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ABSTRACT

Let C” be the direct product of the bicyclic monoid c,

taken n times, where n is a positive integer.

It is shown that (1) every Petri net with n places
can be represented by a finite subset of ch, (2) every finite
subset of CP represents a Petri net with n places, and (3)

the firing rule of Petri nets can be defined as a faithful
representation of CI by the inverse hull of the additive semi-

group Nn, where N is the set of natural numbers.

A generalization of C, called 'link semigroup', is
defined, and the above results on Petri nets are derived as a

special case of a general property of the link semigroup.

CR Categories: 5,20, 5.23

Key Words and Phrases: Petri Net, Bicyclic Semigroup, Inverse

Hull, Link Semigroup.



0. Introduction

This work establishes the connection between the bicyeclic monoid and
the Petri net. The connection is tight in the sense that the class of
direct products of the bicyclic monoid completely characterize the class
of Petri nets and their behaviors.

The bicyclic monoid C is the set of all ordered pairs of natural
numbers with the following operation:

(a,b) -(e,d) 3 (a + ¢ = min{c,b}, b + d - min{b,c})

for any natural numbers a,b,c, and d.

To illustrate the connection, consider the Petri net of Figure 1.

3 2

5 H

Figure 1. Example of Petri Net

A firing of tl consumes 3 and produces 5 tokens, and a firing of ty
consumes 2 and produces 1 token. Question: How many tokens does a firing of
t1 then t, or ty then tl’ consume and produce?

Answer: t.t, consumes 3 and produces 4 tokens, and
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tztl consumes 4 and produces 5 tokens, because,

€18, = (3,50(2,1) = (342 ~ min{2,5}, 5+1 - min{5,2}) = (3,4),
toty = (2,12(3,5) = (243 - min{3,1}, 145 - min{1,3}) = (4,5)



The bicyclic monoid has been known to algebraists for more than twenty-
five years [1] [10]. It was imported into computer science by Gorn [ 2] in
his study of prefix languages and the algebra of processor-linkage [ 3] [4].
Nivat [11] and Kimura [ 6] introduced a generalization of the bicyclic monoid,
called the 'polycyclic monoid' by Nivat and the 'Z-monoid' by Kimura, for
investigating the syntactic monoids of context-free languages. See also
[12] [14].

Considering (1) the known fact that the bicyclic monoid is homomorphic
to the syntactic monoid of the Dyck language of two letters f6] [11], (2)
the close relationship between the Dyck language and semaphore operatioms
{71 [ 51, and (3) the similarity between semaphore array operations and
Petri nets [ 8] [ 9]; it is not difficult to see the conntection between the
bicyclic monoid and the Petri net. The question was how close they are.

In the next section we introduce the definitions, notations and some
facts on Petri nets, inverse semigroups, and the bicyclic monoid. Nothing
is new in this section. Terminologies and notations for algebraic concepts
are taken from either Clifford & Preston [ 1] or Ljapin [10].

In Section 2, we generalize the bicyclic monoid into what we call 'link
semigroup’ following the original intention of Gorn. A link semigroup is
constructed from another monoid (the base monoid) with certain property. The
bicyclic monoid C, Cn, and polycyclic monoids are all link semigroups with
different monoids as the bases.

In Section 3, we present the main result that any link semigroup is iso-
morphic to the inverse hull of its base monoid. For Cn, the isomorphism repre-

sents the firing rule of the Petri net.



1. Definitions and Notations
Petri Nets
We define a Petri net as an ordered pair of two finite sets (7,I)
such that ZZSN“ X Nﬂ, where N is the set of natural numbers and N1T is the
set of total functions from 7 to N. Let MIKN“, then M is called the
markings, T is the places and I is the transitions. [13]
Let t z (It’ Ot) €M x M he a transition in %. Then It’ 0t ! > N are
the numbers of tokens to be consumed (It) and to be produced (Ot) by a
firing of t. The effects of the firing is representable by the following
binary relation on M :
{(ml,mz) EMxM [ Jdm £ M; ml=It+mandm2=0t+m}
where + is the functional addition; i.e. for any a,b,ceM,
a+b=c iff a(p) + b(p) = c(p) for all p € m. 1In general, the firing of
Petri nets is representable by a total function 8 from M x M to the set of
binary relations on M such that
B : MxM+-P Mx M

e(a,b)E{(ml, mZ)QMxMIHmEM; m1=a+mandm2=b+m}

Inverse Semigroups

A semigroup S is an inverse semigroup if for any a € S there exists

a unique acs such that aaa=a and §a£=§, where a is called the inverse of a.
For any set X, the set of all one-to-one partial transformations on X form
an inverse semigroup under the relational composition. It is called the
symmetric inverse semigroup on X and denoted by Ix. It is known that for

any inverse semigroup S there exists a homomorphism from S into the symmetric

inverse semigroup Ix for some X. Such a homomorphism is called a representation

of S by Ix. A representation is faithful if it is an isomorphism.



Inverse Hull

Let S be an arbitrary cancellative semigroup. With each a & S, we
associate transformations pa and la on S, defined by: pa(x) % xa, Aa(x) 3 ax
for all x £ S. Let paul and Aa_l be the inverse transformations of pa and
Aa. Then the following hold for all a,beS:

Q) pa, pat, ra, \aleis

(2) pa pa"l = da A2t = 1 (the identity of Is)

Ab'l,

(4) ¢r : awpa, GL: ar Aa T are isomorphisms, and ¢r : a & pa'l,

-1 -1

(3) pab = pa pb, pab ~ =pb T pa l, Aab = Ab Aa, Aab L = Aa
$£ : arm Aa are anti-isomorphisms.

The inverse hull Hs of S is the inverse subsemigroup of Is generated by

¢r(S); i.e. the set of all finite products of elements of $r(5) and inverses

of elements of ¢r(S). In another notation, Hs‘=<¢r(s)Ll$}(s)>. Note that

Hs 1s isomorphic to <¢£Ks)Lf$£Is)>.

Direct Product of Bicyclic Monoid

Let S and T be arbitrary semigroups. The direct product of § and T is

the set S5 x T with the operation defined by: (s,t)(s', t')E (ss1, ttr) for
all s,s' € s and t,t' ¢ T.

The bicyclic monoid C is defined in the previous section. The assoc-
iativity of the key operation:

(a,b)(c,d)z (a+c - min {c,b}, b + d -~ min {b,c}) is shown in Ljapin
[10]. We will prove the associativity later in more general form. C is
the inverse semigroup with identity (0,0) and (b,a) being the inverse of
(a,b).

It is known that the following semigroups are isomorphic to C:



(1) <p,q> : the subsemigroup of an arbitrary semigroup S with the identity
element e, generated by such elements p and q in S that pq = &
and gp # e.
(2) HN : the inverse hull of thg additive semigroup of natural numbers.
(3) {a,E}*/{aE = A} : the semigroup generated by {a,a} subject to the single
generating relation aa = A, where A is the identity
of the free monoid {a,E}*.
An element (m,n)eC is represented by (1) qmpn, (2) {m+x, a+x) | xenl,
and (3) [Em an] a3 = in the above three semigroups.
Remark: The element [A]aa -2 of the semigroup (3) is the Dyck language
generated by the grammar:

{s +A, 8+ aSa, S -+ ss}.



2. Link Semigroups
We will generalize the bicyclic monoid based on the following obser-
vation on its operation.

Let -~ be a binary operation on natural numbers defined by: for any

m,neN,
m-=-n zm-n if m > n,
E o] otherwise.

This operation, which is called the 'monus’ operation by Gorn, is almost
the inversion of the addition. With this operation, we can define the
bicyclic monoid operation as:
(a,b)-(c,d) 2 (a+ (e =b), d+ (b =c¢c)).
(End of observation).
First, we postulate a class of semigroups that carry a binary operation
similar to the monus operation on natural numbers. We call them 'quasi

invertible semigroups'. Then, we will define the link semigroup Ls of a

quasi invertible semigroup S as the set of all ordered pairs of S with the
operation defined by: for amy a, b, ¢, d € S,
(a,b)+(c,d) F (a*(c * b), d*(b = c))

where * is the semigroup operation of S, and = is the almost inversion of *,

Definition:

A quasi invertible semigroup (S, *, e, ~) is a cancellative monoid

(S, *, e) with a binary operation < satisfying the following axioms:

for all a, b, c € 8,

Al. a < a = e (the identity of §)

A2. a-e=a,e-a=e

A3. a(b-=-a)=>b(a<b)



a4, a <= (be) = (a=1b)-=e¢
A5. (@b) 2 c=(a>c) (b= (c=a))

(End of Definition)

Example 1: (N, + , 0, =)
where <+ is the monus operation.
Verification: Al, A2 are trivial.

a+(bl-a)=b

n

A3. (i) b > a. a+ (b~ a)

b+ (@2b)=b+0=hb
(ii) b < a. a+(b-a)=a+0=a
b+ (a<b)=b+ (a=-b) =a

A4, (i) a>b +e i.e. a-b2>c>0.

a~(b+e)=a-(b+c)

(a~b)=c {(a-1b)-c¢

(ii) a<b+cand ac<hb
a-{(b+ec)=20
(a=b)2c=0=¢c=20

(iii) a<b+cand ac<ec i.e.a-b<ec-b<ec

1}

a=-(b+e¢) 0

0 ' a+~-b<a-b<eg,

(a=-Db) - ¢
A5, (1) a+b>cand a>c

(a+b)=-c=(a+b) -

0

(@a=c)+ (b= (c=a)) {a-c)+ (b-0)

(ii) a + b c and a < ¢

v

(a+b) > c=(a+bd)-

0

0+ (b-(c~-2a))

(a<c¢c)+ (b2 {(c<a))



(iidY) a+ b < ¢
(a+b)=-c=0
(@a-c)+ (b= (c=-a)) =0+0 *." a<cand b<c¢ ~ a.

(End of Example 1)

Example 2: (N°, +, 0, %)
where X‘is an arbitrary set,
N* is the set of all functions from X to N,
+ 1is the functional addition, i.e. for amy f, g, h ¢ Nx, f+g=nh
iff £ (x) + g (x) = h (x) for all x € X,

0 is the constant function, i.e. 0(x) = 0 for all x ¢ X,

]e

is the functional monus operation defined by:
for any £, g,h ¢ Nx, f=-g=n"hi1iff f (x) = g(x) = h(x) for all x ¢ X.
Verification: similar to Example 1.
(End of Example 2)
Let (S, *, e, %) be a quasi invertible semigroup. By definition, S is

cancellative and S has no zero element. Define an extended quasi invertible

semigroup, denoted by SO, as (su{o}, *, e, *) such that for all a ¢ §,

X g=a * 0= la=za> 0=0.
0 aAa OAO,O aAa OAO

The following example is an extended quasi invertible semigroup.
* *
Example 3: Ay =( A U{0}, ., 1, <)
*

where A 1is the free monoid generated by a finite alphabet A,

. 1s the concatenation,

%
A is the identity of A , and

a =8 i Y if 3IYeA*; o = BY ,
AX  if 3YeA*; B = aY,
E 0 otherwise.



Note: <= is the-deconcatenation of a prefix word.
Verification: Define a partial order < on A* by R < q iff 3JYeA*; a=RY .
Then, the argument goes similarly to Example 1.
(End of Example 3)
Lemmal: Let S be a quasi invertible semigroup with identity element e,
and let a, b,c, X, y € 8. Then,
(1) a=b iff (b>a)=(a<b)=e

a=>

(2) ab
(3) ab=c iff c~a=banda~c=c¢e

(4) ax = by iff for some 2 € §, x = (b > a) z and Y = (a =~ b)z.

Proof:

(1) Only-if part is trivial from Al. Since S is cancellative, if (b = a)
= (a = b), then from A3, a = b.

(2) ab~-a=(a=a) (b2 (a=a)) by aS,

= @a (b=-e)=0>» by Al and A2,

(3) Assume that ab = ¢, then

c-a=ab<a=>b by Lemmal(2), and

a< ab (a*a)~-b=e>b=e by A4, Al and A2,

)
|
0
]

Assume that ¢ = a = b and a ~ ¢ = e, then

ab=-c=(a=¢) (b= (c=*a)) byas,

= e (b -~ b) from the assumption,

= a by Al.
c=-abs=(c~a)-~-b by A4

=b=*b from the assumption

= e by Al

Therefore, by Lemmal(l), ab = c.
(4) Assume that ax = by, then by Lemma(2) and A5,

X=ax-~-a=by=-a=(=a)(y= (a=>b))),



y=by=-b=ax>b=(a=<b) (x= (b=a).
Letuzy-'-(a-’-b)andvle(bia),
then x = (b~ a) uand y= (a < b )v.
By Lemmal(3), from x = (b = a) u; x = (b * a) = u, therefore u = v
and x=(b-* a)u,
y=1(a < b) u, for some u 8.
Assume that x = (b=~ a) uand y = (a < b) u, then

ax = a (b= a)u

It

b (a~Db)u by A3

by. Q.E.D.

Definition:

Let (S, *, e, ) be a quasi invertible semigroup. The link semigroup

Ls of S is the set of all ordered pairs of S with the operation defined by:
for any a, b, ¢, d € 8,

(a,b)‘({.‘.,d) E (a * (C - b): d* (b - c)).

Notation: To avoid excess parentheses, we denote an ordered pair (a,b)

k(o
by %. For example, the above operatiom can be defined as: %%E ?ITE'E-‘—_B .

(End of Notation)
Theorem 1: Ls is an inverse semigroup.

Proof: (1) Associativity. We want to show that

(.E.'%) '%=%' (%'%) forany%,%:%gf-s-

By definitionm, Gé '-%) '-% =a(c=b) (e=d (b=c),

) f @b =0 = e

2. . 8 (e2d)h)
b d f f(d=-e) (b>c (e ~d))

By A4, e-d(b+c)=1(e2d) = (b=>c), and

b=c(e=d)=(b=c¢c)=> (e~ d).
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By A5, cle = d) = b {c=Db) ((e=~d) =~ ®=<c))

(c*b) (e>d (b *c)), and

d (b>c)<e (d=-e) ((b=c) = (e =4d)

]

(d=e) (b=c (e=*d).

(2) Inverse. We want to: show that-g is the inverse of-% 5

a b a(tb-=5b)(a-a(=20b a .

b a"b5"% E a (b):(b) z a§ =0 b » and similazly,
b.a.b_b

a b a a

Q.E.D.

Note that e is the identity of Ls.
e

Obviously, C = LN, when N is the quasi invertible semigroup of Example

*
1. The link semigroup LAF where A0 is defined in Example 3, is called
0
the polycyclic monoid by Nivat [11], and it represents the activity linkage

through a pushdown mechanism with A being the pushdown symbols.
The link semigroup IN® of N* in Example 2 represents the marking link-
age through firings of transitions of a Petri net with X as the set of

places, as we show in the next section, and LN® is isomorphic to Clxl.

Theorem 2:
Let X = {xl, Koy ners xn}, then LN™ is isomorphic to C-.
Proof: Denote by G%%) an element of Cn, 1<1i<n,

Let $: LN® + C™ be defined by:

£ ) £
¢ (g) 3 (g(xi)) for all 2 € LN

Then obvicusly ¢ is one-to-one onto.

fl £2 X
Let 2l ’ 22 € LN, then
£l . f2 - fl + (£2 = g1)
¢ (gl g2 ¢ (gZ + (g1 - f2))
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- ELee) + (F2 (xi) = gLGx1))
g2(xi) + (gl (xi) = £2(xi))

- dLGD) . £20d)
gl(xi) g2(x1i)

- ,fl(xi)) ,f2(xi))
‘gl(xi)’ ‘g2(xi)

£1 £2
¢ G ¢ G

Q.E.D.



]

3. Main Result

In this section we will show that any link semigroup ls is isomorphic

{onto) to the inverse hull Hs.

Let S be an arbitrary quasi invertible semigroup.

Lemma 2: Let a, b € S and ¢£ be the regular anti-representation of 8.

Then, ¢£ (a) £ (b) = $£ (b = a) ¢ (a = b),
il -1 )
i- a, Aa Ab = A.b . i Aa 3 b.

Proof: By definition,

¢t (@) =x = {%]|xes},
o) = x| yes), ana
A Ab = {y | x, vy € 8 and ax = by}
= -% | x= (b2 a)z2andy=(a=b)z, Ze S} by Lemma 1 (4)
_ (b= 2a)z
ezl 2¢ 8!
- (b= a)z Z
= = | z ¢ s} f?;fz‘gjz | z e s}
=L

b=-a "a<+b

Q.E.D.

Theorem 3: Ls is isomorphic onto fs.

Proof: We show that Ls is isomorphic to <¢L(s) U ¢L(s)> which is isomorphic

onto Hs.

Let 0: Ls + <¢L (s)y oL (s)>
a, _ -1

g (E) 3 Aa X

b for all a, b € §.

(1) ¢ is a homomorphism.

a . ey _ a (c - b), _,-1
T NS L (c2b) ™ (b= e)
-1 -1 ) _
Sy Moip Ay s o Ay Noter A A7 A
At

L 4

¥x

= A

-1
Xy
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-1 -1
= Aa lb lc Ad by Lemma 2,
=g (%) o 6%) by definition.

(2) ¢ is one-to-one.

a c -1 -1
Assume that o (b) =g (d) then Aa Ab Ac Ad.
. -1 ax

Since Ag Ay = = | x e s},

-1

ATA c

c “d = fag [ y € 8},

a =cy and b = dy for some y £ §

¢ = ax and 4 = bx for some x £ S.

By substitution, a = a x y.

Since 8 is cancellative, e = x y.

By Lemma 1 (3) and 42, y = e = x = e, therefore a = ce = ¢ and b = de
{.e. 22 £
e g
(3) © is onto.
Let &) 0, ... Of € <¢L (S) U §L (s)>.
where o, = A _ or A_% for some ai € §, 1 < i < n
i ai ai - -
Let Ro 3 Ae and Ri R Op Gpee- Oy 1 <1i<n.
By induction, we will show that for any 0<i<n,
. -1
Bi = Ax Ay for some x, v £ 8.
(1) Bo=re=A1A, andecs
e e’ ‘
(ii) Assume that Bi = A;l Ay for some s, ¥ £ S.
If o i+l " Aa for some a £ 3, then BI +1 = Bi O 41 =
N A A = k-l A, and ay € S.
x y "a x ay
-1 = £ 0.
If @ ¢ ;= A for some a € S, then Bi +1 s

a



=l a7l
x "y "a
-1 .-1
= Ax Aa ~y'y2a by Lemma 2,

-1
A (a = y) lY - a, and

w
.

x (@a=y), (y*a)e

Therefore, for some x, v £ S.

-1
V] a2 .o an = Bn =}

= X
1 A =0 ().

x 'y y
Q.E.D.

Note that 0 is a faithful representation of LS by HS 2 IS'

Let (T, Z) be a Petri met, and let ¥ N". The firing rule 6 is defined

by: TFor any t A (It’ Ot) e X

g (t) K{(ml’ mz) eMxM | Jn ey m = It + m and m, = 0t + m}

I +m

t
= {————
0t + m

I m € M},
Since M is a quasi invertible semigroup (Example 2), M x M is a link semi-

group of M and L € LM, Furthermore, the firing rule @ is a faithful repre-

sentation of [M by HM.

t Ot

Note that & () = ¢ G%L) £ HM and It e M,

On the other hand, let X be an arbitrary finit set, and let Y 5 Nx,
where N is the set of natural numbers. Then, any finite subset Z of LY forms
a Petri net (X,Z) whose firing rule is a faithful representation ¢ of Ly by

the inverse hull Hy. Therefore, we can conclude:

Theorem 4:

(m, L) is a Petri net iff I is a finite subset of the link semigroup of
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Nﬂ, where the firing rule is a faithful representation of the link semigroup
by the inverse hull of Nﬂ.

Corollary: A finite set I is a Petri net iff I is a subset of C& for some

n > 1, where the firing rule is a faithful representation of C% by the inverse

hull of N" ¢ TN".

Proof: 1In the theorem, without loss of generality, we can let

Ll {0, 1, 2, ..., n-1} = n. Then by Theorem 2, IN® is isomorphic to C°°
Q.E.D.
Example:

- =2 9 - 4 = Q2

Figure 2: Pet Net of I

The firing of tl t2 t3 in this order will consume and produce the number

of tokens computed as follows:

=2 9 L8 4 0 5
S2-0.0 0.4.5 a2 s
1 3 0’ 2 1 3 47 377



=17=-

Namely, t1 t2 t3 consunes 2 and 6 tokens and produces 4 and 3 tokens from
and into Pl and P2, respectively, If Pl and P2 had less than 2 and 6

tokens initially, the firing sequence tl t, t3 is illegal in I.

(End of Example)

Acknowledgement:

The author owes to W.D. Gillett of Washington University for the

term 'quasi invertible semigroup’.



References

{1] Clifford, A. H., and Preston, G. B. (1961), The Algebraic Theory of Semi—
groups, Vol. I, American Mathematicsl Society, Surveys No. 7, Providence, R.I.

(2] Gorn, S. (1960), Common Programming Language Task, Part I, Rep. AD60OUR1, U.
S. Army Signal Research and Development Laboratories, Fort Monmouth, N.J.

{3] Gornm, S. (1962), An axiomatic approach to prefix languages, in Symbolic
Languages in Data Processing, Gordon and Breach, New York.

{4] Gorn, S. (1968), The identification of the computer and information
sciences: Their fundamental semiotic concepts and relationships,
Foundation of Languages, 4, D. Reidel, Holland.

[5] Hack, M. (1975), Petri net languages, MIT Project MAC memo 124.

(6] Kimura, T. (1971), Completion problem and its solution for context-free
languages (Algebraic approach), Ph.D. Thesis, University of Pemsylvania.

[7] Kimura, T. (1976), An algebraic system for process structuring and inter-
Process communication, 8th. ACM SIGACT Symposium on Theory of Computing.

[8] Kosaraju, S. R., (1973), Limitations of Dijkstras semaphore primitives and
Petri nets, 4th ACM Symposium on 0S principles.

(9] Liptom, R. J., Snyder, L., Zalostein, Y., (1974), A comparison study of
models of parallel computation, 15th ACM-IEEE Symposium on Switching
and Automata Theory.

[10] Ljapin, E. S. (1963), Semigroup, Translations of Mathematical Monographs,
vol. 3, Americal Math. Soc., Providence, R. I.

{11] Nivat, M and Perrot, J. (1970), Une generalisation du monoide bicyclique,
C. R. Acad. Sc. Paris, t271.

[12]) Perrot, J., and Sakarovitch, J., (1977) A theory of syntactic monoids
for context-free languages, Information Processing 77, IFIP, North-
Holland.

[13] Peterson, J. L., (1977) Petri nets, Computing Survey, vol. 9, No. 3.

[14] Smith, J. M. (1972), Monoid acceptors and their relations to formal
languages, Ph.D. Thesis, University of Pennsylvania.



	Algebraic Characterization of Petri Nets
	Recommended Citation
	Algebraic Characterization of Petri Nets

	tmp.1465589165.pdf.4Gn7N

