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ABSTRACT OF THE DISSERTATION 

Genomic Approaches for Pathway Identification in 

Regenerating Sensory Epithelia of the Inner Ear 

by 

David Michael Alvarado 

Doctor of Philosophy in Biology and Biomedical Sciences  

(Molecular Genetics and Genomics) 

Washington University in St. Louis, 2009 

Professor Michael Lovett, Thesis Advisor 

The inner ear utilizes sensory hair cells as mechano-electric transducers 

for sensing sound and balance. In mammals, these sensory hair cells lack the 

capacity for regeneration and if damaged lead to hearing or balance disorders. 

However, non-mammalian vertebrates such as birds maintain their regenerative 

abilities throughout their life. We completed a gene expression profiling time 

course of regenerating sensory epithelia (SE) in avian cochlea and utricle on a 

custom transcription factor microarray following damage by laser and chemical 

ablation and identified genes from known signaling cascades differentially 

expressed during SE regeneration. In the second study, we selected 27 of these 

genes for knockdown by siRNA or small molecule inhibition to determine their 

requirement for SE regeneration and identified downstream targets. We 

assessed affects on proliferation using a 96 well high throughput assay and 

profiled gene expression changes that resulted from each knockdown. Using 

these techniques we have determined genes required for SE proliferation and 

identified novel epistatic relationships between many of these genes.  
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In a third study we used 3 complimentary approaches to identify 

downstream targets of GATA3 in the avian utricle. The zinc finger transcription 

factor GATA3 is required for inner ear development and mutations cause sensory 

neural deafness in humans.   In a previous study we had observed that GATA3 is 

expressed throughout the SE in the cochlea; however, expression is limited to 

the striola of the utricle. The striola corresponds to an abrupt change in 

morphologically distinct hair cell types and a 180° shif t in hair cell orientation.  

We used microarray expression profiling of direct comparisons between cells 

micro-dissected from the striola vs. extra-striola, GATA3 knockdown by siRNA in 

utricle sensory epithelia and GATA3 over-expression to identify genes potentially 

regulated by GATA3 in the inner ear. We confirmed the direct in vivo interaction 

of GATA3 with two of these targets (LMO4 and MBNL2) by chromatin 

immunoprecipitation (ChIP) using GATA3 antibodies and also demonstrated by 

RNA in situs that both these genes exhibit patterns of expression consistent with 

their direct regulation by GATA3.   
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CHAPTER ONE 

INNER EAR DEVELOPMENTAL GENETICS 
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Up to 30 million people in the United States are estimated to have 

significant auditory impairment, 60% of these individuals being between the ages 

of 21 and 65.  Over the age of 65, 1 in 3 individuals suffers from age related 

hearing loss (Cruickshanks, Wiley et al. 1998).  One in 1000 newborns suffer 

from congenital hearing impairment, more than half of these cases are due to 

genetic factors (Morton 1991; Parving 1993; Mehl and Thompson 1998). Though 

deafness is a component of many syndromes, most genetic causes of hearing 

impairment are non-syndromic. There are 75 loci for autosomal recessive non-

syndromic (DFNB) forms of deafness, 57 loci for autosomal dominant (DFNA) 

and 5 X-linked (DFN) loci mapped to date. 43 causative genes for deafness have 

been identified (Van Camp and Smith 2008).  The most common cause of 

genetic deafness is the gap-junction protein connexin 26, responsible for greater 

than 50% of pre-lingual, recessive deafness and 15-30 % of sporadic cases 

(Tranebjaerg 2008 ). The majority of hearing loss cases are due to sensorineural 

deafness. This sensorineural hearing loss results from damage to the sensory 

hair cells or nerves of the inner ear.   

The inner ear is divided into two functional structures: the vestibular organ, 

which is responsible for maintaining balance and the auditory organs, which 

sense sound (Figure 1-1). The vestibular organ consists of three semi-circular 

canals responsible for sensing rotational acceleration as well as the saccule and 

utricle, which sense linear acceleration and gravity. The cochlea is a coiled 

chamber filled with a potassium ion-rich fluid called endolymph. The cochlea’s 

primary function is to sense sound. Both organs of the inner ear utilize hair cells 
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as mechano-electrical transducers. Movement of the stereocilia of sensory hair 

cells in the inner ear initiates an action potential, translating mechanical 

movement into an electrical impulse. Two types of hair cells are used to detect 

sound in the cochlea. A single row of inner hair cells are responsible for the 

majority of hearing.  Three rows of outer hair cells refine the sensitivity and serve 

as sound amplifiers (Figure 1-2). High frequency sounds are detected from the 

shorter stereocilia at the base of the cochlea, while low frequencies are detected 

from the longer stereocilia at the apex. The sensory hair cells are surrounded by 

non-sensory supporting cells; together these cells comprise the sensory 

epithelia. The sensory epithelia is under laid by a basal membrane and overlaid 

by the tectoral membrane. As sound waves travel through the outer ear, they 

cause vibration of the tympanic membrane, the eardrum. These vibrations in turn 

cause movement of the bones in the middle ear. Movement of these bones 

vibrates the cochlea initiating waves of the endolymph fluid within. These waves 

cause movement of the basal membrane and the sensory epithelia. Contact 

between the stereocilia and the tectoral membrane causes the stereocilia to 

Figure 1-1 Anatomy of the adult 
inner ear, reproduced from 
(APTA 2002). Three semi-
circular canals sense rotational 
acceleration, the utricle and 
saccule sense linear acceleration 
and gravity. Together these three 
structures comprise the 
vestibular organ which primarily 
functions in maintaining balance. 
The cochlea is the coiled 
auditory organ which senses 
sound. 
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bend. This bending action opens cation channels allowing an influx of potassium 

ions from the endolymph. Depolarization of the hair cells initiates 

neurotransmitter release at the base of the sensory hair cells sending an action 

potential to the auditory cortex of the brain via the VIIIth cranial nerve (Hudspeth 

1997).  

 

 

 

Figure 1-2 Cross section of the Organ of Corti from a mammalian cochlea, modified from 
(Steel 1999). The cochlea utilizes sensory hair cells as mechano-electric transducers to 
detect sound. Sensory hair cells are surrounded by non-sensory supporting cells. Both cell 
types arise from the same cell lineage and together comprise the sensory epithelia. 
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The hair cells of the utricle operate in a similar manner to the cochlea. The 

sensory epithelia of the utricle consist of supporting cells and sensory hair cells 

overlaid by a gelatinous matrix containing small calcium carbonate particles 

called otoconia (Figure 1-3). During movement, the overlaying matrix stimulates 

the sensory hair cells activating action potentials that signal linear acceleration 

and gravity. 

 

 

The vertebrate inner ear originates from the otic placode, a thickening in 

surface ectoderm that forms above the hindbrain early in embryonic 

development.   The otic placode invaginates into the mesenchymal tissue to form 

the otic pit. The otic pit enlarges and closes to form the otocyst, also known as 

the otic vesicle.  The resulting structure goes on to form the vestibular (balance) 

and cochlear (auditory) organs of the inner ear. Terminal mitosis occurs between 

E14-E15 (Ruben 1967). At this time, sensory hair cells are first detected. These 

Figure 1-3 The utricle otoconia, modified from 
(Dickman 2009). The utricle utilizes sensory hair 
cells to detect linear acceleration and gravity.  
The utricle sensory hair cells are overlaid by a 
gelatinous matrix containing calcium carbonate 
particles called otoconia. As the head tilts left or 
right, the weighted otoconia shift the gelatinous 
matrix, deflecting the sensory hair cells. 
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sensory hair cells are surrounded by non-sensory supporting cells (Adam, Myat 

et al. 1998). In the cochlea, each hair cell is surrounded by specialized 

supporting cells: inner phalangeal cells or Deiters’ cells which lie beneath inner or 

outer hair cells respectively. Inner and outer hair cells are separated and 

supported by inner and outer pillar supporting cells. Sensory hair cells and non-

sensory supporting cells originate from the same cell lineage and together 

comprise the sensory epithelia of the inner ear.   

 

 

Development of Inner Ear Anatomy 

FGF Signaling 

 Peptide ligands of the Fibroblast Growth Factor family are likely 

candidates for inducers of inner ear development. In zebrafish, targeted 

disruption of fgf3 or fgf8 cause disruption of the otic vesicle formation, but do not 

affect otic placode formation (Mansour, Goddard et al. 1993; Whitfield, Granato 

et al. 1996). These genes may have a redundant function since targeted 

disruption of both completely and specifically disrupts inner ear development in 

zebrafish (Phillips, Bolding et al. 2001). In mouse, FGF3 and FGF10 are thought 

to be the inducers of inner ear induction. FGF10 mutant mice develop smaller 

otic vesicles (Ohuchi, Hori et al. 2000) and FGF3 mutants do develop an otic 

placode, however, lateral ear differentiation is disrupted (Mansour, Goddard et al. 

1993).  Similar to the zebrafish, mouse FGF3 and FGF10 mutants fail to form an 

otic vesicle (Alvarez, Alonso et al. 2003; Wright and Mansour 2003). In the 
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reciprocal experiment, FGF3 misexpression in the vicinity of otic tissue was 

sufficient to induce ectopic otic vesicles in Xenopus and chicken embryos 

(Lombardo, Isaac et al. 1998; Lombardo and Slack 1998; Vendrell, Carnicero et 

al. 2000). In chicken the first FGF family members detected during inner ear 

development are FGF8, expressed in the endoderm, and FGF19 first expressed 

in the mesoderm, followed closely by FGF3 (Ladher, Anakwe et al. 2000; Kil, 

Streit et al. 2005; Ladher, Wright et al. 2005). While induction of the inner ear 

appears to be controlled by FGFs in multiple species, the specific FGFs appear 

to vary and it is still not clear whether these FGFs act directly or indirectly. 

 

The Pax Pathway 

The earliest known marker for otic fate is PAX8, which is expressed in 

preotic cells during gastrulation in the mouse (Pfeffer, Gerster et al. 1998; Heller 

and Brändli 1999). Knockdowns of PAX8 result in reduced otic placode size and 

disrupt development of hair cells in zebrafish otic vesicles (Riley and Phillips 

2003). The closely related homolog of PAX8, PAX2, is also expressed in preotic 

cells following PAX8 expression (Pfeffer, Gerster et al. 1998). PAX2 disruption 

does not affect otic placode formation, but it does prevent formation of the 

cochlea in mouse (Torres, Gomez-Pardo et al. 1996). Loss of PAX8 expression 

does not affect PAX2 expression, suggesting that though they are both required 

for proper inner ear formation, they act in different developmental pathways 

(Mansouri, Chowdhury et al. 1998). Drosophila homologs of Pax genes are well 

documented for their role in development of the eye (Silver and Rebay 2005). 
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These highly conserved genes likely act in a similar genetic network to regulate 

inner ear development.  

 

Notch Signaling and Atoh1 

 Though the specific signaling pathways required for triggering sensory hair 

cell regeneration have yet to be identified, several pathways have been 

implicated as playing a role in hair cell differentiation and proliferation. Progenitor 

cells of the sensory epithelia acquire either the sensory hair cell or supporting cell 

fate by lateral inhibition through the Notch signaling cascade (Figure 1-4). 

Progenitor cells that differentiate into sensory hair cells express elevated levels 

of Delta (Adam, Myat et al. 1998; Morrison, Hodgetts et al. 1999).  This causes 

neighboring cells to increase Notch expression. Increased levels of Notch inhibit 

hair cell differentiation in these cells, forcing them to assume a supporting cell 

fate. Atoh1 is initially expressed at low levels in all sensory epithelia progenitor 

cells, but is upregulated in emerging hair cells and increases expression of Delta 

(Bermingham, Hassan et al. 1999). Over-expression studies of Atoh1 in 

immature rat cochlear cultures results in an overproduction of hair cells, whereas 

Atoh1 null mice develop sensory epithelia completely lacking hair cells and 

consisting only of supporting cells (Zheng and Gao 2000). In progenitor cells 

surrounding emerging hair cells, increased levels of Notch expression induces 

Hairy and Enhancer of Split related genes Hes1 and Hes5. Both Hes1 and Hes5 

negatively regulate Atoh1 and as expected, knockdown of either gene leads to 

an overproduction of hair cells (Zheng, Shou et al. 2000; Zine, Aubert et al. 
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2001).  Additionally, adenoviral over-expression of Atoh1 in mature guinea pigs 

caused non-sensory supporting cells to transdifferentiate into functional sensory 

hair cells (Kawamoto, Ishimoto et al. 2003; Izumikawa, Minoda et al. 2005). 

Though forced expression of Atho1 has shown limited success in restoring 

hearing in mature mammals, this method is not a favorable choice for human 

hearing loss therapy. Atoh1 over-expression does not induce mitosis, rather 

transdifferentiation of supporting cells into hair cells. This leads to a depletion of 

supporting cells and compromises the ability to fully restore hearing.  

 

Figure 1-4 Lateral inhibition by Notch signaling. Sensory hair cells and non-sensory 
supporting cells originate from the same cell lineage. Unspecified cells express low levels 
of Atoh1. Levels of Atoh1 increase in progenitor sensory hair cells. Progenitor hair cells 
increase expression of the membrane bound Notch receptor ligand, Delta. Activation of 
the Notch receptors in neighboring cells inhibits expression of Atoh1 and Delta, inhibiting 
the sensory hair cell fate in these neighboring cells. 
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Wnt Signaling and Planar Cell Polarity 

 Modulators of Wnt signaling have been implicated in a variety of inner ear 

developmental stages from early otic placode induction and sensory specification 

to planar polarity of stereocilia bundles during cochlea elongation (Hollyday, 

McMahon et al. 1995; Dabdoub, Donohue et al. 2003; Stevens, Davies et al. 

2003; Ohyama, Mohamed et al. 2006; Sajan, Warchol et al. 2007).  The Wnt 

Signaling pathway consists of highly conserved signaling molecules and 

receptors that regulate numerous developmental processes (for review see 

(Logan and Nusse 2004). The primary components of Wnt signaling are secreted 

Wnt ligands characterized by highly conserved cysteine residues, their seven 

transmembrane Frizzled (Fzd) receptors and LRP5/LRP6 co-receptors (Rijsewijk, 

Schuermann et al. 1987; Bhanot, Brink et al. 1996; Yang-Snyder, Miller et al. 

1996; Pinson, Brennan et al. 2000; Tamai, Semenov et al. 2000).  

 Wnt signaling is primarily divided into canonical and noncanonical 

pathways. The canonical pathway functions by controlling protein levels and the 

availability of the cytoplasmic protein β-catenin  (Clevers 2006). In the absence of 

canonical Wnt signaling, β-catenin is sequestered by APC and Axin facilitating its 

phosphorylation by CK1α and GSK3 kinases. This phosphorylation initiates 

ubiquitination and proteosomal degradation of β-catenin. Wnt ligand activation of 

canonical Wnt signaling induces formation of Frizzled, LRP, Dishevelled (Dsh) 

complexes at the cellular membrane. Phosphorylation of the Fzd, LRP5, Dsh 

complex recruits Axin to the receptor complex. Recruitment of Axin to the cell 
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membrane releases β-catenin, which enters the nucleus and activates 

transcription of canonical Wnt regulated targets.  

 The majority of research to date has focused on the canonical Wnt 

signaling pathway. Wnt components also regulate developmental processes 

through the β-catenin independent, non-canonical pathway (for review see 

(Veeman, Axelrod et al. 2003).  The majority of research on non-canonical Wnt 

signaling suggests several overlapping genetic components and functions similar 

to the planar cell polarity (PCP) pathway. Mutations in Celsr1, Scribble and 

Vangl, mammalian homologues of Drosophila PCP genes, have been reported to 

cause defects in mouse cochlea hair cell polarity (Bilder and Perrimon 2000; 

Curtin, Quint et al. 2003; Montcouquiol, Rachel et al. 2003). Noncanonical Wnt 

signaling utilizes the same Fzd receptors as canonical Wnt signaling and 

involves the cytoplasmic signaling transduction protein Dsh. Downstream of Dsh, 

the noncanonical Wnt pathway diverges from canonical Wnt by mechanisms 

independent of GSK3 and β-catenin. A variety of intracellular mechanisms have 

been implicated in noncanonical Wnt signaling, from intracellular calcium release, 

Rho family GTPase mediated cytoskeletal remodeling and possibly the JNK 

pathway and Notch signaling.  

 Specific Wnt ligands are thought to play an important role during cochlear 

and vestibular differentiation. Wnt3a is first detected in the otocyst from E2.5 to 

E6. Misexpression of Wnt3a gives rise to vestibular patches within the cochlear 

duct. Wnt4 is expressed later by E5, bordering sensory vs. nonsensory regions 

just prior to sensory organ differentiation (Stevens, Davies et al. 2003). Though 
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specific sensory primordia have already been defined by this time, Wnt4 may 

play an important role refining sensory vs. non-sensory boundaries.   A more 

recent study has described specific expression pattern differences of Wnt ligands 

and Frizzled receptors during vestibular and auditory sensory organ development 

(Sienknecht and Fekete 2008).  During hair cell regeneration in response to 

injury, new hair cells will be required to properly orient themselves to restore 

proper hearing. It is likely that components of the Wnt Signaling and PCP 

pathways will be involved in this process. Recently, several reports have 

suggested a closely linked relationship between Wnt and Notch (‘Wntch’) 

signaling during embryonic development (Hayward, Kalmar et al. 2008).  These 

reports suggest a model in which Wnt Signaling establishes a prepatterned  

group of cells capable of specific differentiation states. Individual cell fates are 

then further refined by Notch Signaling. A further appreciation of these pathways 

and their intertwined relationships will be necessary to understand their roles 

during inner ear development and hair cell regeneration. 

 

GATA3 

In humans, mutations in GATA3 that disrupt the C-terminal zinc finger 

result in loss of DNA binding function. These mutations result in 

hypoparathyroidism, sensorineural deafness and renal anomaly syndrome (HDR) 

(Van Esch, Groenen et al. 2000), illustrating the sensitivity of these organ 

systems to GATA3 haploinsufficiency. GATA3 is expressed throughout the otic 

placode, beginning at E8-E9.5 in the mouse embryo (Grace Lawoko-Kerali 
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2002).  GATA3 is required for otic cup invagination and closure (Lilleväli, Haugas 

et al. 2006). Homozygous knockout of the GATA3 gene in mice results in 

embryonic lethality by E11, due to multiple organ abnormalities, massive internal 

bleeding, a complete inhibition of T-cell differentiation (Pandolfi, Roth et al. 1995) 

and abnormal brain morphology.  Heterozygote knockouts are viable, but have a 

progressive degeneration of cochlear sensory hair cells and corresponding 

hearing loss (van der Wees, van Looij et al. 2004), similar to that observed in the 

human HDR phenotype. Notably, both GATA3 heterozygous and null mutant 

mice also exhibit misrouted axonal projections to the inner ear (Karis, Pata et al. 

2001) and elsewhere in the nervous system (Nardelli, Thiesson et al. 1999; 

Lundfald, Restrepo et al. 2007). These observations suggest a role for GATA3 in 

neural development. 

GATA3 has been most extensively studied in the development and 

differentiation of the mammalian hematopoietic system.  During differentiation of 

T lymphocytes from hematopoietic stem cells, naïve CD4+ cells differentiate into 

either T helper type 1 (Th1) or T helper type 2 (Th2) cells.  This switch is tightly 

regulated by GATA3  (Szabo, Sullivan et al. 2003; Mowen and Glimcher 2004) 

and involves the direct transcriptional regulation of IL5 and IL13 by GATA3 to 

specify Th2 differentiation (Siegel, Zhang et al. 1995; Kishikawa, Sun et al. 2001; 

Lavenu-Bombled, Trainor et al. 2002).  GATA3 also plays a significant role in 

skin development and particularly in specifying inner root sheath cell vs. hair 

shaft cell differentiation and organization (Kaufman, Zhou et al. 2003).  Recently, 

a direct binding target of GATA3 has been described in the first intron of the lipid 
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acyltransferase gene AGPAT5 suggesting a critical role for GATA3 in lipid 

biosynthesis during skin epidermal barrier acquisition (de Guzman Strong, Wertz 

et al. 2006).  Although some GATA3 transcriptional targets of this type have been 

described in T-lymphocyte specification, skin differentiation and brain 

development (Hikke van Doorninck, van der Wees et al. 1999), little is known 

about its direct targets of action in inner ear development/differentiation.   

Although most previous studies of GATA3 in the inner ear have focused 

on its role in embryonic development, expression of GATA3 is also maintained in 

the mature inner ear.  Our group noted that GATA3 is expressed throughout the 

sensory epithelium of the mature avian cochlea, but its expression in the 

vestibular organs is limited to a 6-10 cell wide region in the striola of the utricle 

and lagena (Hawkins, Bashiardes et al. 2003) (Figure 1-5).  In the utricle, this 

narrow region of GATA3 expression corresponds to the location at which hair cell 

stereocilia undergo a 180° shift in orientation (Flock 1 964). Within the striola 

region, hair cell phenotype changes from so-called type I to type II (Figure 1-6). 

Type I hair cells are connected to calyx nerve terminals (Lysakowski and 

Goldberg 1997), these hair cells are morphologically distinct from type II hair 

cells connected to bouton nerve terminals from afferent and efferent neurons 

(Jørgensen and Andersen 1973; Jørgensen 1989).  Specific roles for type I and 

type II hair cells have not yet been defined, but their distinct morphologies 

suggest specialized functions.  The relationship between GATA3 expression and 

these two morphological changes is not clear.  Recent experiments have 

examined the orientation of regenerated hair cells in explants of the avian utricle 
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following surgical ablation of the GATA3-expressing region.  Such hair cells are 

normally oriented, suggesting that GATA3 probably does not specify hair cell 

reversal (Warchol and Montcouquiol, manuscript submitted).  Instead, it is likely 

that GATA3 plays a role in specification of hair cell phenotype (as type I vs. type 

II) and/or axon guidance near the reversal zone.  

 

 

Figure 1-5 Immunohistochemical staining with a GATA3 antibody shows GATA3 expression 
localized to a small strip of cells in the utricle (top panels) compared to diffuse expression 
in the cochlea (bottom panels) (Hawkins, Bashiardes et al. 2003) 
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Regeneration 

Avian hair cell regeneration 

 Avian hair cell regeneration was first identified in 1987 following acoustic 

(Cotanche 1987) and chemical (Cruz, Lambert et al. 1987) trauma. Following 

severe trauma on the stereocilia bundles of the cochlea hair cells, both groups 

identified signs of new hair cells following recovery. Cotanche (Cotanche 1987) 

performed a time course of hair cell regeneration response to auditory trauma. 

Following exposure to 120 decibel for 48 hrs, initial hair cell recovery was first 

detected by 24 hrs post trauma and by 10 days hair cells had completely 

recovered. Similarly, a more detailed study of hair cell regeneration in response 

Figure 1-6 Avian utricle hair cell patterns. The striola region contains the Type I hair cells and 
the extrastriola region is populated by the Type II hair cells. GATA3 is expressed in a 6-10 
cell wide strip of cells corresponding to the striola reversal zone. Sensory hair cells undergo a 
180° shift in orientation at the striola reversal zone. 
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to the known ototoxic antibiotic gentamicin was performed by Ryals and Rubel 

(Ryals and Rubel 1988). Chicks were treated with gentamicin for 10 days and 

hair cells were counted from 11- 32 days post treatment by light microscopy, a 

significant increase in hair cells was identified by day 25. Additionally, while 

sensory hair cells of the avian cochlea remain quiescent until they are damaged, 

hair cells of the avian utricle were found to undergo continuous turnover even in 

the absence of trauma (Jørgensen and Mathiesen 1988). Several studies have 

shown a limited regenerative ability in mammalian vestibular organs (Forge, Li et 

al. 1993; Warchol, Lambert et al. 1993), however, the regeneration is inadequate 

to repair any damage that is sustained, though this does provide some evidence 

that mammals may be capable of hair cell regeneration under the proper 

conditions. More recently, post mitotic, non-sensory supporting cells from mouse 

cochlea have been shown to be capable of re-entering the cell cycle up to 2-3 

weeks postnatal (Oshima, Grimm et al. 2007). The regenerative ability of 

neonatal mouse cochlea sharply decreases after 3 weeks due to a loss of the 

ability to downregulate the cyclin dependent kinase inhibitor, p27Kip1 (White, 

Doetzlhofer et al. 2006).  

 Avian hair cell regeneration has been shown to occur by two distinct 

mechanisms. The first mechanism is similar to the process of hair cell 

differentiation that occurs during inner ear development. Tritiated thymidine 

incorporation in new hair cells was utilized to show that new hair cell populations 

arise by mitosis of surviving cells (Corwin and Cotanche 1988; Ryals and Rubel 

1988). Later studies also demonstrated that supporting cells that survive the 
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initial trauma re-enter the cell cycle and that these newly formed precursor cells 

differentiate into sensory hair cells and supporting cells (Raphael 1992; Hashino 

and Salvi 1993; Stone and Cotanche 1994; Warchol and Corwin 1996).  The 

second mechanism for generating new sensory hair cells is direct 

transdifferentiation. Both chickens and amphibians are capable of generating 

new hair cells in response to either ototoxic or auditory injury in the presence of 

Aphidicolin, a blocker of S-phase division (Adler and Raphael 1996; Baird, Burton 

et al. 2000; Taylor and Forge 2005). Through this process, new hair cells are 

generated without cell cycle re-entry.  Supporting cells that survive the initial 

trauma phenotypically convert to functional hair cells. 

 

Cyclin Dependent Kinase Inhibitors 

 Cyclin dependent kinase inhibitors appear to play a major role in sensory 

epithelia maintenance once hair cell/supporting cell differentiation has occurred. 

Cyclin dependent kinases regulate steps through the cell cycle. Expression of 

cyclin dependent kinase inhibitors causes cells to exit the cell cycle, rendering 

them mitotically inactive. Shortly after differentiation, the cyclin dependent kinase 

inhibitor p27Kip1 is highly expressed in cells of the sensory epithelia (Chen and 

Segil 1999; Lowenheim, Furness et al. 1999).  p27Kip1 homozygous knockout 

mice develop with an excessive number of sensory hair cells, but retain a normal 

number of supporting cells. This suggests that p27Kip1 plays a role in preventing 

hair cell proliferation rather than differentiation. Similarly, the cyclin dependent 

kinase inhibitor Ink4D is expressed in cells that have acquired a sensory hair cell 
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fate (Chen, Zindy et al. 2003).  Ink4D knockdowns initially develop normal 

sensory epithelia. Sensory hair cells begin to progressively re-enter the cell cycle 

and die through apoptosis at approximately 5 weeks following birth. This 

evidence suggests cyclin dependent kinase inhibitors play an important role in 

maintaining mitotically inactive sensory epithelia cells in mammals. Though 

removal from the cell cycle plays an important role in maintaining functionally 

active sensory epithelia, this may be an important factor in the lack of 

regenerative capabilities in the mammalian cochlea. 

 

Genomic Approaches to Hair Cell Regeneration 

In a previous study from our group, differences in gene expression 

between cochlear and utricular hair cells of the avian sensory epithelia were 

expression profiled on a cross species transcription factor microarray (Hawkins, 

Bashiardes et al. 2003). Sensory hair cells of the avian cochlea only undergo 

regeneration when damaged and sensory hair cells of the avian utricle are in a 

constant state of regeneration. Sensory epithelia of the avian cochlea and utricle 

were compared to identify differences in mitotically quiescent and regenerating 

sensory epithelia. Transcription factor gene expression was assayed by 

comparative hybridization (avian cochlea vs. utricle) on a cross species custom 

transcription factor gene microarray (Messina, Glasscock et al. 2004). Previous 

studies have demonstrated that cross-species hybridizations can be reliably used 

on this type of array platform (Hawkins, Bashiardes et al. 2003; Renn, Aubin-

Horth et al. 2004). This study represented the first use of human microarrays to 
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interrogate chick gene expression. In addition to developing micro-cDNA 

amplification techniques enabling the study of a small number of cells from the 

sensory epithelia of the inner ear, this study identified several genes potentially 

involved in hair cell regeneration.  Notably, this study identified up-regulation of 

known deafness loci, c-KIT and PAX3, in the utricle and GATA3 in the cochlea. 

In situ hybridizations confirmed GATA3 expression throughout the sensory region 

of the cochlea, but limited to a 6-10 cell wide region in the utricle corresponding 

to the striola reversal zone. PAX3 and GATA3 will be examined in greater detail 

in Chapters 3 and 4 respectively. 

As a follow up study, the first large scale gene expression profiling of 

avian hair cell regeneration examined expression changes in regenerating avian  

cochlea and utricle (Hawkins, Bashiardes et al. 2007). Avian cochlea and utricle 

were separately damaged by either laser or chemical ablation. Samples were 

then expression profiled on a custom, cross-species transcription factor 

microarray across a recovery time course. This study identified components of 

known pathways differentially expressed during avian hair cell regeneration: 

TGFβ, PAX, NOTCH, WNT, NFKappaB, INSULIN/IGF1 and AP1.  Additionally, 

several genes that had not been implicated in any known pathways, such as 

CEBPG, were also identified as differentially expressed during avian hair cell 

regeneration. A detailed analysis of specific transcription factors and pathways 

enriched in regenerating cochlea and utricle will be described later in Chapter 2.   
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Another study from our group examined expression changes in the 

developing mammalian inner ear.  All stages and substructures of the inner ear 

were expression profiled from E9-E15 in the developing mouse (Sajan, Warchol 

et al. 2007).  This study identified several genes known to cause inner ear 

defects in mouse mutants (e.g., Ctnnb1, Eya1, Eya4, Gja1, Gjb6, Notch1, and 

Sox10 among others).  Interestingly, components of several known pathways 

such as Wnt, Notch, FGF Signaling, were found to be differentially expressed in 

specific structures and stages of mouse inner ear organogenesis. Though 

components of several pathways were identified in multiple stages and 

structures, different components were expressed at particular stages of 

development. For example, Wnt7a expression is specific to the cochlea during 

later development (E12.5-E15) and Wnt4 is higher in both the cochlea and the 

saccule compared to the utricle. Components of pathways that had not 

previously been implicated in inner ear development, such as the circadian 

rhythm pathway and estrogen signaling, were also identified. This study 

represented the most comprehensive analysis of expression changes in the 

developing mouse inner ear to date and identified several important genetic 

pathways involved in inner ear organogenesis. 

Future Directions 

Previous studies have identified several genes that are involved in hair cell 

regeneration and provided some evidence that the mammalian inner ear is 

capable of limited regeneration. Unfortunately the extent of mammalian 
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regeneration is not sufficient to compensate for the damage sustained. The 

evidence suggests that under the proper conditions mammals may be capable of 

hair cell regeneration. Our current understanding of genes involved in inner ear 

development and hair cell regeneration have mostly involved one gene at a time. 

A full understanding of genetic pathways required for hair cell regeneration will 

require connecting known pathways with newly discovered, unknown 

components. The microarray expression profiling of avian hair cell regeneration 

provided an important dataset to greatly increase our understanding of the 

genetic wiring utilized during sensory epithelia regeneration. In this thesis, genes 

involved in avian hair cell regeneration are first identified from this microarray 

expression profiling dataset. To determine if these genes are required for 

sensory epithelia proliferation, siRNA knockdowns and small molecule inhibitors 

were used to disrupt genes identified from the regenerative time course study. 

Effects on proliferation were determined in a high throughput 96 well assay, and 

each knockdown was expression profiled to identify genes that act downstream. 

In addition to understanding the genetic pathways required for hair cell 

regeneration, it is also important to identify the genes directly regulated by these 

critical transcription factors. Three complimentary approaches were used to 

identify genes potentially regulated by a transcription factor required for inner ear 

development, the zinc finger transcription factor GATA3. Direct in vivo interaction 

of GATA3 with two of these targets (LMO4 and MBNL2) was determined by 

chromatin immunoprecipitation (ChIP) using GATA3 antibodies and expression 

patterns consistent with their direct regulation by GATA3 was demonstrated by 
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RNA in situ hybridizations.  These studies identified genes involved in avian hair 

cell regeneration and identified novel epistatic relationships between numerous 

genes that had not previously been implicated in hair cell regeneration. 
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Introduction 

 Loss of inner ear sensory hair cells (HC) is a leading cause of human 

hearing loss and balance disorders. Unlike mammals, many lower vertebrates 

can regenerate these cells. In a previous study from the Lovett lab,  cross-

species microarrays were used to examine the differences between avian 

sensory epithelia (SE) from the mitotically quiescent cochlea and constantly 

regenerating utricle (Hawkins, Bashiardes et al. 2003). Two former members of 

the Lovett lab; David Hawkins and Stavros Bashiardes, conducted a follow up 

microarray gene expression profiling study of regenerating avian sensory 

epithelia from damaged cochlea and utricle  (Hawkins, Bashiardes et al. 2007).  I 

was a co-author in the study.  In this chapter I will focus on the microarray 

analysis of the dataset generated from this study. Specifically, this study 

describes the identification of major gene changes and pathways involved in 

avian hair cell regeneration.  This dataset was generated by profiling transcription 

factor changes in SE from avian cochlea and utricle following two distinct forms 

of in vitro injury: (1) laser ‘wounding’ of cultured SE or; (2) ototoxic hair cell death 

caused by treatment with the aminoglycoside antibiotic neomycin.  In the first 

case, cultured SE received linear ‘wounds’ with a pulsed laser microbeam 

(Figure 2-1). Creation of the lesion typically required 3–5 min/culture; during this 

time, control cultures were removed from the incubator and kept under identical 

conditions, but did not receive lesions. Wounded epithelia were allowed to 

recover for 30 min, 1 hr, 2 hrs or 3 hrs after the lesions. Equal numbers of 

lesioned and unlesioned specimens were analyzed at each recovery time point. 
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For the second injury regimen, utricles or cochleae were cultured for 24 hr in 

medium that contained 1 mM neomycin (Warchol 1999) (Figure 2-2). A sample of 

SE was collected immediately after this treatment; this constituted the 0 hr time 

point for the regenerative time course. Other cultures were rinsed and maintained 

in neomycin-free medium for an additional 24 or 48 hr. Equal numbers of 

specimens were cultured under identical conditions, but did not receive 

neomycin; these served as time-matched controls for comparative gene 

expression 

profiling.

 

 

Figure 2-1  Sensory epithelia laser ablation.  A laser microbeam was used to 
damage pure avian sensory epithelia. The laser path can be seen in the bright field 
image (left) and cell nuclei are shown by DAPI staining (right). After 24 hrs, cells 
have repopulated the lesion site. 
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Transcription factor gene expression was assayed by comparative hybridization 

(injured specimens vs. time-matched controls) on cross species custom 

transcription factor gene microarrays (Messina, Glasscock et al. 2004). Previous 

studies have demonstrated that cross-species hybridizations can be reliably used 

on this type of array platform (Hawkins, Bashiardes et al. 2003; Renn, Aubin-

Horth et al. 2004). This study represented the first large scale gene expression 

profiling of regenerating sensory epithelia of the inner ear. In the current study I 

describe multiple components of known signaling pathways that were clearly 

identifiable: TGFβ, PAX, NOTCH, WNT, NFKappaB, INSULIN/IGF1 and AP1. 

Numerous components of apoptotic and cell cycle control pathways were 

differentially expressed, including p27KIP and TFs that regulate its expression. A 

comparison of expression trends across tissues and treatments revealed 

identical patterns of expression that occurred at identical times during 

regenerative proliferation. Network analysis of the patterns of gene expression in 

Figure 2-2  Sensory epithelia chemical ablation. The ototoxic antibiotic neomycin was 
used to damage pure avian sensory epithelia. Using the hair cell specific marker, 
phalloidin, sensory hair cells can be seen in the untreated control (left) and absent 
following  a 24 hr neomycin treatment (middle). New hair cell populations can be seen 
following recovery (right). 
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this large dataset also revealed the additional presence of many components 

(and possible network interactions) of estrogen receptor signaling, circadian 

rhythm genes and parts of the polycomb complex (among others). Equal 

numbers of differentially expressed genes were identified that have not yet been 

placed into any known pathway. Specific time points and tissues also exhibited 

interesting differences: For example, 45 zinc finger genes were specifically up-

regulated at later stages of cochlear regeneration. These results were the first of 

their kind and provided the starting point for more detailed investigations of the 

role of these many pathways during sensory hair cell recovery. 
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Results 

Array analysis 

In order to quantify gene expression changes, along with associated 

statistical confidence limits, all expression data were analyzed as described 

below (see Materials and Methods). Briefly, array data were first normalized by 

LOWESS, a locally weighted linear regression model, to compensate for dye 

effects. To assess the similarity and reproducibility of data across multiple 

biological samples and technical replicates, data from multiple hybridization time 

points were hierarchically clustered together. Control probes were used to 

determine a background intensity threshold. Oligonucleotides that fell below this 

intensity threshold were removed from the dataset. To determine the statistical 

significance of differentially expressed genes, a one sample t-test was used to 

calculate a p-value for each gene across all replicate experiments from a 

particular time point. Self-organizing maps were generated to identify genes with 

similar expression patterns across multiple regeneration time points. In several 

cases, genes did not pass the filtering steps in both time courses across all time 

points. In these cases we extracted the missing values from the primary data and 

“filled in” the values to construct the patterns of gene expression across all seven 

time points.  In general the vast majority of TFs showed relatively modest gene 

expression fold changes. This may be due to a compression of the dynamic 

range in cross-species hybridizations (Hawkins, Bashiardes et al. 2003). The 

study described here was embarked upon before the recent publication of the 
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draft chicken genomic DNA sequence (Hillier 2004) or the availability of 

commercial chicken gene chips. With the release of most of the chicken genomic 

DNA sequence it is possible to assess sequence identity between our human 

probes and their chicken orthologs. An analysis of this type indicates that ~98% 

of our probes have >70% sequence identity with the correct chicken ortholog 

(data not shown).  Our prior experience in employing this array platform for 

cross-species hybridizations indicated that changes as low as 1.2-fold frequently 

reflected higher changes when assessed by q-PCR (Hawkins, Bashiardes et al. 

2003). 

Differential gene expression in the four time courses 

In the antibiotic damage regime the 24 and 48 hr time points reflected 

gene expression changes within supporting cells, as the majority of hair cells had 

been killed by the ototoxic antibiotic (Warchol 1999; Warchol 2001). By 48 hrs 

many of the supporting cells had progressed into the S-phase of the cell cycle 

(Matsui, Gale et al. 2004). By contrast, the laser damage regime resulted in a 

100–200 µm-wide ‘wound’ in the cultured sensory epithelia. The wounds typically 

closed within 16–24 hrs of recovery time. The initial phase of wound repair was 

due to cell migration, but elevated levels of cell proliferation were also observed 

at the wound sites (but not at distant, uninjured regions) at 16–48 hrs after injury. 

For the utricle, after the data analysis steps described above 143 TFs had 

passed through the data filters for differential gene expression (>1.2-fold change 

at one or more time point and a p-value of <0.05) over the three neomycin 
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damage times. Gene expression in laser damaged SE was compared to time-

matched controls at 30 min, 1 hr, 2 hrs, and 3 hrs after laser lesions. For the 

utricle, a total of 66 TFs were differentially expressed across the four laser time 

points. 

Analysis of the cochlear treatments revealed a much larger number of 

significant changes in TF gene expression than were found for the utricle. A total 

of 484 genes were differentially expressed (>1.2-fold change and p-value of 

<0.05) across the cochlear neomycin time course. Analysis of the cochlear laser 

comparisons revealed a total of 217 differentially expressed genes. Overall, 

when overlaps between the various lists of genes were taken into account, a total 

of 605 TFs accounted for all of the statistically significant changes in gene 

expression observed across the two cochlear time courses, and a total of 188 TF 

genes were differentially expressed across the two utricle time courses. It is 

possible that these apparent differences in numbers of differentially expressed 

genes between the two epithelia reflect more synchronization of regenerative 

signaling events in the cochlea when compared to undamaged controls. It is 

notable that the undamaged avian utricle is in a continual low-level state of hair 

cell turn-over (Jørgensen and Mathiesen 1988). This process may result in 

asynchronies in gene expression between injured and uninjured utricles. This 

might lower apparent fold-changes or increase variability (leading to higher p-

values) when the damaged utricles are compared to the undamaged (but 

constantly regenerating) utricles. It is also possible that the larger number of 
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expression changes in the cochlea reflect a more robust regenerative program in 

this particular sensory epithelia. 

Identification of known pathways and processes among the differentially 

expressed genes 

The comparative expression profiling data were manually curated via 

interrogation of Gene Ontology databases as well as Medline literature citations. 

This served to identify multiple components or “signatures” of seven distinct 

signaling pathways within all four regenerative time courses. The identified 

pathways were those previously shown to be mediated by; TGFβ, PAX, NOTCH, 

WNT, NFKappaB, Insulin/IGF1, and AP1 signaling. All of these have been 

implicated, in one way or another, in the normal development of the vertebrate 

inner ear. Again, as with the common genes described above, even within one 

identified pathway, the profiles of changes in each time course were frequently 

quite different. Nevertheless, some commonalities could be discerned; for 

example, the homeobox gene TITF1/NKX2.1 (a component of both the TGFβ 

and PAX pathways) which interacts with both SMAD3 and PAX8 (Li, Zhu et al. 

2002; Di Palma, Nitsch et al. 2003; Trueba, Auge et al. 2005) showed a similar 

profile in both neomycin time courses. 

Not surprisingly, an additional grouping of genes fell within a set that we termed 

cell cycle/apoptosis genes. Of interest among this set of genes were three that 

have been implicated in the regulation of p27KIP, a cyclin dependent kinase 

inhibitor that is a key regulator of cell proliferation during cochlear development 
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(Chen and Segil 1999). Although p27KIP is expressed in supporting cells and may 

act as a block to cellular proliferation (White, Doetzlhofer et al. 2006), a probe for 

this gene was not included on our array. Therefore, we conducted a semi-

quantitative PCR analysis of the chicken p27KIP gene in the utricule neomycin 

specimens. This is shown in Figure 2-3 and indicates that p27KIP transcription 

was down-regulated after utricle SE damage and then returned to normal levels 

by 48 hrs after the removal of the antibiotic. Figure 2-3 also shows microarray 

data for four other genes that have been previously shown to regulate p27KIP. 

These are: COPS2, a component of the COP9 signalosome (Yang, Menon et al. 

2002), that can inhibit G1-S transition through interactions with p27KIP; CUTL1 a 

transcription factor that inhibits p27KIP transcription (Ledford, Brantley et al. 

2002); SIX6 within the PAX pathway which also represses p27KIP transcription 

(Li, Perissi et al. 2002); and DACH1 (a component of both the PAX and TGF–

pathways) which interacts with SIX6 to repress p27KIP transcription (Li, Perissi et 

al. 2002). It is interesting to note that for the COPS2 and SIX6 genes the 

microarray data were consistent with their previously described interactions with 

p27KIP (i.e. SIX6 transcript levels decreased over the time course and COPS2 

levels initially declined and then increased). CUTL1 (a putative repressor of 

p27KIP) also appeared to increase in expression level over the time course and 

DACH1 transcript levels did not significantly vary through the time course. This 

set of five genes is just one example of the many changes in known pathway 

components that can be constructed into mechanistic and testable hypotheses 

from this dataset. 
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Figure 2-3  Gene expression changes in p27Kip and four genes that may regulate its 
expression. This diagram shows a combination of semi-quantitative PCR data (for 
p27Kip) and microarray data for the other four genes conducted on the utricle 
neomycin time courses. Each gene expression profile is color coded with the key 
to the right of each figure. The X-axis lists time points and the Y-axis is the log2 
fold-change at each time point. Expression values are derived from differentially 
expressed gene in the utricle, except for DACH1 which is detectably expressed, 
but is not significantly differentially expressed across the time course. 
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Clustering with self organizing maps 

As described above, literature/database searches plus manual curation of the 

data assisted us in placing a total of 70 known TFs into possible interactive 

pathways. However, the vast majority of the TFs in our set have no known 

function or correlations with known pathways. In order to potentially identify these 

relationships and to better discern possible patterns of co-expression within 

these data, we derived self-organizing maps (SOMs) by combining all 

differentially expressed genes across both time courses for each tissue type. 

This form of unsupervised clustering (Tamayo, Slonim et al. 1999; Reich, Ohm et 

al. 2004) produces clusters of genes (with upper and lower limit bars) that show 

similar patterns of expression across a time course or set of treatments. In this 

case the situation is somewhat artificial, since in building these graphs we made 

the arbitrary choice that the 3 hr laser time point would precede the neomycin 

zero time point changes on the X-axis, whereas in reality the laser time course 

probably overlaps the early stages (0 hr to 24 hr) of neomycin recovery. 

Nevertheless, the purpose of these clusters was to visualize apparent patterns 

and potential clusters of genes within the data. Figure 2-4A shows a group of 16 

SOM centroids (clusters of genes that show similar patterns of differential 

expression across all the time points) constructed using Genecluster 2 (Tamayo, 

Slonim et al. 1999; Reich, Ohm et al. 2004) for the utricle time courses. Figure 2-

4B shows sixteen centroids for the cochlea data. Some clusters exhibited 

relatively large temporal fluctuations in gene expression across both time 

courses. One example of this is centroid 3 in Figure 2-4A which includes a total 
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of 14 genes such as CEBPG, JUND, FOXP1, and HOXA13. By contrast, 

centroids 8 and 12 in Figure 2-4A illustrate genes that show relatively small 

changes in expression, except at the 48 hour neomycin time point where they 

were all up regulated. These were the predominantly late genes in the utricle 

regenerative time course. These two centroids together comprised 19 genes and 

included POU4F3 (previously implicated in hearing loss (Vahava, Morell et al. 

1998)), CTNNB1 and PPARGC1 (both in the WNT pathway). At the other end of 

the spectrum were the 11 genes in centroids 0 and 4 of Figure 2-4A that 

appeared to be activated early and peak in expression at the first or second laser 

time point. Among these are the nuclear hormone receptor NR1I3, which plays a 

role in transcriptional activation of genes involved in drug metabolism (Ikeda, 

Kurose et al. 2005; Thompson, Kuttab-Boulos et al. 2005) SIX3, a homeobox 

gene that regulates PAX6 and SOX2 in the developing eye (Liu, Lagutin et al. 

2006) and LOC51637, a TF of unknown function, that we previously found to be 

up-regulated in the chicken utricle (Hawkins, Bashiardes et al. 2003) relative to 

the cochlea. 
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Figure 2-4  Analysis of the datasets by Self Organizing Maps. All of the differentially 
expressed genes were uploaded into Genecluster 2, 16 centroids per organ were generated. 
Each box (centroid) in this figure is numbered from C0–C15 and they reflect common 
patterns of expression for clustered groups of genes within the dataset. The X-axis for each 
centroid consists of each time point and runs from the laser 30 min time point through 1 hr, 
2 hrs, 3 hrs and then into the neomycin 0 time point followed by the neomycin 24 and 48 hr 
time points. The Y-axis indicates expression level (fold-change). The number in the top left 
of each centroid indicates the number of genes that fall into this cluster of co-expression. 
The top line indicates the upper boundary of expression for all of these genes and the lower 
line indicates the lower boundary. The middle line is the mean. Figure 2-4A shows the 
clustering for the utricle time points and Figure 2-4B shows the clustering for cochlea time 
points. Arrows indicate various patterns or genes within specific centroids that are described 
in the text. 
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The cochlea regenerative SOMs (16 in total) are shown in Figure 2-4B. In this 

case the predominantly late genes fall into centroids 11 and 14 and total 118 

genes. However, additional examples of gradual up-regulation occur in centroids 

10 and 15 (55 additional genes). Interestingly, of the 118 genes in centroids 11 

and 14, a total of 45 are zinc finger transcription factors (as defined by being 

either ZF or ZNF family members).  The vast majority of these are of unknown 

function and unknown target specificity. If the genes in centroids 10 and 15 are 

included, the total number of zinc finger TFs peaking in expression at the 48Hr 

time point rises to 61 (35% of the 173 total genes in these centroids). By 

contrast, the other twelve centroids in Figure 2-4B all together contain 19 zinc 

finger transcription factors (4% of a total of 432 genes in these centroids). 

Therefore, it appears that a dramatic burst of zinc finger gene expression occurs 

specifically at these late stages of regenerartive proliferation in the cochlear SE. 

This contrasts with the utricle SOMs where zinc finger TFs are distributed fairly 

evenly through the centroids. In common with the utricle time courses, CTNNB1 

peaks at 48 hrs in the cochlear time courses but, unlike in the utricle, POU4F3 

peaks earlier, at the 24Hr time point (in centroid 4 of Figure 2-4B). The 

predominately early genes (19 in total) in Figure 2-4B are contained within 

centroid 3. Of interest within this group are EGR1, which can be induced by IGF 

signaling (Jhun, Haruta et al. 1995), NFIL3 which is a nuclear factor regulated by 

IL3 (Zhang, Zhang et al. 1995; Fritzsch 2003) and Neurogenin 1, which is 

involved in fate choice during inner ear development (Fritzsch 2003). 
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Contrasting patterns of TF genes that are detectably expressed 

In addition to using the normalized intensity values to identify differentially 

expressed genes, we also used intensity values to determine which TFs were 

detectably expressed at any given time point, irrespective of any fold-change. 

This is a useful dataset since, at the level of detection of our microarrays, it 

defines lists of TFs that specify the normal functioning of the SE and makes no 

distinction between genes that never vary and those that change in their 

expression levels. This involved scoring all genes as “on” that reproducibly 

exceeded a background intensity level (and likewise any gene that failed to meet 

this cutoff was arbitrarily scored as “off”). This cut-off was based upon control 

oligonucleotides that were imbedded within our arrays and have no known 

homologous sequences in the chicken genome. Venn diagrams (Figures 2-5A 

and 2-5B) illustrate the results of this analysis. It is important to realize the 

differences between this analysis and the listings of differentially expressed 

genes. A gene such as CEBPG is among those that are differentially expressed 

in both the utricle laser and neomycin time courses. However, in the Venn 

diagrams this gene is scored as being detectably expressed at all time points 

(albeit at different levels between them). In Figure 2-5A it therefore falls among 

the 367 genes that are commonly present in all time-ponts in the neomycin Venn 

diagram and the 535 common genes in the laser Venn diagram (Figure 2-5A). 

Within these two sets of common genes (that are apparently on in either the 

neomycin or laser time courses) there are 256 that are shared.  These comprise 

a core group of expressed TF genes for the sensory epithelium of the utricle, 
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irrespective of time point or treatment. Likewise, the cochlea has a core group of 

346 TF genes that are common to both time courses at all time points. There are 

also a group of 134 genes that are detectably expressed at all times in all four 

time courses. Additionally, the Venn diagrams identify many genes “uniquely” 

detectable at individual time points. In some cases these may overlap with those 

scored as being differentially expressed, or they may only just exceed the 

background threshold level at those particular time points. This analysis also 

indicates that the largest number of detectably expressed genes occurs at 0 and 

48 hr in the Neomycin time course and at the 1 hr time point in the laser time 

course. 
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Figure 2-5  Detectably expressed TFs in the four treatment/time course combinations.  
All TFs that were present (as judged by exceeding a background intensity level) at any 
stage were considered in this analysis, irrespective of differential expression at any time 
point. Overlaps between these sets of TFs are illustrated in these Venn diagrams. Figure 
2-5A shows overlaps for the utricle time points and treatments. Figure 2-5B shows 
overlaps for the cochlea time points and treatments.  
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Conclusions 

In this study we report the first large-scale analysis of changes in gene 

expression during avian hair cell regeneration. We identified components of 

seven known signaling pathways that are differentially expressed in our 

microarray gene expression profiling datasets. We also identified specific genes 

that are common to particular time courses and treatments. Overall, we observed 

modest fold changes in gene expression. This is most likely due to the cross 

species microarray platform used for this study and the class of genes we 

interrogated. Since small changes in transcription factor gene expression levels 

can have large cascade effects on downstream genes, it is not unexpected to 

see modest fold-changes in TF genes having significant biological 

consequences. A previous study examining gene expression changes in ~25,000 

genes in mouse organogenesis from E 8.0 to postnatal day 1 identified a total of 

160 TF genes differentially expressed > 1.2 fold (Wagner, Tabibiazar et al. 2005). 

TF changes ranged from 3.66-fold change down-regulation to 3.63-fold change 

up-regulation, with and average change of 1.63-fold.  In addition, the activation of 

many TFs is mediated by phosphorylation rather than transcription level 

(Brivanlou and Darnell 2002).  In these cases, transcription factors are generally 

believed to be constitutively expressed.  It is interesting to note that in our data 

set we observed consistent and reproducible changes in gene expression level 

for genes whose protein products are known to be regulated by phosphorylation, 

such as JUND, CEBPG and CEBPB (Lacorte, Ktistaki et al. 1997; Brivanlou and 

Darnell 2002). This suggests that in addition to their known regulation by 
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phosphorylation, gene expression level is also regulated to control critical 

transcription factor cascades during avian hair cell regeneration. 

 We first identified components of known pathways and gene networks that 

are differentially expressed during avian hair cell regeneration. One such 

example is changes in the expression of Polycomb complex genes EZH1, EZH2 

(enhancer of zeste 1 and 2), CBX1, CBX3, CBX4, CBX6 and CBX8 (chromobox 

genes). We identified consistent changes in these Polycomb complex genes in 

the regenerative time courses in both the cochlea and the utricle sensory 

epithelia, suggesting that this pathway may be important during avian hair cell 

regeneration. Polycomb complex genes are of particular interest because these 

genes are known to control cell fate decisions during stem cell differentiation 

(Bracken, Dietrich et al. 2006). One critical role of Polycomb complex genes 

during stem cell differentiation is to prevent stem cell exhaustion via epigenetic 

mechanisms (Kamminga, Bystrykh et al. 2006). The maintenance of a stem cell 

population capable of cell cycle re-entry and differentiation into sensory hair cells 

and non-sensory supporting cells could be a major difference in the regenerative 

abilities of mammals and non-mammalian vertebrates.  

 A more global method for interrogating the data presented in this study is 

to make use of web-delivered tools to discover possible networks or canonical 

pathways. Ingenuity Pathways Analysis (IPA; Ingenuity® Systems, 

www.ingenuity.com) is one such set of tools. We uploaded the specific sets of 

shared genes (fold-changes and p-values) into the IPA application. These genes 
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were then used to generate biological networks developed form information 

contained in the Ingenuity Pathways Knowledge Base (IPKB). All connections 

within the IPKB are supported by at least one reference from the literature (see 

www.ingenuity.com). IPA also computed a p-value for each generated network 

derived from a right-tailed Fisher's exact test, which indicates the probability that 

the focus genes in a network are found together because of chance alone. A 

complete description of all of these networks is beyond the scope of the current 

study. One of the highest scoring networks shared between both the cochlea and 

the utricle during sensory epithelia regeneration involves components of estrogen 

receptor (ER) signaling (p-value of 2.4x10-6). Networks of ER components and 

known gene interactions generated by IPA analysis are shown in Figure 2-6A. 

Estrogen receptors have been previously been implicated in the developing 

mammalian inner ear (Stenberg, Wang et al. 2001), though estrogen receptor 

genes have not previously been implicated in hair cell regeneration. It is still not 

clear what endogenous ligand(s) are involved in activating this pathway in the 

inner ear or whether the estrogen receptor signaling pathway acts through the 

ligand-independent route during hair cell regeneration (Cvoro, Tzagarakis-Foster 

et al. 2006).   Estrogen receptor phosphorylation by various signaling pathways 

has previously been described in the ligand-independent activation of ER 

receptor signaling  (Sommer and Fuqua 2001). 

 Interestingly, genes involved in the regulation of circadian rhythm are 

significantly enriched (p-value <  5x10-7) during cochlear regeneration. 

Specifically, BHLB3, PER1, PER2, CREB1, TIMELESS and CLOCK are all 
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differentially expressed specifically during cochlear sensory epithelia 

regeneration. Circadian rhythm genes were originally identified during the 

regulation of 24 hour periodicities in gene expression (Hayes, Baggs et al. 2005). 

Though prior to this study circadian rhythm regulation has not previously been 

implicated in inner ear development or regeneration, a recent study has 

described the affects of noise induced hearing loss dependent on circadian 

changes in serum corticosterone levels (Kim, Kang et al. 2008). Networks of 

circadian rhythm components and known gene interactions generated by IPA 

analysis are shown in Figure 2-6B. These networks indicate that circadian rhythm 

and estrogen receptor signaling pathways may intersect during avian hair cell 

regeneration in the cochlear sensory epithelia. The circadian rhythm genes PER1 

and PER2 are known to be regulated by the Polycomb complex gene EZH2 

(Etchegaray, Yang et al. 2006). Taken together, these observations suggest 

novel pathway intersection between Polycomb complex genes, circadian rhythm 

genes and estrogen receptor signaling during avian hair cell regeneration. 
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The majority of gene expression changes we identified in our microarray gene 

expression profiling dataset have not been correlated with any known networks 

or pathways. Most of these genes have not been previously implicated in inner 

ear development or sensory hair cell differentiation. Identifying the role of these 

genes during avian hair cell regeneration and interactions with other genes 

involved in this process will be important for describing the genetic programming 

of the inner ear. Our description of pathways involved in regeneration of the inner 

ear sensory epithelium and specific gene changes provides a starting point for a 

systems biology study of the inner ear.  One example of a transcription factor 

identified in our microarray gene expression profiling dataset that had not 

previously implicated in the inner ear is FOXP1. The forkhead transcription factor 

FOXP1  is rapidly up-regulated early in the utricle laser time course. Though 

FOXP1 had previously been described during cardiac development (Wang, 

Weidenfeld et al. 2004), prior to this study it had not been identified during inner 

Figure 2-6  Two examples of Ingenuity gene networks constructed from cochlear 
differentially expressed genes.  Genes that showed differential expression in both the 
laser and neomycin cochlear time courses were uploaded to the web-based Ingenuity 
program (Ingenuity® Systems, www.ingenuity.com) and the network of interactions 
shown here was generated. Each interaction is shown according to the following 
legend and is supported by at least one literature citation (available from the Ingenuity 
website). Figure 2-6A shows the network of interactions for genes specifically 
identified within the cochlear neomycin time course as being part of Estrogen receptor 
signaling. Figure 2-6B shows the network of interactions surrounding Circadian 
rhythm signaling and was generated by uploading all of the cochlear differentially 
expressed genes (rather than a subset as in 2-6A). Red denotes up-regulation and green 
down-regulation in at least one time point. Genes shown in bold with no shading vary 
across a time course (e.g. GTF2H4 in Figure 2-6A was up-regulated at 24 hrs and 
down-regulated at 48 hrs). All other genes were either not represented on the 
microarray or were not significantly differentially expressed. A key to additional 
Ingenuity labels is listed above. 
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ear development or regeneration.  Our lab confirmed that this gene is involved 

during embryonic development of the mouse vestibular organs that give rise the 

sensory epithelium  (Sajan, Warchol et al. 2007) and another group identified 

FOXP1 expression in the otic vesicle of developing zebrafish (Cheng, Chong et 

al. 1997).  Another example of a specific gene of interest identified in our dataset 

is CEBPG. Prior to this study, the CCAAT element binding protein CEBPG had 

not been described in the inner ear. We identified CEBPG consistently expressed 

in all time points. However, it was rapidly up-regulated at specific time points in 

both the utricle laser and neomycin time courses. 

 In this study, we identified transcription factor pathways and specific 

genes that are differentially expressed during avian sensory epithelia 

regeneration.  Specifically, we identified components of Wnt signaling, Ap-1 

pathway, TGFβ signaling, PAX pathway and cell cycle regulation that are 

involved in hair cell regeneration. Next, it will be important to identify which of 

these genes are necessary and sufficient for regeneration and whether they are 

required for sensory epithelia proliferation, differentiation of sensory hair cells or 

both of these important steps.  This dataset provides an important collection of 

candidate genes to further explore the complex network of interactions involved 

in avian hair cell regeneration.   
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CHAPTER THREE 

AN RNAI-BASED SCREEN OF TRANSCRIPTION FACTOR GENE PATHWAYS 

DURING INNER EAR SENSORY EPITHELIA REGENERATION 
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Introduction 

In this study we describe the identification of several key transcription 

factor genes and pathways that are required for avian sensory epithelia 

regeneration. Though the specific signaling pathways required for triggering 

sensory hair cell regeneration have yet to be identified, several pathways such as 

PAX, WNT and NOTCH signaling have been implicated as playing roles in inner 

ear development and hair cell differentiation. Discernible development of the 

inner ear begins when ectodermal cells surrounding the neural crest become 

“placode competent”, having the ability to develop into one of three sensory 

organs: the nose, lenses of the eyes and the ear. The otic placode invaginates to 

generate a closed otic vesicle that will later form all of the organs of the inner 

ear[1]. The earliest known marker for otic fate is PAX8, which is expressed in 

preotic cells during gastrulation in the mouse [2, 3]. Knockdowns of PAX8 result 

in reduced otic placode size and disrupt development of hair cells in zebrafish 

otic vesicles [4]. The closely related homolog of PAX8, PAX2, is also expressed 

in preotic cells following PAX8 expression [2]. PAX2 disruption does not affect 

otic placode formation, but it does prevent formation of the cochlea in the mouse 

[5]. Loss of PAX8 expression does not affect PAX2 expression, suggesting that 

although they are both required for proper inner ear formation, they act in 

separate developmental pathways [6]. Drosophila homologs of PAX genes are 

well documented for their role in development of the eye [7]. These highly 

conserved genes likely act in a similar genetic network to regulate inner ear 

development.  
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In this study we describe the identification of key transcription factor genes 

that are differentially expressed during avian sensory hair cell regeneration. 

These were initially identified in a large microarray-based gene expression study 

in which we profiled changes in transcription factor gene expression across 

different time courses of in-vitro hair cell regeneration [8]. The design of this 

study is summarized in Figure 3-1a. We interrogated >1500 transcription factor 

(TF) genes (out of a total of ~2000 encoded by the human genome) [9] during 

two different time courses of chicken hair cell regeneration. In the first time 

course we measured TF gene expression changes in a pure population of hair 

cells and supporting cells, the SE, as the hair cells regenerated after damage 

with a laser microbeam. In the second time course we measured TF gene 

expression changes in SE after the hair cells had been selectively killed by a 24 

hour treatment with ototoxic aminoglycoside antibiotic, neomycin. [10], [11]. We 

conducted these time courses separately on multiple SE biological samples 

dissected from the cochlea and the utricles of chickens.  

In the previous regeneration time course, a total of 683 genes were 

differentially expressed (> 1.2 fold, P-value < 0.05) in a minimum of one 

timepoint, treatment or tissue [8]. From this regeneration dataset, seven distinct 

known pathways were identifiable: TGF-β, PAX, NOTCH, WNT, NFKappaB, 

Insulin/IGF and AP1.  In this report we focus upon a subset of transcription factor 

genes from these key signaling pathways that were reproducibly up-regulated at 

some point during SE regeneration. We first describe components of “known” 

pathways that are reproducibly altered during regeneration.  We then used 
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siRNA knockdown and treatment with various inhibitors of specific pathways to 

interrogate 27 genes. We identified eleven components, from both known and 

unknown pathways, that are necessary for the early steps in the regenerative 

process (Figure 3-1b). Finally, by further microarray expression profiling of the 

SE following siRNA or small molecule inhibitor treatment, we identified novel 

epistatic relationships between genes that appear to be important downstream 

effectors of SE proliferation.  
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Figure 3-1. Experimental Design. Flow diagram of experimental design scheme for 
time course profiling in the utricle and cochlea SE and RNAi profiling. (a) Time 
course of laser and neomycin recovery  (b) TFs revealed in the time course of recovery 
were targeted by siRNA to assess a proliferation phenotype and expression profiled to 
evaluate knockdown of the target gene and potential epistatic relationships between 
TF’s. 
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Results  

The Ap-1 Pathway is necessary for sensory hair cell regeneration 

The AP1 Pathway is necessary for sensory hair cell regeneration 

The first known pathway that we identified during hair cell regeneration is the 

activating protein 1 (AP1) complex that includes the JUN family of transcription 

factors.  JUN proteins can be induced by a large number of signaling molecules 

including growth factors, hormones, and neurotransmitters, as well as by physical 

or chemical stress [12].  Ten known components of the AP1 pathway were 

differentially expressed during SE regeneration [8].  To determine if functional 

activation of JUN is occurring during SE regeneration, we conducted 

immunohistochemical staining to laser-lesioned utricle SE, using an antibody 

specific to the phosphorylated form of c-JUN (Figure 3-2a).  Phosphorylated c-

JUN is detected at the leading edge of the laser lesion site. To test whether the 

initial activation of the JUN family of transcription factors is necessary for SE 

proliferation, we treated laser–lesioned utricle SE with a specific small molecule 

inhibitor (SP600125) of the JUN activator, JUN-kinase (JNK). JNK inhibition led 

to a failure in regenerative wound closure (Figure 3-2b), illustrating that functional 

JNK signaling is necessary for the early proliferative stages in SE regeneration.  
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High throughput, quantitative measure of sensory epithelia proliferation 

In order to determine in a quantitative and higher throughput manner whether 

specific TFs are necessary for SE proliferation, we used targeted RNAi in 

dissociated SE from the utricle in a 96-well culture format.  Cellular proliferation 

was assessed by BrdU labeling and counting of labeled nuclei compared to total 

number of DAPI stained nuclei before the cultures reached confluency. For all 

RNAi knockdowns, we measured proliferation indexes relative to a GFP siRNA 

control.   It should be noted that for all of the RNAi treatments that inhibited repair 

and regrowth of a laser-lesioned SE, we found similar patterns of proliferative 

inhibition in our 96 well assays.  This suggests that our assay system is correctly 

identifying a subset of genes that are indeed necessary for proliferative 

regenerative responses in the intact SE.   All RNAi knockdowns were confirmed 

Figure 3-2. JNK signaling during SE regeneration. JNK signaling is evident at the 
leading edge of the lesion path in the SE and necessary for proliferative regeneration. 
SE cultured on a glass coverslip was lesioned by microbeam laser ablation. (A) 
Phosphorylated c-JUN was detected by a phosphorylation specific antibody to the 
protein (red dots; white arrows). Following laser ablation the cultured SE was treated 
with (B) JNK inhibitor (SP600125, 15 µM) or (C) 0.1% DMSO (control) and allowed 
to recover for 24 hrs., nuclei are shown by DAPI staining.  The laser lesion path is 
visible by etching of the coverslip through the phase contrast (D and E, red arrows). 
Only the JNK inhibitor exhibited a failure to close the wound.   
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by microarray expression profiling and in some cases directly visualized by 

immunohistochemistry or quantitative PCR. We initially selected genes 

associated with the following signaling pathways clearly identified during the 

regeneration timecourse: The AP1 Pathway, the PAX Pathway, Cell Cycle 

control genes, the Polycomb complex, SHH Signaling, IGF Signaling, MAPK 

Signaling and NOTCH Signaling [8].  We also selected genes that did not 

necessarily fall within known pathways but were up-regulated during one or more 

time points of SE regeneration.  

As noted above, JNK inhibitor treatment prevented SE proliferation in 

laser-lesioned utricle SE.  Therefore, we first focused on members of the AP1 

pathway that are differentially expressed during the SE regeneration time course.  

Members of the JUN family of TF’s are normally thought to be constitutively 

expressed [13] with their activity being regulated by phosphorylation via JNK. 

However, our data suggest some degree of transcriptional regulation during 

sensory hair cell regeneration, since we observed up-regulation of JUN family 

members during regeneration. To assess whether down regulation of JUND or 

other genes that showed drastic differential expression during hair cell 

regeneration had similar effects to JNK inhibitors, we used RNAi separately 

targeted to each chicken gene.  Individual RNAi knockdowns of JUND and the 

CCAAT enhancer binding protein, CEBPG, resulted in reduced proliferation of 

the SE (Figure 3-3a). Additionally, we tested whether genes that were commonly 

up-regulated in either treatment or tissue combinations are also required for SE 

proliferation. Seven known components of WNT signaling were differentially 

expressed in one or more organs or treatments during SE regeneration, including 

β-catenin, a component of canonical WNT signaling [14].  β-catenin was up-

regulated at 48 hrs. in both the cochlea and utricle neomycin regeneration 

timecourses compared to untreated controls [8].  We also identified BCL11A (a 

zinc finger gene associate with hematopoietic malignancies) [15, 16] and TRIP15 

(a component of the COP9 signalosome that regulates G1-S transition) [17] 

differentially expressed across all four treatments and tissue combinations [8]. 

Though β-catenin, BCL11A and TRIP15 were differentially expressed during SE 
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regeneration, siRNA knockdowns of these genes failed to significantly affect SE 

proliferation. A complete list of siRNA and small molecule inhibitor treatments 

and their affects on SE proliferation can be found in Table 3-1 and will be 

discussed below.  

 

 

Figure 3-3  Affects of siRNA treatments on SE proliferation. Proliferation phenotypes 
were quantified for each siRNA knockdown compared to a GFP siRNA control by 
calculating a proliferation index. BrdU labeled proliferating cells were compared to 
the total number of DAPI stained cells to calculate a percent proliferation for (a) genes 
differentially expressed during hair cell regeneration and (b) PAX genes that were up-
regulated during hair cell regeneration. 
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Table 3-1. Effects of siRNA/Inhibitor treatments on sensory epithelia proliferation 

 
siRNA/Inhibitor 

Treatment 
Inhibit 

Proliferation Regeneration Pathway/Category 

CEBPG Yes 
AP-1 Pathway JNK inhibitor Yes 

JUND Yes 
BTAF1 Yes 

AP-1 siRNA Commonalities LRP5 Yes 
RARA Yes 
PAX2 Yes 

Pax Pathway 
PAX3 No 
PAX5 Yes 
PAX7 No 
MYT1L No 

AP-1/Pax siRNA Commonalities 
WNT4 Yes 
CUTL1 Yes 

Cell Cycle p27KIP No 
ID1 No 
CBX3 No 

Polycomb Complex CBX4 No 
EZH2 No 
IGF inhibitor No 

Pathway Inhibitors MAPK inhibitor Yes 
SHH inhibitor No 
HRY No Notch Signaling 
BCL11A No 

Common to all tissues/damage 
TRIP15 No 
CTNNB1 No Common to cochlea and utricle  
TIME No Early regeneration  
PPARGC1 No Neomycin specific 

 
Proliferation phenotypes were quantified for each siRNA knockdown. Inhibition was 
determined as a significantly lower proliferation index as compared to a GFP siRNA 
control (p value < 0.05).  
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TGF-β signaling and cyclin dependent kinase regulation of sensory epithelia 

proliferation 

One of the most widely studied roles of TGF-β is in controlling cell growth 

and differentiation by blocking cell cycle progression through the G1/S transition 

[18].  Nine known components of transforming growth factor beta signaling and 

seventeen regulators of cell cycle/apoptosis were differentially expressed during 

hair cell regeneration [8].  Degradation of the cyclin dependent kinase (CDK) 

inhibitor, p27Kip1, is required for the cellular transition from quiescence to the 

proliferative state [19].  We independently measured the gene expression of this 

CDK inhibitor within our time courses and found that it decreased in expression 

one hour after laser lesioning.  Likewise, CUTL1 (a homeobox containing CCAAT 

displacement protein) and itself a p27Kip1 repressor [20], is differentially 

expressed across the regenerative time course. To determine if CUTL1 

regulation of G1/S transition are important regulators of inner ear SE 

proliferation, we used siRNA individually targeted to each and measured the 

effects on utricle SE proliferation.  Given the known role of p27Kip1 as an inhibitor 

of proliferation we reasoned that even further inhibiting its levels might lead to 

hyper–proliferation of the dissociated SE.   Conversely, we reasoned that 

inhibition of CUTL1 would lead to a release of p27Kip1 repression and 

consequently a decrease in proliferation.  In agreement with this model, our 

siRNA treatments demonstrated that knockdown of the p27Kip1 repressor, 

CUTL1, inhibits SE proliferation. We also detect increased expression of p27Kip1 

in gene expression profiling of CUTL1 siRNA treated SE (1.68 fold-change, P-

value < 0.0176).  siRNA knockdowns of p27Kip1 had no apparent effect on 

proliferation (Table 3-1).  Our failure to observe hyper proliferation in the case of 

p27Kip1 RNAi may well be attributable to the very high rate of cell division 

occurring in these cultures already being close to maximal.  Overall, these data 

are consistent with the known roles of CUTL1 and p27Kip1 regulation of the 

cellular transition from quiescence to the proliferative state.  siRNA knockdown of 

ID-1 has been shown to up-regulate p27Kip1 and inhibit proliferation of 

mammalian tumors [21, 22].  However, our knockdowns of ID-1 had no affect on 
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SE proliferation in the utricle. Of course, negative RNAi results of this type are 

always open to the caveat that none of our knockdowns were taken to zero 

expression levels.  Theoretically, some small level of the gene product will still be 

present and may be sufficient to maintain proliferation. 

 

PAX genes required for sensory epithelia proliferation 
A third known pathway identified from our regenerative expression 

profiling data involves a cascade of TF genes induced by PAX gene expression; 

the PAX-EYA-SIX-DACH pathway.  We identified eighteen known components of 

the PAX-EYA-SIX-DACH pathway differentially expressed during sensory hair 

cell regeneration.  Notably, five PAX genes (PAX2, PAX3, PAX5, PAX7 and 

PAX8) were up-regulated during cochlea regeneration [8].  To determine if 

components of the PAX-EYA-SIX-DACH pathway are necessary for SE 

proliferation, we used RNAi to knockdown PAX genes that are up-regulated 

during sensory hair cell regeneration.  An exact chick ortholog for PAX8 could not 

be unequivocally identified and it was therefore not targeted for knockdown. 

Approximately 10% of the chicken genome is missing from the published or web-

accessible DNA sequence  [23]. This includes many genes that lack clear 

orthologs such as PAX8, but are likely present in the chick genome.   Although 

PAX2 fell just below the rigorous statistical filtering thresholds in the utricle 

regenerative time course, we included it as an RNAi knockdown because of its 

known role in inner ear development.  From these four Individual siRNA 

knockdowns, two (PAX2 and PAX5) inhibited SE proliferation.  Knockdowns of 

PAX3 and PAX7 did not have a significant effect on proliferation (Figure 3-3b).  

 

Effects specific to the SE of the inner ear rather than affecting all epithelia 

To determine if genes identified as necessary for SE proliferation are elements of 

epithelial regeneration in general, or specific to the SE of the inner ear, we 

performed RNAi knockdowns in chick eye retinal epithelia (Figure 3-4). Since it is 

the most broadly expressed transcription factor of the AP1 pathway, it is not 

surprising to observe that siRNA knockdown of JUND also inhibits proliferation of 
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chick eye retinal epithelia. Additionally, siRNA knockdowns of the widely 

expressed transcription factor PAX2 also inhibited proliferation of chick eye 

retinal epithelia, suggesting that JUND and PAX2 may be general factors of 

epithelia proliferation.  However, siRNA knockdowns of CEBPG and LRP5 had 

no affect on retinal epithelia proliferation suggesting they may be specifically 

required for SE proliferation in the inner ear. Since up-regulation of CEBPG is 

only detected in the regenerating utricle and no change is detected in the cochlea 

[8], it is still not clear whether CEBPG is also required for cochlea regeneration or 

specific to the avian utricle. 

 

 

Identification of downstream effectors of sensory epithelia proliferation 

We conducted TF microarray expression profiles on all samples treated 

with either RNAi or small molecule inhibitors.  This served the dual purpose of 

confirming knockdown of the siRNA target gene and identifying TF genes that 

showed consistent expression changes in response to RNAi knockdown or 

inhibition of the target gene. To infer novel epistatic relationships and potential 

pathway intersections involved in SE proliferation, we next looked for overlapping 

Figure 3-4 Percent proliferation was quantified for each siRNA treatment 
compared to a GFP control in chick eye retinal epithelia. CEBPG and 
LRP5 siRNA treatments inhibited chick sensory epithelia proliferation, but 
had no affect on eye retinal epithelia proliferation.  
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expression changes between various RNAi and inhibitor treatments. One 

example of such an intersection is shown in Figure 3-5a; illustrating the TF 

expression changes for 3 treatments, all of which individually inhibit SE 

proliferation: JNK inhibitor, JUND RNAi and CEBPG RNAi. While there are 

numerous expression changes that are unique to each treatment or shared 

between pairs of treatments, most significantly we have identified 4 genes that 

are commonly down-regulated in all three treatments (fold change > 1.3, p-value 

< 0.05). One of the commonly down-regulated genes is CEBPG; this appears to 

place CEBPG downstream of JUND and JNK in this pathway.  In addition to 

CEBPG, the low density lipoprotein receptor-related protein 5 gene (LRP5), the 

B-TFIID transcription factor-associated RNA polymerase (BTAF1) and the zinc 

finger protein 44 (ZNF44) were commonly down-regulated in all three treatments 

(JNK inhibitor, JUND and CEBPG RNAi) suggesting that LRP5, BTAF1 and 

ZNF44 act downstream of CEBPG in the JUN signaling cascade (Figure 3-5b). 

To determine if these commonly down-regulated genes are also required for SE 

proliferation, we conducted further siRNA knockdown. Individual siRNA 

knockdowns of LRP5 and BTAF1 both significantly inhibited SE proliferation 

(Figure 3-6). An unequivocal chicken ortholog of ZNF44 could not be identified. 

As previously mentioned, approximately 10% of chicken orthologs are still 

missing from the Gallus gallus genome [23]. In the remainder of this study, we 

have omitted probes with unclear orthologs in the Gallus gallus genome. 
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Figure 3-5. Analysis of overlapping expression profiles and novel epistatic 
relationships between genes that are required for SE proliferation.   siRNA and 
inhibitor treatments were expression profiled to identify downstream effectors of SE 
proliferation. a) 4 genes are commonly down-regulated in 3 treatments that each 
individually inhibit SE proliferation, 1 of which is CEBPG. b) Novel epistatic 
relationships can be inferred from TF expression profiling siRNA and inhibitor 
treatments. CEBPG can be placed downstream of JNK and JunD and the other 
commonly down-regulated genes, BTAF1, LRP5 and ZNF44 can be placed 
downstream of CEBPG in the SE proliferation pathway. 
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Pathway intersections during SE proliferation 

To identify pathways downstream of CEBPG and LRP5, which we had 

placed downstream in the AP1 pathway during SE regeneration, we compared 

gene expression profiles of CEBPG and LRP5 siRNA knockdowns in dissociated 

utricle SE.  We identified three components of WNT Signaling (WNT4, WNT9B 

and WNT16) that were commonly up-regulated in both siRNA treatments (> 2 

fold change, P-value < 0.05). Though these WNT Signaling components were not 

interrogated in our earlier regeneration study, two PAX genes that were down-

regulated during our previous cochlea regeneration timecourses [8], PAX1 and 

PAX9, are up-regulated (> 2 fold change, P-value < 0.05) in both CEBPG and 

LRP5 siRNA treatments that inhibit utricle SE proliferation (Table 3-2). To 

determine if there are potential pathway intersections downstream of the AP1 

pathway and PAX pathways, we next compared gene expression profiles of four 

siRNA treatments that individually inhibit SE proliferation: CEBPG, LRP5, PAX2 

and PAX5 siRNA. We identified two genes that are commonly up or down-

regulated across all four siRNA treatments (> 1.3 fold-change, P-value < 0.05).  

Figure 3-6 LRP5 and BTAF1 were commonly down-regulated JNK, JUND and 
CEBPG treatments that inhibit SE proliferation. Individual siRNA knockdowns of 
LRP5 and BTAF1 also inhibited SE proliferation compared to a GFP control. 
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These are the WNT gene family member (WNT4) and the myelin transcription 

factor 1-like (MYT1L) (Table 3-3).  To determine if WNT4 and MYT1L are also 

necessary for SE proliferation we used RNAi to individually knockdown each in 

chick utricle SE. Knockdowns of MYT1L did not have a significant affect on SE 

proliferation, however, knockdown of WNT4 significantly inhibited SE proliferation 

(Figure 3-7). A chi-square analysis of WNT4 expression changes in all siRNA 

knockdowns and their affects on proliferation was P-value < 0.041,  further 

suggesting a critical intersection between the AP1 Pathway, PAX Pathway and 

WNT Signaling during SE proliferation.  

 
 
 
Table 3-2.  Known pathways commonly differentially expressed in CEBPG and 
LRP5 siRNA knockdowns 
 
Pathway Gene Average fold change: 

CEBPG siRNA 
P-value Average fold change: 

LRP5 siRNA  
P-value 

Wnt 
Signaling 

WNT4 5.48 1.67x10-2 4.16 3.89x10-2 
WNT9b 4.03 1.19x10-2 3.44 2.48x10-2 
WNT16 2.93 1.21x10-2 2.28 7.81x10-3 

Pax 
Pathway 

PAX1 2.42 2.55x10-2 2.61 4.90x10-4 
PAX9 6.5 8.48x10-3 4.35 2.30x10-2 

 
Average fold changes are displayed as levels in the siRNA knockdown (CEBPG 
or LRP5) relative to the control GFP siRNA.  Average fold changes > 2-fold and 
p-value < 0.05 for both siRNA treatments. 
 
 
 
 
Table 3-3.  Genes commonly differentially expressed in treatments that inhibit 
sensory epithelia proliferation. 
 
 Downstream of Ap-1 Pathway Pax Pathway 
Gene CEBPG  p-value LRP5 p-value PAX2 p-value PAX5 p-value 
MYT1L -4.27 7x10-3 -4.05 7.00x10-3 -1.51 2.00x10-3 -1.61 1.40x10-2 
Wnt4 5.41 1.70x10-2 4.16 3.90x10-2 1.34 4.70x10-2 1.37 7.00x10-3 

 
Expression profiles of siRNA knockdowns that inhibited sensory epithelia 
proliferation were compared to identify specific commonalities downstream of the 
AP1 and PAX pathways. MYT1L and WNT4 were commonly up or down 
regulated (Fold change > 1.3, p-value < 0.05) in all four siRNA treatments that 
inhibit proliferation. 
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Figure 3-7.  WNT4 and MYT1L siRNA phenotypes. WNT4 siRNA knockdowns 
inhibited sensory epithelia proliferation compared to a GFP siRNA control while 
MYT1L siRNA did not have a significant effect on proliferation. 
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Conclusions 
 

In this study we identified two pathways, AP1 and PAX, which are 

necessary for SE proliferation in the inner ear.  We also identified eleven 

additional genes that are specifically required for SE proliferation. Our data 

suggests that while the AP1 pathway and PAX pathways have downstream 

components unique to each pathway during hair cell regeneration, both pathways 

intersect with WNT4.  WNT4 is itself also necessary for optimal SE proliferation, 

suggesting a critical role for WNT signaling during these early events in avian SE 

regeneration.  It is interesting to note that WNT4 levels increase in siRNA 

treatments that inhibit SE proliferation, however, siRNA knockdowns of WNT4 

also inhibit SE proliferation. This suggests that while basal levels of WNT4 

expression are required for SE proliferation and regulated by the AP1 and PAX 

pathways, increased levels of WNT4 alone is not sufficient to compensate for 

loss of either pathway. The up-regulation of WNT4 in treatments that inhibit 

proliferation, in siRNA knockdowns from either the AP1 or PAX pathway, is likely 

due to compensatory mechanisms. 

One of the most widely studied roles of TGF-β is in controlling cell growth 

and differentiation by blocking cell cycle progression through the G1/S transition 

[18].  We identified nine components of the TGF-β pathway differentially 

expressed during hair cell regeneration. We also determined that siRNA 

knockdowns of CUTL1, a repressor of the cyclin dependent kinase (CDK) 

inhibitor, p27Kip, inhibit SE proliferation.  CUTL1 is also down-regulated in two 

treatments that individually inhibit SE proliferation, WNT4 and BTAF1 (-1.90-fold 

and -1.38-fold changes respectively, from Supplemental Tables S7 and S8) 

suggesting some level of cross talk between those genes and cell cycle control.   

p27Kip1 is expressed in the sensory primordia of the mouse cochlea from E12-

E14, a time when cellular proliferation is coming to an end and hair cell 

differentiation is occurring [24].  Its continued expression in the adult inner ear 

appears to mark the supporting cells in mouse and may reflect the continued 

inhibition of the cell cycle in these cells.  TGF-β mediated regulation of p27Kip1 
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may be an important factor in the differing regenerative abilities of mammalian 

and avian SE. 

JUN family TFs play an important role in regulating progression through 

the cell cycle, proliferation and differentiation. For example, c-JUN is required to 

alleviate the inhibition of p53 on cell cycle entry [25] and JUND regulates 

lymphocyte proliferation in mouse [26].  Additionally, members of the JUN family 

of TFs interact with FOS to activate Cyclin D1 and increase cell proliferation [12]. 

Ten known components of the AP1 complex, including FOS, were differentially 

expressed in one or more of our regenerative time points.  In addition to our gene 

expression profiling and phenotype data, the placement of CEBPG downstream 

in the AP1 pathway during SE regeneration is further supported by evidence that 

human CEBPG is known to interact with FOS to activate the IL-4 gene in Jurkat 

cells[27]. CEBPG belongs to the highly conserved CCAAT/enhancer binding 

protein (C/EBP) family of transcription factors. Members of the CEBP family act 

as master regulators of numerous processes, including differentiation, 

inflammatory response and liver regeneration  [28].  The placement of CEBPG 

downstream of the AP1 pathway suggests that CEBPG may interact with FOS or 

other members of the AP1 complex to regulate proliferation during avian SE 

regeneration.  

In addition to CEBPG, we also placed LRP5 downstream in the AP1 

pathway during SE proliferation. The LRP5 gene product is a known co-receptor 

of WNT signaling [29], which connects a component of WNT signaling into this 

pathway.  We previously identified the WNT Signaling components β-catenin and 

the TCF/LEF transcription factors, TCF7L1 and TCF7L2, as being differentially 

expressed during hair cell regeneration [8]. In the present study, three additional 

WNT signaling components, WNT4, WNT9B and WNT16, were commonly 

differentially expressed in siRNA treatments for CEBPG and LRP5. Canonical 

WNT signaling is generally transduced through the frizzled family of receptors 

and LRP5/LRP6 co-receptors to the β-catenin signaling cascade [30]. Though β-

catenin is up-regulated during hair cell regeneration, this occurs at quite a late 

time point (48 hours) suggesting that it may play a more major role in 
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differentiation of new hair cells rather than proliferation of supporting cells prior to 

differentiation.  In agreement with that potential role, our siRNA knockdowns of β-

catenin did not affect proliferation.  

We identified seven PAX genes differentially expressed during cochlea 

regeneration; however, only PAX2 and PAX5 siRNA treatments individually 

inhibited SE proliferation in the utricle cultures used here. While most 

invertebrate genomes posses only a single PAX2/5/8 gene, early in vertebrate 

evolution the closely related subclass of paired-box family of transcription factors 

PAX2, PAX5 and PAX8 were produced by gene duplication [31-35]. Though a 

PAX8 ortholog could not be identified in chicken, our results suggest the closely 

related PAX2 and PAX5 transcription factors both play an important role during 

regulation of SE proliferation. We also identified two genes, WNT4 and MYT1L, 

that are commonly up or down-regulated in siRNA treatments of PAX genes 

(PAX2 and PAX5) and downstream of the AP1 pathway (CEBPG and LRP5), 

that individually inhibit SE proliferation. Of these commonalities, only WNT4 was 

found to be required for SE proliferation. WNT4 is first detected in the developing 

chicken otocyst at E5, forming a border between the sensory primordia and 

nonsensory lateral wall [36, 37] suggesting WNT4 may play an important role in 

forming sensory/nonsensory boundaries in the developing inner ear.  PAX2 has 

been shown to regulate WNT4 expression during kidney development [38] and 

our microarray data suggests that PAX2, along with PAX5, CEBPG and LRP5, 

may function as important regulators of WNT4 in the inner ear connecting the 

AP1 and PAX pathways to WNT Signaling during hair cell regeneration. 
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Introduction 

The inner ear is divided into two functional structures: the vestibular organ, 

which is responsible for maintaining balance and the auditory organs, which 

sense sound.  The vestibular organ consists of three semi-circular canals 

responsible for sensing rotational acceleration as well as the saccule and utricle, 

which sense linear acceleration and gravity.  The cochlea is the primary organ of 

the auditory system which senses sound.  Both organs of the inner ear utilize 

sensory hair cells as mechano-electrical transducers.  The transcription factor 

GATA3 plays an essential role in development of the mammalian ear. GATA3 is 

a member of the GATA family of transcription factors that contain two highly 

conserved C2C2 type zinc fingers that recognize the consensus WGATAR 

sequence (W = A or T and R = A or G) (Ko and Engel 1993; Merika and Orkin 

1993).  GATA3 is expressed throughout the mouse otic placode from E8-E9.5 

and is required for invagination to generate a closed otic vesicle that will later 

form the vestibular and cochlear organs of the inner ear (Grace Lawoko-Kerali 

2002; Lilleväli, Haugas et al. 2006). In humans, GATA3 mutations that disrupt the 

C-terminal zinc finger result in loss of DNA binding function and have been linked 

to hypoparathyroidism, sensorineural deafness and renal anomaly syndrome 

(HDR) (Van Esch, Groenen et al. 2000).  

GATA3 influences development of the embryonic ear and brain, among 

other organ systems.   Very little is known about the regulatory role of GATA3 in 

the inner ear. However, GATA3 has been well studied in hematopoietic induction 

of Th2 cell differentiation.  Naïve CD4 cells differentiate into either T helper type 
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1 (Th1) or T helper type 2 (Th2) cells. Th2 cell fate is tightly regulated by GATA3 

transcriptional regulation of IL5 and IL13 at well defined promoter sites. (Siegel, 

Zhang et al. 1995; Kishikawa, Sun et al. 2001; Lavenu-Bombled, Trainor et al. 

2002; Szabo, Sullivan et al. 2003; Mowen and Glimcher 2004).  GATA3 

homozygous mutant mice result in embryonic lethality by 11 days post coitum 

due to multiple organ abnormalities, most notably massive internal bleeding and 

a complete inhibition of T-cell differentiation (Pandolfi, Roth et al. 1995). 

Additionally, GATA3 specifies inner root sheath cell differentiation vs. hair shaft 

cells during skin development (Kaufman, Zhou et al. 2003).  GATA3 is an 

important regulator of lineage-specific differentiation in skin development and 

during hematopoietic induction; it is likely that GATA3 may have a similar role 

during inner ear development.  

In mammals, sensory hair cells of the inner ear lack the capacity for 

regeneration when damaged.  In mouse, GATA3 heterozygous mutant mice have 

a progressive degeneration of cochlear sensory hair cells (van der Wees, van 

Looij et al. 2004). In contrast to mammals, non mammalian vertebrates such as 

birds maintain the ability to regenerate sensory hair cells of the inner ear 

throughout their lives. GATA3 is expressed in similar expression patterns in the 

developing mammalian and avian ear. Results from in-situ hybridization and 

immunohistochemical labeling demonstrated that GATA3 is expressed 

throughout the sensory region of the mature cochlea but is limited to a 6-10 cell 

wide region in the striola of the utricle (Hawkins, Bashiardes et al. 2003).  The 

striola of the utricle is of particular interest because it corresponds to the reversal 



 97

zone in which the sensory hair cells undergo a 180° shif t in orientation (Flock 

1964). In addition to being a site of hair cell polarity, another interesting feature of 

the striola is that hair cells undergo an abrupt change in phenotype at this region. 

The striola is primarily populated by Type I hair cells contacted by calyx nerve 

terminals (Lysakowski and Goldberg 1997). These hair cells are morphologically 

distinct from Type II hair cells that populate the majority of the utricle sensory 

epithelia. Type II hair cells are contacted by bouton nerve terminals from afferent 

and efferent neurons.  Though specific roles for Type I and Type II hair cells are 

not clear, their distinct morphologies suggest specialized functions.  

The genetic mechanisms that regulate Type I vs. Type II differentiation 

have not been determined, nor is it known how neurons distinguish between 

Type I and Type II hair cells. After in vivo ototoxic injury, Type II hair cells are the 

first to repopulate the utricle after 14-20 days (Weisleder and Rubel 1993; Dye, 

Frank et al. 1999; Matsui, Oesterle et al. 2000; Zakir and Dickman 2006) followed 

by Type I hair cells 2 months post injury (Weisleder and Rubel 1995). The 

specific expression pattern of GATA3 in the avian striola is maintained in 

supporting cells of the utricle following severe ototoxic injury and during 

subsequent regeneration (Warchol and Speck 2007). GATA3 heterozygous and 

null mutant mice show misrouted axonal projections in the inner ear, suggesting 

an important role regulating axon guidance. Recent experiments have 

demonstrated that avian hair cells regenerate in the proper orientation in the 

absence of GATA3 expression (Warchol and Montcouquiol, manuscript 

submitted), suggesting that GATA3 does not regulate hair cell polarity during hair 
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cell regeneration. Rather, GATA3 may play an important role regulating Type I 

vs. Type II hair cell differentiation and/or axon guidance to specific hair cell types. 

The present study is aimed at the identification of transcription factors in 

the inner ear whose expression is regulated by GATA3.  We specifically focused 

on the striola of the chick utricle, which is comprised of ~10,000 cells.  We used 

four complementary approaches to characterize GATA3-regulated gene 

expression. First, we used micro cDNA amplification methods and custom gene 

microarrays to determine transcription factor (TF) genes specifically co-

expressed with GATA3 in the highly localized striolar region.  We next utilized 

both siRNA knockdown of GATA3 and ectopic over-expression of GATA3 to 

identify genes that act downstream of GATA3 in the utricular sensory epithelium.  

Finally, we confirmed a subset of our microarray observations by RNA in situ 

hybridizations and used chromatin immunoprecipitation (ChIP) to identify direct 

binding targets of GATA3 upstream of the LIM domain only 4 (LMO4) and 

muscleblind like-2 (MBNL2) transcription factors in the chick utricular sensory 

epithelium. Our expression profiling data further suggests that regulation of Wnt 

signaling, FGF signaling, Notch Signaling, BMP signaling as well as regulators of 

neurogenesis and neural survival are differentially expressed in the striolar vs. 

extra-striolar regions and may play a significant role regulating neuronal 

differentiation and axon guidance to specific hair cell types within the sensory 

maculae. 
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Results 

Striola vs. extra-striola microarray comparisons 

As an initial screen for genes that are potentially regulated by GATA3, we 

compared gene expression in cells of the striola (which includes the GATA3-

expressing reversal zone) to expression in the medial extra-striolar region.  Our 

rationale for investigating just transcription factors and components of known 

signaling pathways was that changes in these molecules frequently act as 

important switches in genetic programming. Sensory epithelia from mature chick 

utricles were isolated and micro-dissected into striolar and extra-striolar portions 

(Figure 4-1). Both of these are much more accessible than the corresponding 

samples within the mouse utricle.  

 

 

RNAs from these pooled samples were then compared on a custom 

oligonucleotide microarray that primarily interrogates transcription factor gene 

expression (Messina et al., 2004), but also includes oligonucleotides specific to 

Figure 4-1 Comparison of striola vs. extra-
striola. GATA3 expressing cells from the 
striola sensory epithelia (shown here by 
whole mount RNA in situ) were micro-
dissected from avian utricle. These were 
compared to cells that do not express 
GATA3, the extra-striola, on a custom 
transcription factor microarray.  
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major signaling pathways.  All comparative microarray hybridizations consisted of 

2 biological samples and 4 technical replicates for each biological sample, 

including dye switch experiments. To our knowledge this is the first such 

comparison ever conducted and identified 38 genes that are up-regulated and 45 

down-regulated at the striola (Fold change > 2.0 and p-value < 0.05) (Table 4-1).  

Notably, the four genes that showed the highest relative levels of expression in 

the striola (KCNIP4, DKK2, NGN2, and HEY2) have been shown to affect 

neuronal differentiation (Falk et al., 2002; Sakamoto et al., 2003; Xiong et al., 

2004; Guder et al., 2006).  For example, the bHLH transcription factor NGN2 can 

induce neuronal cell fate in mouse neural stem cells (Hu et al., 2005).  

Expression of NGN2 within the striola was up-regulated by 7.85 fold, compared 

to the extra-striolar region.  In contrast, we observed reduced striolar expression 

of WNT3A and WNT5 (-7.55 and -5.37 fold changes respectively) and two hairy 

and enhancer of split (HES) paralogs, HEYL and HRY (-5.02 and -6.99 fold 

changes respectively).  HES genes are components of Notch/Delta signaling, 

and both HEYL and HRY are known to physically interact with GATA proteins 

and inhibit transcriptional activity (Kathiriya et al., 2004; Fischer et al., 2005). 

From this dataset we also identified known components of WNT/beta-catenin 

signaling (DKK2, FZD5, FZD7, WNT3, WNT3A, WNT5A), FGF signaling (FGF16 

and FGF20), Notch signaling (HEY2, HEYL and HRY) and BMP signaling 

(BMP2, BMP4 and BMP15) (Table 4-1).  Overall, this comparison revealed a 

complex pattern of gene expression changes that strongly implicate differential 
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expression of WNT, FGF, Notch and BMP signaling pathways within these 

distinct regions of the sensory maculae. 

 
Table 4-1. Genes differentially expressed in the striola vs. extra-striola. 
 

Gene 
Average    

Fold Change P-value Gene 
Average 

Fold Change P-value 

KCNIP4 11.19 7.32 X 10-03 KLHL9 -19.34 1.75 X 10-02 

DKK2 10.92 2.68 X 10-04 MGC16733 -15.25 3.81 X 10-03 

NEUROG2 7.86 1.17 X 10-02 ENO1 -10.46 4.33 X 10-04 

HEY2 6.53 5.81 X 10-03 WNT3A -7.55 2.62 X 10-04 

BRD9 5.66 2.35 X 10-02 CYLD -7.44 2.90 X 10-04 

GATA3 5.45 1.12 X 10-02 HRY -6.99 1.23 X 10-03 

NR0B1 5.04 1.52 X 10-02 RORA -6.63 1.26 X 10-03 

LOC90322 4.55 2.51 X 10-02 FEZL -6.06 3.44 X 10-04 

RAX2 4.09 2.49 X 10-02 BMP4 -5.63 1.46 X 10-02 

MYT1L 4.00 1.11 X 10-02 WNT5A -5.37 9.07 X 10-03 

TCEA2 3.93 3.13 X 10-02 PMX1 -5.27 9.96 X 10-03 

FGF20 3.92 2.00 X 10-02 FHL2 -5.26 1.32 X 10-02 

IHH 3.55 5.90 X 10-03 HOXD8 -5.14 5.17 X 10-03 

SATB1 3.50 3.41 X 10-04 HEYL -5.02 2.36 X 10-03 

MLL3 3.38 6.15 X 10-03 ZNF652 -4.74 2.86 X 10-02 

KIAA0293 2.94 3.32 X 10-02 BAPX1 -4.69 2.71 X 10-03 

PDEF 2.92 2.59 X 10-03 NRTN -4.61 2.68 X 10-03 

HOXA6 2.83 4.93 X 10-03 BTBD5 -4.60 1.76 X 10-02 

TBX22 2.69 1.75 X 10-02 MTF1 -4.34 6.23 X 10-04 

TCFL1 2.68 2.54 X 10-02 RXR -4.32 3.72 X 10-04 

SUV39H1 2.64 1.74 X 10-02 GLI3 -4.18 9.42 X 10-04 

LOC416414 2.56 8.85 X 10-03 FGF16 -3.64 4.75 X 10-02 

SCA2 2.53 3.75 X 10-05 SP4 -3.51 1.18 X 10-03 

PAX3 2.50 4.72 X 10-02 CDK5RAP1 -3.42 1.81 X 10-02 

BS69 2.49 1.07 X 10-02 HNF1 -3.21 7.33 X 10-04 

NCOR2 2.42 1.12 X 10-02 ACVR1B -3.12 1.72 X 10-02 

FOXL2 2.38 3.65 X 10-03 BMP2 -3.12 1.20 X 10-02 

JAG1 2.33 1.70 X 10-02 FZD7 -3.01 1.48 X 10-02 

HMGB3 2.28 1.06 X 10-02 MADH9 -3.00 1.26 X 10-02 

STAT5A 2.28 4.09 X 10-02 BMP15 -2.99 3.49 X 10-02 

LMO4 2.28 4.26 X 10-02 DACH1 -2.92 3.23 X 10-02 

IRX1 2.26 5.27 X 10-03 FZD5 -2.82 3.99 X 10-03 

CLOCK 2.24 3.63 X 10-02 CDK9 -2.80 1.51 X 10-02 

PMX2B 2.22 9.35 X 10-04 IKZF2 -2.78 4.56 X 10-02 

LHX3 2.17 7.11 X 10-04 TRAF4 -2.77 1.41 X 10-02 

RBBP5 2.13 6.59 X 10-03 WNT3 -2.72 2.24 X 10-03 

LARP1 2.11 4.20 X 10-02 PLTP -2.71 4.25 X 10-02 

TCF1 2.10 3.21 X 10-02 HOXB9 -2.69 1.20 X 10-04 

   TGIF -2.45 4.13 X 10-03 

   BUB3 -2.28 3.79 X 10-02 
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   GDF8 -2.22 4.59 X 10-02 

   ARNTL2 -2.16 2.63 X 10-02 

   BANP -2.15 2.25 X 10-02 

   RNF12 -2.07 1.66 X 10-02 

   MADH7 -2.00 1.53 X 10-02 

 
Average fold changes are displayed as levels in the utricle striola relative to the 
extra-striola.  Values are > 2-fold and p-value < 0.05. 

 

 

 
 
GATA3 RNAi knockdown comparisons 

To better discriminate between gene expression changes within the striola 

that are associated with GATA3 expression and those that might be coincidental, 

we utilized RNAi knockdowns in cultured chick utricles (the entire utricle including 

striola plus extra-striola regions) to identify genes that potentially act downstream 

of GATA3. Since GATA3 expression is maintained in the adult utricle, it very 

likely plays a critical and active role regulating direct targets in the adult striola.    

We compared gene expression profiles of pure sensory epithelia from whole, 

explanted utricles transfected in vitro via electroporation with siRNAs for either 

GATA3 or a GFP control.    In order to identify both direct and indirect 

consequences of GATA3 knockdown, epithelial cells were harvested 48 hours 

after RNAi treatment.   Immunohistochemical labeling indicated that knockdown 

of GATA3 is maintained at the striola 48 hrs. post siRNA treatment (Fig 4-2 A,B).  

We identified 63 genes that were up-regulated and 10 genes down-regulated 

(including GATA3 itself) in response to GATA3 siRNA knockdowns in the avian 

utricle sensory epithelia (Fold change > 2.0 and p-value < 0.05) (Table 4-2). 
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The BAR homeobox transcription factor 1 (BARX1) and BARH-like 

homeobox 1 (BARHL1) genes exhibited the largest down-regulation in 

expression (-9.31 and -6.68 fold changes respectively). BARHL1 encodes a 

homeodomain transcription factor involved in sensorineural development.  It is 

expressed in migrating neurons of the CNS as well as in sensory hair cells, 

where it is required for long-term survival and maintenance (Bulfone et al., 2000; 

Li et al., 2002).  BARX1 regulates transcription of two WNT antagonists, sFRP1 

and sFRP2 (Kim et al., 2005).  Consistent with our earlier observation that WNT 

signaling is differentially regulated in the striola compared to the extra-striola 

regions, we identified three components of WNT signaling that were up-regulated 

in GATA3 knockdowns (WNT3, LRP5 and FZD5) and one Wnt gene (WNT5B) 

that was down-regulated.  Expression of the Fibroblast Growth Factor FGF16, 

Figure 4-2. Immunohistochemical labeling with a GATA3 antibody (green) in siRNA 
treated whole avian utricles. GATA3 immunoreactivity is localized to the 6-10 cell 
wide strip of cells at the striola reversal zone in the A) control GFP siRNA treated 
sample and undetectable in the B) GATA3 treated siRNA. 
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which was specifically down-regulated at the striola, was up-regulated in GATA3 

knockdowns.  

 

Table 4-2. Genes differentially expressed in GATA3 siRNA treatments. 

Gene 
Average 

Fold Change P-value Gene 
Average 

Fold Change P-value 

NUP153 12.06 2.01 X 10-02 MYOD1 2.70 6.75 X 10-03 

HRIHFB2122 7.09 2.75 X 10-03 MYT1L 2.67 1.23 X 10-03 

VEGFC 7.06 1.84 X 10-02 NFE2L2 2.62 3.31 X 10-02 

SIAH1 6.94 1.50 X 10-02 GTF2E2 2.61 2.75 X 10-02 

BRD1 6.29 2.68 X 10-03 ZFP91 2.55 3.05 X 10-02 

PMX2B 5.28 5.59 X 10-03 ARNTL2 2.49 2.89 X 10-02 

HOXA7 5.04 9.25 X 10-03 SHH 2.48 3.56 X 10-02 

ALX4 4.95 3.61 X 10-02 MTF1 2.45 2.94 X 10-02 

RXRG 4.88 2.42 X 10-02 RFX3 2.44 1.25 X 10-02 

LHX8 4.86 3.62 X 10-02 FMR2 2.41 1.13 X 10-02 

BCL11B 4.76 9.73 X 10-03 MDN1 2.41 4.68 X 10-03 

CHD1 4.56 2.12 X 10-02 FZD5 2.40 2.56 X 10-02 

CITED2 4.52 3.62 X 10-02 NEUROD6 2.40 2.26 X 10-02 

FOXP1 4.50 8.76 X 10-03 CYLD 2.38 8.00 X 10-04 

MYBL1 4.47 3.22 X 10-02 NHLH2 2.34 1.74 X 10-02 

SPOP 4.37 1.47 X 10-02 HSF2BP 2.33 4.04 X 10-02 

ARTN 4.26 2.87 X 10-02 TRIM50A 2.29 2.15 X 10-02 

PCMT1 4.24 2.15 X 10-02 FOG2 2.27 5.94 X 10-03 

FGF16 4.14 1.45 X 10-02 MORF4 2.23 2.08 X 10-02 

FEZL 4.08 1.63 X 10-02 SOX21 2.13 3.91 X 10-02 

FOXH1 4.01 2.07 X 10-02 SOX1 2.09 3.55 X 10-02 

FELZ 3.86 1.51 X 10-02 TITF1 2.03 3.43 X 10-02 

EEF1A1 3.84 1.95 X 10-02 MLLT6 2.03 2.64 X 10-02 

PMX1 3.73 2.82 X 10-02 CREB3L2 2.01 4.64 X 10-02 

ID3 3.71 1.35 X 10-02 BCL6B 2.01 1.87 X 10-02 

DAZAP1 3.63 4.14 X 10-02    

IVNS1ABP 3.57 2.67 X 10-02 

Gene 
Average 

Fold Change P-value KLHL3 3.51 3.17 X 10-02 

ZBTB26 3.44 1.38 X 10-02 BARX1 -9.31 3.28 X 10-02 

DEAF1 3.38 2.64 X 10-02 BARHL1 -6.68 2.44 X 10-02 

ALDH3A2 3.11 1.31 X 10-02 JUN -3.64 1.57 X 10-02 

TNRC9 3.08 2.06 X 10-02 POU1F1 -3.53 2.19 X 10-02 

SUPT4H1 3.03 1.91 X 10-02 WNT5B -2.67 3.18 X 10-02 

WNT3 3.01 4.11 X 10-02 CSRP1 -2.25 2.71 X 10-02 

LRP5 2.97 1.12 X 10-02 ATF7 -2.21 1.11 X 10-02 

MADH7 2.86 1.17 X 10-02 ETV4 -2.16 1.94 X 10-02 

LAF4 2.77 2.13 X 10-02 PPARBP -2.05 1.77 X 10-02 

ZNF71 2.71 4.33 X 10-02 LMO4 -2.01 3.28 X 10-02 

 
Average fold changes are displayed as levels in the GATA3 siRNA knockdown 
relative to the control GFP siRNA. Values are > 2-fold and p-value < 0.05. 
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GATA3 over-expression microarray comparisons 

As a reciprocal experiment to our siRNA knockdowns, we next identified 

genes differentially expressed in response to GATA3 over-expression.  Using a 

pMES vector expressing GATA3 and eGFP under the control of a chick beta-

actin promoter we over-expressed GATA3 in dissociated epithelial cells from the 

chick utricle (Figure. 4-3). Transfection efficiency was determined to be 24% by 

comparing eGFP expression to total DAPI stained nuclei (n = 136). We quantified 

changes in gene expression between the GATA3 over-expressing samples and 

those transfected with an eGFP/pMES (empty) vector.  We identified 12 genes 

that are up-regulated and 11 down-regulated in response to GATA3 over-

expression (Fold change > 2.0 and p-value < 0.05) (Table 4-3). The genes 

showing the most dramatic up-regulation in response to GATA3 over-expression 

are the WNT/beta-catenin signaling modulators WNT9A and SFRP2. 

 

 

 
 

Figure 4-3. Dissociated utricle sensory 
epithelia transfected with a GATA3-GFP 
pMES expression vector.  Approximately 
24% of cells over-expressed GATA3 
shown by GFP (green) compared to 
DAPI labeled nuclei (blue).  
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Table 4-3. Genes differentially expressed in GATA3 over-expression. 

Gene 
Average Fold 

Change P-value Gene 
Average Fold 

Change P-value 

GATA3 7.28 2.71 X 10-04 WDTC1 -3.68 2.40 X 10-03 

WNT9A 6.24 1.28 X 10-02 H2AFY -3.04 1.18 X 10-03 

SFRP2 5.84 4.61 X 10-02 CDKN2C -2.6 2.08 X 10-03 

TAF-172 3.59 1.83 X 10-02 WNT4 -2.5 1.38 X 10-03 

BMP15 2.68 3.83 X 10-02 MADH2 -2.48 2.00 X 10-02 

SOX8 2.67 3.90 X 10-02 MTA1 -2.28 4.21 X 10-03 

TCF7 2.55 1.97 X 10-02 TAF2D -2.16 5.17 X 10-03 

EDAR 2.49 4.40 X 10-02 SOX10 -2.15 1.28 X 10-02 

PXN 2.33 1.91 X 10-02 ALDH4A1 -2.04 2.07 X 10-02 

GTF2E2 2.17 4.20 X 10-03 MADH3 -2.03 2.95 X 10-02 

MADH9 2.16 5.95 X 10-05 FARSL -2.03 4.08 X 10-05 

HNK1 2.01 2.05 X 10-02    

 
Average fold changes are displayed as levels in the GATA3 over-expression 
experiment relative to the GFP vector only control. Values are > 2-fold change p-
value < 0.05. 
 

 

 

Downstream effectors of GATA3 expression 

To identify genes that are potentially directly regulated by GATA3 we 

compared expression changes across all three conditions.   This is a particularly 

conservative approach given that GATA3 can in various circumstances act as 

either an activator or a repressor (Siegel et al., 1995; Lavenu-Bombled et al., 

2002; Mantel et al., 2007).   It is quite possible that dramatic down-regulation or 

up-regulation of GATA3 may not have immediately reciprocal effects on actual in 

vivo target genes in a simplistic model of target selection.  Nevertheless, we 

adopted this filtering approach to identify a set of genes that would be strong 

candidates for direct regulation.  We identified 4 genes with similar or reciprocal 
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expression patterns to GATA3: BMP2, FKHL18, LMO4 and MBNL2 (Table 4-4).  

For this comparison, we expanded our datasets to include more modest fold 

changes (>1.3 fold, p-value < 0.05) across all 3 conditions. As described below, it 

is clear that at least two of these genes are indeed in vivo targets of GATA3.  

 
 
Table 4-4. Genes with similar or reciprocal expression patterns to GATA3 across all three 
conditions. 
 
Gene Striola  P-value GATA3 

Knockdown 
P-value GATA3 

Over-expression 
P-value 

Bmp2 -3.12  1.20 x 10-2 1.44  2.15 x 10-2 -1.79 1.52 x 10-2 
Fkhl18 1.57  1.68 x 10-2 -1.66  4.38 x 10-2 1.44 1.41 x 10-2 
Gata3 5.45  1.12 x 10-2 -1.53  6.13 x 10-5 1.84 1.42 x 10-2 
Lmo4 2.28  4.26 x 10-2 -2.01  3.28 x 10-2 1.42 1.43 x 10-3 
Mbnl2 -1.47  2.84 x 10-2 1.85  1.35 x 10-2 -1.58 4.44 x 10-2 

 
All values are derived from striola vs. extra-striola, GATA3 siRNA knockdown and GATA3 
over-expression microarray data.  Average fold changes > 1.3 and p-value < 0.05 in all three 
conditions. 

 

We next employed chromatin immunoprecipitation (ChIP) to confirm the 

direct interaction of GATA3 with two of the four predicted target genes.  This 

experiment was conducted using dissociated epithelial cells from the chick utricle 

that had been transfected with the pMES vector, to over-express GATA3.  

Putative GATA binding sites were computationally identified, using TF Search 

(Heinemeyer et al., 1998), upstream of the transcription start sites of LMO4 and 

MBNL2.   Searches within the regions surrounding the other two genes did not 

reveal convincing putative GATA3 targets.  However, as previously noted, 

biologically functional GATA3 sites are not strictly confined to promoter-proximal 

sites and broader search parameters revealed numerous potential GATA3 sites.    

Primers were designed surrounding the putative GATA binding sites adjacent to 
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the LMO4 and MBNL2 genes.  These were used to PCR amplify those regions 

after ChIP pull-down with a GATA3 polyclonal antibody.  PCR products for each 

candidate region were compared to products from a mock antibody pull-down, in 

order to identify enrichment by GATA3 ChIP (Figure 4-4).  We identified 

enrichment of 1 region upstream of the LMO4 transcription start site, -627 to -

818, containing two putative GATA binding sites and another region upstream of 

the MBNL2 transcription start site, -1574 to -1950, containing 8 putative GATA 

binding sites.    These data strongly support the classification of these two genes 

as being directly regulated by GATA3. 

 

 

To independently verify the expression patterns predicted by our 

microarray comparisons and confirm that those expression patterns were 

consistent with direct regulation by GATA3, we conducted RNA in situ 

hybridizations on whole mount chicken utricles (Figure 4-5).  In agreement with 

our microarray data we found that the area of LMO4 expression surrounds and 

Figure 4-4. Direct in-vivo interactions with GATA3 were demonstrated by ChIP in 
dissociated sensory epithelia over-expressing GATA3. PCR amplification with primers 
flanking putative GATA binding sites identified enrichment in the anti-GATA antibody (+) 
ChIP compared to a mock antibody control (-) in a 192 bp product, LMO4-3, from -818 bp to 
-627 bp upstream of LMO4 and two overlapping  165 bp and 232 bp products from -1738 bp 
to -1574 bp (MBNL-8) and -1950 bp to -1719 bp (MBNL-9) upstream of MBNL2. 
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encloses the striolar region.   Our microarray data indicate that MBNL2 exhibits a 

reciprocal pattern of expression to that of GATA3.  In agreement with this, we 

found that MBNL2 is not expressed at the striola, but is confined to the medial 

region of the utricle bordering the striola.  This is consistent with a model in which 

GATA3 acts to repress MBNL2 expression, but positively regulates LMO4 

expression at the striola. 

 

 

 

 

Figure 4-5. In situ hybridizations confirm expression patterns of LMO4 and MBNL2 
predicted by our microarray and ChIP data. Immunohistochemical labeling with a GATA3 
antibody (green) and RNA in situ hybridizations with antisense probes to LMO4 and 
MBNL2 in whole mount chick utricles. GATA3 and LMO4 are expressed at the striola 
reversal zone and MBNL2 is expressed in the medial region of the utricle bordering the 
striola reversal zone. 
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Conclusions 

In this study, we report the first large scale analysis of regionalized gene 

expression differences in the vestibular sensory organ. In addition to identifying 

transcription factor gene pathways required for inner ear development and 

regeneration, it is also important to determine direct DNA binding targets of key 

transcription factors that regulate these processes. Though GATA3 has been 

well characterized during the development and differentiation of the mammalian 

hematopoietic system, little is known about downstream effectors and direct DNA 

binding targets in the inner ear, brain and other organ systems.  We focused on 

genes that are differentially expressed in the striolar vs. extra-striolar regions of 

the chick utricle which are associated with the expression of the zinc finger 

transcription factor GATA3.  Most notable among the differences are those 

involving WNT signaling and neurogenesis. Our data indicate that the 

neurogenesis regulators, KCNIP4, NGN2, and HEY2, are correlated with the 

presence of type I vestibular hair cells.  KCNIP4 is particularly interesting, as it 

encodes a potassium channel-interacting protein that regulates membrane 

excitability (Holmqvist, Cao et al. 2002; Rhodes, Carroll et al. 2004) and has also 

been shown to inhibit WNT signaling by promoting presenilin (PS1) mediated 

degradation of β-catenin (Kitagawa, Ray et al. 2007).  Consistent with this 

observation we also identified 6 modulators of WNT signaling that are 

differentially regulated at the striola.   Three secreted WNT ligands, WNT3, 

WNT3a and WNT5a, and two WNT receptors, FZD5 and FZD7, are specifically 

down-regulated in the striolar region.   In contrast, the striola expresses high 



 111

levels of the Wnt modulator Dickkopft2 (DKK2).   DKK2  acts as a context-

dependant agonist or antagonist of WNT/beta-catenin signaling depending on the 

presence of its co-factor Kremen-2 (Mao and Niehrs 2003). Though there is no 

known chick ortholog to Kremen-2, interestingly one of the highest up-regulated 

genes in response to GATA3 over-expression was the WNT antagonist SFRP2 

(5.84 fold change). Members of the Sfrp family inhibit Wnt signaling by acting as 

extracellular decoy receptors that sequester Wnts and prevent binding to Frizzled 

receptors. In mouse gut mysenchymal cells, Sfrp2 is induced by Barx1 to reduce 

local Wnt activity at endodermal cells to direct stomach epithelial differentiation 

(Kim, Buchner et al. 2005).  In our GATA3 siRNA treatments, Barx1 had the 

highest down-regulation in response to GATA3 knockdown.  Together, our data 

suggests a model in which GATA3 expression leads to an overall down-

regulation of WNT signaling at the striola.  In addition to WNT signaling 

modulators, we also see several components of Notch, FGF and BMP signaling 

that are differentially expressed at the striola compared to the extra-striola. A 

previous study has also identified overrepresentation of WNT signaling, Notch 

signaling, FGF signaling and BMP signaling genes differentially expressed in 

GATA3 conditional knockouts of mouse skin epidermis and hair follicles (Kurek, 

Garinis et al. 2007).  GATA3 is required for differentiation and organization of hair 

follicles during skin development and regeneration (Kaufman, Zhou et al. 2003). 

Our data suggests that GATA3 may also regulate these signaling pathways in 

the inner ear.   
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Our microarray gene expression profiling data suggests intersections 

between several important signaling pathways, most notably Wnt and Notch 

signaling. Recently, several reports have suggested an intertwined relationship 

between Wnt and Notch (‘Wntch’) signaling regulation of cell proliferation and 

differentiation during embryonic development (Hayward, Kalmar et al. 2008).  

Wnt signaling has previously been shown to be involved in early organogenesis 

during utricle and cochlea differentiation. Specifically, Wnt’s are thought to mark 

specific organ lineages and refine sensory vs. non-sensory boundaries during 

vestibular and auditory organogenesis (Stevens, Davies et al. 2003; Sienknecht 

and Fekete 2008). During later vestibular and auditory development (E12.5-E15), 

sensory hair cell and non-sensory supporting cell differentiation occurs. This 

process is regulated by the Notch signaling pathway. It is not yet known how 

sensory hair cells of the utricle acquire their specific type I or type II cell fate. The 

process of differentiation into specific, terminal cell types involves an ordered set 

of transcriptional regulators. During the final stages of sensory hair cell 

development in the utricle of the inner ear, this differentiation process involves a 

series of binary decisions in which cells branch into sensory hair cells vs. non-

sensory supporting cells, and finally type I vs. type II hair cells.  One of the best 

studied roles of GATA3 is during hematopoietic stem cell differentiation. T 

lymphocytes must traverse a series of binary decisions from pluripotent 

progenitor cells to T helper type I (Th1) vs. T helper type 2 (Th2)  cell types.  In 

the hematopoietic lineage-specific transcription factor model, GATA3 acts as a 

master regulator of Th2 specific differentiation.  It is not surprising that a similar 
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lineage specific transcription factor model of GATA3 regulated differentiation 

would exist in other organ systems. By comparing gene expression differences 

between distinct regions of the vestibular organ and in response to expression 

levels of the transcription factor GATA3, we have identified downstream effectors 

of GATA3.  Specifically, our data suggests a model by which GATA3 regulated 

inhibition of Wnt signaling may intersect with Notch signaling at the striola and 

play an important role in type I vs. type II hair cell differentiation and/or 

maintenance. 

In addition to implicating candidate effectors within the striola, we also 

used chromatin immunoprecipitation to identify two direct gene targets of GATA3.  

Of the confirmed direct targets, the LIM domain only 4 gene (LMO4) encodes a 

cystein-rich transcription regulator containing two LIM domains. The zinc finger 

binding domains of LMO4 are structurally similar to GATA zinc fingers (Perez-

Alvarado, Miles et al. 1994); however, no specific LIM-DNA interaction has been 

reported. Rather, LIM family members are thought to act as part of a 

transcriptional complex that is mediated by protein-protein interactions: LIM 

family members have been shown to interact with GATA transcription factors 

during hematopoiesis (Osada, Grutz et al. 1995; Wadman, Osada et al. 1997) 

and in the spinal cord, LMO4 interacts with GATA transcription factors to regulate 

the balanced generation of inhibitory and excitatory neurons (Joshi et al., 2009).    

LMO4 is detected in the mouse inner ear during otic placode formation at E8.5 

and by E10.5 is expressed primarily in the dorsolateral regions of the otic vesicle 

that will eventually form the vestibular organs (Fekete and Wu 2002; Burton, Cole 
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et al. 2004; Deng, Pan et al. 2006).  This pattern appears to be coincident with 

GATA3 expression, which also occurs throughout the otic placode at E8 and is 

also restricted to the dorsolateral otic vesicle by E10.5 (Grace Lawoko-Kerali 

2002).   Our expression profiling and in situ hybridization results confirm this 

pattern of spatial and temporal co-expression.  In addition, our ChIP data 

indicates that LMO4 is a direct target of GATA3 activity within the utricle and very 

likely throughout inner ear development.  

In addition to LMO4, we also identified the muscleblind-like 2 (MBNL2) 

gene as a direct target of GATA3.  The Muscleblind family of proteins regulate 

alternative exon splicing during differentiation in many cell types, including 

muscle, neurons and photoreceptors.  MBNL2 can also function as an RNA 

binding protein essential for integrin α3 subcellular localization (Adereth, Dammai 

et al. 2005; Maya Pascual 2006).   Interestingly, a role for integrins in hair cell 

differentiation and stereocilia maturation has previously been described 

(Littlewood Evans and Muller 2000).  Taken together these observations suggest 

that GATA3 may play a  role in subcellular localization of integrins and in the 

regulation of alternative splicing  during type I vs. type II sensory hair cell 

differentiation.   

We have also identified two genes (BMP2 and FKHL18) with expression 

that consistently varies with GATA3 levels and localization. Though BMP2 and 

FKHL18 are likely regulated by GATA3 at the striola, it is not clear if this is a 

direct or indirect regulation. FKHL18 is a member of the forkhead box (FOX) 

family of transcription factors. Our expression profiling data suggests that GATA3 
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may induce expression of FKHL18 at the striola. Though other members of the 

FOX family of transcription factors have been implicated in the normal 

development of the inner ear (Hulander, Wurst et al. 1998; Solomon, Kudoh et al. 

2003), the structurally unique FKHL18 has only been described during mouse 

fetal testis development (Yuko Sato 2008).   Our expression profiling data 

suggests that GATA3 may also regulate BMP signaling in the utricle. Specifically, 

GATA3 inhibits BMP2 at the striola.  BMP2 has previously been shown to act 

downstream of Wnt signaling during osteoblast differentiation (Rawadi, B et al. 

2003; Morvan, Boulukos et al. 2006) and our data suggests GATA3 may regulate 

a potential intersection between BMP and Wnt signaling at the striola during 

inner ear development.  
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In the previous chapters, I have described the use of genomic microarray 

expression profiling along with siRNA knockdowns to identify transcription factor 

pathways critical for sensory epithelia (SE) proliferation in the inner ear. I have 

also described the use of complimentary genomic techniques to identify pathway 

intersections in defined regions of the inner ear and direct gene targets of a 

transcription factors required for inner ear development. These were the first 

large scale gene expression profiling studies of SE proliferation and regionalized 

gene expression differences in the vestibular organs of the inner ear. 

 In the first study, 683 genes from known pathways and genes of 

previously un-described function were identified during avian sensory hair cell 

regeneration in the inner ear.  This study represented the first large scale gene 

expression profiling of regenerating SE of the inner ear. We identified multiple 

components of known signaling pathways that were clearly identifiable: TGFβ, 

PAX, NOTCH, WNT, NFKappaB, INSULIN/IGF1 and AP1. We also identified 

transcription factors that had not previously been implicated in known pathways. 

In addition to identifying genetic pathways involved in avian SE regeneration, in 

the second study I used a small molecule inhibitor and siRNA screen to 

determine if specific genes from this regeneration dataset are required for avian 

SE proliferation.  In this study  27 genes and pathways and identified 11 

genes/pathways that are required for SE proliferation, including components of 

the AP1 complex (JNK, JUND and c-JUN), PAX pathway (PAX2 and PAX5), as 

well as TGFβ signaling and cell cycle regulation (CUTL). I also identified 2 genes 

that we determined act downstream of the AP1 complex and are also required for 
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SE proliferation; the CCAAT element binding protein (CEBPG) and the WNT co-

receptor (LRP5). These results suggest that components of the AP1 complex 

and PAX pathway are required for avian SE proliferation and that these pathways 

intersect with WNT signaling, specifically by regulating expression of Wnt4.  The 

process of SE regeneration involves two major steps; first neighboring cells must 

re-enter the cell cycle and proliferate. Cells must then differentiate into the proper 

cell type, either sensory hair cells or non-sensory supporting cells. It is expected 

that the early stages of proliferation would involve components of apotosis and 

cell cycle pathways such TFG-β signaling, CUTL1 and p27KIP1. It is interesting to 

find that, PAX2, a component of the PAX pathway involved in the earliest stages 

of inner ear development and its downstream effector, WNT4, a component of 

WNT signaling involved in forming sensory/nonsensory boundaries in the 

developing inner ear, are both required for SE proliferation. This suggests that 

some of the genetic pathways involved in SE regeneration may be a 

recapitulation of the early stages of inner ear development.  

In addition to identifying transcription factor gene pathways required for 

inner ear development and regeneration, it is also important to determine direct 

DNA binding targets of key transcription factors that regulate these processes. In 

a third study, I described how we can use these previously described techniques 

to conduct the first large-scale study of regionalized gene expression differences 

in the vestibular organ of the inner ear. Though GATA3 has been well 

characterized during the development and differentiation of the mammalian 

hematopoietic system, little is known about downstream effectors and direct DNA 
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binding targets in the inner ear, brain and other organ systems. The organs of the 

inner ear, vestibular (balance) and cochlea (auditory), are extremely sensitive to 

GATA3 expression levels. GATA3 haploinsufficiency results in 

hypoparathyroidism, sensorineural deafness and renal anomaly syndrome (HDR) 

in humans. Though GATA3 is expressed throughout the sensory region of the 

cochlea, expression is limited to a 6-10 cell wide region in the striola of the 

utricle. This region consists of approximately 10,000 cells and corresponds to a 

180 degree shift in sensory hair cell orientation and a phenotypic shift in 

morphologically distinct sensory hair cell types. In this study, I focused on genes 

that are differentially expressed in the striolar vs. extra-striolar regions of the 

chick utricle and dependent on levels of expression of the zinc finger transcription 

factor GATA3.  I reported the identification of two novel direct gene targets of 

GATA3 and two genes whose expression consistently varies with GATA3 levels 

and localization. I also reported distinct expression differences in components 

from known pathways such as WNT signaling, NOTCH signaling, FGF signaling 

and BMP signaling that are potentially regulated by GATA3. Specifically, these 

results suggest a model by which GATA3 regulated inhibition of WNT signaling at 

the striola may play an important role in type I vs. type II sensory hair cell 

differentiation and/or maintenance.  

These studies have provided novel routes to study pathways involved in 

inner ear development and hair cell regeneration. Together, these investigations 

have identified a set of genes that are required for sensory epithelia proliferation 

in the inner ear and novel interactions between several critical pathways.  I have 
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also completed the first large scale study of regionalized gene expression 

differences in the avian utricle and identified genes and pathway intersections 

that potentially regulate specific hair cell fate determination in the inner ear.   

These studies have significantly contributed to our understanding of inner ear 

development and revealed exciting and novel pathways for research into hearing 

and balance disorders in humans. 
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CHAPTER SIX 

MATERIALS AND METHODS 
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Sensory Epithelia Isolation  

10-21 day post-hatch White Leghorn chicks were CO2 asphyxiated and 

decapitated, heads were immersed in chilled 70% ethanol for 5-10 min. Utricles 

were removed and immediately placed in chilled Medium-199 with Hanks salts. 

Sheets of sensory epithelia attached to their basal membrane were micro-

dissected and pure sensory epithelia was isolated using published methods 

(Warchol 2002). 

 

Neomycin Time course 

Sensory epithelia from 5 utricles were pooled together in 100µl Medium 199.  

Specimens were treated with 1 mM neomycin in Medium 199 with Earles salts 

supplemented with 10% FBS for 24 hrs. Specimens were rinsed with fresh 

Medium199/10% FBS and cultured for an additional 24 hrs to recover. Samples 

were harvested at 0hr, 24hr and 48hr post recovery. Time point matched control 

sensory epithelia were cultured following the same protocol with the absence of 

neomycin. 

 

Laser Microbeam Ablation Time course 

 Sensory epithelia from the cochlea or utricle were cut into small pieces, and 

grown for 7-10 days on fibronectin-coated wells (Mat-Tek) that contained 50 µl Medium-

199/10%FBS.  Semi-confluent cultrures were lesioned via laser microsurgery (Warchol 

and Corwin 1996). Samples were harvested at 30 min, 1 hr, 2 hr and 3 hr post laser 

treatment along with time point matched untreated controls. 
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mRNA Isolation, cDNA Synthesis and Amplification 

 RNA isolation and cDNA synthesis was carried out using previously 

published methods (Hawkins, Bashiardes et al. 2003). Briefly, approximately 

50,000 sensory epithelial cells from either the utricle or cochlea were suspended in 

Trizol (Invitrogen) and total RNA was isolated as per the manufacturer’s protocol 

yielding 300-500 ng of total RNA. Polyadenylated RNAs were isolated using 10 µl of 

oligo dT25 streptavidin coated paramagnetic beads (Dynal). Bead linked 

polyadenylated RNAs were included in a reverse transcription (RT) reaction to 

synthesize first-strand cDNA on the beads. During this RT reaction, reverse 

transcriptase adds three C’s to the 3’ end of the first-strand cDNA. In this same 

RT reaction, a primer containing T7 viral promoter and three G’s complementary 

to nucleotides added by the reverse transcriptase was included. This additional 

primer extends the first-strand cDNA synthesis adding a T7 promoter sequence 

5’ to the poly A tract.  An oligo dT primer containing an additional linker sequence 

was used to generate the second strand by 6 PCR cycles. A PCR reaction using 

the T7 promoter and linker sequence was used to linearly amplify the cDNA. To 

prevent skewing during the amplification process, PCR reactions were limited to 

10 cycles. Using the Ambion T7 Megascript kit, in-vitro RNA runoffs were 

generated from the T7 promoter using manufacturers protocols. 

 

Microarray Design and Printing 

The custom, transcription factor microarray contains ~3,000, 50-70mer 

oligonucleotide probes designed to the majority of known human transcription 

factor genes, anonymous ESTs that contain transcription factor motifs, 
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transcriptional co-activators and components of several known signaling 

pathways (Messina, Glasscock et al. 2004). The initial design of this array was 

the work of a former graduate student in the lab, David Messina. The array 

design has since been updated with addition transcription factor and signaling 

pathway genes of interest. Tm matched 50-70mer probes were designed using 

OligoWiz 2.0 design software (Nielsen, Wernersson et al. 2003; Wernersson and 

Nielsen 2005).  Oligonucleotide probes were designed to the more conserved 3’ 

coding regions rather than 3’-UTR to allow for cross-species comparisons.  When 

suitable probes could not be designed to conserved regions, species specific 

probes were designed.  Probes were precipitated and resuspended at a 

concentration of 60 µM in 6% DMSO and 1.5M Betaine.  

 Slides for printing were pre-treated with 10% (w/v) NaOH, 57% ethanol 

solution for 2 hours. Slides were washed in H2O and then coated in a 10% poly-

L-lysine, 10% PBS solution for 1 hour. Slides were washed again in H2O and 

dried by spinning in a floor centrifuge at 500 rpm for 10 minutes and baked at 

45°C for 10 minutes. Microarray probes were printed on  a GMS 417 arrayer in 

duplicate. Printed slides were baked at 80°C for 2 hour s and cross-linked at 

65mJ prior to sample hybridization. 

 

Microarray Hybridization and Data Processing 

 Poly(A)+ RNA from in-vitro transcriptions were used to generate 1st strand 

cDNA for the purpose of microarray hybridization using a dye specific oligo-dT 

primer following 3DNA Array 50 protocols (Genisphere) and hybridized at 42°C. 
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Following LOWESS normalization (Quackenbush 2002), clustering of 

experiments and low-intensity filtering to remove probes that fall below the 

intensity of control spots, fold changes and P-values were determined for 2 

biological samples and 4 technical replicates including dye switch experiments 

for a total of 8 microarrays per treatment. P-values calculated across all replicate 

experiments using a one sample t-test.  

 

siRNA Generation and Transfection 

 Predesigned, chemically synthesized 27-mer duplex Dicer-substrate 

RNAs (DsiRNAs), were obtained from Integrated DNA Technologies (IDT) when 

available. Otherwise, double stranded RNA (dsRNA) was generated by first PCR 

amplifying a portion of the gene of interest from chicken SE cDNA.  PCR 

products were amplified using gene specific primers containing the 5’ T7 

promoter sequence CTCTAATACGACTCACTATAGGG, under the following 

conditions:  100ng cDNA, 0.2 M (final conc.) each primer, 10X Advantage Taq 

Buffer (BD Biosciences), 5U Advantage Taq (BD Biosciences) in a final volume 

of 50 L; 95°C-2 min, (95°C-30 sec, 55°C-30 sec, 68°C-2 min)-for 30 cycles.  

PCR products were DNA sequenced verified.   

Promoter containing PCR products were used as template DNA in in vitro 

transcription (IVT) reactions (Ambion).  IVT reactions, including post-reaction 

DNase treatment and precipitation, were performed according the manufacture's 

protocol for 12 hr.  Equal amounts (typically 3g each) of sense and antisense 

RNA strands were mixed and heated at 75°C for 10 min and brought to room 
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temperature on the bench for 2 hr. dsRNAs were treated with RNase ONE (50U, 

Promega) for 45 min at 37°C.  dsRNA was cleaned using RNA Purification 

Columns 1(Gene Therapy Systems).  siRNAs were generated using the Dicer 

enzyme (Gene Therapy Systems) following the manufacture's protocol.  Dicer 

generated siRNA (d-siRNA) was checked on a 3% agarose gel for ~23bp size.  

d-siRNA was cleaned up using RNA Purification Columns 2 (Gene Therapy 

Systems).  50 ng of d-siRNA were transfected in each well of dissociated SE 

cultures or laser microbeam ablated SE cultures. 

 

Dissociated Sensory Epithelia Transfection 

 Pure sensory epithelia were physically dissociated and grown in 96 well 

cultures at a concentration of 0.5 utricle sensory epithelia per well. Dissociated 

sensory epithelia were cultured for 3 days and transfected prior to confluency 

with siRNAs (50 ng/well) or inhibitor in 0.1% DMSO (15 µM SP600125 JNK 

inhibitor) using previously described methods(Elbashir, Harborth et al. 2002). 

 

Dissociated Retinal Epithelia Isolation and Transfection 

10-21 day post-hatch White Leghorn chicks were CO2 asphyxiated and 

decapitated, heads were immersed in chilled 70% ethanol for 5-10 min. Whole 

eyes were removed and immediately placed in chilled Medium-199 with Hanks 

salts. Sheets of retinal epithelia were micro-dissected and physically dissociated. 

Retinal epithelia were plated in 96 well cultures at 20% confluency.  Dissociated 
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cultures were transfected prior to confluency, 3 days post plating,  with siRNAs 

(50 ng/well) using previously described methods (Elbashir, Harborth et al. 2002). 

 

Proliferation Index Phenotyping 

 Cells were assayed 24 hrs post-transfection using previously published 

protocols (Warchol and Corwin 1996). Quantification of cell proliferation was 

measured by calculating a proliferation index (defined as the number of BrdU+ 

cells/total cells). Briefly, bromodeoxyuridine (BrdU) was added to S-phase cells in 

culture for 4 hr. Proliferating cells were labeled with BrdU as viewed with 

differential interference contrast microscopy. Cells from 10,000µm2 (100 X 100 

µm) regions were counted for total number of cells (DAPI) and the number of 

BrdU-labeled cells using ImageJ 1.36b software (http://rsb.info.nih.gov/ij/). 

Calculations from a minimum of 20 regions were combined to obtain a 

proliferation index for each experimental treatment to determine the affects of 

siRNA and small molecule inhibitor treatment on utricle or retinal sensory 

epithelia cell proliferation. 

 

GATA3 siRNA 

Whole utricle specimens were treated 1 mM streptomycin in Medium 199 

with Earles salts supplemented with 10% FBS for 24 hrs. Specimens were rinsed 

with fresh Medium199/10% FBS and cultured for an additional 24 hrs to recover.  

Whole utricle siRNA transfections were performed by electroporation. Utricles 

were transfected with 21mer synthetic siRNAs (Ambion) at a final concentration 
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of 100 nM siRNA in 30 µl H2O under the following conditions: 50 Volts, 30 ms 

pulse for 10 pulses. Specimens were returned to Medium 199/10% FBS for an 

additional 48 hrs and pure sensory epithelia were isolated using previously 

published methods (Warchol 2002). 

 

GATA3 over-expression 

Dissociated sensory epithelia were plated in 96 well cultures, 5 wells per 

sample. 4 days post plating, ~ 30% confluency, cells were transfected with a 

pMES vector containing an internal ribosome entry site regulating expression of 

GATA3 and eGFP under control of a chick beta-actin promoter. Controls were 

transfected with a vector containing eGFP only. Transfections were performed 

using recommended concentrations for Lipofectamine 2000 (Invitrogen).  24 hrs 

post transfection cells were harvested in 100 µl Trizol per well, 5 wells were 

combined for each biological sample.  

 

Separation of striolar and extrastriolar regions of the utricle.  

Explanted utricles were placed in Medium-199 with Hanks salts and 

iridectomy scissors were used to cut away the edges of the sensory organs 

(which are comprised of no sensory transitional epithelium).  Iridectomy scissors 

were then used to cut the remaining sensory tissue along to anterior-posterior 

axis, in order to separate the lateral portion of the epithelium (which contains the 

striola, the GATA3-expressing region and all type I hair cells) from the medial 

portion (which does not express GATA3 and is populated exclusively by type II 
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hair cells – Fig. 1).  Striolar and extrastriolar regions from 10 utricles were 

separated into two groups and were incubated for 60 min. in 500 µg/ml 

thermolysin (at 37oC).  A fine needle was then used to remove the sensory 

epithelium from each of the utricular fragments, and mRNA from the striolar and 

extra-striolar groups was extracted with 100 µl Trizol. 

 

RNA in situs 

Primers were designed to generate 200-400 bp PCR amplicons from 

chicken sequences. A second round of PCR was used to add T7 promoters to 

either the 5’ or 3’ end. PCR products were gel purified and verified by DNA 

sequencing. PCR templates were used to separately generate DIG labeled in-

vitro transcripts (Ambion T7 MegaScript Kit) for both sense and anti-sense 

strands. Utricles were obtained from 10-21 day old White Leghorn chicks and 

processed for whole mount in-situs following published protocols (Henrique, 

Adam et al. 1995). Utricles were labeled and mounted in glycerol/PBS (9:1) and 

imaged. 

 

Chromatin Immunoprecipitation (ChIP) 

 Chromatin immunoprecipitation was performed in dissociated sensory 

epithelia over-expressing GATA.  Sensory epithelia from 10 utricles were 

physically dissociated and plated in 6 well cultures and transfected with a GATA3 

expressing pMES vector as previously described.  ChIP was conducted following 

recommended protocols (Active Motif). Specifically, enzymatic shearing was 
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conducted for 10 min and IP was performed with the GATA3 goat polyclonal IgG 

sc-22205 (Santa Cruz) at a concentration of 3 µg/100 µl or a mock antibody 

negative control. Predicted GATA binding sites were identified up to 2000 bp 

upstream of predicted target genes using TF Search (Heinemeyer, Wingender et 

al. 1998).  Primers were designed to amplify potential sites by PCR (Table 6-1). 

ChIP pull down products were amplified for 30 cycles with a 55 °C annealing 

temperature followed by an additional 30 cycles and imaged by agarose gel 

electrophoresis.  

 
 
Table 6-1. PCR primers flanking putative GATA binding sites upstream of LMO4 and MBNL2. 
 
Primers Primer 

Start 
Primer 
Stop 

Product 
Length 

Forward Sequence Reverse Sequence 

LMO4-1 -387 -151 237 TTCGGATAAATGCGATGCTA TGACAGAGCAGAATCCCAACT 
LMO4-2 -735 -510 226 GGGGAGTCACTTTCTGGTCA CCTGCGCCTTAAATCACTTC 

LMO4-3 -818 -627 192 TACCGGAGTGCGCCTATTTA CAGCATCCAGTAACCCCATT 
MBNL2-1 -254 -62 193 AGGACTGCTACGCCTGTGTT CAAGAAAAGCAATGCGTTCA 
MBNL2-2 -478 -324 155 TCAGCTGGCTATTCCCTTGT TTCACATTCAGCTCGTTTGC 
MBNL2-3 -760 -560 201 TGGGATTTCTTTGGGAATTG TTAGGCATGCTGGTTGTGAA 
MBNL2-4 -971 -756 216 AGGCTTTGGTGTTGAACCAT TCCCAAAGAACCACCTTCAC 
MBNL2-5 -1199 -953 247 CCATCAACTGTTTCTGGCTGT TGGTTCAACACCAAAGCCTA 
MBNL2-6 -1314 -1115 200 TTATTTTGGCATGGGAAAGC TCACGGTCATGATGTTTCCT 
MBNL2-7 -1593 -1344 250 TGGACGCATTACTGCATGTT TTAATCGAAGCCAGGATTGTT 
MBNL2-8 -1738 -1574 165 TGTGGGACAACGTTGGTAGA AACATGCAGTAATGCGTCCA 

MBNL2-9 -1950 -1719 232 TGGCACTTCTGAATTTGAGC TCTACCAACGTTGTCCCACA 
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