotide arrays promise the 

highest resolution.  However, the performance of currently available analytical tools suffers 

when applied to these data because of the lower signal:noise ratio inherent in oligonucleotide-

based hybridization assays.  We have developed wuHMM, an algorithm for mapping CNVs 

from array comparative genomic hybridization (aCGH) platforms comprised of 385,000 to more 

than 3 million probes.  wuHMM is unique in that it can utilize sequence divergence information 

to reduce the false positive rate (FPR).  We apply wuHMM to 385K-aCGH, 2.1M-aCGH, and 

3.1M-aCGH experiments comparing the 129X1/SvJ and C57BL/6J inbred mouse genomes.  

We assess wuHMM’s performance on the 385K platform by comparison to the higher resolution 

platforms and we independently validate 10 CNVs.  The method requires no training data and is 

robust with respect to changes in algorithm parameters.  At a FPR of less than 10%, the 

algorithm can detect CNVs with five probes on the 385K platform and three on the 2.1M and 

3.1M platforms, resulting in effective resolutions of 24 kb, 2-5 kb, and 1 kb, respectively. 
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INTRODUCTION 

DNA copy number variation comprises a significant component of total genetic variation in human 

(1-4), chimpanzee (5), and mouse (6-9) populations. CNVs have been associated with disease 

susceptibility (10-16) and underlie variation in gene expression (17).  To date, the genome-wide 

discovery of CNVs has been limited to large (>20 kb) events due to technological constraints.  In 

order to accurately assess the impact of copy number variation on phenotype, as well as to learn 

more about their fine structure and origins, we must first be able to reliably detect CNVs of all 

sizes and accurately determine their genomic boundaries.  

 

The most common genome-wide approaches to identify CNVs are array-based.  These platforms 

include bacterial artificial chromosome (BAC) array comparative genomic hybridization (aCGH) 

(18,19), long oligonucleotide arrays (20-22) and single nucleotide polymorphism (SNP) 

genotyping arrays (23).  A critical aspect in selecting a platform for CNV detection is effective 

resolution, which we define as the length of the shortest CNV that is detectable at an acceptable 

false positive rate (FPR).  A number of factors contribute to resolution, including probe density 

(i.e., the number of probes that interrogate a region of the genome), probe specificity and 

sensitivity.  Due to their high probe density, long oligonucleotide arrays theoretically have the 

highest resolution and genome coverage of the three platforms (24,25).  However, the higher 

level of noise of these platforms (24,26) has hampered efforts to mine these data for novel CNVs 

using available analytical tools, which were designed for BAC-array analysis.  To date, there has 

been only one published account of a method designed specifically for detecting CNVs from such 

data (27) but there has been no comprehensive analysis of the achievable genome-wide 

resolution of these platforms.   

 

The goal of our work was to develop a method for detecting CNVs specifically from long-oligo 

aCGH data, characterize its sensitivity, FPR and effective resolution, and compare it to other 

CNV detection algorithms.  Our focus is the detection of homozygous changes in the inbred 

mouse genome.  Detection of heterozygous germline changes or somatic changes in mixed 
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cellular populations may present additional challenges due to diminished signal intensity.  

However, existing computational tools detect even homozygous CNVs with relatively low 

sensitivity and unacceptably high false positive rates.   Although sequence divergence between a 

probe and its target impacts hybridization, no existing CNV detection algorithm has addressed 

this problem in the context of oligo-aCGH.  Here we show that there is a strong association 

between regions of sequence divergence and hybridization signal in high resolution aCGH data 

from inbred strains of mice.  We present a method that optionally incorporates sequence 

information into a Hidden Markov Model (HMM)-based calling algorithm.  We assess its sensitivity 

and precision, and compare its performance to other algorithms, three of which are commonly 

used for lower resolution platforms and one recently developed for dense microarrays.   
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MATERIALS AND METHODS 

Sample preparation and array comparative genomic hybridization 

DNA was extracted from the spleens and kidneys of healthy, young adult (age 8-12 week) 

129X1/SvJ and C57BL/6J mice (The Jackson Laboratory, Bar Harbor, ME).  Different DNA 

samples were used for each aCGH platform (385K, 2.1M, and 3.1M).  Array comparative 

genomic hybridization (aCGH) studies were performed using long oligonucleotide arrays 

designed and manufactured by Roche NimbleGen (Madison, WI).  The aCGH experiments were 

performed using a single array (385K-aCGH) with a median probe spacing of 5.2 Kb (MM6, NCBI 

Build 34), a single array (2.1M-aCGH) with a median probe spacing of 1.015 Kb (MM8, NCBI 

Build 36) or an 8-array set (3.1M-aCGH) with median probe spacing of  0.49 Kb (MM7, NCBI 

Build 35).  Labeling, hybridization, washing, and array imaging were performed as previously 

described (9,22).  All mouse genome coordinates are based on NCBI Build 36 (MM8).  Roche 

NimbleGen probe coordinates were re-mapped using liftOver (http://genome.ucsc.edu/cgi-

bin/hgLiftOver).  Data is available at GEO (http://www.ncbi.nlm.nih.gov/geo/index.cgi) under 

accession GSE10511. 

 

Algorithm overview 

We developed Washington University HMM (wuHMM) specifically to maximize CNV detection on 

high density, long oligonucleotide arrays.  wuHMM is comprised of several stages: clustering 

log2-ratios, finding regions more likely to contain CNVs, performing local CNV segmentation, and 

scoring (Figure 1A).  The clustering stage bins log2-ratios for input to the HMM, which facilitates 

the incorporation of sequence information.  There is an optional stage in which each chromosome 

is partitioned according to sequence divergence between the probe and target genomes based 

on independently derived genotype data.  Segmentation is achieved by first searching for seeds 

consisting of short runs of probes with large magnitude log2-ratios.  Seeded regions are then 

input to an HMM for segment boundary detection and scoring.  The HMM (Figure 1B) is 

comprised of 5 states that represent normal and abnormal DNA copy number.  The model 

requires a minimum length of stay in abnormal states in order to prevent singleton outliers from 
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being called as CNVs.  CNVs are scored based on log2-ratio magnitude, number of probes, and 

local noise.   

 

wuHMM can be downloaded from:  http://groups.google.com/group/wuhmm.  Default parameters 

(seed length, number of clusters, and noise penalty) are set to optimized values based on the 

sensitivity and FPR of wuHMM applied to data of known copy number.  These parameters and 

the use of sequence divergence data can be specified by the user.   

 

Sequence divergence  

In this optional pre-processing step, partitioning of a chromosome is accomplished by utilizing a 

three-state HMM, in which the states represent regions of sequence divergence or similarity 

compared to a reference genome, or runs of no genotype calls (Supplementary Figure 1). The 

reference is the C57BL/6J inbred mouse genome. The observations in the model are determined 

by the genotypes of 138,608 known SNPs (28,29).  Specifically, an observation is coded as '0' 

when the genotype differs between the test and reference genomes, as a ’1’ when the genotypes 

agree, and ‘n’ when there is no call in either strain.  This model is appropriate for pair-wise 

comparisons between inbred mouse strains containing genomic regions of high pair-wise 

polymorphism rates.  We required that the system remain within a state for at least five 

observations, yielding an average minimum block size of 87 kb, which lies within the estimated 

size range of ancestral block sizes in inbred mice (mean: 58 kb, range:1 kb to 3 Mb) (30).  The 

HMM is trained by expectation maximization. 

 

Clustering  

We clustered probes by log2-ratios to achieve two aims.  First, clustering facilitated the 

normalization of log2-ratios between regions of sequence divergence and similarity.  Second, 

binning probes by log2-ratios provided a convenient means of linking the decoded states of 

probes, as determined by the HMM, to biologically meaningful DNA copy number states (normal, 

gain, or loss).  The following procedure assigned cluster labels to each probe, ensuring that there 
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is the expected number of clusters for input to the HMM:  

 

1.  Divide probes in two groups: 

Group A: Probes with log2-ratios >= 0 

Group B: all other probes 

2.  Cluster probes in each group into floor(n/2) + 1 groups. 

n  = number of clusters 

3.  Merge the cluster in Group A having the minimum magnitude mean log2-ratio and the cluster 

in Group B with the minimum magnitude mean log2-ratio into one cluster, resulting in n clusters. 

4.  Rank clusters by mean log2-ratio. 

5.  Label each probe by the rank of its cluster. 

 

We used Partitioning Among Medoids (PAM), as implemented in R’s ‘cluster’ package using the 

clara function (31).  When sequence divergence information is utilized, probes are separated 

according to sequence divergence state first, then clustered and labeled as described above 

(Supplementary Figure 2).  Probe cluster labels are treated as observations by the HMM. 

 

Seeding 

It was necessary to target regions of the genome that were likely to contain CNVs prior to 

executing a more sensitive CNV-detection algorithm.   Without the seeding step we found that 

training the HMM on whole chromosomes periodically led to reduced power to detect short CNVs 

and misclassification of large regions of chromosomes as CNVs.  We identified regions likely to 

harbor CNVs by the presence of consecutive probes with large magnitude log2-ratios.  This was 

achieved using a stringent HMM in which the emissions from abnormal states were restricted to 

corresponding clusters.  We trained the stringent HMM and performed decoding on each 

chromosome separately, producing a set of seeds.  A seeded region, which was used as input to 

the more sensitive CNV detection algorithm, was defined as the seed-spanning region plus 100 

probes on either side.  Overlapping seeded regions were merged. 
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Hidden Markov Model  

Our HMM generally follows the approach to decoding copy number from aCGH data as first 

described by Fridyland, et al (32) with several notable exceptions.  The true, unobserved DNA 

copy number of a given probe is treated as a hidden state and probe cluster labels are the 

observed emissions from the model (Figure 1B).  The initial emissions of abnormal states are 

weighted most heavily to the highest and lowest cluster ranks.  Emissions from abnormal states 

cannot be from clusters with oppositely signed means.  The initial transition probabilities are set 

such that most of the chromosome is assumed to be in a normal state.  ‘Joiner’ states, which 

have an initial emission distribution weighted toward the corresponding abnormal state but permit 

emissions from all states, exist in order to prevent CNV call fragmentation.  Final emission and 

transition probabilities are determined by the Baum and Welch expectation maximization 

algorithm for each seeded region until convergence of the model likelihood, which is typically 

achieved in fewer than 10 iterations.  Training is repeated for each seeded region, varying the 

minimum length of stay in an abnormal state from 3 to 10.  The model with the greatest likelihood 

is then used to determine copy number with the Viterbi decoding algorithm (33).  The GHMM 

library (http://ghmm.sourceforge.net/software) was used to implement the HMMs. 

 

Scoring function and permutation 

We devised a scoring function that uses local noise, number of probes, and log2-ratios to 

ascertain the quality of CNV calls.  This score, Scnv, is defined as: 

 Scnv  = ln(ncnv) * | median(log2-ratio cnv) | – SD(log2-ratio cnv_nps) * W, where: 

n = number of probes comprising the CNV 

cnv_nps = index probes within a distance of 5 * length of the call that share the 

same sign as the mean(log2-ratio)cnv

  W = noise weight term 

In attempting to determine the significance of a CNV score, probe locations were randomized for 

each chromosome, the segmentation method was applied, and the best score was stored.   We 
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repeated these steps one hundred times to generate a null distribution of CNV scores for each 

chromosome.  P-values were computed using R’s ‘quantile’ function, which uses linear 

interpolation to estimate the given quantile (34). 

 

Validation 

Two methods were used to validate CNV calls.  First, we used replicate aCGH experiments at 

increasing probe density to identify probes on the 385K array that have reproducible log2-ratio 

shifts.  This information was used to assess the performance of wuHMM and other CNV detection 

algorithms, as described below (see Sensitivity and False Positive Rate).  We performed three 

replicate aCGH experiments at increasing probe densities: two 2.1M-aCGH (each comprised of a 

single 2.1M feature array) experiments and one 3.1M-aCGH (eight-385K arrays) experiment.  We 

included probes for assessment analysis only if there were at least four probes in the 6 kb 

centered at a 385K probe (median inter-probe distance on the 385K array is 6 kb) on both the 

2.1M and 3.1M platforms.  We termed these ‘informative probes’.  The gold standard is the copy 

number status (i.e. gain, loss, or neutral) of the informative probes.  The copy number status of 

an informative probe was defined according to the |mean log2-ratioregion| on the replicate arrays.  

Specifically, an informative probe was considered to represent a DNA copy number change if the 

|mean log2-ratioregion| > threshold on all replicates, where the threshold varied between arrays and 

regions of sequence similarity and divergence.  If an informative probe was in a divergent region 

and its log2-ratio < 0, then it was considered to represent a DNA copy number change if |mean 

log2-ratioregion| > SDdivergent_blocks  for all replicate arrays, where SDdivergent_blocks  is the standard 

deviation of probes in divergent regions.  For all other informative probes, the threshold is the 

standard deviation of the sequence similar regions.  The SD cutoffs for the similar regions were 

0.2416, 0.2176 and 0.2200 for the 385K, 2.1M and 3.1M platforms, respectively.  SD cutoffs for 

the divergent regions were 0.4115, 0.3457 and 0.3142.   

 

Independent validation of 10 CNVs (all deletions) was achieved by attempting to amplify by PCR 

regions within CNV boundaries.  PCR primers (Supplementary Table 1) were designed to localize 
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within a CNV.  Amplification reactions contained 10 μl of Jumpstart Ready Mix Taq (Sigma, 

http://www.sigmaaldrich.com), 100 ng of each primer, and 10 ng of genomic DNA in a final 

volume of 20 μl. Amplifications were performed on a PTC-225 Peltier Thermal Cycler (MJ 

Research) at standard conditions for 30 cycles and the product was run on a 2% agarose gel, 

stained with ethidium bromide, and visualized on a GelDoc (BioRad). 

 

Sensitivity and False Positive Rate 

We calculated sensitivity and FPR of CNV detection algorithms on the 385K platform based on 

the gold standard.  We calculated the sensitivity of CNV calls as the number of probes 

representing a true copy number change within predicted CNVs divided by the total number of 

probes representing true copy number changes in the gold standard.  We defined the FPR as one 

minus the proportion of CNVs that are significantly enriched for probes representing a true copy 

number change.  The enrichment of a CNV was determined by randomly selecting equally sized 

regions of the chromosome and recording the proportion of probes representing true copy 

number changes that they contain.  We repeated this step one hundred times, generating a null 

distribution of enrichment values.  We designated an observed call as a true positive if its 

enrichment value exceeded 95% of the random enrichment values.  We observed that due to 

differences in probe design between platforms, some high-scoring calls on the 385K-aCGH were 

not sufficiently covered on the higher resolution platforms.  Therefore, we excluded calls that 

were comprised of fewer than 25% informative probes in any performance analysis for wuHMM 

and other segmentation algorithms.  Also, singletons and doubleton calls were not considered in 

any performance analysis.   

   

Other segmentation algorithms 

We applied GLAD (35), CBS (36), and BioHMM (37) to the 385K-aCGH data using 

BioConductor’s snapCGH package (38).  To reduce the amount of processing time required by 

GLAD and DNACopy, we divided each chromosome into blocks of approximately 50 Mb.  These 

methods do not explicitly define segments as amplified or deleted.  Segments were classified as 
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‘abnormal’ if the predicted log2-ratio was greater than 0.35 or less than -0.35.  We used BreakPtr 

(27) version 1.0.5 downloaded from http://tiling.mbb.yale.edu/BreakPtr/.  We trained the data 

using known gains and losses in 129X1/SvJ.  We used the Finder-Core module with the default 

transition probabilities. 

 

Other statistical tests 

To test the association between sequence divergence and signal intensity, probes were 

partitioned according to sequence divergence state as described.  A t-test, using R’s t.test 

function not assuming equal variances, was applied to the raw, linear-scale signal intensities of 

the129X1/SvJ channel.
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RESULTS 

Sequence divergence affects probe hybridization signal 

There are long regions of the 129X1/SvJ aCGH data that exhibit a dispersed but pronounced 

negative log2-ratio (Figure 2).  These regions differ from true deletions, which are comprised 

almost entirely of negative log2-ratios.  It was previously hypothesized that a similar phenomenon 

observed in BAC arrays was a result of decreased hybridization efficiency due to sequence 

polymorphism between the test and reference genomes (8).  There are regions of classical inbred 

mouse genomes that exhibit pair-wise polymorphism rates exceeding 1/400 base pairs, reflecting 

divergent subspecies ancestry (30).  We tested the hypothesis that the regions of dispersed 

negative log2-ratios represent blocks of different ancestry in C57BL/6J versus 129X1/SvJ by 

partitioning the 129X1/SvJ genome into blocks of sequence similarity and divergence relative to 

the C57BL/6J sequence using approximately 140,000 genotype calls.  We found 1,826 

sequence-similar blocks and 1,790 sequence-divergent blocks (median length 190 and 262 kb, 

respectively).  As predicted, the signal intensity of 129X1/SvJ in regions of sequence divergence 

is significantly lower than in regions of sequence similarity in all experiments in the majority 

(18/19, 17/19, and 13/19, on 385K, 2.1M, and 3.1M arrays, respectively) of autosomes (Table 1).  

Similarly, the test channel intensity is lower in divergent blocks of 385K-aCGH data from 18 other 

inbred mouse strains, suggesting that the association between blocks of sequence divergence 

and aCGH signal is not an idiosyncrasy of a single strain comparison but represents a general 

phenomenon (data not shown).  In order to determine the impact of sequence divergence on 

segmentation algorithms we attempted to validate by PCR five deletions in divergent regions 

called by a variety of algorithms on 385K-aCGH data.  All five putative deletions failed to validate 

(Supplementary Figure 3 and data not shown), indicating that they do not represent true deletions 

but are instead artifacts of sequence polymorphism affecting hybridization.  This underscores the 

importance of incorporating methods to differentiate between CNVs and blocks of high 

polymorphism rates in order to reduce the number of false positive segment calls. 
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Gold standard 

In order to assess the FPR and sensitivity of wuHMM and other segmentation methods we 

needed to determine the true copy number state of each assayed region of the 129X1/SvJ 

genome.  Replication by independent methods (e.g., PCR, qPCR, and FISH) is the accepted 

standard by which CNV predictions are considered validated.  It would not be practical to use any 

of these methods to systematically validate the thousands of predictions made by all algorithms 

tested.  Instead, we determined the 129X1/SvJ copy number of the 6 kb region spanning each 

385K-aCGH probe (approximately equal to the median spacing of the platform) by comparison to 

replicate experiments at higher resolutions (two 2.1M-aCGH, one 3.1M-aCGH).  We reasoned 

that if the signal from a 385K-aCGH probe represents a true copy number change, then the log2-

ratio shift will be reproducible on higher density platforms with more probes reflecting the 

variation.  The higher density platforms contain, on average, 5.6 and 8.7 probes per 6 kb window 

on the 2.1M and 3.1M platforms, respectively.  336,470 probes on the 385K array are informative 

(i.e., there were at least 4 probes in the 6 kb region spanning the probe on both the 2.1M and 

3.1M platforms).  Of the informative probes, we found that 1,886 represented true copy number 

changes since they had reproducible log2-ratio shifts on all three replicate arrays.  1,226 

informative probes were singletons (i.e., probes representing a copy number change that are 

adjacent to informative probes that do not represent true copy number change).  Two hundred 

fifty-two probes were doubletons, similarly defined as an adjacent pair of validated probes 

surrounded by informative probes not representing true copy number change.   

 

We next asked if it would be feasible to detect singletons or doubletons using only log2-ratio 

thresholds.  Standard deviation (SD) multipliers were used to identify probes as potential CNVs.  

Even when the SD multiplier threshold > 5 was applied, 89% of the called probes were false 

positives and less than 5% of the called probes were true positives (Table 2).  These results 

demonstrate that attempting to detect singletons or doubletons from a single experiment will 

result in unsatisfactory sensitivity and FPR.  For this reason, we removed singletons and 

doubletons from both the gold standard and CNV predictions prior to the calculation of sensitivity 
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and FPR.  Four hundred and eight probes representing true copy number changes remained after 

removing singletons and doubletons. 

 

We calculated the sensitivity and FPR of all CNV detection algorithms based on the 385K gold 

standard, which is defined as the copy number status of the informative probes.  CNV predictions 

were considered correct if they contained a significantly enriched number of informative probes 

that represented a true copy number change.  The FPR was calculated as one minus the ratio of 

the number of correct CNV predictions to the total number of CNV predictions.  In this way, the 

FPR is presented at a CNV-level.  However, the sensitivity could only be calculated at the level of 

individual probes because the total number of ‘correct’ CNVs remains unknown in our gold 

standard.  The sensitivity is calculated as the ratio of the number of informative probes contained 

within predicted CNVs that represented a true copy number change to the total number of probes 

representing true copy number changes.   

 

Scoring function 

It is common practice to prioritize or rank CNV predictions for downstream analysis and 

experiments such as validation and evaluation of functional significance.  We view this 

prioritization in terms of a scoring function that relates aspects of the call (e.g., the amplitude of 

deviation from a log2-ratio of 0, the number of probes within a segment) to the quality of the call.  

A well-designed scoring function will generate high scores for true positive calls and low scores 

for false positive calls.  We first asked which choice of threshold acted as a better scoring 

function: the number of probes per segment, or the |mean log2-ratio| of the segment.  We 

calculated the sensitivity and FPR of wuHMM across a range of parameter settings and reported 

the maximum sensitivity when the FPR < 15% (Supplementary Table 2 and Supplementary 

Figure 4).  The |mean log2-ratio| performed poorly (mean sensitivity = 8.5%).  The number of 

probes per segment threshold performed substantially better (mean sensitivity = 40.6%), but we 

speculated that a scoring function that uses both parameters would provide further improvement.  

A combined scoring function (see Methods) had the best performance at all parameter settings 
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(mean sensitivity = 47.8%). 

 

Next, we hypothesized that we could assign a statistical significance to CNV calls by generating a 

null distribution of scores for calls made on randomized data.  On a per-chromosome basis, we 

randomized probe locations, executed wuHMM and stored the highest score.  We repeated this 

process 100 times to generate a null distribution of scores.  We calculated p-values for each 

observed call based on comparison of its score to the null distribution of scores.  We found that 

the FPR of scores with p-values < 0.01 remained above 47%, indicating that this permutation 

approach to determining CNV call quality did not achieve an acceptable FPR.  Therefore, the 

scoring function can be used to evaluate algorithm performance, but significance thresholds for 

the scores must be determined empirically. 

 

Algorithm parameters 

An important goal in developing wuHMM was to make it tunable such that changes in initial 

parameter settings would have predictable effects on performance and therefore could be 

adjusted to meet the needs of each individual analysis.  We evaluated the effect on wuHMM’s 

sensitivity and FPR of varying: the number of clusters, the minimum number of probes required in 

the seeding step (seed length), use of sequence information, and the scoring function noise 

penalty.  First, we investigated the effect of varying only seed length and the number of clusters.  

We expected that increasing the seed length would decrease the overall sensitivity and FPR 

because larger values of the seed length would increase the likelihood that the algorithm would 

skip regions containing small CNVs.  We executed wuHMM using a range of seed lengths and 

number of clusters, calculated the sensitivity and FPR at increasing score thresholds, and 

generated Receiver Operating Curves (Figure 3).  As expected, we found that increasing the 

seed length reduced the maximum sensitivity (from 70% to 34%) and the maximum FPR (86% to 

35%).  The best performance (sensitivity = 53% at FPR < 10%) was achieved when seed length 

was 2, although a value of 3 performed nearly as well.  There was no clear performance trend 

with increasing the number of clusters.  The best performance (sensitivity = 50%, FPR < 10%), 
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achieved with the number of clusters = 5, was substantially better than other numbers of clusters.  

These results demonstrate that seed length can be increased to decrease the maximum FPR at 

the expense of a much reduced sensitivity.  Further, they show that a combination of seed length 

= 2 and number of clusters = 5 produces the optimal performance tradeoff.  To determine if 

wuHMM would be generally applicable with these parameter settings (i.e., that it is not over-

trained) we applied it to previously described data from 19 other inbred strains at the 385K 

resolution (9).  Of the 72 previously discovered ‘high-confidence’ CNVs, 71 (98.6%) were 

detected with wuHMM using identical parameter settings (e.g. seed length = 2, number of 

clusters = 5, using sequence divergence information).  Additionally, the range of call lengths and 

number of calls per genome are consistent with the 129X1/SvJ calls (length range: 9 kb - 4 Mb, 

median length = 138 kb, mean length = 460 kb).  The calls per genome range from one 

(C57BL/6Tac) to 75 (Molf/EiJ), with a mean of 36 +/- 17.   

 

We next analyzed the effect of incorporating sequence divergence on wuHMM’s performance. 

We calculated the difference between the sensitivity and FPR of wuHMM with or without 

sequence divergence at increasing score thresholds.  As predicted, utilizing sequence information 

reduced both the FPR and the probe-level sensitivity (Figure 4).  These effects were greatest for 

calls scoring between 0.8 and 1.4, a score range which includes validated gains and losses.  We 

next calculated sensitivity and FPR using a range of values for the noise penalty, W, which 

decreases the score of calls in regions of greater noise (see Methods).  We found that increasing 

the noise penalty resulted in equalizing the FPRs between wuHMM with sequence information 

and without sequence information.  At the same time, the sensitivity did not substantially improve, 

demonstrating that the use of a noise penalty with sequence divergence information results in 

worse overall performance. 

 

Genotype information is not readily available for all aCGH experiments that may contain noise 

due to sequence divergence.  We asked if using a noise penalty would improve FPR at an 

acceptable loss of sensitivity when sequence information is not available.  We executed wuHMM 
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without sequence information using a range of penalty values and calculated the sensitivity and 

FPR at increasing score thresholds (Supplementary Figure 5).  We found that there was no 

performance improvement when using any non-zero penalty.  We concluded that for the range of 

values tested, the noise penalty does not enable the score function to differentiate between real 

calls and noise.  Therefore, we recommend the use of conservative score thresholds when there 

is substantial noise in the data. 

 

Effective resolution 

Using parameter values that optimized sensitivity and FPR (seed length = 2, number of clusters = 

5, noise penalty = 0) we applied wuHMM to all data sets.  We selected a score threshold that 

yielded a FPR < 7% and sensitivity of 56% on the 385K platform.  We attempted to independently 

validate ten calls made from the 2.1M and 3.1M experiments by PCR.  We considered a call to be 

validated when we were able to detect an amplified product in the C57BL/6J sample but not in the 

129X1/SvJ sample.  All ten calls confirmed the wuHMM predictions, independently demonstrating 

that wuHMM can reliably detect calls comprised of as few as three probes on 2.1M-aCGH and 

seven probes on 3.1M-aCGH (Figure 5).   

 

We estimated the effective resolution of the 385K platform by determining the length of the call 

with the fewest probes with a score exceeding 1.9 (i.e. at a FPR < 7%) (Table 3).  Assuming that 

the relationship between CNV score and the FPR remains relatively constant across aCGH 

densities, we estimated the effective resolutions of the 2.1M and 3.1M platforms by averaging the 

lengths of the calls comprised of the fewest probes with scores exceeding 1.9 (Table 3). 

 

Comparison to other methods 

We compared the performance of our approach to four other segmentation algorithms: Gain and 

Loss Analysis of DNA (GLAD), BioHMM, DNACopy, and BreakPtr.  The performances of GLAD 

and DNACopy, as well as other HMM implementations have been compared previously using 

well-characterized BAC array and simulated data (39,40).  Using default parameters, we applied 

 
31



each algorithm to the 385K-aCGH data, scored CNV calls, removed singletons, doubletons, and 

calls comprised of less than 25% informative probes (see Methods), and computed sensitivity and 

FPR based on the gold standard.  In order to ensure an unbiased comparison of algorithms, we 

determined the lowest score cutoff at which each method reached a FPR < 10%.  For all methods 

this score threshold was 1.9.  wuHMM reached the highest sensitivity, followed closely by 

DNACopy and more distantly by BreakPtr and GLAD (Table 4).  All HMM-based methods 

required less than an hour of execution time.  Although input data was partitioned prior to input to 

DNACopy and GLAD, these methods still had the longest executions times at 1.4 and 12.4 hours, 

respectively.  BreakPtr appeared to be critically dependent on its training set.  We initially trained 

the ‘no-change’ state with data from a self-self hybridization, but this resulted in BreakPtr calling 

over 10% of the informative probes, resulting in a 99% FPR.  Among currently available methods, 

wuHMM achieves the highest sensitivity while maintaining an acceptable FPR. 
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DISCUSSION 

Prior to this report,  the selection of tools for the analysis of long oligonucleotide aCGH data was 

limited largely to software originally designed for other aCGH platforms, such as BAC-based or 

SNP genotyping arrays.  We developed wuHMM to improve CNV detection from long 

oligonucleotide aCGH data that may be confounded by sequence divergence.  wuHMM 

addresses sequence divergence by increasing the call stringency in sequence divergent regions 

of the genome.  The effect of this strategy is to lower the FPR and, to a lesser extent, the 

sensitivity.  In order to assess the algorithm, we developed a validated data set that should be a 

useful resource for the evaluation of other segmentation methods.  By applying wuHMM to the 

validated data set, we demonstrated that it reaches the highest sensitivity among currently 

available methods at a FPR of less than 10%. 

 

There are two caveats that apply to this analysis.  First, in the current version of wuHMM, 

sequence divergent regions were estimated using only 140,000 SNPs.  Therefore, small regions 

of sequence divergence may be missed.  When more sequence data becomes available it can be 

incorporated into our method to better define the divergent regions, perhaps even down to the 

single aCGH probe level.  Second, we expect that all existing CNV detection algorithms will 

exhibit reduced sensitivity when applied to aCGH data from outbred populations or samples with 

mixtures of somatic and germline copy number changes. 

 

We estimate that effective resolutions of the 2.1M and 3.1M probe aCGH platforms, extrapolated 

based on a score threshold that yielded a FPR < 10% on the 385K probe platform, are 2-5 kb and 

1 kb, respectively.  However, although we independently validated several CNVs shorter than 5 

kb, the overall confidence in resolution estimates for the 2.1M and 3.1M probe arrays will require 

additional evaluation.  The first genome-wide studies of normal copy number variation in the 

mouse genome, based on BAC-aCGH platforms, were limited to a resolution of approximately 1 

Mb (6-8).  In 385K-aCGH data sets using a single whole-genome array (median probe spacing of 

5.2 kb) and CNV analysis algorithms available at the time, we previously reported a total of five 
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CNVs in the 129X1/SvJ genome (9).  Applying wuHMM to the 385K-aCGH data, we can now 

detect 15 CNVs in the 129X1/SvJ genome at an empirical FPR < 10%.  Applying wuHMM to 

3.1M-aCGH (an 8-fold increase in resolution) yields 167 CNVs.  Theoretically, another 10-fold 

increase in probe density to a median probe spacing of approximately 87 bases for the mouse 

genome will enable the resolution of ‘sub-CNV’ events (i.e. insertion-deletions).  Comprehensive 

tools such as the ones presented here are necessary to accurately assess the phenotypic impact 

of CNVs, improve our understanding of CNV origins, and facilitate integrated quantitative trait 

locus (QTL) mapping, linkage, and association studies. 
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Table 1.  Relationship between sequence identity and aCGH signal. 
  385K-aCGH 2.1M-aCGH 3.1M-aCGH 
  Probe count Test signal Probe count Test signal Probe count Test signal 
Chr M MM M MM p-value M MM M MM p-value M MM M MM p-value 

1 13,188 16,205 4655 4489 8.90E-15 72,049 91,734 3550 3331 1.56E-82 101,963 124,620 3266 3120 2.60E-44 

2 13,909 13,990 4612 4455 1.30E-12 76,513 77,565 3516 3463 5.04E-06 111,127 114,313 2999 2854 2.80E-48 

3 11,306 11,954 4682 4485 7.70E-16 64,400 67,515 3427 3316 9.24E-20 85,703 90,427 2494 2422 2.00E-12 

4 8,747 13,700 4628 4434 4.00E-15 48,344 78,238 3612 3351 3.07E-81 72,101 111,243 2508 2427 4.50E-16 

5 9,935 12,574 4646 4505 1.20E-07 55,891 69,525 3601 3497 2.35E-14 79,773 102,559 2703 2629 1.70E-15 

6 12,095 10,437 4661 4414 1.60E-27 67,247 57,338 3205 3113 1.49E-14 94,546 82,567 2865 2772 3.20E-19 

7 8,542 11,126 4626 4359 8.40E-21 48,250 63,624 3334 3029 6.48E-116 74,732 93,915 3606 3450 1.60E-21 

8 7,962 11,620 4662 4379 2.40E-23 43,465 65,059 3303 2986 3.81E-124 65,419 94,888 3646 3422 1.20E-39 

9 7,903 11,389 4617 4422 2.20E-14 43,317 62,739 3295 3137 9.58E-32 65,014 94,193 2385 2095 7.00E-149 

10 13,865 5,569 4670 4562 2.10E-04 77,515 32,036 3139 3183 1.49E-03 106,880 43,868 2011 2000 2.60E-01 

11 11,058 8,255 4567 4438 5.40E-06 62,019 44,518 3311 3210 3.13E-13 95,181 69,851 2445 2453 5.00E-01 

12 8,686 7,689 4660 4417 1.60E-17 50,261 43,365 3057 2972 6.60E-10 69,487 61,473 3193 3220 1.60E-01 

13 9,250 8,121 4671 4507 2.60E-08 51,745 45,216 3062 2916 7.69E-28 75,538 63,704 3269 3193 8.30E-06 

14 7,982 9,259 4682 4389 4.90E-23 46,043 51,318 2918 2820 2.87E-13 60,075 73,647 2674 2683 5.10E-01 

15 7,888 7,931 4637 4388 4.60E-16 43,200 43,898 3073 2814 1.34E-71 63,517 62,254 2512 2365 1.90E-42 

16 7,768 6,861 4616 4563 7.70E-02 44,036 37,931 2967 2856 4.09E-15 60,921 51,324 2474 2465 4.20E-01 

17 5,464 8,188 4642 4486 1.10E-05 30,042 46,894 3025 2958 1.72E-05 42,824 67,144 2851 2708 1.80E-23 

18 6,324 7,615 4707 4538 4.80E-08 34,739 41,374 2999 2980 1.93E-01 48,748 60,966 3124 3053 9.70E-07 

19 7,336 1,773 4645 4490 1.10E-03 40,292 9,748 3111 3008 2.57E-05 60,703 14,985 3078 3055 3.20E-01 
MM: Regions of high polymorphism between C57BL/6J and 129X1/SvJ (“mismatched”);  M: Non-polymorphic regions (“matched”).  Probe count 
columns contain the number of probes within M and MM regions.  Test signal columns contain the mean, single channel, linear-scale aCGH 
intensities of the M and MM regions.  The p-value is the result of a t-test, testing the difference of the mean signals of M and MM probes. 
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Table 2.  Detection of singletons and doubletons on 385K-aCGH. 

SD 
multiplier 

Singleton 
Sensitivity

Doubleton 
Sensitivity FPR Number of probes 

(percent of total) 

0.25 0.869 0.881 0.993 251166 (74.6) 
0.50 0.742 0.782 0.992 176851 (52.6) 
0.75 0.631 0.698 0.989 118501 (35.2) 
1.00 0.553 0.631 0.985 77423 (23) 
1.25 0.487 0.560 0.979 50327 (15) 
1.50 0.431 0.496 0.971 33049 (9.8) 
1.75 0.376 0.425 0.963 22172 (6.6) 
2.00 0.336 0.381 0.953 15630 (4.6) 
2.25 0.300 0.329 0.942 11409 (3.4) 
2.50 0.259 0.298 0.933 8594 (2.6) 
2.75 0.234 0.282 0.923 6698 (2) 
3.00 0.206 0.214 0.916 5270 (1.6) 
3.25 0.177 0.183 0.910 4226 (1.3) 
3.50 0.152 0.159 0.905 3384 (1) 
3.75 0.127 0.139 0.902 2718 (0.8) 
4.00 0.108 0.115 0.896 2200 (0.7) 
4.25 0.090 0.091 0.894 1786 (0.5) 
4.50 0.074 0.079 0.888 1415 (0.4) 
4.75 0.064 0.052 0.885 1109 (0.3) 
5.00 0.048 0.040 0.891 906 (0.3) 
5.25 0.037 0.036 0.897 735 (0.2) 
5.50 0.031 0.016 0.898 598 (0.2) 
5.75 0.024 0.012 0.899 467 (0.1) 
6.00 0.020 0.008 0.903 393 (0.1) 
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Table 3.  Effective resolution of aCGH platforms analyzed by wuHMM. 
Segment Length 

(base pairs) 
Segment Length 

(probes) Platform Resolution 
(kilobases) 

Standard 
deviation 

Minimum Median Minimum Median
385K 23.7 0.2629 23,577 191,594 5 23

2.1M-a1 5.2 0.3336 1,872 7,618 3 7
2.1M-b2 2.2 0.2846 1,906 7,067 3 7

3.1M 1.1 0.2690 909 6,156 3 9
1First technical replicate.  2Second technical replicate. 
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Table 4.  Performance of segmentation algorithms on 385K-
aCGH data 

Method 
Probe 

sensitivity 
Execution time 

(hours) Additional input 

wuHMM 56.1 0.17 Genotype data 

DNACopy 54.4 1.4 Partition input 

BreakPtr 43.9 0.02
Supervised 
training 

GLAD 43.1 12.4 Partition input 

BioHMM 21.6 0.1 None 
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Figure 1.  (A) Flow diagram of the wuHMM algorithm.  Dashed processes are optional 

and are executed when the sequence divergence information is utilized.  Processes in 

gray are repeated on permuted probe locations to generate null score distributions for 

each chromosome.  (B) Hidden Markov Model. ‘Norm’, ‘Gain, and ‘Loss’ indicate states 

representing normal, increased, and reduced DNA copy number, respectively.  Not 

shown, but implemented, are multiple states per abnormal state that enforce a minimum 

number of probes per abnormal state.  This minimum is automatically selected for each 

seeded region as described in Methods.  Transitions are permitted between normal, 

increased, and reduced states.  A ‘Join’ state can transition to itself or back to the 

corresponding abnormal state. 
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Figure 2.  3.1M-aCGH log2-ratio plot of 129X1/SvJ chromosome 7.  Blocks of sequence 

divergence are shown in red.  Blocks of divergence correspond to aCGH probes with 

lower log2-ratios and can potentially confound CNV calling algorithms.  
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Figure 3.  Receiver Operating Curves characterize the performance of wuHMM.  (A)  

Each curve represents the performance of wuHMM at a given minimum seed length.  

Score cutoffs ranging from 0 to 2.5 were used to calculate sensitivities and false positive 

rates averaged across executions of wuHMM with different numbers of clusters.  Circles 

represent score cutoffs of 0.0, 0.5, 1.0, 1.5, and 2.0, from right to left.  The vertical 

dashed line represents a FPR = 10%.  (B) The performance of wuHMM varying the 

number of clusters in the clustering stage.  Score cutoffs ranging from 0 to 2.5 were 

used to calculate sensitivities and false positive rates averaged across executions of 

wuHMM with different seed lengths.  As in (A), circles represent score cutoffs of 0.0 ,0.5, 

1.0, 1.5, and 2.0, from right to left, and the vertical dashed line represents a FPR = 10%.   
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Figure 4.  Performance differences between wuHMM with sequence divergence and 

without sequence divergence.  (A) FPR difference.  Y-axis is the difference between the 

average false positive rates at the given score cutoff.  A value below the y=0 line 

represents an improvement in the FPR when sequence divergence is utilized.  (B) 

Sensitivity difference.  Y-axis is the difference between the average sensitivities at the 

given score cutoff.  In (A) and (B) each curve represents the performance difference with 

varying noise penalties (W).  FPRs and sensitivities are averaged across a range of 

values for the number of clusters and minimum seed length. 
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Figure 5.  Validation of selected 3.1M-aCGH CNV calls in 129X1/SvJ.  (A) Log2-ratio 

plots of validated 3.1M-aCGH CNV calls.  The genomic position is plotted on the x-axis 

and the log2 (129X1/SvJ signal / C57BL/6J signal) is plotted on the y-axis.  CNVs are 

annotated with a unique identifier (Seg ID), boundaries, mean log2-ratio, and score.  

Dotted lines indicate CNV boundaries as determined by wuHMM.  (B) PCR validation.  

All ten deletions were validated by PCR, as demonstrated by a visible product using 

C57BL/6J, but not 129X1/SvJ genomic DNA.  The marker is a 100 bp ladder.  A region 

not deleted in 129X1/SvJ serves as a positive control.   
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Supplementary Figure 1. Genome partitioning by sequence divergence as 

determined using SNP genotype calls.  (A) An HMM for determining regions of 

sequence divergence (Div) or similarity (Sim), compared to a reference genome, or 

runs of no genotype calls (No call).  (B) Example of a transition from a similar (grey) to 

a divergent (tan) sequence block based on SNP genotype calls. 
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Supplementary Figure 2.  Ranking probes by cluster.  After probes are divided 

according to sequence divergence, log2-ratios are separately clustered using PAM.  

Clusters are ranked by mean log2-ratio and probes are assigned their respective 

cluster rank.  The goal of clustering probes separately is to normalize signals across 

regions of sequence divergence.  Probes are colored by their cluster rank.  Note that in 

regions of sequence divergence (indicated by red blocks) a larger magnitude log2-ratio 

is required for a probe to be included in extreme clusters. 
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Supplementary Figure 3

A.

B.
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Supplementary Figure 3.  (A) Log2-ratio plots of the invalidated calls.  Red blocks 

indicate blocks of sequence divergence.  Seg ID 3548 was only called by wuHMM 

when sequence divergence information was not used.  (B) PCR validation of two 

putative deletions called by several segmentation algorithms.  For each call, primer 

pairs for two non-overlapping amplicons were designed.  Primer pair IDs are displayed 

and sequences are available in Supplementary Table 1.  In both cases, the putative 

CNV is invalidated.  NT, no template. 
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Supplementary Figure 4.  Comparison of threshold criteria.  Different criteria were 

applied to predictions made with wuHMM at optimal algorithm parameters (seed length 

= 2, clusters = 5, using sequence divergence information).  (A) FPR (top) and 

sensitivity (bottom) of a threshold using only log2-ratio amplitude, (B) only number of 

probes, and (C) score function. 
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Supplementary Figure 5.  Noise penalty performance comparison of wuHMM without 

using sequence information for score penalties ranging from 0 to 4.  (A)  The sensitivity 

of calls made at increasing score cutoffs.  (B) The FPR of calls made at increasing 

score cutoffs. 

 
64



 

 

 

 

The impact of copy number variation on local gene expression 

in mouse hematopoietic stem/progenitor cells 

 

Patrick Cahan, Yedda Li, Masayo Izumi, and Timothy A. Graubert 

 

 

Department of Internal Medicine, Division of Oncology, Stem Cell Biology Section, 
Washington University, St. Louis, MO. 
 
 
 
Corresponding Author: 
 
Timothy Graubert, MD 
Washington University School of Medicine 
Division of Oncology, Stem Cell Biology Section 
Campus Box 8007 
660 South Euclid Avenue 
St.  Louis, MO  63110 
 
Phone: 314/747-4437 
Fax: 314/362-9333 
email: graubert@wustl.edu
 

 
 
 
Running head: CNV eQTL mapping 

 
65

mailto:graubert@wustl.edu


ABSTRACT 

The extent to which differences in germ line DNA copy number contribute to natural phenotypic 

variation is unknown.  We analyzed the copy number content of the mouse genome to a sub-10 

kb resolution.  We identified over 1,300 copy number variant regions (CNVRs), most of which 

are < 10 kb in length, are found in more than one strain, and, in total, span 3.2% (85 Mb) of the 

genome.  To assess the potential functional impact of copy number variation, we mapped 

expression profiles of purified hematopoietic stem/progenitor cells, adipose tissue and 

hypothalamus to CNVRs in cis.  Of the more than 600 significant associations between CNVRs 

and expression profiles, most map to CNVRs outside of the transcribed regions of genes.  In 

hematopoietic stem/progenitor cells, up to 28% of strain-dependent expression variation is 

associated with copy number variation, supporting the role of germ line CNVs as major 

contributors to natural phenotypic variation in the laboratory mouse.
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INTRODUCTION  

Copy number variants (CNVs), currently defined as genomic sequences greater than one 

kilobase that are polymorphic in copy number, have been identified in diverse species including 

human, chimp, rat, mouse, and drosophila1-10.  In the short interval since the discovery of wide-

spread copy number variation in apparently healthy individuals, there has been rapid expansion 

of both CNV detection techniques and their application across a range of biological samples and 

species.  From these studies, it is apparent that copy number variation exceeds single nucleotide 

polymorphisms (SNPs) as a source of genetic variation, and that many CNVs contain or overlap 

genes and, thereby, may have functional effects.  However, the role of copy number variation in 

mediating both ‘normal’ phenotypic variation and disease susceptibility is only beginning to 

emerge11-14. 

 Fundamental questions about the nature and impact of CNVs remain unanswered, 

mainly due to methodological constraints.  We set out to determine the copy number variable 

content of the mouse genome and estimate its functional impact, as measured by gene 

expression profiling in vivo.  The inbred mouse is an ideal model organism for this study for 

several reasons, including its homozygous genome, the ease with which biological samples can 

be acquired, and the preeminent role of the mouse as a model for biomedically relevant traits 

and diseases.  Gene expression variation is a trait amenable to genetic mapping because it is 

easily quantified in vivo, it is the phenotype most proximally related to genetics, and the 

expression of all genes can be measured simultaneously.  Finally, it is reasonable to 

hypothesize that the effect size of structural variations on gene expression will be large, so that a 

genome-wide association study could be informative, even with modest sample sizes.   
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RESULTS 

CNV detection, genotyping, and validation 

To map the CNV content of the mouse genome, we selected 17 Tier 1-3 Mouse 

Phenome Project strains15 and three additional strains of biomedical interest (LG/J, NZB/BINJ, 

129X1/SvJ), representing all major inbred lineages.  We performed comparative genomic 

hybridization using a long-oligonucleotide array containing 2,149,887 probes evenly spaced 

across the reference genome with a median inter-probe spacing of 1,015 bases.  We performed 

segmentation using wuHMM, a Hidden Markov Model algorithm that utilizes sequence-level 

information and can detect CNVs less than 5 kb in length (fewer than five probes) at a low false 

positive rate16.  wuHMM scores CNVs based on the number and median log2-ratio of the probes 

comprising the prediction, such that calls with higher scores are more likely to represent true 

events.  CNVs called in different strains that overlap can be assigned different boundaries due to 

technical or biological sources of variability.  Because fine-mapping all putative CNVs is not 

feasible at present, a common approach to handling complexity and ambiguity in CNV 

boundaries is to treat overlapping CNVs as a unit, or, copy number variable region (CNVR)4.  

We merged overlapping wuHMM calls into CNVRs, some of which have complex architectures 

(Figure 1).  We refer to CNVRs as ‘complex’ or ‘simple,’ as determined by wuHMM boundary 

concordance across strains (see Methods).  To assign CNVR genotype calls to strains for QTL 

mapping and to improve upon the sensitivity of wuHMM, we clustered the log2-ratios of each 

CNVR (see Methods).  The number of genotypes per CNVR was determined by selecting the 

cluster number that maximized the average silhouette function, which is a measure of clustering 

quality17.  Genotypes were assigned according to the clusters in which strains were grouped.  

We refer to genotypes that differ from the reference strain’s genotype as ‘abnormal’ in complex 

CNVRs, and as ‘gain’ or ‘loss’ in simple CNVRs if the mean log2-ratio is greater or less than the 

reference sample, respectively. 

 Using initial parameters, wuHMM identified 10,681 putative CNVs which were merged 

into 3,359 CNVRs.  To determine the false positive rate (FPR) of our CNV predictions, we 
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randomly selected 61 short CNVRs for independent validation by qualitative (for losses) or 

quantitative (for gains) PCR (qPCR).  The FPR approached 0 for CNVRs with average scores 

exceeding 1.5 and 2.5 for gains and losses, respectively (Supplementary Table 1).  Therefore, 

we selected these score thresholds, resulting in an empirically estimated individual strain CNVR 

genotype FPR < 4.0%.  For complex CNVRs, the same threshold was applied if the region 

contained either wuHMM gains or losses exceeding the corresponding threshold.  We called the 

1,333 CNVRs that passed these thresholds ‘high-confidence’ CNVRs and retained them for 

further analysis and quantitative trait mapping (Supplementary Figure 1, available at 

http://graubertlab.dom.wustl.edu/downloads.html, and Supplementary Table 2). 

 

Copy number variation in the inbred mouse genome 

The 1,333 high-confidence CNVRs span 85 million non-redundant bases (3% of the 

genome) and are distributed across all 19 autosomes and the X chromosome (Figure 2).  The 

CNVRs range in length from 1,871 bases to 3.84 Mb (mean length is 64 kb, median is 9 kb, over 

50% are less than 10 kb) (Figure 3A).  Although the length distribution of CNVRs is highly right-

skewed, confirming previous estimates derived from CNVR mapping studies performed with 

lower resolution platforms18 and paired-end mapping19, the overall contribution of small CNVRs 

(i.e., less than 10 kb) to the total copy number variable content of the genome makes up only 3.3 

Mb (0.13%) (Figure 3B), a finding consistent across all strains (Supplementary Figure 2).  

Complex CNVRs make up 23% of all CNVRs, but 63% of the CNV sequence content.  The 

majority of small CNVRs are exclusively genotyped as losses (82%), probably reflecting the 

increased power to detect homozygous losses versus integral gains with a small number of 

aCGH probes.  We detected a total of 663 gains, 2,854 losses, and 2,772 abnormal CNVR 

genotypes.  67% of CNVRs were called as gain, loss, or abnormal in more than one strain.  The 

number of CNVR gains, losses, or abnormal genotypes ranges from 215 (C58/J) to 413 (KK/HIJ) 

per strain (mean = 331).  The total CNV sequence per strain ranges from 26.4 (C58/J) to 48.3 

(NOD/ShiLtJ) Mb (mean = 39.1 Mb); no single strain contributed disproportionately to the CNVR 
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map (Figure 3C and Supplementary Figure 2). 

Several previous reports have investigated the extent of copy number variation in inbred 

strains of mice1,2,5,20,21.  If de novo events contribute only minimally to copy number variation 

among individuals within a strain22,23, then as detection technologies improve, studies assaying 

the same strains will have increasingly concordant results.  We compared our CNVR map to 

previous reports that also used high-density oligonucleotide aCGH (see Methods).  We found 

that when we compared CNVRs defined using strains in common with other studies, our map 

largely recapitulated the CNVRs found in the other studies:  64-84% of CNV content in the other 

studies was also detected in our high-confidence CNVRs (Supplementary Table 3).  48-87% of 

the copy number variable content that we report in the 19 strains is novel.  However, when we 

compared CNVR maps regardless of strain we found that only 16% of the copy number variable 

content in our map was novel, suggesting that much of the total copy number variable sequence 

of the reference genome is known at the presently available detection limit. 

Non-allelic homologous recombination (NAHR) has been proposed as a mechanism of 

CNV formation24.  The hypothesis that segmental duplications (sequences >1 kb and having > 

90% similarity to at least one other genomic region) act as nurseries of CNV by promoting NAHR 

has been supported by the enrichment of segmental duplications within and around CNVRs20,25.  

By permutation testing (see Methods), we found that there is significantly more segmental 

duplication sequence within and directly bordering medium (10-100 kb) and large (>100 kb) 

CNVRs (fold = 3.0 and 12.9, respectively, P < 0.01), but that segmental duplications are found 

less often than expected by chance within and near small (<10 kb) CNVRs (fold = 0.37, P < 

0.01) (Figure 4 and Supplementary Table 4),  consistent with a prior report of stronger 

association between segmental duplications and long CNVRs4.  The pattern of enrichment of 

segmental duplication sequences near medium and large CNVRs extends to 2 Mb beyond the 

CNVR boundaries (fold from 2.25 - 1.43 and 7.80 - 2.45, respectively, P < 0.01) as does the 

pattern of depletion around small CNVRs (fold = 0.27 - 0.75, respectively, P < 0.01).   Like 

segmental duplications, it has been suggested that repetitive elements may facilitate CNV 
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generation through NAHR.  Indirect evidence supporting this hypothesis has been presented in 

inbred mice where LINEs are enriched within segmental duplications20.  We found that LINEs 

are enriched within medium and large CNVRs (fold = 1.61 and 1.50, P < 0.01), but are not 

enriched in small CNVRs (fold = 0.95, P = 0.81).  We found an enrichment of LINE elements in 

sequences flanking all CNVRs types, although the association is less for small CNVRs (fold = 

1.14 for small, 1.51 for medium, 1.43 for large, P< 0.01).  Therefore, it is unlikely that small 

CNVRs are variations in the copy number of repetitive elements themselves26, but rather LINEs 

may facilitate the removal or expansion of neighboring sequence.  Long terminal repeats (LTRs) 

are enriched within all CNVRs (fold = 1.3, 1.4, 1.53, P<0.01).  This association persists for 

regions surrounding CNVRs to at least 10 kb for medium and large, but not small CNVRs.  

SINEs are depleted within and surrounding medium and large, but not small CNVRs (fold = 0.7, 

0.45, P<0.01).  Taken together, this analysis confirms that CNVRs greater than 10 kb frequently 

contain or directly border highly homologous elements of the genome that can facilitate NAHR 

and therefore CNVR generation. But, with the exception of the weak association between the 

regions surrounding small CNVRs and LINE sequences, there is no apparent genomic feature 

that could facilitate NAHR and give rise to the abundant, small, high-confidence CNVRs.  

Therefore, their origins will require detailed genomic analysis and further exploration. 

We next determined the gene content of the high-confidence CNVRs, finding that 432 

high-confidence CNVRs contain or partially contain 679 genes.  Previous CNVR studies of the 

mouse genome have shown that CNVRs overlap coding sequence no more often than expected 

by chance, in contrast to CNVRs in human and rat genomes which appear to be enriched for 

gene content1,4,8,21.  With a more comprehensive and finer-resolution map, we retested this 

hypothesis by permutation analysis.  We found that small, medium and large CNVRs are found 

in genic regions less frequently than expected by chance (fold=0.86, 0.71, 0.90 respectively, 

P<0.01, 0.01, 0.05) (Figure 4). 
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Expression profiling 

To estimate the overall impact of CNV on gene expression in vivo, we first performed 

expression profiling of hematopoietic stem/progenitors cells using the Illumina Mouse Beadchip-

6v1 platform (see Methods).  Among many cell types and tissues suitable for this study we 

chose to profile a population that has well-defined surface markers, enabling the enrichment of a 

highly purified cell population that is transcriptionally active27, increasing the number of genes 

that could be assessed for association with CNVRs.  We pooled bone marrow cells from two 

individuals from each strain and analyzed 2-3 biological replicates per strain (46 expression 

experiments).  29% of the probes on the array were detected as ‘present’ in at least three strains 

(see Methods).  To validate the sort purity, we examined the expression profiles of the cell 

surface markers utilized in the sort strategy and found that they were consistent with the 

immunophenotype of the post-sort products (Supplementary Figure 3).   

To determine the extent to which expression variation is associated with copy number 

variation, we first identified the genes that exhibit strain-specific expression.  We identified 1,469 

probes with significantly higher between- versus within-strain expression differences (P < 0.01, 

see Methods).  We also determined the strain-specific expression profiles in epididymal adipose 

tissue and hypothalamus, as those data sets were publicly available28,29.  We removed 

expression data for strains that were not profiled in our CNVR mapping work, leaving 15 strains 

from each study.  Since no strain replicates were available in these studies, we identified strain-

specific probes as those with a ratio of maximum to minimum expression > 3, the same 

threshold used to identify ‘variable’ expression traits in those studies (Table 1). It is impossible to 

determine if the differences in the number of ‘Present’ and strain-specific expression traits 

between tissues is due to fundamental differences in cross-tissue expression variation or, more 

likely, to the significant differences in the expression profiling platforms and analysis methods 

utilized in these studies.  
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Expression quantitative trait mapping 

CNVRs may impact local gene expression through a variety of mechanisms, including 

gene dosage, removal or relocation of regulatory material, or ‘neighborhood effects’ that disrupt 

local chromatin structure30.  We estimated the overall contribution of CNVRs on local expression 

by in silico eQTL mapping, in which gene expression profiles were treated as quantitative traits 

and CNVRs as genetic markers.  We limited the analysis to CNVR-expression traits that are 

tightly linked (< 2 Mb apart) because of reduced power to detect trans effects with a small 

sample size.  We calculated eQTL significance using a weighted permutation method that 

accounts for the complex ancestral relationship among inbred strains31,32, and controlled the 

family-wise error rate arising from testing the association between a trait and multiple CNVRs by 

applying the Holm multiple testing correction to each trait’s p-values separately33.  

We identified 672 significant associations between strain-specific expression traits and 

CNVRs in the hematopoietic stem/progenitor compartment.  Because we used an alpha 

threshold of 0.05, after correcting for multiple tests we would expect to find only 113 associations 

by chance.  The number of traits associated with a CNVR (degree of pleiotropy) ranged from 1-

18 (mean=2.47, median=2); the number of CNVRs associated with a trait ranged from 1-9 

(mean=1.65, median=1).  While there were more eQTLs in which the Illumina probe sequence 

overlapped the CNVR than expected by chance (P < 0.05 by Fisher’s Exact Test), most eQTLs 

(92.3%) map outside of the corresponding CNVR.   If these intergenic CNVRs mediate 

expression variation, they do so via mechanisms other than changes in gene dosage.   CNVRs 

of each categorization, either by size or complexity, were found to be eQTLs and each was as 

likely to be an eQTL as expected by chance.  After selecting the most significant association per 

trait from the 672 eQTLs, we found that 408 strain-specific expression traits representing 391 

genes (27.8% of 1,469 strain-specific traits) were associated with 214 CNVRs (16% of all 1,333 

CNVRs and 44.2% of the 484 testable CNVRs) (Table 1 and Supplementary Table 5).  The 

frequency of eQTLs dropped with increasing distance from CNVR boundaries to expression 

probe locations (proximity) (Supplementary Figure 4).  Similarly, the fraction of expression 
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variation explained by a trait’s association with a CNVR decreased significantly with proximity 

(Supplementary Figure 4) 

To validate the KL eQTLs, we queried the expression profiles of the 391 eQTL-

associated genes in Kit+/Lineage-/Sca1+ (KLS) hematopoietic stem cells purified from BXD 

recombinant inbred mice34.  Because the BXD mice are homozygous for either the C57BL/6J or 

DBA/2J genotype at most loci and SNP genotype data is publicly available, we were able to 

assign an inferred CNVR genotype based on the parental strain of origin of the SNP markers 

spanning each CNVR (Supplementary Table 6).  Of the 160 KL eQTL-associated genes that 

were unambiguously annotated with a gene symbol, 74 genes (93 probe sets) were present on 

the Affymetrix U74A expression platform and 31 were detected as expressed in >80% of the RI 

lines.  We found that 29% of these testable eQTL-associated genes had expression profiles that 

were also associated with the inferred CNVR genotype in the KLS BXD data (P-value < 0.05) 

(Supplementary Table 7). 

Smaller proportions of strain-specific expression variation were associated with CNVRs 

in the other two tissues that we were able to analyze: 181 of 4,083 (4.4%) and 78 of 2,879 

(2.7%) strain-specific traits in adipose tissue and hypothalamus, respectively, after selecting the 

most significant associations per trait (Table 1).  Similarly, fewer CNVRs were detected as 

eQTLs: 24.9% and 15.0% of testable CNVRs in adipose tissue and hypothalamus, respectively.  

While there is variability in the impact of CNV on expression variation between tissues, 

differences in the number of eQTLs we detected in adipose tissue and hypothalamus cells are 

likely due to the reduced power (25% fewer samples) and less robust methods used to identify 

strain-specific expression in these data.  The relationships between eQTL frequency and 

proximity, and between eQTL effect size and proximity, were present to a lesser extent in 

adipose and were not present in the hypothalamus (Supplementary Figure 4).  As we found in 

the hematopoietic compartment, few adipose and hypothalamus eQTLs overlapped their 

associated traits (6.0% and 6.4%, respectively), but this was more than expected by chance 

(P<1e-5 and P<0.01 in adipose and hypothalamus, respectively).   CNVRs across all length and 
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complexity ranges were observed as eQTLs; no categorization was enriched or depleted.  

 Next, we asked whether any eQTLs were shared across tissues.  Because we utilized 

expression data from different platforms, we defined expression trait overlap at the level of gene 

annotation rather than probe sequence.  We found twenty-three eQTLs present in more than 

one tissue, five of which were gene-dosage effects (Figure 5 and Table 2).  A correlation 

between Alad gene dosage, mRNA abundance, and enzymatic activity was previously 

demonstrated35,36 and Alad expression variation was associated with a cis-eQTL reported in an 

F2 inter-cross37, demonstrating that our analysis was able to detect known gene dosage eQTLs.  

Further, we found that strain-specific Glo1 over-expression is due to a large gain and that this 

gene-dosage effect is consistent across all three tissues that we tested (Figure 6A).  A strain-

specific expression pattern of Glo1 in hypothalamus was previously shown to be associated with 

and potentially casual for anxiety-related behavior38.  Our analysis is the first, to our knowledge, 

to show that this expression variation is due to a CNV.  Most eQTLs are found in only one tissue, 

indicating that tissue-specific factors compensate for CNVR-mediated gene expression variation.  

For example, the expression of guanylate-binding protein 1 (Gbp1) is associated with a CNVR 

containing its 3’-exon and 3’-UTR in hematopoietic and adipose cells, but not hypothalamus 

(Figure 6B).  The expression pattern of Gbp1 (highly expressed in both hematopoietic 

stem/progenitor cells and adipose tissue in strains that contain the CNV, but not expressed at 

detectable levels in strains without the CNV or in the hypothalamus regardless of CNV 

genotype) is consistent with a model of expression regulation where hypothalamus-specific 

down-regulation or alterative splicing of Gbp1 overcomes the CNVR effect apparent in other 

tissues. 

We reasoned that CNVRs that mediate expression variation by large scale disruption or 

modification of local chromatin structure rather than by gene dosage were likely to impact the 

expression of more than one gene.  We tested one implication of this hypothesis using random 

permutations of the hematopoietic eQTL data.  We calculated the probabilities of finding the 

observed number of CNVRs with a given degree of pleiotropy (defined as the number of 
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expression traits associated with a CNVR).  We found that there were more CNVRs with 7 and 8 

associated expression traits than expected by chance (P < 0.05, 10,000 permutations).  One 

CNVR (CNVR-ID 3014) with seven associated traits is a deletion located approximately 100 kb 

from the Major histocompatibility (Mhc) locus on chromosome 17 that removes highly conserved 

sequence with predicted regulatory potential.  All of the associated traits are Mhc class Ib genes, 

many of which are expressed in multiple tissues and have unknown specific functions39.  Genes 

at this locus have been speculated to undergo distal regulation via a chromosomal looping 

mechanism40 and, therefore, copy number changes that modify this looping structure would be 

expected to have pleiotropic effects on local expression.  Alternatively, because the H2-T locus 

is known to have strain-specific duplications39, it is possible that the expression variation that we 

observed was due to gene dosage differences that are too complex for our computational 

methods to properly detect but are, in effect, tagged by the associated CNVR. 
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DISCUSSION 

The central goal of our work was to estimate the functional impact of germ line copy 

number variation in vivo.  To achieve this goal, we first identified CNVRs in twenty inbred strains 

at the highest resolution reported to date.  We discovered 1,333 CNVRs spanning approximately 

3% of the mouse genome.  On average, there are over 300 CNVs per strain.   As predicted, we 

found that the frequency of CNVRs increased with decreasing CNVR length, but that short CNVs 

account for only a small fraction of the total copy number variable sequence content of the 

mouse genome.  We speculate that this trend will hold as higher resolution technologies are 

developed.  Unexpectedly, we found that small CNVs (<10 kb) lack the enrichment of highly 

homologous sequences that frequently flank, and are presumed to contribute to the formation of 

medium (10-100 kb) and large (>100 kb) CNVs.  Determining the mechanisms that generated 

these CNVs would facilitate the design of targeted assays to detect new CNVs and provide a 

better understanding of the forces that shaped the mouse genome.  We are aware of only one 

report documenting similar short deletions in a small number of human genomes and therefore a 

mouse-to-human CNVR comparison will be informative as high-resolution human data become 

available41.  A caveat of our CNVR map is that, as is true for all comparative genomic 

hybridization experiments, we were limited to finding variants in comparison to a reference 

sequence; sequences that do not exist in the C57BL/6J genome but vary in copy number among 

other strains were not detected. Therefore, the total extent of copy number variation relative to 

the union of all inbred mouse genomes must await comprehensive sequencing of other strains.  

However, a reasonable estimate of the amount of mouse genomic sequence lost in the 

C57BL/6J strain is the amount of genomic material lost per strain relative to C57BL/6J, which 

ranged from 16.8 to 33.8 Mb (mean = 25.5 Mb). 

Using a relatively small number of inbred mouse strains, we found that all classes of 

CNVs were associated with gene expression changes in a variety of tissues.  We found that 

28% of strain-specific expression traits were associated with copy number variation in the 

hematopoietic progenitor/stem compartment, consistent with the 18% previously reported in 
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human lymphoblastoid cell lines42.  To validate these eQTLs, we inferred the CNVR genotypes 

of the BXD RI panel and analyzed publicly available KLS expression data.  Over 29% of the 

testable KL eQTLs were supported in the BXD data set, a striking concordance given the 

substantial experimental and biological differences between the studies.  We also detected 

many CNVR eQTLs in adipose tissue and hypothalamus, even though these data were 

produced with different mice, using different expression platforms, and the eQTL analysis was 

performed with 25% fewer strains.  Much of the recent speculation on the potential impact of 

CNVs on phenotypic variation has centered on gene-dosage effects43.  However, we found that 

only 7.3% of CNVR eQTLs contain the associated expression probe and therefore were due to 

gene-dosage effects.  Presumably, the remaining CNVR eQTLs reflect expression variation 

mediated by alteration of regulatory material or local chromatin structure.  This would be 

consistent with a model where (subtle) alterations in expression patterns are better tolerated 

than complete or partial gene gains or losses. 

Some of the CNVR eQTLs reported here may be in linkage disequilibrium with another 

allele causing the associated expression change, underscoring the need to characterize the 

relationship between CNVs and other genetic variants.  It is likely that there are additional 

eQTLs not detected here: CNVRs that alter expression in only one or two strains, trans eQTLs, 

eQTLs that associate with genes expressed in tissues not sampled here, and eQTLs with weak 

effects. Increasing the number of strains and the tissues sampled would address some of these 

limitations.  However, extending this work to a much larger population with greater genetic 

diversity (i.e., the Collaborative Cross44) would increase the power to detect trans and weaker 

effects and therefore enable a clearer understanding the overall impact of CNVR on expression 

variability.  Future work must reach beyond identifying statistical associations to better 

characterize the mechanisms by which a CNVR affects phenotypic (including expression) 

variation.  In addition to estimating the impact of CNVRs on expression variation, the CNVR 

eQTLs reported here may be of practical value in identifying the causal variants in traditional 

QTLs because they present plausible hypotheses linking genetic differences between inbred 

strains to complex traits. 
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METHODS 

Mice 

Male mice were obtained from The Jackson Laboratory (Bar Harbor, ME), housed in a 

specific pathogen-free facility, and sacrificed at 8-10 weeks of age.  The same individual mice 

were used for both DNA- and RNA-based analyses.  All experiments were performed in 

compliance with the guidelines of the Animal Studies Committee at Washington University, St. 

Louis, MO. 

 

DNA preparation 

DNA was prepared from spleen, liver, kidney, and tail by phenol-chloroform extraction, 

and was quantified using UV spectroscopy (NanoDrop 1000,Thermo Scientific, Wilmington, DE).  

Kidney DNA for aCGH experiments were pooled in equal masses from 2–6 individuals per 

strain.  Only individual samples passing NimbleGen quality control requirements were pooled.   

 

aCGH analysis   

A tiling-path CGH array for whole-genome analysis in mouse (mm8, NCBI Build 36) was 

utilized (http://www.nimblegen.com).  Isothermal probes from 45-75 bp were selected with a 

median probe spacing of 1 kb. Labeling, hybridization, washing and array imaging were 

performed as previously described45.  Previously, we demonstrated that regions of the mouse 

genome with high sequence divergence between the test and reference strains have lower aCGH 

probe signal intensities and can, therefore, potentially disrupt the identification of CNVs16.  Using 

an imputed single nucleotide map46, we defined regions of high sequence divergence between 

the test and reference genomes for input to wuHMM, a Hidden Markov Model algorithm for CNV 

detection16.  All putative wuHMM CNV calls with scores less than 1.5 or 1.9 (gains or losses, 

respectively) were discarded, as we have previously shown that they contain a high number of 
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false positive predictions.  CNVRs were defined by merging overlapping wuHMM calls across all 

individuals.  To assess the complexity of the CNVRs, we calculated average boundary 

concordances (the average of the length of the intersection of a CNV and CNVR divided by the 

total CNVR length).  CNVRs having average concordances <= 0.75 (Supplementary Figure 5) 

comprised less than 23% of the CNVRs detected in this study.  We refer to these regions as 

‘complex’ and all other CNVRs as ‘simple’.  All microarray data, aCGH and expression, is 

available for download from GEO (http://www.ncbi.nlm.nih.gov/geo/) under series accession 

GSE10656. 

 

CNVR genotyping 

Clustering of CNVRs was performed using partitioning among medoids (PAM) as 

implemented in R17.  The average silhouette function calculates the average between versus 

within group distances and ranges from -1 to 1, with 1 representing perfect clustering17.  We 

modified this function to weight groupings by their agreement with wuHMM calls.   We executed 

PAM, varying the number of clusters from 2-7, and calculated the weighted average silhouette.  

The number of clusters with the maximum, modified average silhouette was selected for the 

number of genotypes per CNVR.  Sometimes a clustering would result in a group of strains in 

which no wuHMM call had been made, representing a new gain, loss or abnormal genotype.  

These genotypes were disallowed and these strains were assigned into the same genotype label 

as the reference strains.  CNVRs with both average silhouettes < 0.3 and average scores < 2.0 

were discarded, as they were likely to represent spurious clusters. 

 

CNVR validation 

61 simple CNVRs were randomly selected for validation from the set with average scores 

between 1.3 and 3.3. These CNVRs ranged from 887 bases to 67 kb (2 to 47 aCGH probes) and 

scored from 1.3 - 2.3 for gains, and 1.9 - 3.3 for losses.  For qualitative PCR validation (losses 
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only), primers were designed to target reference sequence within the predicted boundaries of the 

CNVR, prioritizing amplicons near or overlapping the aCGH probes with the maximum log2-ratio 

magnitudes.  One to three amplicons were designed per CNVR.  A positive control amplicon was 

designed for a region with no predicted CNVs in any of the 20 strains (primer sequences in 

Supplementary Table 8).  For quantitative PCR (gains only), relative copy numbers were 

determined by real-time PCR (qPCR) using TaqMan detection chemistry and the ABI Prism 7300 

Sequence Detection System (Applied Biosystems, http://www.appliedbiosystems.org), as 

previously described1.  A CNVR loss was validated if no amplicon was produced using primers 

targeted within predicted CNVR boundaries.   A CNVR gain was validated when qPCR 

demonstrated a >2-fold increase in inferred relative copy number relative to the reference strain.  

We defined the false positive rate (FPR) as the number of false positives divided by the number 

of gain and loss genotypes at or exceeding a given score threshold.  The FPR for putative copy 

number losses with scores between 2.0 and 2.5 was 25% (152/608 CNV calls tested).  Nearly a 

third of these amplicons (50/152) exhibited altered electrophoretic mobility consistent with the 

CNV strain distributions predicted by aCGH analysis.  To better understand this phenomenon, we 

cloned and sequenced two of the amplicons from four affected strains and discovered three novel 

SNPs in each amplicon which overlapped an aCGH probe sequence in the CNVR in each case.  

Sequence divergence can disrupt probe hybridization resulting in decreased signal intensity and, 

at times, false positive deletion calls.   Further, we found a 14- and a 10-bp insertion near the 

probe sequence in the affected strains, which accounted for the altered size of the amplicons.  

The co-occurrence of SNPs and in/dels has previously been reported and their potential causal 

relationship is under investigation47.   For CNVRs with average scores exceeding 1.5 and 2.5 for 

gains and losses, respectively, the FPR approached 0 (Supplementary Table 1).  Therefore, 

only calls that exceeded these thresholds were retained for further analysis.   

 

Comparison to other studies 

CNVR coordinates were translated from mm6 to mm8 using liftOver, when necessary 
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(http://genome.ucsc.edu/cgi-bin/hgLiftOver).  We defined sub-sets of CNVRs by selecting only 

those CNVRs that have a gain, loss, or abnormal genotype in at least one of the strains in 

common with another study.  Overlap between studies was reported as either the total shared 

sequence in the intersection of CNVRs or as the number of CNVRs that have overlapping 

boundaries.  For comparisons of CNV content by CNVR size, sequence overlap was determined 

by calculating the total sequence intersection between only small, medium or large, high-

confidence CNVRs and all CNVRs from other studies. 

Sequence may be reported as copy number variable exclusively in other studies due to 

differences in genome coverage20, de novo events22, or because lower resolution platforms tend 

to over-estimate CNVR boundaries1,21.  The comparison to a study that mainly targeted 

segmental duplicated regions of the genome resulted in the lowest agreement (63.9%)20.  Many 

of these regions have sparse probe coverage on the platform that we utilized and therefore are 

problematic regions in which to detect CNVs.  The second  lowest overlap (64.3%) was with a 

study that specifically targeted  the identification of de novo events in C57BL/6-derived strains22.  

It is possible that the 36.7% of CNV content exclusive to that study was not detected here 

because those sequences did not exist in, or comprised an undetectable fraction of the samples 

used in our study.   We also assessed the overlap between CNVRs in our study and others, 

defined across all strains, to determine the overall consensus of reported copy number variation 

in the inbred mouse genome.  To perform this comparison, we first merged all CNVs from 

previous studies into a single set of CNVRs finding that the amount of novel CNV sequence 

content is relatively low (16%) (Supplementary Table 3).   

 

Enrichment analysis 

The association between CNVRs and genomic features was tested by randomly 

permuting the chromosome and position of each CNVR 100 times and determining the 

sequence content of the resulting region or flanking regions.  Gene overlap enrichment was 

tested similarly, except that the test statistic was the number of CNVRs per permutation that 
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overlapped at least one gene using UCSC’s knownGene annotation 

(http://genome.ucsc.edu/cgi-bin/hgGateway?org=Mouse&db=mm8). 

 

Cell sorting and RNA extraction 

Bone marrow cells were harvested from mouse femurs and stained with FITC-

conjugated lineage markers (Gr-1, CD19, B220, CD3, CD4, CD8, TER119, and IL-7Rα) and 

APC-conjugated c-kit (BD Biosciences, San Diego, CA).  Lineage-negative, c-kit positive cells 

were enriched using a modified MoFlo high speed sorter (Cytomation, Fort Collins, CO).  Total 

RNA was prepared using Trizol LS (Invitrogen, Carlsbad, CA) and its concentration quantified 

using UV spectroscopy (Nanodrop).  Total RNA quality was then determined by Agilent 2100 

Bioanalyzer (Agilent Technologies) according to the manufacturer’s recommendations.   

 

Expression profiling 

RNA transcripts were amplified by T7 linear amplification (MessageAmp TotalPrep 

amplification kit; ABI-Ambion).   First strand synthesis was primed with oligo-dT, followed by in 

vitro transcription to generate amplified RNAs (aRNA).   The aRNAs were then quantitated on a 

spectrophotometer, and quality determined by Agilent 2100 bioanalyzer according to the 

manufacturer’s recommendations.  Hybridization to the MouseWG-6 v1.1 Expression Beadchip 

(Illumina), washing, and signal detection were performed using standard protocols. Quantitated 

data were imported into Beadstudio software (Illumina).  On-slide spot replicates were averaged 

by Beadstudio and individual spot data was reported.   Probes were defined as ‘present’ in a 

sample when the signal was significantly higher than in a set of negative control probes, (P < 

0.05 after correcting for multiple tests).  A probe was defined as present in a strain if it was 

called ‘present’ in all replicate samples of that strain.  The correlation of within-strain expression 

profiles exceeded between-strain correlations in all but two strains (average within strain 

correlation = 0.9782, average between-strain correlation = 0.9528), demonstrating that the 
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expression profiles reflect biological variation and not technical artifacts (i.e., due to differences 

in cell staining, sorting, RNA labeling, or hybridization). 

 

eQTL Mapping 

Expression quantitative trait mapping was implemented as previously described28,31,32 

with the exception that CNVR instead of SNP genotypes were used as predictor variables.  Null 

distributions of F-statistics for CNVR-expression trait tests were generated by 10,000 random 

permutations of expression values.  The permutations were weighted according to strain-

relatedness as defined using an imputed SNP map46  (exponent = 3 ) such that closely related 

strains more frequently replaced each other than distantly related strains.  All permutation 

analyses were implemented on custom software and executed on a compute cloud 

(http://aws.amazon.com/ec2).  Often a single trait was tested against multiple CNVRs therefore 

the permutation-derived P-values were corrected by applying the Holm multiple testing 

correction separately for each trait.   

BXD RI SNP genotype data was downloaded from: 

http://www.genenetwork.org/dbdoc/BXDGeno.html.  A CNVR genotype of ‘B’, ‘D’, or ‘U’ was 

assigned for each CNVR to each strain if the two markers spanning the CNVR were both 

C57BL/6J, both DBA/2J, or discordant, respectively.  BXD KLS expression data was 

downloaded from GEO, accession number GSE2031.  Of the genes identified as having 

significant associations with CNVRs in cis in the KL expression data set, only those that were 

detected in at least 80% of the samples from either or both CNVR genotype groups were 

assessed for concordant expression in the BXD KLS data.  Association between KLS expression 

and inferred CNVR genotype was performed as for KL expression data.
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Table 1: CNVR eQTL characteristics.   

 Expression Probes 
 

CNVRs 

Tissue Probes Present 
Strain-

specific In cis eQTL 

 

Testable 
CNVRs 

eQTL 
CNVRs 

Hematopoietic 46,629 13,588 1,469 958 408 (391)  484 214 

Adipose 32,533 10,040 4,083 2,056 181 (177)  466 116 

Hypothalamus 32,533 14,871 2,879 789 78 (76)   440 66 

 
“In cis” is the number of expression probes within 2 Mb of a CNVR.   
Only CNVRs that have greater than two strains per genotype group are considered for eQTL mapping 
(“Testable CNVRs”).   
eQTL is the number of expression probes (genes) that are significantly associated with a CNVR (P < 0.05). 
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Gene symbol
CNVR 

ID Chr
Position 

(Mb) R2
Proximity 

(Kb) R2
Proximity 

(Kb) R2
Proximity 

(Kb)
Alad 754 4 62 0.76 0 0.66 0 0.41 0
Glo1 3001 17 30 0.81 0 0.87 0 0.86 0

Sox13 216 1 135 0.42 5 0.30 5 0
2310009E04Rik 766 4 97 0.35 1,149 0.48 1149 0

Thumpd1 1383 7 119 0.28 423 0.26 422 0
Ifi205 127 1 177 0.39 1,181 0.42 1,308
Cstf3 420 2 104 0.24 61 0.29 5
Hdc 432 2 128 0.26 1,761 0.26 1,761

Gbp1 640 3 143 0.96 0 0.91 0
Hdhd3 754 4 62 0.49 0 0.43 0
Trim56 925 5 137 0.78 37 0.37 37
Gtf3a 931 5 146 0.50 764 0.28 763
Capg 1077 6 72 0.94 473 0.69 468
Mir16 1383 7 119 0.43 592 0.58 598

Hemk1 1749 9 107 0.94 233 0.30 233
Pbx1 232 1 171 0.47 794 0.31 794

Trim34 1372 7 104 0.54 263 0.76 263
4833420G17Rik 2405 13 121 0.75 1 0.38 1

Paip1 2405 13 121 0.35 36 0.51 36
Zfr 2719 15 12 0.49 474 0.36 474

Cxadr 2872 16 79 0.68 477 0.47 477
Sytl3 2978 17 6 0.47 0 0.37 0

H2-T23 3014 17 36 0.47 114 0.55 114

All eQTLs listed in the table are significant at an alpha < 0.05 after correcting for multiple tests. R2 is the 
correlation coefficient for the CNVR-to-eQTL association. Proximity is the number of bases between the nearest 
boundaries of the expression probe and CNVR. Gene dosage eQTLs have a proximity = 0 (Alad, Glo1, Gbp1, 
Hdhd3, and Sytl3).

Hematopoietic Hypothalamus Adipose

Table 2: Subset of CNVR-eQTLs in hematopoietic stem/progenitor cells, 
hypothalamus, and adipose tissues.  
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Figure 1.  CNVR genotyping.  Log2-ratio plots of the test versus reference (C57BL/6J) aCGH 

signal intensities.  All twenty strains are shown in each plot.  Horizontal lines represent wuHMM 

segmentation calls, which are made independently for each strain.  CNVs are merged into CNV-

regions (CNVRs), represented as vertical dotted lines.  CNVR genotypes (see Methods) are 

indicated by probe coloring and strains are indicated by probe shading.  (a)  A 30 kb simple 

CNVR gain present in 16 strains.  wuHMM call boundaries largely agree with the CNVR 

boundaries, resulting in a high average concordance (91.6%).  (b)  A 12 kb simple CNVR loss 

occurring in 8 strains.  (c) A 39 kb simple gain/loss CNVR called as a ‘gain’ in 7 strains and as a 

‘loss’ in 3 strains.  (d) A 416 kb complex CNVR assigned 5 different genotype groups. 
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Figure 2.  Location of CNVRs in the inbred mouse genome.  The ideograms depict 

chromosomal locations of CNVRs in the autosomes and X chromosome from 20 inbred strains.  

Gains relative to the reference genome (C57BL/6J) are green lines, losses are red, and complex 

CNVRs are blue.  The height of the lines reflects the number of strains in which the genotype call 

is made. 
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Figure 3.  Distribution of CNVR sizes. (a) Length distribution of CNVRs (on log10 scale). Most 

CNVRs are shorter than 10 kb.  (b)  Length distribution of CNVRs separated by CNVR genotype.  

CNVRs are divided into small (<10 kb), medium (10 kb ≥ CNVR length < 100 kb), or large (≥100 

kb).  Frequency is indicated by solid bars (left axis) and sequence content by hatched bars (right 

axis).  Most CNVRs are small losses, but most of the copy number variable sequence in the 

mouse genome is in large, complex CNVRs.  (c)  The number of gain, loss, or abnormal CNVR 

genotypes and the copy number variable sequence per strain.  C57/J and C58/J, the most 

closely related strains to C57BL/6J, have fewer CNVs than more distantly related strains.  
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Figure 4.  Co-localization of CNVRs with other genomic elements.  The enrichment or 

depletion of segmental duplications (SD), LINEs, SINEs, LTRs, and genes as annotated in 

UCSC’s knownGene track (KG) in CNVRs was tested by permuting the location of CNVRs.  The 

percent of the CNVR sequence comprised of SD, LINE, SINE, and LTR was compared to the 

permuted background, as was the number of CNVRs that overlapped at least one gene.  The 

ratio of permuted to observed results (log10 scale) are shown, where a negative value indicates 

depletion and positive indicates enrichment.  * P < 0.05.  ** P < 0.01. 
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Figure 5.  Tissue-specific CNVR eQTLs.  Overlap of eQTL genes in hematopoietic 

stem/progenitors, adipose, and hypothalamus.  Most eQTL genes are tissue- specific, implying 

that other factors can influence these expression traits. 
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Figure 6.  CNVR eQTLs.  (a) Top: Log2-ratio plot of a 481 kb CNVR containing the complete 

coding sequence of Glo1 (location is indicated by horizontal line).  Positions of Illumina (blue 

asterisk) and Affymetrix (green asterisk) expression probes are shown.  Bottom: Glo1 

expression in hematopoietic stem/progenitors, adipose tissue, and hypothalamus.  Expression is 

significantly correlated with the CNVR gain.  (b)  Top: Log2-ratio plot of a 24 kb CNVR 

containing the 3’ exon and UTR of Gbp1.  A gain is called in 8 strains.  Bottom: Gbp1 expression 

in the same tissues; expression is significantly correlated with the CNVR gain in hematopoietic 

stem /progenitors and adipose tissue.  Dotted line represents the mean detection threshold 

across all arrays.  
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Supplementary Figure 1. Log2 plots for all CNVRs. Log2-ratio plots of the test versus 

reference (C57BL/6J) aCGH signal intensities for all 1,329 high-confidence CNVRs. All twenty 

strains are shown in each plot. Horizontal lines represent wuHMM segmentation calls, which 

are made independently for each strain. CNVs are merged into CNV-regions (CNVRs), 

represented as vertical dotted lines. CNVR genotypes (see Methods) are indicated by probe 

coloring and strains are indicated by probe shading. Available online at: 

http://graubertlab.dom.wustl.edu/PDF_Docs/Supplementary%20Figure.pdf
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Supplementary Figure 2. Distribution of copy number variable sequence content by 

CNVR size across strains.  CNVs are separated by size. Most CNVs are small or medium in 

all strains. 
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Supplementary Figure 3. Validation of cell sort purity by gene expression profile. The 

log2 gene expression values of the cell surface markers utilized in the hematopoietic 

progenitor/stem cell sort strategy from all 48 samples. c-Kit, a primitive hematopoietic marker, is 

highly expressed in the samples. The lineage makers genes (Gr-1, CD19, B220, CD3, CD4, 

CD8, and IL-7Rα) are either expressed at low levels (Gr-1) or below or near the level of 

detection (all CD19, B220, CD3, CD4, CD8, and IL-7Rα). No probe for Ly76 (Ter119) was on 

the Illumina expression array. 
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Supplementary Figure 4. Relationship between CNVR and eQTL by distance and effect 

size. Top left: Frequency of hematopoietic eQTLs as a function of distance between the 

expression probe and CNVR. Most eQTLs do not overlap the associated expression probe. Top 

right: Hematopoietic eQTL effect size (correlation coefficient) as a function of distance between 

the expression probe and CNVR. The effect size significantly decreases with increasing 

distance. Middle row: Same as above for adipose tissue. Bottom row: same as above for 

hypothalamus. 
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Supplementary Figure 5. Concordance between CNVRs and individual CNV boundaries. 

Average concordance is the average of wuHMM call lengths divided by the CNVR length and is 

used to distinguish between ‘complex’ (average concordance ≤ 0.75) and ‘simple’ (average 

concordance > 0.75) CNVRs. Left: average concordance histogram prior to filtering calls based 

on empirically derived score thresholds. Right: average concordance histogram after applying 

the score thresholds (>1.5 for gains, >2.5 for losses). 
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INTRODUCTION 

 

Therapy-related acute myeloid leukemia (t-AML) is a secondary malignancy attributable to the 

chemotherapeutic treatment of an initial disease.  Therapy-AML comprise 5-20% of all AML 

cases and its prevalence is increasing along with the population undergoing chemotherapy1,2.  

While there is evidence that chemotherapy regimen3 and genetic background4 contribute to t-

AML, little else is known definitively regarding susceptibility.  Gaining a better understanding of t-

AML susceptibility factors is a pressing concern as it may lead to prevention strategies and 

provide insight into the genesis of de novo AML. 

 One class of chemotherapeutic associated with t-AML is the alkylators (i.e. melphalan, 

busulfan, thiotepa).  The therapeutic effect of alkylator agents is believed to result from the 

formation of DNA adducts and single and double-strand breaks, which trigger apoptosis or growth 

arrest5.  Based on this presumed mechanism of alkylator action, genes involved in DNA repair6, 

response to oxidative stress7, and drug metabolism8 have been investigated as mediators of 

susceptibility in candidate gene studies, with largely inconclusive results.  A recent study in our 

lab investigated the genetic basis of t-AML susceptibility using inbred mice9.  In this study, eight 

to twelve individual mice from each of 20 inbred strains were treated with the alkylating agent N-

nitroso-N-ethylurea (ENU), a potent mutagen with a propensity to cause AT:TA transversions and 

AT:GC transitions10. Mice were monitored for the development of MDS and AML for up to 16 

months post ENU exposure.  Myeloid tumors varied by strain, supporting the hypothesis of a 

strong genetic component in t-AML susceptibility.  Although much has been learned from the 

combined efforts of candidate gene and genome-wide studies to elucidate the basis of t-AML 

susceptibility, major contributing factors to t-AML susceptibility have yet to be identified.  

 We hypothesized that the pre-exposure transcriptional state of hematopoietic stem and 

progenitor cells, the putative target of leukemogenesis11, underlies variation in susceptibility to t-

AML.  A pre-exposure transcriptional basis of susceptibility would be expected if a rapid response 

is critical in determining a cell’s ultimate fate upon mutagen exposure. This hypothesis is 

consistent with the observations that genes critical to surviving genotoxic stress in yeast are not 
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differentially expressed upon exposure12.  A similar situation has been reported in human 

lymphoblastoid, in which the pre-exposure transcriptional state of the cell more accurately 

predicts survival than the post-exposure state13.   

 In this study, we apply an integrative genomics approach14 to identify and prioritize 

genetic and transcriptional networks underlying t-AML susceptibility in mice. By linking expression 

profiles and complex traits to common genomic loci, this method can ameliorate some of the 

limitations inherent in genetic association and expression profiling studies15-19.  When combined 

with network analysis, this methodology has proven useful in elucidating the molecular networks 

underlying several complex traits20,21.  
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RESULTS 

 

Expression quantitative trait loci in hematopoietic stem and progenitor cells 

Previously, we reported the association 408 expression traits (391 genes) with 214 DNA copy 

number variant regions (CNVRs) in kit+/lineage- (KL) cells22.  However, this cis-eQTL map does 

not include genetic variation that is not captured by the CNVRs reported therein (i.e. SNPs).  To 

derive a more complete map of cis-eQTLs in this population, we used publicly available SNP data 

from 48 classical inbred strains to map SNP-based eQTLs23.  The SNP resource includes 

132,285 SNPs per genome, of which 115,009 we considered informative (as defined in Methods).  

Prior to eQTL mapping, we used a simple merging algorithm to iteratively join adjacent SNPs into 

haplotype blocks.  This algorithm results in haplotype blocks in which the genotypes of a 

complete set of SNPs is predictable to a given level of accuracy.  We selected a threshold such 

that for a given block, we can accurately predict the genotype of every SNP in all 48 strains with 

at most one error (Figure 1A).  The 23,884 resulting haplotype blocks are comprised of 1 to 62 

SNPs (mean=4.82, median=4) (Figure 1B).  There are 2 to 6 haplotypes per block (mean=3.92, 

median=4) (Figure 1C).  9,324 blocks have one error, and the remaining 14,560 have zero.  Of 

the 7,405 haplotype blocks within 250 Kb of a CNVR boundary, only 39 have genotypes that 

perfectly correlate with CNVR genotypes (Figure 1D).  We speculated that the low correlation is 

due to the fact that using all 48 classical inbred strains in the haplotype block construction 

resulted in higher numbers of haplotype labels.  Therefore, we also derived a haplotype block 

map using only the 20 strains from the CNVR study.  However, this analysis resulted in highly 

similar results in terms of the map and haplotype correlation with CNVR genotypes (data not 

shown).  This suggests in current data sources, CNVRs and SNPs represent distinct sources of 

genetic variation in the mouse genome. We used the 48-strain haplotype resource to map KL 

expression traits to SNP-based haplotypes, as previously described22.  We considered only cis-

eQTL-associated genes, as it has been shown that trans-eQTLs contain a large proportion of 

false positives24.  We found 127 associations between expression traits and haplotypes, after 

selecting the most significant association per trait. 
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Global pre-exposure transcriptional state of hematopoietic stem and progenitor cells is 

associated with t-AML susceptibility 

We performed gene expression profiling on 20 inbred strains listed as Priority 1-4 from the Mouse 

Phenome Database 25.  Two-to-three biological replicates arrays were analyzed per strain.  This 

GEP data was previously published22. We excluded wild-derived strains from this analysis 

because the extent of genetic differences makes difficult the interpretation of aCGH, GEP, and 

eQTL mapping analysis.  Fifteen of the strains were previously assayed for susceptibility to t-AML 

after exposure to ENU9.  Unsupervised clustering of gene expression profiles largely separated 

susceptible from resistant strains (Figure 2A).  The probability that the unsupervised clustering of 

expression profiles would reflect susceptibility status to the extent observed is < 0.01 (10,000 

permutations, see Methods and Supplementary Figure 1A).  Further, this clustering is not 

observed in other tissues that are highly unlikely to be involved in leukemogenesis, the 

hypothalamus and adipose tissue, nor does it reflect SNP-based strain distances (Supplementary 

Figure 1B-D).  Taken together, this supports the notion that the KL clustering of susceptible 

strains is not due to sequence polymorphisms effecting target hybridization26 but rather reflects 

tissue-specific differences in transcript abundance between inbred strains27.  Additionally, this 

observation suggests that the pre-exposure expression differences of many genes, rather than 

only a few, segregate the KL cells of susceptible versus resistant strains. 

 Next, we sought those genes that are differentially expressed between susceptible and 

resistant strains in KL cells.  We identified 917 differentially expressed genes (976 probes) at an 

FDR threshold of 5% (Supplementary Figure 2 and Supplementary Table 1).  The differentially 

expressed genes are enriched in several GO-annotated biological processes (Table 1), including 

the GO terms ‘apoptotic program’ and ‘nucleotide metabolic process’.  The Kegg pathways 

‘Pyrimidine metabolism’ and Colorectal cancer’ were also enriched.  ‘Acute myeloid leukemia’, 

‘Apoptosis’, and ‘p53 signaling’ are biologically plausible pathways that were enriched at least 

two-fold in the differentially expressed genes, however none of these pathways passed the FDR 
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< 25% threshold.  GO-apoptosis-annotated genes included both cell-intrinsic and extrinsic factors 

(Figure 2B). 

 

Integrated cis-eQTL mapping identifies candidate drivers of susceptibility 

There are 45 candidate driver genes (45 probes) that are both differentially expressed and linked 

to at least one eQTL.  We refer to these genes as anchors throughout the text.  37 are linked to 

CNVR-eQTLs; the remaining 8 are linked to haplotype-eQTLs.  To validate the cis-eQTL 

associations, we mined publicly available expression data representing hematopoietic stem, 

progenitor, erythroid and myeloid populations from the BXD recombinant inbred panel28.  

Because this data was generated using the same GEP platform as our KL data, we were able to 

ask how our kit/lineage population is related to these more purified populations (Supplementary 

Figure 3).  As expected, our KL expression profiles cluster most closely with progenitor profiles 

and are distinct from both erythroid and myeloid lineages.  For each candidate driver, we tested 

the association between BXD genotypes of SNPs within 2 Mb and driver expression.  We found 

that 30 of the 45 drivers were significantly associated with at least one SNP within 2 Mb in at least 

one of the hematopoietic compartments (26 in either Stem or Progenitor), supporting the 

hypothesis that expression differences of the anchor are caused by locally encoded genetic 

29,30variation.  Out of the total of 480 testable eQTLs-transcript associations, 300 (62.5%) were 

replicated in at least one of the hematopoietic data sets. 

 

Anchored network analysis identifies t-AML susceptibility expression modules 

Next, we hypothesized that expression differences of anchors would have multiple, downstream 

transcriptional effects.  For each anchor, we identified correlated expression profiles (FDR < 1%) , 

resulting in 30 sets of co-expressed genes or modules.  The number of targets per module 

ranged from 3 to 607 (mean=113, median=72).  We reasoned that true response genes will 

exhibit association with driver expression even when the remaining genome is randomly shuffled, 

as is true in the BXD recombinant inbred cross.  For each module, we tested the association 

between expression of the anchor and each response transcript in each of the BXD 
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hematopoietic populations.  We removed target genes from modules that were not associated 

with driver expression in at least one compartment (FDR < 25%) (Table 2). We also used a 

previously described co-expression network algorithm to derive modules of correlated genes29,30 

independent of linkage to eQTLs.   We filtered these modules on the basis of their reproducibility 

in the GdH datasets and compared the resulting modules with the anchored expression networks.  

The WGCNA modules are highly similar to the anchored modules in gene content, suggesting 

that the discovered co-expression structure is robust to different algorithms (data not shown). 

 The expression of each anchor gene is, by definition, associated with susceptibility 

status.  However, the strength of the association between the target genes of an anchored 

module and susceptibility is unknown.  To determine these values, we first computed eigengenes 

from each module30.  Then, we ranked anchored modules according to differential expression of 

the module’s eigengene and susceptibility status.  Using both KEGG and GO annotations, we 

found that 8 anchored modules were enriched in at least one annotation.  We visualized the 

anchored susceptibility modules as networks (Figure 3A), displaying the correlation between 

anchored modules and the strength of association between anchored modules and susceptibility 

status.  We also visualized a subset of the anchored susceptibility network, focusing on 

biologically compelling modules (Figure 3B and 3D). 
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DISCUSSION 

 

There is accumulating evidence that many genetic contributors to complex traits are not protein-

coding changes31.  If true, then the only other class of genetic events that can effect phenotype 

must, at some level, impact expression (i.e. eQTLs).  Hypothesizing that such events contribute 

to t-AML susceptibility, we took an integrative genomics approach to identify and prioritize 

candidate genetic and transcriptional networks.  The first step in this approach was to identify 

eQTLs in hematopoietic stem and progenitor cells, the likely target of leukemic transformation.  

Previously, we described a CNVR-eQTL map in classical inbred mice.  In the current work, we 

expanded this map to include SNP-based haplotype-eQTLs.  In deriving the mouse haplotype 

map, we found surprisingly little correlation between haplotypes and neighboring CNVRs.  This is 

in contrast to human studies, where nearly 75% of common CNVRs are estimated to be in 

linkage disequilibrium with neighboring SNPs32.  This suggests that at the currently available 

resolution and coverage (and genotyping accuracy), mouse haplotypes and CNVRs represent 

distinct sources of genetic information.  We found two-fold more CNVR-eQTLs than haplotype-

based eQTLs (401 vs. 167).  It is tempting to speculate that this difference in eQTL types is 

because CNVRs have a stronger impact on expression in cis and therefore are more likely to be 

detected as eQTLs.  However, the difference could largely be due to the reduced power to detect 

haplotype-eQTLs because of the exacerbated multiple testing problem that comes with 

performing approximately 20 times more statistical tests.  Greater than 60% of the eQTLs were 

reproducible in an independent dataset.  This is a conservative estimate of the true validation rate 

because only genetic differences between C57BL/6J and DBA/2J are present in the validation 

data. 

 The second step in the integrative approach was to find genes differentially expressed 

between susceptible and resistant strains.  Because unsupervised clustering of all expressed 

transcripts grouped strains largely by susceptibility status, we expected to find a large number of 

genes associated with susceptibility status.  Greater than 7% of the expressed transcripts are 

differentially expressed (976/13,496).  These genes are enriched in several, independent 
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biological processes, most notably apoptosis.  Among the intrinsic apoptosis genes are Caspase 

9 (Casp9), B-cell leukemia/lymphoma 2 (Bcl-2), BCL2-associated agonist of cell death (Bad), 

BCL2-associated X protein (Bax), and mutS homolog 6 (Msh6).  Msh6 is a member of the mutSα 

DNA mismatch recognition complex that has been shown mediate apoptosis in certain 

contexts33,34.  Notably, the absence of mutSα activity in myeloid progenitors results in the 

complete loss of O6-methylguanine (O6MeG)-mediated cytotoxicity35.  That resistant strains have 

higher expression of Msh6 suggests that upon alkylator exposure, resistant strains may recognize 

DNA damage and respond appropriately (i.e. die) whereas the KL cells of susceptible strains may 

tend to live, accumulate mutations, and transform.  In KL cells, almost all susceptible strains have 

no detectable expression of Casp9, a critical initiator of programmed cell death, suggesting that 

these cells (low-to-no Casp9 expression) are less primed for Casp9-dependent apoptosis.  

However, susceptible strains had decreased expression of Bcl-2, an anti-apoptotic gene, and 

increased expression of Bad and Bax, both pro-apoptotic genes. This would suggest that the KL 

compartment of susceptible strains is more ‘primed’ for cell death, consistent with the observation 

that the SWR/J  allele of Bcl2 confers increased survival in an F2 cross model of t-AML36.  

However, this pattern of expression is contrary to the prediction based on Casp9 expression, 

possibly indicating a regulatory feedback loop to compensate for the apparent absence of Casp9 

in susceptible strains.  Taken together, these results illustrate the complexity in assessing the 

relative functional activity of a cell population (i.e. readiness to commit to apoptosis) given a 

snapshot of the population’s static transcriptional state.  Experiments to test variation in alkylator-

induced apoptosis will help to resolve this apparent paradox. 

 Differential expression and gene enrichment analysis highlighted several biologically 

plausible pathways that may underlie t-AML susceptibility.  However, it remained unclear which 

pathway members, if any, are causal contributors to the phenotype, as illustrated by the complex 

expression patterns of the intrinsic apoptosis genes.  More broadly, the role and relative 

importance of each of the 917 differentially expressed genes in susceptibility remained 

undetermined.  We hypothesized that important transcriptional regulators of susceptibility affect 

the expression of multiple downstream genes.  Therefore, as the third step in the integrated 
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genomics approach, we identified networks of genes that are significantly correlated with 

candidate susceptibility drivers.  Drivers are those genes that are both differentially expressed 

and associated with eQTLs.  We trimmed the networks of response genes whose expression was 

not reproduced in independent data sets. 

 One of the benefits of the integrative genomics approach is that it can implicate biological 

processes that would not have been detected using differential expression alone.  Susceptibility 

networks are enriched genes involved in DNA repair, base excision repair, apoptosis, and cell 

cycle, among other annotations.  A second benefit of the integrated approach is that it 

differentiates between upstream (drivers) and response genes.  This is proving useful in 

prioritizing apoptosis-related genes for experimental validation.  Although Casp9 and Bcl2 are 

differentially expressed, Casp9 is also the candidate driver of module A_33, the module most 

strongly associated with susceptibility status.  We speculate that perturbation of candidate 

drivers, such as Casp9, are more likely to be informative in elucidating susceptibility than 

response genes (i.e. Bcl2).   

 Network analysis allowed us to predict the function of uncharacterized genes.  For 

example, A630001G21Rik is expressed primarily in primitive hematopoietic and B-cells (ref GNF), 

yet its function is undetermined.  Our analysis places it as the driver of module A_12, which is 

enriched in apoptosis-related genes including Bcl2.  Therefore, A630001G21Rik may play 

previously unknown role in regulation of Bcl2 expression and apoptosis activity.  Similarly, 

Cytoskeleton-associated protein-like 2 (Ckap2l) is the driver of the largest module, A_16, 

enriched in both cell cycle and DNA repair genes (Figure 3B).  Although Ckap2l is highly 

expressed in hematopoietic progenitors37, its functions are unknown (GNF). Its closest ortholog, 

Ckap2, is highly expressed in mouse stem cell lines and has detectable expression in 

hematopoietic progenitors, bone marrow, osteoclasts, osteoblasts, and macrophages37.  There is 

a growing body of literature suggesting that Ckap2 (also known as Tumor-associated 

microtubule-associated protein) is involved in cell cycle progression38-40.  It has long been 

recognized that disruptions to normal cell cycle parameters can impact cancer susceptibility41.  It 

is possible that Ckap2l contributes to cell cycle regulation in HSCs and progenitors, and that 
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genetic disturbances to its expression alter t-AML susceptibility.  Experiments that perturb 

expression of driver genes such as Casp9 and Ckap2l to assess their impact on module 

expression and activity are the next logical steps in determining the role of candidate networks in 

susceptibility.  If such experiments demonstrate a causal link between driver genes and module 

expression, then moving forward to more definitive transplantation experiments will be warranted. 

 A drawback to the anchored network approach, as currently implemented, is that it 

assumes there is only a single anchor per module.  In cases where CNVRs disrupt local 

chromosome structure, its is possible that a single genetic event impacts the expression of 

multiple neighboring genes (Figure 3C).  In module A_37, we found that 10 response genes are 

located with 7 Mb of this CNVR (Figure 3D).  This module warrants special attention because it 

includes poly (ADP-ribose) polymerase family member 2 (Parp2, the anchor) and 

apurinic/apyrimidinic endonuclease 1 (Apex1), both members of the base excision repair 

pathway42,43.  Both genes have lower expression in susceptible strains, again suggesting that 

lowered overall DNA damage response promotes susceptibility. 

 A caveat to the current work is that maps of genetic variation in the mouse genome are 

incomplete.  It is possible that un-captured genetic variants may be the ultimate cause of the 

observed co-expression networks.  And they may mediate their impact through mechanisms 

other than altering the expression of drivers.  In the extreme case, all modules may not be 

controlled by driver expression, but by undetected causes. Nevertheless,  the modules 

themselves are still informative in that they describe sets of coordinately regulated genes that, 

collectively, are associated with both susceptibility and biologically plausible processes and 

pathways.   

 To our knowledge, this is the first report of an integrative genomics approach to dissect 

the role of the pre-exposure transcriptional state in t-AML susceptibility.  From a clinical 

perspective, t-AML are important because they are generally incurable and median survival time 

from diagnosis is eight months3.  But because t-AML are clinically induced malignancies, they are 

by definition preventable.  Therefore, a long-term goal of t-AML research is to gain sufficient 

understanding of susceptibility factors in order to make worthwhile the personalization of 
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chemotherapeutic regiments based on t-AML risk.  The transcriptional networks and their 

candidate drivers described here are an important early step towards gaining such an 

understanding. 
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METHODS 

 

Genomic coordinates of 1,333 CNVRs were mapped from mm8 to mm9 using liftOver.  31 

CNVRs were unmapped and dropped from further analysis.  To derive haplotype blocks, SNPs 

for the haplotype map construction were downloaded from Broad Institute23.  Only SNPs from 48 

non-wild-derived strains were used.  SNPs that were contained within CNVRs, had minor allele 

frequencies < 5%, or were not genotyped in 25% or more of strains were considered to be 

uninformative and were excluded from further analysis.  The following steps were performed to 

simultaneously group SNPs into blocks and to assign haplotype to strains: 

 

(1) Begin with the first informative SNP on a chromosome. 

(2) If the number of SNPs in the current block is 1 then go to (3).  Otherwise, go to (4). 

(3) Group strains by genotype and add the next consecutive SNP to the current block. 

(4) Cluster strains by SNP-based distance using PAM (number of clusters = 2 to 6). 

(5) Assign haplotype labels to strains based in the clustering with the maximum average 

silhouette. 

(6) Derive consensus haplotypes.  For each haplotype cluster, a consensus haplotype is 

defined as the string comprised of the most frequent genotype at each SNP position. 

(7)  Compare the consensus haplotypes to the actual SNP genotypes.   

(8) If the number of errors is greater than 1 then go to (9), otherwise go to (10). 

(9) Remove the most recently added SNP from the current block. Store the haplotyping 

results from the previous iteration.  Start a new block with the current SNP.  Go to (3).   

(10) Add the next consecutive SNP to the current block.  Go to (4).  If there are no more 

SNPs on the current chromosome, select a new chromosome and go to (2).  The 

computation is complete when all chromosomes have been analyzed. 
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SNP-based distances between strains are computed as the sum of SNP differences between 

strains.  The range of number of haplotypes per block to allow was selected based on the 

estimated number of ancestral haplotypes44. 

 GEP expression profiling was previously described22 and is available at GEO under 

accession GSE10656.  This data is referred to as kit+/lineage- (KL) throughout the text.  

Hypothalamus and adipose were obtained from GEO (accessions GSE5961 and GSE8028, 

respectively).  For clustering and network analysis, probes were first filtered based on detection.  

In the KL data, a probe was considered detected in a sample if its signal was greater than a set of 

negative controls on the Illumina array.  13,496 probes were detected in all biological replicates of 

at least three strains (excluding C3H, for which only one array was analyzed).  Only the 14,871 

and 10,040 probes that were detected as present in at least 25% of the strains in the 

hypothalamus and adipose data sets, respectively, were kept for clustering analysis.  

Unsupervised hierarchical clustering was performed with R’s hclust function, using 1-Pearson 

correlation as the distance metric and the complete linkage method for node merging.  To assess 

the non-randomness of the strains clustering according to susceptibility status, we computed the 

ratio of the mean distances of among susceptible strains to the mean of the distances between all 

susceptible and resistant strains.  Then, we permuted the strain labels 10,000 times, and 

recomputed the ratio of distances.  The P-value of the observed clustering is the number of 

random permutations in which the distance test statistic >= observed distance test statistic 

divided by 10,000.  This analysis was performed on the median expression profiles of strain 

replicates, only in those strains in which the susceptibility status is known.  SNP clustering was 

based on strain-strain pair-wise distances computed by counting the number of SNPs that differ 

between each the strains divided by the total number of SNPs that are typed in both strains.  

 Strains with unknown susceptibility status were not included in the differential expression 

analysis.  We used the limma package in R to model the expression of each gene with 

coefficients representing strain replicates and susceptibility status45,46 and the false discovery rate 

(FDR) was estimated using q-value47.  All of the 976 significant probes were detected as present 

in at least 50% of either the susceptible or resistant strains.  Association of module eigengenes 
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with susceptibility was tested in the same way as differential expression.  Enrichment analysis 

was performed using DAVID48.  Only the GO annotations Biological Process 5 and KEGG 

pathways were assessed.  We only report annotations that pass an FDR threshold < 25%. 

Expression data from all 20 strains previously profiled were used in expression network analysis.  

Anchored expression networks were identified by searching for probes that exhibited expression 

profiles that were significantly correlated with driver gene expression at an FDR threshold < 1%.  

 Normalized gene expression data used for validation of eQTLs and anchored modules 

was downloaded from GEO (GSE18067).  This data set includes profiling on sorted (purified) 

hematopoietic stem, progenitor, myeloid and erythroid populations from female BXD recombinant 

inbred mice28.  This data is referred to as Gerald de Haan (GdH) throughout the text.  Only 

detection calls, coded as 0 for absent or 1 for present, were used to globally compare our KL data 

to GdH.  Clustering was performed using the same parameters as described above for the KL 

data.  KL eQTLs were validated by testing the association between the genotypes of SNPs within 

2 Mb of driver genes and driver gene expression in each compartment separately.  Genotypes 

were treated as factors in a linear model of driver gene expression.  P-values of the resulting F-

statistics were adjusted for multiple testing using Holm’s method49.  Drivers that had corrected P-

values < 0.05 in at least one compartment were considered validated.  Assessing the 

reproducibility of the association between driver and response gene expression was performed in 

a similar manner.  A linear model of response gene expression was fit with driver gene 

expression as the dependent variable (one model per driver-response gene pair per 

compartment).  In this case, Benjamini and Hochberg’s method to control the false discovery rate 

was applied to the resulting p-values50.  WGCNA analysis was performed as previously described 

using the R package WGCNA30.  Briefly, β values for calculating the weighted network adjacency 

were selected based on the power at which the scale law R2 exceeded 0.9.  Weighted adjacency 

matrices were computed, modules were defined using the cutTreeDynamic function (which 

selects good dendrogram cutoffs) and similar modules were merged using mergeCloseModules 

(which compensates for the high sensitivity of WGCNA).  Eigengenes were computed as the first 
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principal component of a module’s expression matrix.  Eigengenes were tested for differential 

expression between susceptible and resistant as described above for individual genes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 127



Table 1: Functional Enrichment of Differentially Expressed Genes  

Annotation Annotation name Count 
P-Value 

(nominal)
Fold 

Enrichment FDR (%)
GO:0008632 apoptotic program 11 9.58E-05 4.71 0.17
GO:0006464 protein modification process 88 1.77E-04 1.46 0.31
GO:0019318 hexose metabolic process 15 0.00107053 2.76 1.88
GO:0005996 monosaccharide metabolic process 15 0.00129867 2.71 2.28
GO:0046907 intracellular transport 43 0.00182315 1.63 3.18
mmu00240 Pyrimidine metabolism 11 0.00325706 2.98 3.99
GO:0031324 negative regulation of cellular metabolic process 25 0.00230736 1.95 4.01
GO:0009117 nucleotide metabolic process 18 0.00246768 2.27 4.29
GO:0009142 nucleoside triphosphate biosynthetic process 9 0.00286827 3.68 4.96

GO:0045934 
negative regulation of nucleobase, nucleoside, 
nucleotide and nucleic acid metabolic process 22 0.00335044 2.00 5.78

GO:0006915 apoptosis 39 0.00643571 1.56 10.81
mmu05210 Colorectal cancer 10 0.00953927 2.74 11.28
GO:0008637 apoptotic mitochondrial changes 5 0.00751505 6.23 12.52
GO:0006396 RNA processing 25 0.00852521 1.76 14.08
GO:0009064 glutamine family amino acid metabolic process 6 0.00927287 4.57 15.22
GO:0015031 protein transport 39 0.01063622 1.51 17.27
GO:0019362 pyridine nucleotide metabolic process 5 0.01370052 5.27 21.69
GO:0008219 cell death 39 0.01444197 1.48 22.73
GO:0016481 negative regulation of transcription 19 0.01461908 1.85 22.98
Count: Number of differentially expressed genes with given annotation. 
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Table 2: Anchored Susceptibility Modules

Module Anchor Gene KL HSC Progenitor Myeloid Erythroid Replicated

Association 
with 

Suscetibility Top GO Top Kegg
A_1 LOC634046 460 44 3 24 200 237 2.25 secretion by cell

A_2 scl41743.2_361 402 141 273 208 20 330 1.09

regulation of nucleobase, nucleoside, 
nucleotide and nucleic acid metabolic 
process

Ubiquitin mediated 
proteolysis

A_3 GI_38089999 38 5 2 1 3 8 1.72
A_4 A330106M24Rik 4 4 4 4 2 5 1.82

A_6 Ociad2 132 64 4 17 11 76 1.5
regulation of phosphoprotein 
phosphatase activity

A_7 GI_46852192-I 97 2 16 2 51 55 1.95 interphase of mitotic cell cycle
A_9 Zfp862 106 14 20 2 1 27 2.3
A_12 A630001G21Rik 112 80 51 39 49 105 2.38 regulation of transcription
A_14 Aste1 102 8 49 1 2 53 2.67

A_16 Ckap2l 607 5 117 290 5 357 1.28 DNA repair
Phosphatidylinositol 
signaling system

A_17 H2-Ke6 238 13 110 3 82 153 1.93129 A_20 Dusp16 91 46 5 44 31 73 2.08
A_21 scl0217069.13_16 58 4 5 22 5 30 2.72
A_22 Atf7ip 39 2 2 10 11 20 2.61
A_23 Snrpn 4 3 3 1 2 4 0.94
A_24 Atp6v0e2 78 5 6 2 1 6 2.91
A_25 Gimap7 30 4 3 1 7 10 2.35
A_26 Pdzk1ip1 79 40 32 1 21 58 2.35
A_27 Polr1b 27 4 11 5 3 13 3.11
A_28 Magohb 65 56 36 25 48 62 0.97 cellular lipid catabolic process
A_30 Sox13 34 19 26 4 2 30 1.45 fatty acid metabolic process
A_32 Ptcd3 18 8 15 6 5 18 2.68
A_33 Casp9 37 2 1 7 2 7 3.22
A_34 Ctsf 223 54 124 9 72 170 2.34
A_36 scl46617.10.1_4 13 5 4 9 6 11 2.5
A_37 Parp2 88 22 22 18 20 43 2.05
A_38 Hdhd3 178 73 3 71 2 103 1.78
A_39 5830417I10Rik 5 2 4 2 2 4 2.07
A_41 Prcp 3 3 2 3 3 4 2.11
A_43 Ggcx 7 7 8 6 4 8 2.53
KL: Number of Illumina expression probes significantly assoicated with anchored gene expression in kit+/lineage- (KL) cells
HSC: Number of Illumina expression probes in preliminary anchored module significantly assoicated with anchored gene expression in GdH Sca+/kit+/lineage- (HSC) cells
Progenitor: Number of Illumina expression probes in preliminary anchored module significantly assoicated with anchored gene expression in Sca-/kit+/lineage- (Progenitor) cells
Myeloid: Number of Illumina expression probes in preliminary achored module significantly assoicated with anchored gene expression in  Gr-1+ (Myeloid) cells
Erythroid: Number of Illumina expression probes in preliminary achored module significantly assoicated with anchored gene expression in  TER-119+ (Erythroid) cells
Replicated: Number of Illumina expression probes in preliminary achored module significantly assoicated with anchored gene expression in at least one GdH data set.
Association with Suscetibility: -Log10(P-value)
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Figure 1:  Mouse Haplotype Map.  (A) Typical haplotype block derived from Broad SNP data.  

Rows represent SNPs, ‘=’ are untyped.  Columns represent 48 classical inbred strains.  Strains 

sharing the same haplotype are grouped together and are separated from strains of other 

haplotypes by ‘|’.  Given the strain haplotypes, it is possible to predict the all typed genotypes with 

at most a single error. The distribution of the number of SNPs (B) and haplotypes (C) per block.  

The number of CNVRs that are accurately predicted by neighboring haplotype blocks is relatively 

low (D). 
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Figure 2: Gene Expression Profiling of Hematopoietic Stem and Progenitor Cells in t-AML 

Resistant and Susceptible Strains of Mice.  (A)  Unsupervised clustering of Illumina probes 

that are present in at least 3 strains largely separates susceptible (blue)  from resistant (red) 

strains. Susceptibility status of some strains is undetermined (grey).  (B)  Differentially expressed 

genes are enriched in apoptosis-related genes.  Heatmap of differentially expressed genes 

involved in apoptosis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 134



 

(A) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 135



 

(B) 

 

 

 

 

 136



 

 

(C) 

 137



 

 

(D) 

 

 

 

 138



Figure 3: Anchored Susceptibility Networks. (A)  Anchored modules are represented as 

nodes.  Edges between modules represent network eigenegene correlation.  Low and negative 

correlations are not shown for clarity.  Edges between the ‘Susceptiblity’ and anchored network 

nodes represent association between network eigengenes and susceptibility status.  Node size 

indicates the number of response genes in the anchored network.  (B) Module A_16, anchored by 

Ckap2l, is enriched in cell cycle- and DNA damage-annotated genes.  Green nodes represent 

genes with lower expression in susceptible strains, red nodes represent genes with higher 

expression in susceptible strains.  Correlations among response genes, represented as edges, 

are only display for those relationships where the Pearson correlation > 0.5. (C) Log2-ratio plot 

indicating the presence of a CNVR approximately 150 kb from Parp2, the anchor gene for module 

A_37.  (D)  Module A_37, includes 10 genes located with 7 Mb of the CNVR depicted in Figure 

3C. 
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Supplementary Figure 1: Strain Dendrograms.  Unsupervised clustering of strains using the 

strain median expression profile (A) groups strains by susceptibility status to an extent greater 

than expected by chance (see text), and differently than when clustering gene expression profiles 

of the hypothalamus (B), adipose (C), and when clustering based on SNP-based distance (D). 
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Supplementary Figure 2: Differential gene expression.  There are approximately 1,000 genes 

differentially expressed between susceptible and resistant strains. 
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Supplementary Figure 3:  Gene Expression Profiling of Hematopoietic Cells from BXD 

Mice.  Unsupervised clustering of Illumina detection calls groups expression profiles according to 

compartment (Erythroid: orange, Myeloid: navy blue, Hematopoietic stem cells (HSC): red, 

Progenitors: royal blue, KL cells: green), and correctly places KL samples between Progenitors 

and Stem cell samples.  Two HSC samples are outliers. 
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Conclusion 
 

The achievements of this thesis work include the development of novel software for the detection 

and genotyping of CNVs, determining the copy number content CNVs to a 10-kb resolution in 20 

inbred mouse strains commonly used in biomedical research, the development of an inbred 

mouse haplotype map, the mapping of both CNV- and SNP-based hematopoietic stem and 

progenitor cis-eQTLs, and the identification of candidate coexpression networks that underlie t-

AML susceptibility.  There are several findings that are of interest in the fields of cancer 

susceptibility and genetics. 

   

DNA Copy number variation 

 

We developed wuHMM to detect CNVs and demonstrated its performance characteristics.  A 

novel aspect of this software is that it can use SNP information to improve its sensitivity in 

detecting small CNVs when abundant sequence divergence exists between the genomes under 

comparison.  wuHMM has been utilized in other studies1 (other manuscripts in preparation), and 

has been cited in other studies as a novel application of HMMs in CNV detection2-4.  The advent 

of next-generation provide a new means of identifying CNVs5 by read depth coverage. 

Theoretically, re-sequencing at a high coverage will improve CNV resolution down to a base pair 

level.  Due to technical and cost constraints at present, it is unlikely that aCGH will become 

obsolete in the near-term.  Further, because wuHMM uses emission distributions of discrete 

variables, it is theoretically possible to directly apply wuHMM on read-count data for CNV 

detection.  The extent to which it would need to be modified and optimized for use on re-

sequencing read data is unknown.   

   To determine the copy number content of the mouse genome, we performed 

comparative genomic hybridization using a long-oligonucleotide array containing approximately 

2.1 million probes evenly spaced across the reference C57BL6/J genome (median inter-probe 

spacing of 1,015 bases).  We applied wuHMM to this data to identify 1,333 CNVRs (82 Mb) at an 

empirically estimated false positive rate of less than 5%.  Most CNVRs are less than 10 kb in 
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length, are found in more than one strain, and, in total, span 3.2% (85 Mb) of the genome.  There 

are several pressing questions regarding structural variation in mice genomes.  Second, are there 

tissue-specific CNVs?  Our analysis included the comparison of DNA from four tissues of an 

individual C57BL6/J mouse.  Although we detected no tissue specific copy number alterations, it 

does not preclude the possibility that they would be detected in more samples, different tissues, 

or using a higher resolution platform.  Third, what is the age of CNVs relative to the SNP-based 

haplotypes? Are CNVs coming and going in the genomes of these putatively identical and 

homozygous strains of mice?  These questions will need to be addressed by genotyping CNVRs 

and neighboring SNPs in a large number of individual mice from identical strains across multiple 

generations. 

 To assess the potential functional impact of copy number variation, we mapped 

expression profiles of purified hematopoietic stem and progenitor cells (data which we 

generated), adipose tissue and hypothalamus (data in public domain) to CNVRs in cis.  Of the 

more than 600 significant associations between CNVRs and expression profiles, most map to 

CNVRs outside of the transcribed regions of genes.  Presumably, the remaining CNVR eQTLs 

reflect expression variation mediated by alteration of regulatory material or local chromatin 

structure.  This would be consistent with a model where alterations in expression patterns are 

better tolerated than complete or partial gene gains or losses.  This observation refutes the prior 

prediction that the major impact of CNVs on expression would be through gene dosage effects6.  

The distant impact of CNVs on local expression variation was corroborated by an independent 

study of CNVs and expression variation in multiple mouse tissues7.  Multiple studies have cited 

this mechanism to explain associations between CNVRs and phenotypes: GSTT2B expression 

variation8,  hypertrichosis9, and Pea-comb phenotype10.  It is difficult to prove that a non-gene 

dosage CNV causes an expression change.  The development of a general framework for testing 

the link between CNV and expression would be beneficial.  It would help to define the 

characteristics of the CNV sequences (or structures) that play a role in expression regulation, and 

could facilitate the development of genetic modifications for altering gene expression. 
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We found that in hematopoietic stem and progenitor cells, up to 28% of strain-dependent 

expression variation is associated with copy number variation, supporting the role of germ line 

CNVs as major contributors to natural phenotypic variation in the laboratory mouse.  Some of the 

CNVR eQTLs reported here may be in linkage disequilibrium with another allele causing the 

associated expression change, underscoring the need to characterize the relationship between 

CNVs and other genetic variants.  It is likely that there are additional eQTLs not detected here: 

CNVRs that alter expression in only one or two strains, trans eQTLs, eQTLs that associate with 

genes expressed in tissues not sampled here, and eQTLs with weak effects. Increasing the 

number of strains and the tissues sampled would address some of these limitations.  However, 

extending this work to a much larger population with greater genetic diversity (i.e., the 

Collaborative Cross11) would increase the power to detect trans and weaker effects and therefore 

enable a clearer understanding the overall impact of CNVR on expression variability. 

 

Therapy-related AML 

 

The overarching goal of the thesis, to expand what is known about the processes underlying 

susceptibility to t-AML, has been met by the integrated genomics study presented in Chapter 4.  

We identified novel candidate expression networks associated with susceptibility and the putative 

upstream regulators of these modules.  The biological processes implicated include apoptosis, 

DNA repair (including base excision repair), and cell cycle regulation.  Each of these annotations 

are biologically plausible, given what is known about t-AML susceptibility, and warrant further 

experimental exploration.  The networks were validated at several levels.  First, the association 

between cis-markers and gene expression was assessed in independent data sets.  eQTLs not 

reproduced were dropped from further analysis.  Second, since we hypothesized that anchor 

genes drive expression of response genes, we also tested this association in independent data 

sets.  Again, we removed those genes where an association was not reproduced, resulting in 

well-validated coexpression networks.  We did not validate the role of expression networks in t-

AML susceptibility as these sets of experiments will be long term-projects that extend beyond the 
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scope of this thesis.  However, we have initiated the validation of the driver status of the Ckap2l 

module (enriched in cell cycle and DNA repair genes).  In these studies, we are knocking down 

the expression of Ckap2l in purified KL cells and assessing the expression of the network after 24 

and 48 hours.  We predict that knockdown of Ckap2l in C57BL/6J (t-MDS/AML resistant) cells will 

recapitulate the susceptible strain expression pattern of the Ckap2l module, proving that Ckap2l 

regulates (directly or indirectly) the cell cycle/DNA repair network.  If successful, then this 

paradigm will serve as a powerful method both to validate drivers of networks and to modulate 

network activity.  Ultimately, the contribution of these networks to t-AML susceptibility will need to 

be tested formally.  The ability to modulate network activity by altering driver gene expression will 

serve as a powerful tool in the costly and lengthy experiments that assess causality in t-AML 

susceptibility. 

 The development of a t-AML susceptibility classifier (or predictor) based on pre-exposure 

transcriptional profiles and anchored modules would be a valuable extension of the current work.  

Predictors could be tested by assessing the susceptibility of the BXD cross, for which extensive 

SNP and expression profiling data already exist.  Ultimately, the development of highly accurate 

classifiers for human t-AML susceptibility would be valuable in a clinical setting.  But in the near 

term, an accurate mouse classifier would be beneficial because it would enable the use of pre-

exposure transcriptional profiles as a biomarker.  This is practically important because the latency 

of t-AML can be up to 16 months.  This imposes significant cost and time constraints on these in 

vivo experiments. 
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