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ABSTRACT

It is shown that the behavioral semantics of Hoare's
Parallel Commands can be formally specified by an extension
of the regular expression, augmented by the shuffle operation

and the inverse shuffle operation.

As a corollary of the above, it is also shown that
the problems of behavioral equivalence and deadlock-detection

are solvable for the Parallel Commands.
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1. Introduction

With the recent advancement of LSI technology and dis-
tinguished trends towards more distributed computation, the
study of semantic models of parallel programming languages
have shifted from those with shared memory communication mech-
anism to those with 'thin-wire' message oriented communication
mechanism, £ 201

More than a decade ago, the macromodule project at Washington
University (St.Louis) successfully investigated the feasibility
of designing and implementing asynchronous concurrent systems
based on the idea of process coordination through thin-wire
communication at the architecture level. [I1]

Some programming languages adhere to the similar philosophy.
Examples are Actor System of Hewitt [5J, APPLE of Kimura [4],
Data Flow Language of Dennis [13], PLITS at Rochester [1], Small-
talk at Xerox PARC. [1], and Parallel Commands of Hoare [é1.
Because of the nature of its communication mechanism, a process
society specified by such a language can be characterized in a
significant way by its communication behavior, i.e. its message
transmission activities,

Riddle proposed an extension of the regular expression,
called the 'message transfer expression®[18], later called the
*event expression’[16], for a formal description of such behavior,
Harbermann's path expressions [4], Kimura's SC-expressions [10],

and Shaw's flow expressionsvﬁre intended to serve similar purposes.

[tq]



Some results on the power of such expressions are also
known [t01[le], One fundamental discovery in this area of
research is that the shuffle operation of the formal language
theory [2 ], denoted here by +, characterizes the behavioral
concurrency of two independent (non-commﬁnicating) activities.
Recently, Kimura showed (“], by generalizing the synchronization
mechanisms of event(flow) expressions, that the inverse of the
shuffle operation (~r) is sufficient to describe the behavior of
a network of communicating concurrent activities,

In this paper we will apply this result to define the formal
behavioral semantics of Hoare's Parallel Commands. As a corollary,
we will show the decidability of deadlock detection for the PC.

Throughout this paper we try to avoid unnecessary formalism.

In Section 2, we give a definition of the concept of 'behavior’
for communicating sequential processes. In Section 3, an exten-
tion of the regular expression is defined, and an event graph is
introduced as the schema of a parallel command. The results of
[11] are quoted and used to formulate a composition rule for
event &raphs. Section 4 shows the decidability of deadlock
detection after formalizing the concept of deadlock. Section 5

gives future problens,



2. Behavior of Communicating Sequential Processes

By the ‘*behavioral semantics' of a parallel command, we
mean the set of all possible sequences of event occurrences that
can be generated by, and can be observed from the outside of, the
process society specified by the parallel command. By an 'event
occurrence', we mean an an instantaneous execution of a communica-
tion action (input/output command) in the society.

We assume that (1) no two event occurrences are simultaneous
[i15]), (2) all processes are close enough in time-space so that for
any interval (of time-space), the total number of event occurrences
is finitesand there always exists a total ordering on them [12],
and (3) no event occurs between the executions of an input command
and the corresponding output command,

Even though agssumption (1) does not agree with Hoare's
statements "(input and output) Commands which correspond are
executed simultaneously, .." [ 6], because of assumption (3),
the disagreement is not significant.

We identify an input command by an alphabet with an upper
bar, and an output command by an alphabet without .a- bar.

Input commands with the same source process and the same target
variable type are identified as same, Similarly, output commands
with the same destination process and the same type value are
identified as same. We designate the behavior of a process
gsociety P, denoted by |P! , by a set of finite sequences of alpha-
bets. Each alphabet represents an input or output command inter-

acting with the outside of the society. Note that in our form-



alization the internal communication activities of the society
do not appear in the behavior of the society.
Schematically, the behavior of a process society can be

represented by:

xl x2 =
= i I b!

where o is an expression that specifies a set of finite sequences
of {'il,ic'z,...,im.yl,yz,....yn} . An execution of an input
command is denoted by "J'Ei and an output command by Yje When there
existsmore than one such society with the lines for ‘corresponding'
input/output commands interconnected, we obtain what we call an

event graph representing another hierarchy of process society with

inter~social communication structure. Event graphs are discussed
in section 3.3.
Two examples follow:

Example 13 SQUASH (from Hoare [L61)

Xs1*[cicharactery west?c ---> #(Aw
[ctasterisk ---> eastic (ne
lc=asterisk ---> west?c; Uiw

[ c¥asterisk ---> eastlasterisk; eastlc (N ee
0 c=asterisk ---> east!upward arrow I Xe
171 7 )))
x| = {A,ﬁe,w_ie,w—wee.... }i (W(euw(eeue)))*®

where A denotes the null sequence and * is the closure of

concatenation. Pigure 1 gives an event graph for X.



C L@ e C 4
 west = X ~ east
b mmea 4 beccnnama <

A
b o e A e e i e  — ——— — — — — —— o — ——— -4
BSt+1[P(0)¢:Q(0) ! a"sout?0;Q(1)4 "a”; out! 2; (2,02, 2
Q(0) b sq(1)f"p" || boby) +
P(1l)::1Q(1)!1"a"sout!l;Q(0)1"a";out!3; (ajlay3
Q(1)f"b"sa0) o i byb,) +
Q(0)s1*[P(0)2"a" s--> P(0)7"b" [ * (2D
P(1)?"a" ---> p(1)2"b* 1 | ayb,) +
Q1) ss#[P(0)?"a" ---» P(0)?"b" [i *(a,5,
P(1)?"a" ---> P(1)2"b" ] a4b5)
J

Fiju\r‘e 2: Event G'raph O]C BS



Example 21 Binary Semaphore
BS1+[P(110..1)13Q(1)!"a"souttisQ(1-i)i"a"outl(i+2);
(1)!"p";Q(1-i) "o ||
Q(110..2) 132 [(J410..1)P(§)2%a" --=> P(j)?"b"]

B!
|P(0)] s a,0az2b b, P(0)s1Q(0)!"a" = aj
[P(1)] a4la,3b,by P(1)13Q(0)!%"a" = ay
1Q(0)] + (256 ud,By)* P(0)s1Q(L)I"a” = ap
lQ(1)] s (858, 08555)" P(1)+1Q(1)! "a" & aj
IBS{ & 021301302 Similarly for bg - bs.

An event graph of BS is given in Figure 2. It represents
schematically the communication structure of the process society
BS. We call such a graph the event graph of a parallel
command. A systematic derivation of |BS| from |P(0)!, |P(1)},
1Q(0)| and ]Q(l)]. based on the event graph,is given in Section
3.3 in a more general form.

Notes:(1l) BS becomes deadlocked after the activity:
aOEOOaBEBI
(2) |Bs| is generated by the following activities:
{ a02508,a,2b4byb,bya4351a, ) 3byBsb, By }‘
33a31a1a13b3b3blb1a0a0OaZEéZbOEbeEé



3. Extended Regular Expression {ERE) and Event Graphs

In this section we extend the regular expression [14]by
adding the shuffle and its inverse operation. Then we define
an event graph as a labeled directed graph with multiple ares,

The intended interpretation of an event graph is the communication
behavior of a process society specified by a parallel command,
Each node represents a sub-society (mostly a process) whose
behavior is denoted by the ERE associated with the node, Each
arc represents a communication channel (a pair of corresponding
input/output commands) between two sub-societies.

From the ERE's of individual nodes, representing the internal
communication behavior of the society, it is possible to construct
an ERE for the entire graph representing the interaction of the
society with its outside environment. A formula  for such

construction is given in Section 3.3,

3.1 Extended Regular Expressions (ERE)
Let 5 be an arbitrary finite alphabet, and let LyvLy € Ef*.
The shuffle (+) and its inverse operation (~) are defined as;
*
L1+L2 x {xlylx2y20 . .xnyn 62 lxlXZo . oxn € Ll A ylyzo . oyn € L2} ,
- *
Ly~Lpy T {X3XpeeeX €3 | %1¥9%o¥ 50 KV €Ly a Y1¥peee¥pe Lo},

It is known that the family of regular languages are closed under
both + and ~, [ 3]
We define Extended Regular Expression as follows:
(1) All regular expressions are EREs.
(2) If A and B are EREs, denoting |A| and (B!, then (A+B) and
(A~B) are also EREs, denoting [Al+([B] and [Al~|B| respectively.



Example 3:
|((ab+cd)n-cb)| = {abcd.acbd.acdb.cabd.cadb.cdab}rv{cb} = fad}.

Notess(l) ERE denotes a regular set only.

(2) The closure of the shuffle operation is not included
in ERE, because, first, it is not necesgary for uninterpreted
schemata for parallel commands (in which no recursion is allowed),
gecond, it is known that once the closure operation is allowed,
the power of expressions (with ~ ) becomes equivalent to that of
Turing machine CL16], This denies solvability of many analysis

problems,

3.2 Construction of ERE for a Sequential Command

We say a command is sequential if it does not contain a

parallel command. It is straightforward to show that the
behavioral semantics of a2 sequential command is a regular set,
and therefore can be specified by a regular expression.

Table I gives a translation table from a sequential command
to a regular expression. Note that only input/cutput commands
are translated into the finite base alphabets 5 ; an input command

for a and output command for a, where a,a ¢ 5.

Example 4: DISASSEMBLE (from Hoare [6])

westu:*[bardimages(l..80)character;cardfile?cardimage ——— s(Ne
isinteger; i:i=1; AN
*[i<80 «~=> Xlcardimage(i); is=i+11; (0 W)
X! space w

]

[west | = (cw'w)"



TABLE Is Sequential Command Behavior Translation Table

Command Syntax

SKIP

A = B
<guard list>
A?B

AlB

X --->p
0(;@3

-u-[o(]

X0
(1em..n)( &3

ERE

A
A
A

mi

<P
<P

(o¢ )
XUB
B g

izm
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Example 5: ASSEMBLE (from Hoare [4)])

easttilineimages(l..125)character; A
iiintegers 1i:=1; AN
*[c icharacter; X7¢ ~-=-> #(Ne

lineimage(i)i=c; A
[i<12h ---> i;=i+1 (XX
f1i=125 ~~-> lineprinter lineimage; is=1 JAPA
31 ))
[i=1 ---> skip (AN
fi>l ~=-> *[i<l25 ——— lineimage(i)s=space;ir=i+1]; UXN%(AAN)
lineprinter!lineimage P
4 )

[east] = (B(AU p))*(A U D)

Example 1 of Section 2 also illustrates a derivation of a

regular expression for SQUASH.

3.3 Construction of ERE for a Parallel Command
We represent a process society by a directed graph, called

an event graph, which is similar to Kahn's Schema [81. It is

a directed graph with multiple arcs. All arcs are labeled
differently by a finite set of symbols Z. Each node is also
labeled by an ERE with ZUS UL as its base alphabety. where
Znﬂ=¢. The alphabet 5 represents input commands for inter-
nal communication, T represents output commands for internal
communication, and 2 represents input/output commands interfacing

with the outside of the society. For example, Figure 2 illustrates



an event graph for the BS process society. Note that the
communication behavior of a process society is completely char-
acterized by such an event graph.

In order %o incorporate an event graph as one node in another
super graph, we must have a rule for constructing an ERE (global)
from the ERE% of individual (local) nodes, Such a composition
rule is given in Kimura [il. The following theorem is a version

of the results adopted for event graphs.

Theoremsl:

Let ( {Ai |1 £icg m}. {aj \l <Jj< n}-) be an event graph,
where A; is an ERE for the i-th node, and aj is a label for the
j=th arc. Then, the ERE for the event graph is:

m n —

(+ A ) ( (ajaj) )

12| =

= (Ay+hAy+e . +hy) ~ ((agay) "+(apay) ¥+ 0 +(apa, ) *)

where + is the shuffle operation, and ~  is the inverse
shuffle operation.
(End of Theorem)
If there is no communication between the node processes,
then the society behavior is an arbitrary interleaving of the
individual process activities, with (:Ai) representing such
behavior, The sequence (ajEj) represents a logical requirement
for the communication channel j that an execution of the output
command must preceed that of the corresponding input command, and
that no other action should occur in between. Therefore, since
each communication channel is independent with others, f(ajEj)*
represents the logical constraint for communication behaiior in

the entire socliety. The inverse shuffle operation extracts



only such communication activities that satisfy the constraint,

from the uncontrolled behavior of the society (+44).
i

Example 63
a C a C
i Sl : Ry $
t| axp e I B (a+c) (b+d)
e = I
b o] b d
(Zxb+cxd) ~ (xX)" = (3+8) (b+d) s = {x}
Q={ab,c,d}
Example 73
a c a c
e SRR oo [
| (@xp)* o (exa)*| | = [ (3+C) (va+dT)* (b+d)
L o I
b a b 4

((3xb)*+(3%a) ™) ~(xX)* = (3+3) (ba+dc)(b+d)

There are two types of nodes in an event graph: one group
of nodes which interface with the outside, called the frontier
nodes, and the other group of nodes which communicate with other

members of the society only, called the internal nodes.

The following theorem is a corollary of the above theorem 1,

Theorem 2: For a given event graph,
let {Ai] be the set of EREs for the frontier nodes, and
{Bj} be the set of EREs for the internal nodes.
Then, the ERE for the event graph is: ( IAi Y~ ( ;Bj e
(End of Theorem 2)

2
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In short, the behavior of internal nodes restrict the
behavior of frontier nodes, and this defines the system behavior.

A special case of the theorem is as follows:

—’-‘-—al AT u) 2 B(E,v) Y c(wy) FP S pEy)

where D(X,y) = (A(X,u)+C(V,y))~B(u,v).

Example 8: Conway's Problem (from Hoare [6])

c west 22— X € east - p
Y
westss(cww)” (Example 4)
Lis(w(euw(eeve)))?* (Example 1)
easts1 (8( A up))* (X uU p) (Example 5)

Y(C,p) = (cww) +(E(AU D))" (AUD) ~ (Wleuw(eeue)))™

Example 91+ Binary Semaphore (Figure 2)
P(0) and P(l) are the frontier nodes.

Q(0) and Q(1) are the internal nodes.
By the theorem 2,
[Bs| = ((ag0ay2byby)+(ajla)3byby))
~ (808, U, By ) *+(8,5, Ud,B5)%) = {0213,1302].

In general, our composition rule for an ERE for a parallel

command is as follows:



(1) Construct an ERE for each process command,
If a process command is nested inside another one, then
recursively apply the steps (1) - (3) inside-out.

(2) Identify the frontier process commands and the internal
process commands.

(3) Using the theorem 2, compute (+41) ~ (+Bj).

4
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4, Deadlock Detection

We conceive the deadlock problem as a problem on communication
protocols i.eflproblem about an agreement among the society
members on how to communicate with each other. Where no commu-
nication exists, no deadlock exists. A deadlock occurs in a
process society S with respect to a communication protocol G,
when there exists a partial activity of S admissible under C that
can not be completed an activity of S admissible under C. In

other words, S is deadlock-free under C, if any partial activity

of S legal under C can be completed to a legal activity of S.

In order to define formally the concept of deadlocﬁfe
or

graphs representing parallel commands, we need another language

vent

operator @. The prefix operator, @, is defined as:
@L F {xe‘i*[xyeL and yéz*}, where Lg:_z*.
This operator represents partial activities, and it is known

that the family of regular languages are closed under @. [2:]

Definitions TLet E = ({Ai‘l £isg m}. {ajl l<jcs é}) be an

event graph, and let A 5 (+A3), B ¥ (f(aij)*).
1 o

E is deadlock-free iff @A ~B ¢ @(A~B)

(End of Definition)

Note: A~B is the behavior of the graph.

Example 10: BS is not deadlock-free,

A (a00a22b0b2 )+( a3la13b3b1 }+( EQBO v 51.5'1 )*+(§232 ") 5353 ) *

B = (aya )*+(a151)*+(a252)*+(a353)*+(b050)*+(b1'51)*+(b252)*+(b353)*

Consider a partial activity; o = a0500a3531.
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Then, since aga,;0asdjla,2bybga)3bsbsby €A , (€ @4 and

of~B ={01}), However, 014 e{0213,1302} = {A,0,02,021,0213,
1,13,130,1302 }

That is to say, 01€@i~B but 014 @(A~B).

Therefore BS is not deadlock-free by definition.

Theorem 3

It is decidable whether an . event graph is deadlock-free or not.
Proof: The family of regular languages are closed under -, U ,*,+,

and ~. The subset inclusion problem is known to be decidable

for regular languages.
Q.E.D.

By the same argument, we can claim:

Theorem 4

It is decidable whether two event graphs are equivalent or not.

As far as parallel commands are concerned, we can say that
in one level of abstraction (i.e. uninterpreted behavioral abst-
raction) their equivalence and deadlock-freeness problems are
decidable. The next level of abstraction will involve some

interpretation of message contents transmitted through communi-

cation channels.



HT

5. Discussion and Conclusion
The following characteristics of the parallel command
make it possible to formalize its behavior by a regular set
as we did in this paper:
(1) No recursion is allowed.
(2) Communication is through a 'thin-wire® (no shared memory).
(3) No memory element exists in a communication link (no buffer).
A similar formalism can be constructed for G.Kahn's program
schemata [8), first without recursion. However, since its commu-
nication channel is a fifo queue (unbounded), a specification of
communication behavior through such a channel requires the shuffle
closure operation (#); i.e. in stead of (xx)* for each communica-
tion channel, we must use (x§)#, which is a Dyck language, for
interaction between an output command x and the corresponding
input command X. Therefore the behavior of such a society will
not be regular anymore, and the decidability results may or
may not be applicable. The composition rule (Theorem 2) is
valid for Kahn's schema, too.
There are two problems immediately related to this work.
(1) Calculus for ERE.
The nature and power of + and # have been studied to some
extent in the past [0], but not for ~-. An algorithm for
translating an ERE to a regular expression must be discovered.
(2) Interpreted behavioral abstraction.
Our formalism is completely uninterpreted. Some degree of

interpretation must be included in a behavioral abstraction.



I8

Consider the following command for integer semaphore:

Stivaliinteger; vali=0;

v
*(X?V() -==> vali=val+l M
P

Ival»0; X?P() ---> val:=val-1l

]
We want to say that the behavior of S is (VP)#. but our

formalism gives S| = (vup)*. In this example, inter-

pretation of valisinteger makes the difference.
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