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ABSTRACT OF THE DISSERTATION 

 
 

Ultrasound-encoded Optical Tomography and Time-Reversed Ultrasonically Encoded 

Optical Focusing 

by 

Xiao Xu 

Doctor of Philosophy in Biomedical Engineering 

Washington University in St. Louis, 2011 

Research Advisor:  Professor Lihong V. Wang 

 
Ultrasound modulated optical tomography is a developing hybrid imaging modality that 

combines high optical contrast and good ultrasonic resolution to image soft biological tissue. 

We developed a photorefractive crystal-based, time-resolved detection scheme with the use 

of a millisecond long ultrasound burst to image both the optical and mechanical properties 

of biological tissues, with improved detection efficiency of ultrasound-tagged photons. 

We also applied spectral-hole burning (SHB) aided detection in ultrasound-modulated 

optical tomography (UOT) to image optical heterogeneities in thick tissue-mimicking 

phantom samples and chicken breast tissue. The efficiency of SHB was improved by using a 

Tm3+: YAG crystal of higher doping concentration (2.0-atomic%) and a double-pass 

pumping configuration. With the improved SHB-UOT system, we imaged absorbing, 

scattering, and phase contrast objects that were embedded in the middle plane of a 30-mm 

thick phantom sample. The imaging resolution was 0.5 mm in the lateral direction, as 

defined by the focal width of the ultrasonic transducer, and 1.5 mm in the axial direction, as 

determined by the ultrasonic burst length. We also imaged two absorbing objects embedded 
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in the middle plane of a 32-mm thick chicken breast sample. The results suggest that the 

improved SHB-UOT system is one step closer to a practical optical imaging application in 

biological and clinical studies.  

Light focusing plays a central role in biomedical imaging, manipulation, and therapy. In 

optical scattering media such as biological tissue, light propagation is randomized by multiple 

scattering. Beyond one transport mean free path, where photon propagation is in the 

diffusive regime, direct light focusing becomes infeasible. Although various methods have 

been developed to overcome this optical diffusion limit, all are limited by the lack of a 

practical internal “guide star.” Here we proposed and experimentally validated a novel 

concept, called Time-Reversed Ultrasonically Encoded (TRUE) optical focusing, to deliver 

light dynamically into any predefined location inside a scattering medium. First, diffused 

coherent light is encoded by an ultrasonic wave focused to a predefined location; then, the 

encoded component of the diffused light is time-reversed and consequently converges back 

to the ultrasonic focus. The ultrasonic encoding noninvasively provides a virtual internal 

“guide star” for the time reversal. The TRUE optical focus—dynamically defined by the 

ultrasonic focus—is unaffected by multiple scattering of light, which is especially desirable in 

biological tissue where ultrasonic scattering is ~1000 times weaker than optical scattering. 

Various fields, such as biomedical, colloidal, atmospheric, and ocean optics, can benefit from 

TRUE optical focusing. Further, the concept can be generalized for non-optical waves. 
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Chapter 1 
 
Introduction 
 

 

1.1 Ultrasound-modulated optical 
tomography 

1.1.1 Biomedical Optical Imaging 
 
The use of light to probe the structure of matter, e. g., biological tissues, is as old as the 

human eye. The invention of optical microscopy in the 1600s greatly enhanced human 

vision by magnifying images of small samples, and enabling the visualization of the fine 

structures and inner working of biological tissues on the cellular level. Despite the 

increasingly complex design of optical microscopes, the working principle for 

microscopic imaging has always been straightforward—the acquired image maps the 

optical properties of the sample; the image contrast is based on differential optical 

absorption, reflection, scattering, birefringence, etc.; and the sample is sectioned into 

thin slices so that light propagation through the sample can be modeled by simple 

geometric optics1. On the other hand, optical imaging methods that are not based on 

microscopy have also been explored as probes for biological structures. For example, 

the use of transillumination as a diagnostic aid in detecting breast lesions was reported 

as early as 19292, in which transillumination images or simple shadows of breast tumors 

were obtained by shining a flashlight through breast tissue. However, the lack of 

resolution due to the diffusive nature of light propagating through breast tissue makes it 

difficult to interpret the imaging results for reliable clinical diagnosis. It is for this reason 

that optical imaging did not gain popularity in biology and medicine until the late 1970s 

and 1980s, when a better understanding of the light and tissue interaction was being 
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developed, and great technical advances, such as lasers and sensitive optical detectors, 

were being made. The application of optical imaging in biology and medicine, or 

biomedical optical imaging, is the subject of this dissertation. In particular, this study 

focuses on optical imaging of soft biological tissue. 

 

Optical imaging of soft biological tissue is highly desirable in the biomedical field as a 

non-invasive, nonionizing, and functional imaging modality3. First of all, it is relatively 

inexpensive compared with magnetic resonance imaging (MRI). Second, it is safe for 

biological molecules because optical imaging typically uses low energy, nonionizing 

photons (e.g., ~2 eV for λ = 500 nm), as compared with the high energy, ionizing 

radiation used in X-ray imaging (e.g., ~50 KeV for X-ray photons). Third, it provides 

better soft-tissue contrast than the ultrasound imaging because its contrast is based on 

optical properties such as absorption and scattering of the tissue. Finally, optical 

imaging signals can serve as intrinsically sensitive indicators of tissue abnormalities and 

functions4-6, because in the visible and near infrared wavelengths, the absorption and 

scattering properties of biological tissues are directly related to their molecular 

constituents and to the molecular, electronic, and/or vibrational structures.  

 

Figure 1.1 illustrates the primary absorption spectra of several tissue types and tissue 

constituents, along with the absorption coefficients at some typical laser wavelengths7. 

Several things need to be pointed out: (1) For ultraviolet (UV) wavelengths, the primary 

absorbers in biological tissue are protein, DNA, and water. The absorption typically 

increases with decreasing wavelength. (2) In the infrared (IR) wavelength regime, water 

is the dominant absorber. (3) In the red to near-infrared (NIR) wavelengths, the 

absorption of biological tissues is the smallest, and the penetration of light is 

consequently the deepest. This region is ideally suited for biomedical applications, and 

thus is called the “diagnostic and therapeutic window”8. 
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Figure 1.1. Primary absorption spectra of several tissue types and tissue constituents, 

along with their absorption coefficients at some typical laser wavelengths. Note that the 

absorption spectra of water has been scaled down by 75% to mimic a typical tissue with 

75% water content. From Jacques and Prahl7.  

 

Optical imaging holds great promise for early cancer detection. Cancerous tissues 

manifest significant architectural changes at the cellular and sub-cellular levels, which 

can be detected by the change in their optical scattering properties9. Other hallmarks of 

cancer, such as angiogenesis and hyper-metabolism, directly alter the optical absorption 

properties of the tissue10. Optical imaging can also be used to measure the oxygen 

saturation of hemoglobin, which is closely related to the metabolic state of tissues and is 

an important diagnostic parameter.  

 

However, the imaging resolution of pure optical imaging is significantly limited by the 

strong optical scattering in biological tissues, which are optically turbid media. A typical 

value of the scattering coefficient for visible light in biological tissues is 100/cm, as 

compared to 0.2/cm for X-rays used in medical diagnosis4. Scattering causes light to 

change its direction, and multiple scattering causes light to completely lose its original 
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direction.  

1.1.2 Diffuse Optical Imaging 
 

Depending on the degree of scattering, light transmitted through tissues can be 

classified into three types: ballistic light, quasi-ballistic light, and diffuse light. Ballistic 

light experiences no scattering and carries direct imaging information. Quasi-ballistic 

light experiences minimal scattering and carries some imaging information. Diffuse light 

follows tortuous paths and carries little direct imaging information.  

 

Accordingly, optical imaging techniques are classified into two types:  ballistic imaging 

and diffuse imaging. In ballistic imaging, diffuse light is rejected and ballistic or quasi-

ballistic light is collected. Time-gated optical imaging11-13 and optical coherence 

tomography14, 15 are examples of ballistic imaging. Ballistic imaging is suitable only for 

thin tissue samples; for thick tissues with strong light scattering, it suffers loss of signal 

and resolution. Diffuse optical imaging has been developed for thick tissues to 

overcome the light scattering limitation. In diffusive optical imaging, diffused light is 

detected as the imaging signal, and sophisticated image reconstruction algorithms are 

applied based on diffusion equations or transport equations. Frequency domain optical 

imaging16 and DC-based diffuse tomography17 belong to the diffusive imaging category. 

The image quality of diffusive imaging is usually algorithm-dependent, and the image 

resolution is limited. 

 

To further improve the imaging resolution in tissues over several millimeters thick, 

researchers have developed hybrid techniques that combine the optical and ultrasonic 

techniques, taking advantage of the negligible acoustic scattering (compared with optical 

scattering) in soft biological tissues. In the hybrid imaging techniques, the ultrasonic 

wave carries the spatial information. Hybrid imaging techniques include photoacoustic 

imaging18-20, sonoluminescent tomography21, and ultrasound-modulated optical 

tomography (UOT)22. This thesis focuses on the development of UOT.  
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1.1.3 Ultrasound-modulated Optical Tomography (UOT) 
 

In UOT, a focused ultrasonic wave is used to modulate the diffused coherent light 

inside the biological tissues. The ultrasonically modulated or encoded photons are 

frequency shifted by the ultrasonic frequency, and can be discriminated from the un-

modulated background light. The ultrasonic focus carries the spatial information and 

determines the spatial resolution for the ultrasonically modulated photons23. Thus, by 

providing optical contrast and ultrasonic resolution, UOT combines the advantages of 

ultrasound imaging and optical imaging. Because of these intrinsic characteristics, it is 

well suited for soft tissue imaging. 

 

UOT holds promise for broad applications in biomedical diagnosis, such as breast 

cancer and skin cancer detection. However, there remain challenges in UOT’s 

theoretical understanding and practical applications. For example, in practice, the 

sample thickness in breast cancer diagnosis will be 5-10 cm. For UOT imaging in such 

thick tissue, signal detection becomes a critical bottleneck. New development is required 

to improve the sensitivity of the signal detection techniques. In addition, the detection 

configuration should be modified to meet the requirement of convenience for practical 

applications. 

  

1.2 Signal Detection in UOT 
 

In UOT, the signal light is modulated by a focused ultrasonic wave, which can be 

modeled as phase modulation at the ultrasonic frequency. When expanded in the 

frequency domain, the signal light contains several parts: the unmodulated light has the 

original optical frequency ν0, while the ultrasonically modulated light has frequencies 

shifted from the optical frequency by multiples of the ultrasonic frequency, i.e., ν0±nfa, 

where n is an integer and fa is the ultrasonic frequency. In the weak modulation 

approximation that is usually the case, all the higher harmonics are negligible except the 

first order terms ν0±nfa. One of these two sidebands is usually detected as the signal for 
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UOT imaging24-26.   

 

The signal-to-noise ratio (SNR) of UOT is limited by several factors. First, the number 

of the diffuse photons being modulated by a focused ultrasound beam inside a turbid 

medium is overwhelmed by the un-modulated, background diffuse photons, which 

results in a small degree of modulation. Second, as a coherent light beam scattered 

through a turbid medium, the wave front of the diffused light becomes speckled, which 

limits the coherence detection to single speckles. If multiple speckles were detected, the 

measured effective modulation depth would decrease as the number of speckles 

increase24. Further more, due to their independent statistical nature27, the two speckled 

wave fronts, one of the modulated photons and the other of the un-modulated photons, 

do not coincide with each other, therefore the heterodyne mixing of the two wave 

fronts on the detector further deteriorates the SNR. Third, the speckled wave front of 

the diffused light through biological tissue is not stationary due to various internal 

motions, such as Brownian motion and internal transportation of microstructures such 

as blood cells. This usually imposes a speckle decorrelation time τC of less than several 

hundred milliseconds on the UOT signal, which limits the coherent detection time and 

further deteriorates the signal-to-noise ratio. 

 

In the first part of the thesis, I explore two emerging detection techniques to address 

the SNR problem in UOT, namely photorefractive detection and spectral-hole burning 

aided detection,. 

 

1.2.1 Photorefractive Detection for UOT 
 

Chapter 2 presents a study on photorefractive detection for UOT, using Bi12SiO20, a 

commercially available photorefractive crystal (PRC), and a focused ultrasound 

transducer with 1 MHz central frequency.  

 

Photorefractive crystals produce a local light-induced change in their optical refractive 
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indices when the crystals are under spatially non-uniform illumination. There are two 

underlying physical properties common to all photorefractive crystals that contribute to 

photorefractivity: such crystals are both photoconductive and electro-optic.  

 

The working mechanism of the photorefractive effect can be explained as a series of 

physical processes (see Fig. 1.2) dynamically taking place in response to a non-uniform 

light illumination28, 29, e.g., a set of grating patterns resulting from two plane-wave beams 

interfering, which results in the formation of a non-uniform spatial distribution of the 

refractive index inside the photorefractive crystal, with a pattern similar to that of the 

illumination.  

 

Photorefractivity begins with the generation of free charge carriers, such as electrons, 

that are excited by the light illumination from the valence band to the conduction band. 

A spatially-varying illumination pattern results in a similarly spatially-varying 

photogeneration rate, i.e., the photogeneration rate is locally a maximum at the 

positions of maximum intensity. The nonequilibrium free charge carrier densities lead to 

charge migration, either by diffusion, or by drift, or both. When no external electric 

field is applied, the carriers diffuse away symmetrically from the intensity maxima. When 

an external electric field is present and dominates the internal field, then drift dominates 

the charge transport. In any case, the transport will separate free charge carriers under 

the spatially non-uniform illumination.  

 

Further, the free charge carriers will get trapped at defect sites that are available (empty) 

in the transport process. The immediate consequence of separated and trapped space-

charges is the formation of space-charge electric fields. When drift dominates the 

transport under a large applied electric field, the electric field reaches maxima in the 

dark fringes, and minima in the bright fringes. The electric field is therefore coincident 

with the maxima and minima of the intensity pattern. On the other hand, when 

diffusion dominates the transport process, the electric field maxima are shifted by a 

quarter fringe spacing. The location of the electric field inside the material, relative to 

the location of the interference fringes, plays a fundamental role in photorefractive 
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nonlinear optical mixing, such as two-wave mixing.   

 

The final stage of the photorefractive grating formation process is the conversion of the 

internal space-charge electric field into a spatial modulation of the refractive index of 

the material. This conversion is made possible by the linear electro-optic effect, or the 

Pockels effect, where electric field change the refractive index of an electro-optic 

material. Therefore, the spatially modulated light intensity incident on a photorefractive 

material is converted through the photorefractive process into a spatial modulation of 

the refractive index with the same spatial frequency as the intensity pattern. A quarter 

fringe spacing shift of the refractive index relative to the optical stimulus (for diffusion-

dominated transport) has special properties during photorefractive wave mixing. It 

allows one of the interfering beams to gain intensity at the expense of the other beam. 

This nonreciprocal energy transfer, or photorefractive gain, is the basis of many 

photorefractive phenomena and applications.     
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Figure 1.2. The photorefractive effect takes place through a series of dynamic processes. 

(a) Two plane wave beams incident on a PRC. (b) Interference grating formed by the 

light illumination. (c) Formation of space-charge field due to diffusion of the photon-

generated free charge carriers. (d) Formation of index grating via the linear electro-optic 

effect (the Pockels effect).  

   

Photorefractive detection makes use of photorefractive two-wave mixing that involves 

two light beams:  the signal beam, which is the diffused signal light from a scattering 

medium, and the reference beam, also called the pump beam, which is directly derived 

from the laser source. In photorefractive detection, the PRC is used as an adaptive 

beamsplitter, in which the signal beam is mixed with the reference beam. This mixing 

forms an interference grating pattern in the crystal volume. Due to the 
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photoconductivity of the PRC, in the bright regions of the interference grating, light 

excites more free charge carriers than in the dark regions. Thus, the free charge carriers 

drift or diffuse from the bright regions to the dark regions; this leads to the formation 

of a space-charge field, the strength of which spatially follows the illumination 

interference pattern.  

 

As discussed earlier, the refractive index of the PRC is directly modulated by the local 

space-charge field. Thus, the light modulated space-charge field in the PRC produces a 

refractive index grating that also follows the illumination interference pattern. As a 

result of the quarter fringe spacing shift of the index grating pattern from the 

illumination pattern due to the diffusion-dominant charge transport in BSO, the 

reference beam is diffracted from this refraction index grating into the signal beam 

direction in the two-wave mixing process.  

 

The wave front of this diffracted reference beam replicates that of the signal beam, 

which provides a local oscillator (LO) important for interferometric detection.  

 

The PRC is adaptive in that the index grating is “rewritten” continually on the time scale 

of the PRC response time, while the high frequency modulation produced by the 

ultrasonic source is not compensated for. This adaptivity offers the ability to spectrally 

filter the un-modulated component in the signal light because the frequency of the 

reference light is identical to that of the ultrasound-modulated component. 

Furthermore, any slow variation of the wavefront in the signal beam due to speckle 

decorrelation can be compensated for by the dynamically refreshed index grating, 

provided that the speckle decorrelation time is within the response time of the PRC.  

 

Based on the principle of photorefractive detection, I developed a time-resolved 

detection scheme using a millisecond-long ultrasound burst, and then imaged both the 

optical and mechanical properties of biological tissues. This scheme improved the 

detection efficiency of the ultrasound-tagged photons.  
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My experiments in both tissue-mimicking phantoms and in chicken breast tissue 

showed that over an imaging depth of 40 mm, both the optical and acoustical 

heterogeneity can be resolved at a resolution of ~2 mm, which is determined by the 

focal width of the ultrasound transducer. Furthermore, because the optical and 

mechanical properties of tissue have different characteristic time scales, they can be 

differentiated by analyzing the temporal evolution of the UOT signals. 

 

In chapter two and chapter three, we explore two emerging detection techniques to 

address the SNR problem in UOT, photorefractive detection and spectral-hole burning 

aided detection,. In chapter two, we present a study on photorefractive detection for 

UOT, using Bi12SiO20 (BSO), a commercially available photorefractive crystal (PRC), 

and a focused ultrasound transducer with 1 MHz central frequency. In photorefractive 

detection, the PRC is used as an adaptive beamsplitter, in which the diffused signal light 

from a scattering medium is mixed with a reference beam (or pump beam) which is 

directly derived from the laser source. An interference pattern is formed in the crystal, 

exciting free charge carriers in the bright regions which drift or diffuse to the dark 

regions and leading to a space-charge field formation. The index of refraction is 

modulated through the electro-optic effect, and the reference beam is diffracted off this 

grating into the signal beam direction in the two-wave mixing process. The wave front 

of the diffracted reference beam replicates that of the signal beam, providing a local 

oscillator (LO) for interferometric detection. The diffracted reference beam and the 

transmitted signal beam interfere at the photodetector, where any phase modulation 

encoded on the signal beam is converted to an intensity modulation which is observed 

at the detector. The PRC is adaptive in that the index grating is continually “rewritten” 

on the time scale of the PRC response time, while high frequency modulation produced 

by the ultrasonic source is uncompensated. Thus we can spectrally filter the un-

modulated component in the signal light when the frequency of the reference light is 

identical to that of the ultrasound-modulated component. Based on photorefractive 

detection, we developed a time-resolved detection scheme with a millisecond long 

ultrasound burst capable of imaging both the optical and mechanical properties of 

biological tissues, with improved detection efficiency of the ultrasound-tagged photons. 
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Our experiments in tissue mimicking phantoms and in chicken breast tissue showed 

that through an imaging depth of 40 mm, both optical and acoustical heterogeneity can 

be resolved at a resolution of ~2 mm, as determined by the focal width of the 

ultrasound transducer. Furthermore, the optical and mechanical properties of tissue can 

be differentiated through analysis of the temporal evolution of the UOT signals because 

of the difference in the characteristic time scales.  

1.2.2 Spectral-hole Burning Aided Detection for UOT 
 

In chapter three, we present a study on a spectral-hole burning (SHB) aided detection in 

UOT to image optical heterogeneities in thick tissue-mimicking phantom samples and 

chicken breast tissue. With this detection technique, an SHB crystal is used as a front-

end absorptive spectral filter to selectively transmit the frequency component in the 

diffused light which corresponds to the ultrasound-modulated light, while suppressing 

all the other frequency components. Being able to process multiple speckles 

simultaneously while remaining immune to the speckle de-correlation, SHB detection 

offers a greatly increased etendue compared to the other detection techniques in UOT. 

In our study, the efficiency of SHB was improved by using a Tm3+: YAG crystal of 

higher doping concentration (2.0 atomic%) and a double-pass pumping configuration, 

in which the pump beam was transmitted through the crystal twice, to burn a deeper 

spectral-hole with the available optical intensity. With the improved SHB-UOT system, 

we imaged absorbing, scattering, and phase contrast objects that were embedded in the 

middle plane of a 30-mm thick phantom sample. The imaging resolution was 0.5 mm in 

the lateral direction, as defined by the focal width of the ultrasonic transducer, and 1.5 

mm in the axial direction, as determined by the ultrasonic burst length. We also imaged 

two absorbing objects embedded in the middle plane of a 32-mm thick chicken breast 

sample. The results suggest that the improved SHB-UOT system is one step closer to a 

practical optical imaging application in biological and clinical studies.  
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1.3 Time-reversed ultrasonically encoded 
(TRUE) optical focusing 

 
One of the fundamental difficulties in optical imaging of soft biological tissue comes 

from the fact that multiple scattering of light in turbid media randomizes the light 

propagation directions within one transport mean free path30, which prevents effective 

light focusing in depths beyond this range. This randomization makes it difficult to use 

light as an imaging probe to “see” deep into a turbid medium or to deliver light for 

light-matter interaction at specific sites inside the medium.  

 

To overcome the depth limitation of optical focusing, or in general, of light propagation 

in turbid media, a variety of approaches have been explored. The turbidity of a 

scattering medium can be artificially reduced by optical clearing31, 32, which matches the 

refractive indices of the scatterers in a scattering medium with that of the ground 

material by introducing optical clearing agents into the medium. This improves the 

optical penetration depth and imaging contrast, while it alters the optical properties of 

the medium, which is not always desirable or applicable. Without extraneous control of 

its optical properties, the turbidity of a scattering medium can be suppressed by optical 

phase conjugation (OPC) in a two-pass configuration33. The usefulness of this method is 

limited to imaging objects through a diffuse layer, but not inside such layer. Nor is it 

helpful in focusing light inside a diffuse medium. Another approach to achieve light 

focusing inside34 or through35 a turbid medium, without changing its optical properties, 

is to adaptively shape the wavefront of the incident light through a feedback loop. The 

feedback mechanism, however, requires the presence of a guide star—a luminous 

point—for the incident light to be focused on. In addition, the time it takes for the 

iterative feedback algorithm to find the optimal incident wavefront is on the order of 

several minutes, much longer than the millisecond time scale of the micro structure 

changes in biological tissue. These factors prevent the technology from being useful in 

situations where arbitrary, dynamic, or real time light focusing is desired.  

 



 

  14 
 

To overcome the above restrictions, time-reversed ultrasonically-encoded optical 

focusing, or TRUE optical focusing is proposed. TRUE is based on the principles of 

ultrasonic modulation and optical phase conjugation, or OPC, of multiple-scattered 

coherent light, to dynamically focus light into a scattering medium in a two-pass 

configuration. In this technique the wavefront of the ultrasonically encoded light 

emanating from a virtual source (i.e., the ultrasonic focus) inside a turbid medium on 

the first pass can be restored by OPC on the second pass on the wavelength scale, and 

will then converge to the virtual source. The virtual source, defined by the ultrasonic 

focus, serves as a virtual guide star. Its size and position are adjustable by the ultrasonic 

device instead of by optical focusing elements. Thus TRUE optical focusing can 

invasively focus light to an arbitrary spot defined by the ultrasonic focus inside a turbid 

medium. Being a diffuse optical method, TRUE optical focusing is insensitive to the 

optical thickness of the turbid medium and ideally could reach focal depths beyond ten 

centimeters in a scattering-dominant medium, such as human breast tissue. This 

modality is presented in Chapter four. 

 

Finally, in Chapter five, we present a summary of this dissertation. 
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Chapter 2 
  
UOT with Photorefractive Detection 
 

2.1 Optical Imaging and UOT 
 

Optical imaging of soft biological tissue is a non-invasive, nonionizing, and functional 

imaging modality, which makes it highly desirable in the biomedical field. The photon 

energy used in optical imaging is typically ~2 eV for λ = 500 nm, which is safe for 

biological molecules, as compared with the radiation used in X-ray imaging which is  

~50 KeV. Because its contrast is based on optical properties (i.e., absorption and 

scattering) of the tissue, optical imaging can provide better soft-tissue contrast than the 

ultrasound imaging, which is based on mechanical contrast. Optical absorption and 

scattering properties in the visible and near infrared wavelengths are intrinsic indicators 

of tissue abnormalities and functions since they are determined by the molecular 

constituents of tissues and the electronic and/or vibrational structures at the molecular 

level. For example, cancerous tissues manifest significant architectural changes at the 

cellular and sub-cellular levels, which result in changes to the optical scattering 

properties. Angiogenesis and hyper-metabolism, which are characteristic of cancers, 

result in changes to the optical absorption properties. Therefore, optical imaging holds 

great promise for early cancer detection. Other important physiological parameters can 

also be measured by optical imaging, such as the oxygen saturation of hemoglobin, 

which makes optical functional imaging possible.  

 

However, pure optical imaging lacks good spatial resolution in deep tissue because of 

strong optical scattering in the visible and NIR wavelengths. For imaging modalities that 

detect ballistic or quasi-ballistic photons as imaging signals, such as time-gated imaging 

and optical coherence tomography, the detected photons experience minimal scattering 
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inside tissues and carry spatial information, but the signal strength decays exponentially 

with increasing tissue thickness. These imaging modalities are therefore not suitable for 

deep tissue imaging. For diffuse optical imaging modalities that collect diffused photons 

transmitted through thick tissues as imaging signals, the diffused light decays more 

slowly in thick tissues, but the spatial information is lost in diffuse photons because 

multiple scattering randomizes light propagation after several scattering mean free 

paths. At λ = 500 nm, the mean scattering free path lS = 0.1 mm in the human breast, 

while lS = 50 mm for photons at the X-ray wavelength used in medical diagnosis. In 

diffuse optical imaging, convoluted image reconstruction is needed to recover the spatial 

distribution of the relevant optical properties. Since this is usually an ill-posed inverse 

problem, the image resolution and the image quality are not good. 

 

To take advantage of the high optical contrast and overcome the poor spatial resolution 

of optical imaging in thick tissues, the use of ultrasound has been explored, which 

resulted in several hybrid imaging modalities such as photoacoustic imaging and 

ultrasound-modulated optical tomography (UOT). Because acoustic scattering is 1000 

times less than optical scattering in soft biological tissues, ultrasonic waves provide 

spatial resolution in these hybrid imaging modalities. In UOT, a focused ultrasonic wave 

is used to modulate the diffused light inside biological tissues. The ultrasonically 

modulated (or encoded) photons are frequency shifted by the ultrasonic frequency and 

can be discriminated from the un-modulated background light. The ultrasonic focus 

determines the spatial resolution for the ultrasonically modulated photons. Thus UOT 

has the combined advantages of optical contrast and ultrasonic resolution. 

 
In UOT, a focused ultrasound beam interacts with diffused light by means of phase 

modulation inside a biological sample. The intensity of the ultrasonically modulated (or 

tagged) light at the detector is proportional to the fluence of the diffused light probed 

by the ultrasonic wave. By scanning the ultrasound beam through the sample, a 

tomographic image of the light fluence can be constructed, which can be used to 

recover the spatial distribution of optical properties which are of biomedical interest.  
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The development of UOT has been chronicled by the development of its signal 

detection methods (Table 1). When ultrasound modulation of diffused light was first 

experimentally demonstrated by Marks et al.36, a single element detector 

(photomultiplier) and Fabry-Perot interferometer were used for signal detection in the 

time and spectral domain.  Leveque et al.37 implemented a parallel speckle detection 

method to improve the signal to noise ratio (SNR), where a CCD camera was used as a 

detector array with a source-synchronized lock-in technique. Sakadzic and Wang38 used 

single ultrasound pulses and a confocal Fabry-Perot interferometer to obtain 

microscopic UOT images in biological tissues, with resolution scalable to ultrasound 

wavelength (<100um) at imaging depths > 3mm. Murray et al.39 used a photorefractive 

crystal (PRC) based detection system to enhance the detection efficiency.  

 

Table 2.1  Different signal detection methods in UOT. 

Detection methods Main features First reported by 

Single element 

detector (photo 

diode, PMT, etc.) 

Single speckle grain; real time 

response; photon starving 

Leutz W. et al.,40 Wang 

L. V. et al.,22 Kempe 

M. et al.24 

Parallel detection     

(CCD) 

Parallel detection of multiple speckle 

grains; improved etendue; slow 

exposure speed; photon starving 

Leveque S. et al.37 

Fabry-Perot 

interferometer  

Spectral filtering; immune to 

speckle; small etendue; slow speed  

Leutz W. et al.,40 

Sakadzic S. et al.38 

Photorefractive 

detection 

(photorefractive 

material) 

Adaptive, dynamic beam splitter; 

increased etendue; spectral filtering; 

Murray T. W. et al.39  

Spectral-hole 

burning (SHB 

crystal) 

Spectral filtering; largest etendue;  Li Y. et al.41, 42  
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The development of UOT signal detection methods has pursued improved SNR and 

system etendue, difficulties in UOT that are inherently related to the mechanism of 

ultrasonic modulation of coherent laser light in a scattering medium25, 43. First, because 

the ultrasonic focal volume is small compared to the entire light diffusion volume, the 

modulation depth m—defined as the ratio of the ultrasound-modulated light intensity to 

the un-modulated light intensity—is low. Second, multiple scattering results in a 

speckled wavefront of the diffused light. The average grain size of the speckle sets the 

upper limit of the spatial coherence area when both of the ultrasound-modulated and 

un-modulated components fall on the photodetector surface. For a single speckle grain, 

the heterodyne mixing of the two components has an etendue < λ2 (where λ is the light 

wavelength) because the two wavefronts are not perfectly matched since the two 

components follow independent statistics in diffusion44. When the detector surface is 

large compared to the average speckle grain size (~λD/L, where D is the dimension of 

the light emanating surface, and L is the distance between the source and the detector), 

multiple speckle grains will be integrated, which results in a reduced effective 

modulation depth Nmmeff /= 24, where N is the number of grains.  This reduction 

leads to a trade-off between the measured  and the system etendue, which can be 

defined as , where  is the solid angle subtended by the light 

emanating surface when viewed from the surface element  of the detector. A system 

with an improved etendue will collect more signal light, but will result in a decreased 

 because of an increased number of speckle grains N, and vice versa. An additional 

complication in the in vivo imaging of biological tissue is the speckle decorrelation 

caused by internal movement of the scattering medium such as Brownian motion. This 

movement limits the coherence detection time to within the speckle decorrelation time 

of the tissue, usually on the order of 1 – 100 milliseconds.  

effm

 Ω=
Ω S

dSdG
,

SdΩ

dS

effm

 

2.2 Bi12SiO20 Photorefractive Crystal  
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In recent years, photorefractive crystal (PRC) based detection has been applied to UOT, 

and has effectively improved the etendue of the imaging system. The improvement 

capitalizes on PRC’s real time holography ability in a two wave mixing (TWM) scheme. 

PRC’s are a group of materials that exhibit both photoconductive and electro-optic 

properties45, 46. The unique photorefractive feature makes PRC suitable for many 

applications, including coherent signal detection, optical image processing, real-time 

holography, and others47-49. Several variations of the PRC-based UOT system have been 

implemented, and the relevant theories have been developed by various groups50-53. 

 

Bi12SiO20 (BSO), a sillenite photorefractive crystal, is a cubic oxide crystal of the sillenite 

family. It belongs to the cubic noncentrosymmetric crystal point group 23, i.e., the 

crystal structure is symmetric for 180° rotations about the crystal axis and 120° rotations 

about the diagonals of the cube. It is piezo-electric, electro-optic, elasto-optic, and 

optically active54. 

 
In comparison to other commonly used PRC’s, such as BaTiO3 and GaAs, BSO has 

much smaller electro-optic coefficient, similar mobility, and smaller dielectric constant. 

However, it has larger photoconductivity, which leads to better sensitivity. Table 2.1 

lists the material parameters for BaTiO3, BSO, and GaAs55. 

 

Table 2.2 Materials parameters for BaTiO3, BSO and GaAs 

Material class Ferroelectric oxide Sillenite Compound 

semiconductor 

Material BaTiO3 BSO GaAs 

Photorefractive Wavelength 

(µm) 

0.4 – 1.1 0.45 – 

0.65 

0.9 – 1.3 

Electro-optic coefficient eeff 

(pm/V) 

100 (r33)             

1640 (r42) 

4 (r41) 1.4 (r41) 
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Dielectric constant  135 (r33); 3700(r11) 56 13.2 

nb
3reff/ε (pm/V) 10 (r33);         6(r42) 1.4 3.3 

Mobility µ (cm2/V-s) 0.01 0.1 6000 

Recombination time τr (s) 10-8 10-6 3×10-8 

Diffusion length Ld (µm) 0.01 0.5 20 

Photoconductivity µτr 

(cm2/V) 

10-10 10-7 1.8×10-4 

 

Table 2.3 lists the relevant physical parameters of BSO at three wavelengths: 

 

Table 2.3. Physical parameters of BSO56: 

Parameter λ = 488 nm λ = 514.5 nm λ = 632.8 nm

Refractive Index n 2.650 2.815 2.530 

Absorption α (cm-1) 7.0 2.8 0.6 

Optical rotatory power ρ (°/mm) 45.5 38.6 21.4 

Photon ionization energy E (×10-12 erg) 4.07 3.88 3.14 

Dark resistivity R (Ω-cm) 5×1013 

 

Figure 2.1 shows the crystallographic structure of BSO and the experimental 

configuration of the crystal. 
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Figure 2.1. Bi12SiO20 photorefractive crystal. (a) Crystal orientation and its 

crystallographic axes x, y, and z. (b) A high voltage square wave electric field is applied 

on the two (0 0 1) faces of the crystal to enhance the wave mixing and holographic 

recording efficiencies. Both the signal and pump light beams are incident on the (-1 1 0) 

face.   

 

2.3 Experimental Methods 
 

We constructed a PRC-based UOT system with a quasi-continuous wave (CW) 

ultrasound modulation scheme, where a one-millisecond long focused ultrasound burst 

was applied to the sample and the time-dependent change of the detected optical signal 

was recorded to image both the optical and mechanical properties of the sample. The 

benefits of using a millisecond long ultrasound burst are two-fold: it improves the SNR; 

and it also enables the detection of the effects of the acoustic radiation force, which 

happens in milliseconds and can be related to the mechanical properties of the sample.  
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Figure 2.2. Schematic of the experiment setup: L, laser; BS, beam splitter; M, mirror; L1, 

L2, lens; PR, photorefractive crystal BSO; PMT, photomultiplier; FG-1, FG-2, function 

generators; PA, power amplifier; DG, pulse-delay generator; HV, high voltage amplifier; 

PC, personal computer; U, 1 MHz ultrasound transducer; T, study sample; VBE, 

vibration block enclosure; Digitizer, GAGE CompuScope 14200 14 bit waveform 

digitizer. 

 

Our experiment setup, shown in Fig. 2.1, was similar to that proposed by Murray et al.50. 

The light from a Coherent Verdi laser (λ= 532 nm) was split into two paths: one (signal) 

for illuminating the sample and the other for pumping in two-wave mixing in the 

photorefractive crystal. The sample was insonified by a focusing ultrasonic transducer 

(Ultran Lab VHP100-1-R38) with a central frequency of 1 MHz, focal length of 37.5 

mm, focal zone length of 23 mm and focal spot diameter of 2.2 mm. The peak acoustic 

pressure at the focus was 1.5 MPa. The high amplitude of the ultrasound burst was 

compensated by its low duty cycle (burst rate was 100 Hz) so that the ultrasound safety 

limit was still satisfied57. An alternating electric field (1 kHz, 4 kV) was applied to the 

BSO crystal to enhance the TWM gain. The pump light intensity incident on the BSO 

was kept around 10 mW/cm2. Under this condition, we confirmed that the crystal 
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response time was at least 100 ms, which was comparable to the speckle de-correlation 

time of 2 cm thick ex vivo chicken breast tissue58. The system was enclosed in an acrylic 

enclosure to protect the real time holography from ambient perturbation. 

 

2.4 Results and Discussions  
 

To quantify the improvement of UOT signal strength with increasing ultrasound burst 

duration, a phantom sample (sample #1) of 10×4×10 cm (X×Y×Z) outer dimensions 

was prepared with 10% porcine gelatin and 1% Intralipid concentration, resulting in a 

reduced scattering coefficient µs’ = 10cm-1. Ultrasound bursts consisting of various 

numbers of cycles were applied to the phantom, and light intensities after the BSO were 

registered by the photomultiplier. The signal strength was defined as the change in 

detected light intensity with and without ultrasound modulation. Figure 2.2 shows the 

signal increase and saturation as the ultrasound burst length increases. Several possible 

mechanisms can account for this: 1). The increasing ultrasound burst duration fills a 

larger sample volume along the Z axis, which increases the amount of ultrasound-

modulated light at the expense of axial resolution; 2). The momentum transfer in the 

ultrasound focal zone increases with the increasing ultrasound duration due to the 

radiation force effect59, which increases the ultrasound modulation of light in the focal 

zone; 3). The TWM response time in BSO due to the intensity change of the un-

modulated light is comparable to this time scale. 
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Figure 2.3. (a) Signal intensity comparison between a short ultrasound burst (2 cycles) 

and a long one (100 cycles). (b) Signal intensity grows as the burst length increases.  

 

We took advantage of the higher signal levels provided by the long ultrasound burst to 

image chicken gizzard pieces embedded in chicken breast tissue (sample #2) (Fig. 2.3). 

The two chicken gizzard pieces, each 6×6×10 mm, were separated 10 mm apart inside 

an 8×2.5×3.8 cm chicken breast sample, which was buried in 10% porcine gel with the 

same outer dimensions as sample #1. Chicken gizzard has higher optical absorption 

than the surrounding chicken breast tissue but similar mechanical properties. This 

difference translates into less ultrasound-modulated light inside the chicken gizzard, 

hence less change of the un-modulated light, and a decrease in the UOT signal. This 

decrease was illustrated by two dark troughs at the locations of the two gizzards, as seen 

in the 2D images in Fig. 2.3. 
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Figure 2.4. UOT image of sample #2. (a) Picture of the sample; (b) and (c) density and 

surface maps of the 2D UOT image of (a); the surface map is upside down to show the 

objects.  

 

To demonstrate imaging based on mechanical properties rather than optical properties, 

a phantom sample (sample #3) was prepared with the same composition and outer 

dimensions as sample #1. Two 6 mm cubic volumes enhanced with 20% corn starch 

were buried inside with a 12 mm separation. The two inclusions had minimal 

differences in optical properties, but higher mechanical contrast than the background. 

As a result, the inclusions were barely discernible in the UOT image acquired 0.1 ms 

after the onset of the ultrasound burst (Fig. 2.5, upper plot), but markedly visible on the 

image acquired 0.1 ms after the passage of the ultrasound burst (Fig. 2.5, lower plot). 

The mechanical property differences gave rise to the acoustic radiation force effect that 

happens on a time scale of several milliseconds59.  
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Figure 2.5. UOT surface maps sample #3 at T = 0.1 ms and 1.1 ms after the start of a 

1-ms long ultrasound burst. 
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Figure 2.6. (a). 1D scan at y = 7 mm of sample #4; (b). 2D density map at T = 0.1 ms 

and (c) T = 1.1 ms; (d). comparison of time-resolved UOT signal for different objects. 

 

We next demonstrated UOT imaging based on both optical and mechanical properties 

by imaging two 3×10 mm (diam.×Z) segments of nude mouse tail 8 mm apart and 

embedded in a gelatin sample (sample #4) with the same composition and outer 

dimensions as sample #1.  The UOT image (Fig. 2.6(b)) acquired at T = 0.1 ms after 

the onset of the ultrasound was mainly based on optical absorption contrast. Owing to 

the higher absorption of the mouse tails, they appear dark, but the contrast is low.  The 

image quality is much better using ultrasound light modulation produced by the 

radiation force effect, due to the large acoustic impedance mismatch between the bone 

structures of the nude mouse tail and the background gelatin phantom.  This 

improvement is shown in Fig. 2.6(c), where the image was acquired 0.1 ms after the end 

of the 1 ms ultrasound.  Here the mouse tails appear bright due to strong acoustic 

modulation. The 1D scans (Fig. 2.6(a)) across the sample at the two different times 

show the different effects of optical and mechanical contrasts on the UOT signal.  

 

  Details of the mechanical properties of the object, such as the acoustic 

impedance mismatch, can be characterized from the time evolution curves of the UOT 

signal. To demonstrate this, a comparison of time-evolution curves from the nude 

mouse tail, the corn starch inclusion, and their background gelatin phantoms is shown 

in Fig 2.6(d). For the nude mouse tail, the radiation force effect kept increasing long 

after the ultrasound was turned off, while for the corn starch inclusion it started decay 

0.5 ms after the end of the ultrasound burst.  For both samples, the background gelatin 

curves showed little radiation force effect, as expected. Separation of the sample’s 

mechanical and optical contrast is possible once the acoustic impedance can be derived 

from the time-resolved UOT imaging. 

 

2.5 Conclusion  
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In summary, this study has demonstrated that both the optical and the mechanical 

properties of a sample can be detected with a millisecond ultrasound burst, using PRC-

based UOT. Time gating the optical signal even allows decoupling of the optical and 

mechanical information from UOT. Finally, the SNR can also be improved with a 

longer ultrasound burst.  
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Chapter 3 
  
UOT with Spectral-hole Burning 
Detection 
  

3.1 Spectral-Hole Burning for UOT 
 

Spectral-hole burning (SHB), one of the latest detection methods in UOT, offers great 

promise in improving the signal detection with little sacrifice, thereby advancing this 

imaging modality closer to practical application.  

 

SHB has been extensively investigated for various applications60-62. An SHB crystal is a 

rare-earth ion doped, inhomogeneously broadened optical absorber, which can be 

modeled as a two-level atomic system63. When cryogenically cooled, it has a sub-MHz 

homogeneous linewidth ΔΓH and a GHz inhomogeneous bandwidth ΔΓI. Each 

homogeneous frequency within ΔΓI can be individually accessed using properly tuned 

narrow laser line excitation. When pump beam from a monochromatic laser source at 

frequency ωP , with intensity IP , illuminates a cryogenically cooled SHB crystal, ions 

having excitation frequency ω that is nearly resonant with the pump beam absorb the 

photons and are then excited from their ground states, yielding a spectral-hole in the 

crystal’s absorption band62-65. As a consequence, the corresponding absorption 

coefficient α(ωP, z) is reduced. 

 

To improve the detection efficiency of UOT, it was recently proposed to use an SHB 

crystal as front-end absorptive filter41, 42. The use of this filter circumvents the spatial 

and temporal coherence limit in detecting the speckled wavefront by selectively passing 

the modulated light while suppressing all of the other spectral components. In the ideal 
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case, all SHB-filtered photons are ultrasonically encoded ones; thus, the speckle grains 

can be added in terms of intensity, although the filtered wavefront of the modulated 

light is still speckled. Compared with the other detection techniques for UOT, SHB 

detection has the advantage of a higher etendue, and therefore can detect more 

modulated light, which becomes increasingly critical in imaging thicker tissues. The 

applicability of SHB in UOT was experimentally demonstrated with imaging results 

from 10-mm thick biological-tissue-mimicking phantom samples41, 42.   

 

Here, we report more experimental results as we further explore the potential of SHB 

for UOT imaging of thicker biological tissue. To improve the SHB efficiency, we 

implemented a double-pass pumping scheme, which resulted in deeper spectral-holes 

with the available pump-beam intensity. The enhanced imaging ability was 

demonstrated by differentiating the absorbing, scattering, and phase objects in a 30-mm 

thick tissue-mimicking phantom with good lateral and axial resolutions. High resolution 

images of absorbing objects embedded in the middle of a 32-mm thick chicken breast 

tissue were also obtained. These results advance SHB-UOT one step closer to optical 

imaging in biological and clinical studies. 

 

3.2 Experimental Methods 

3.2.1 Tm3+: YAG crystal used in SHB 
 
The SHB crystal used in our experiment was a 2.0-atomic%-doped Tm3+:YAG crystal, 

with dimensions of mm3. It had an absorption peak at  λ = 793.38 nm, 

corresponding to the 3H6 → 3H4 transition of the Tm3+ ions (Figure 3.1) at temperatures 

below 4.7 K. When cryogenically cooled below 4.7 K, the crystal showed an absorption 

peak at λ = 793.38 nm, corresponding to the 3H6 → 3H4 transition of the Tm3+ ions61, 66. 

Several factors make the Tm3+:YAG crystal an attractive choice of a narrow-band 

spectral filter for UOT study: its operating wavelength is in the near-infrared (NIR) 

region, which is a preferred biomedical imaging window; its inhomogeneous absorption 

linewidth of 25 GHz is broad enough to accommodate clinical ultrasonic frequencies; 

52910 .××
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and its homogeneous linewidth of ~150 kHz facilitates effective removal of the un-

modulated light. When the crystal is illuminated by a pump beam of a prescribed 

frequency shift (tuned with an acousto-optic modulator AOM1), a narrow spectral hole 

is burned within the absorption band. The spectral hole burned by the pump light from 

a Ti-Sapphire laser in the experiment had a FWHM around 710 kHz, narrow enough to 

remove the un-modulated light, which was shifted by 5 MHz (the ultrasonic frequency) 

from the ultrasound-modulated light. The spectral hole’s life time is ~10 ms due to the 

existence of a shelving middle state 3F4
61, which makes it possible in UOT experiments 

to switch between the burning the spectral hole and detecting UOT signal. During this 

10 ms period, the SHB crystal acts as a narrow-band spectral filter by strongly absorbing 

spectral components of the signal light that are outside of the engraved spectral hole.  

 

 

Figure 3.1. Energy transition in Tm3+:YAG corresponding to λ = 793.38 nm absorption. 

 

3.2.2 Experimental Set-up  
 
Figure 3.2 schematically shows our experimental setup for UOT with SHB, whose 

single-pass version was implemented and described earlier41, 42. The Tm3+:YAG crystal 

was placed in a cryostat, which was installed between the biological sample and the 
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photon detector. The temperature of the crystal was kept below 4.7 K for the duration 

of the experiment. The pump and the signal light beams were both derived from the 

same source, a CW Ti:Sapphire laser (Coherent MBR110E), which was pumped by a 

frequency doubled diode-pumped Nd:YAG laser (Coherent Verdi V10) and operated at 

793.38 nm with a linewidth of ~181 kHz and output power of 2 W. Two acousto-optic 

modulators (AOM, IntraAction AOM 802-A1) worked in combination with an 

ultrasound transducer to match the frequencies of the pump beam and the ultrasound-

modulated light on the signal path. In the experiment, AOM1 was first turned on for 

3.3 ms with a 70 MHz sinusoidal RF wave, diffracting light into the first order. This first 

order beam, used as the pump beam, was then expanded into a 9 mm diameter 

collimated beam delivering 900 mW optical power.  After AOM1 was turned off, 

AOM2 was turned on with a 75 MHz sinusoidal RF wave, diffracting the incident laser 

beam into its first order to illuminate the scattering sample. The diffused light inside the 

sample interacted with a traveling ultrasound burst consisting of five cycles of a 5 MHz 

sinusoidal wave, which was emitted by a focused transducer (Panametrics-NDT A326S; 

focal length: 16.2 mm; focal width: 0.5 mm). The interaction generated the ultrasound-

modulated component within the signal light exiting the sample. A condensing lens (L5) 

after the sample then focused the signal light onto the SHB crystal placed inside the 

cryostat chamber. The modulated component of the signal light was spectrally filtered 

by the SHB crystal before it was detected by a large area (3.6×3.6 mm2) photodiode 

(Thorlabs PDA55). The output signal was fed through a preamplifier (Stanford 

Research SR560) and coupled into a digitizer (Gage CompuScope 14200) for data 

analysis.  
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Figure 3.2. Schematic of SHB-UOT experimental setup: Ti-Sapphire laser, Coherent 

MBR110; L1 - L6, lens; M1 – M5, mirrors; AOM1, 2, acousto-optic modulators; S1, S2, 

mechanical shutters; Tx,  ultrasound transducer; PMT, photomultiplier tube; PreAmp, 

preamplifier; GAGE, 200MHz data acquisition card; PC, personal computer. 

 

3.3 Results and Discussions 
 

The efficiency of the SHB crystal as a narrow bandpass filter depends on the depth of 

the spectral hole. To burn a deeper hole with the available optical power, we used a 

double-pass pumping scheme, where a mirror M5 was placed diagonal to M4 across the 

cryostat to reflect the pump beam back onto the Tm3+:YAG crystal. To quantify the 

increase in the spectral-hole depth from the double-pass pumping scheme as compared 

to the conventional single-pass method, we measured the transmission of a weak probe 

beam (~15 µW) through the SHB crystal, which was modulated by a five-cycle 5 MHz 

ultrasound burst when passing through the transducer focus in a clear gelatin phantom. 

A 38% increase in the transmission efficiency was observed (Fig. 3.3). Assuming the 

validity of Beer’s law Iout = Iinexp(-α0·LC) and given LC = 2.5 mm for the thickness of the 

Tm3+:YAG crystal used in the experiment, we found a reduction of the absorption 

coefficient ∆α0(ωP) = 0.13 mm-1 at the pump light frequency ωP due to the increased 

spectral-hole depth with the double-pass pumping scheme.  
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Fig. 3.3. Comparison of the transmitted probe beam powers. The probe beam was 

modulated by a five-cycle 5 MHz ultrasound burst and filtered by the SHB crystal, when 

SHB was operated in single-pass and double-pass pumping configurations.  

 

The improvement with the double-pass pumping method suggests that it is possible to 

burn deeper spectral-holes if higher optical power is available in the laser. In our 

experiment, a 2.5-mm thick, 2.0-atomic%-doped Tm3+:YAG crystal was pumped by a 

900 mW beam with a 9 mm collimated beam diameter for 3.3 ms. As a comparison, in a 

previous demonstration66 a 2.5-mm thick, 0.5-atomic%-doped Tm3+:YAG crystal was 

used as a spectral filter, which was pumped by laser pulses lasting 150 µs, with a typical 

pulse energy of 450 nJ and a beam waist of 90 µm. The fluence at the crystal surface due 

to the pump light was 1.5 times as large as that in our experiment. On the other hand, 

since the doping concentration of our crystal was four times as large, even higher optical 

power was needed to reach SHB saturation41 in our experiment. The higher doping 

concentration of the SHB crystal, while enabling a deeper spectral-hole and hence better 

spectral filtering, comes at the expense of the increased spectral-hole width, which 

turned out to be of negligible consequence for our imaging applications. 

 

In the initial studies of SHB-assisted detection in UOT, an imaging experiment was 

conducted on a 10-mm thick tissue-mimicking phantom sample. To explore its potential 

in a practical biomedical imaging setting, it is desirable to use SHB assisted UOT to 

image real biological tissues thicker than 10 mm. With improved detection efficiency 

resulting from the double-pass pumping scheme and using a higher doping SHB crystal, 

the deep tissue imaging capability of our SHB-UOT system was put to test with these 

objectives in mind. The tissue-mimicking samples were prepared by mixing 10-wt.% 

porcine gelatin (Sigma G2500) and 1-wt.% Intralipid (Fresenius Kabi) in distilled water 

and molding the solution into slabs of various thicknesses along the light propagation 

direction. The light incident side of the sample measured 100×60 mm2. The background 

samples had a reduced scattering coefficient µS’ = 0.7 mm-1 for the laser wavelength of 

793.38 nm and a thickness of 30 mm.  
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Fig. 3.4. UOT images of the absorbing, scattering, and phase objects embedded in the 

middle plane of a 30-mm thick intralipid phantom slab. (a) A photograph of the 

intralipid sample with the five embedded objects: two absorbing objects of dimensions 

1.5×1.5×1.5 mm3 on the left; one phase object of 1.5×1.5×1.5 mm3 in the middle; two 

scattering objects of 1.5×1.5×1.5 mm3 and 2×3×2 mm3, respectively, on the right. (b) A 

B-scan image of the five objects obtained from SHB-UOT. (c) A 1D image of the five 

objects along the B-scan direction, denoted by the horizontal dashed line in (b). (d) An 

A-scan image of the second absorbing object, denoted by the vertical dashed line in (b). 

The smoothed curves were obtained by FFT filtering. 

 

A typical imaging result obtained from the UOT experiment with SHB detection is 

shown in Fig. 3.4, which is a reconstructed image of five objects embedded in a 30-mm 

thick tissue-mimicking phantom. These objects represent three distinctly different 

optical heterogeneities commonly encountered in optical imaging of biological tissue: 

the absorbing objects, the scattering objects, and the phase object—a volume with a 
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uniform refractive index—in a scattering background. The absorbing objects, with the 

same composition as the background gelatin matrix but dyed with black India ink, have 

an optical absorption coefficient µa = 10 mm-1; the scattering objects, with 3-wt.% 

intralipid added to the gelatin matrix, have a higher reduced scattering coefficient µS’ = 

3 mm-1; the phase contrast object, made from 10-wt.% gelatin solution that contains no 

intralipid, is optically transparent and homogeneous. The objects have dimensions of 

either 1.5×1.5×1.5 mm3 or 2×3×2 mm3—much smaller than the ultrasonic focal zone 

of 16 mm length. Figure 3(a) is a photograph of the sample, dissected at the middle 

plane, containing all five objects and 3.4(b) is a B-scan UOT image with SHB detection. 

Figure 3.4(c) shows an A-line image of the second absorbing object, corresponding to 

the vertical dashed line in 3.4(b). Figure 3.4(d) shows a 1D image of all five objects 

along the horizontal dashed line in 3.4(b). The imaging results for different objects can 

be explained by the different mechanisms involved in the ultrasonic modulation of the 

diffused light67. On the one hand, the decrease of the UOT signal at the site of the 

absorbing objects is due to strong absorption of the diffused photons. On the other 

hand, the decrease of the signal at the site of higher scattering objects is due to the 

cancellation of different phase accumulation terms, resulting in a reduction in the 

amplitude of the ultrasound-modulated light. By contrast, ultrasound-modulated light 

amplitude is increased at the site of lower scattering/clear objects relative to that of the 

higher scattering background (e.g., phase objects). It is almost intuitive that the lower 

the scattering coefficient of the object relative to the background, the stronger the UOT 

signal68. It is therefore feasible, in principle, to map the distribution of the scattering 

coefficient based on the relative changes in UOT signal. The axial and lateral resolutions 

of the imaging experiment can be quantified from Fig. 3.4(c) and 3.4(d). The resolution, 

defined here as the width between the 20% and 80% rise points on either edge of the 

object, is 0.95 mm along the acoustical axis and 1.0 mm perpendicular to the acoustical 

axis. The axial resolution is ~60% of the full spatial extent—1.5 mm—of the five-cycle 

5 MHz ultrasound burst, indicating good agreement between the experimental 

measurement and the theoretical expectation. The lateral resolution appears larger than 

the ultrasonic focal width as a result of the convolution of the ultrasonic focus and the 

imaging object. This result clearly demonstrates the sensitivity of the technique for 
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imaging all three types of objects of ~millimeter dimensions in the 30-mm deep tissue 

regime. Especially notable is the improved axial resolution in imaging scattering objects 

in comparison with the previous study67, where UOT was first shown to image 

scattering objects (2×2×20 mm3) that occupied the entire length (20 mm) of the 

ultrasonic focal zone. 

    

 

 

Fig. 3.5. UOT images of a 32-mm thick chicken breast sample. (a) Photograph of the 

sample embedded with two absorbing objects of absorption coefficient µa = 10 mm-1 

and dimensions 3×3×3 mm3 and 2×2×2 mm3, respectively. (b) A B-scan image of the 

sample. (c) A 1D image of the two objects along the B-scan direction, denoted by the 

horizontal dashed line (smoothed over the experimental data points) in (b). The 

smoothed curve was obtained by FFT filtering. 
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To demonstrate the feasibility of SHB-UOT for deep tissue imaging in real biological 

samples, a 32-mm thick chicken breast sample was imaged. Two small absorbing 

objects, made with the same composition as the imaging objects in Fig. 3.4, were 

embedded 10 mm apart in the middle plane of the sample. The result is shown in Fig. 

3.5. The full widths at half maxima of the imaged objects, quantified from Fig. 3.5(c), 

are 2.6 mm and 2.0 mm, respectively, and agree well with the real dimensions of the 

objects. The high SNR resulting from the improved SHB detection in UOT makes a 

prominent distinction between the absorbing objects and the tissue background, which 

verifies its potential in biomedical imaging, such as in breast cancer screening. 

 

We also acquired a UOT image of a 40-mm thick tissue-mimicking sample. The sample 

was prepared by mixing 10-wt.% porcine gelatin (Sigma G2500) and 1-wt.% intralipid 

(Fresenius Kabi) in distilled water and molding the solution into a slab whose 

dimensions were  mm3 with the 40 mm thickness along the light 

propagation direction. The resulting sample had a reduced scattering coefficient of 

 mm-1 for λ = 793.38 nm, comparable to that of the human breast. Three 

absorbing cubes were embedded in the middle plane of the sample, with dimensions of 

1×1×1 mm3, 3×3×3 mm3, and 5×5×5 mm3, respectively. Their optical absorption 

coefficient is 

40100100 ××

10

70.' =Sμ

=aμ  mm-1 because of the addition of black India ink to these volumes. 

 

Figure 3.6 shows a typical imaging result obtained from the SHB-UOT experiment, 

which is a reconstructed image of the three absorbing objects embedded in the sample 

after a raster scan (B-scan) of the sample along the x axis. At each x position, the 

temporal evolution of the UOT signal along the y axis (the ultrasound propagation 

direction) constitutes an A-scan. The image shows very high contrast between the 

objects and the background matrix.  
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Figure 3.6. UOT image of the three absorbing objects embedded in the middle plane of 

a 40-mm thick tissue-mimicking phantom. a. A photograph of the sample with the three 

embedded objects. b. A B-scan image of the three objects obtained from SHB-UOT.  

 

Another interesting feature of SHB detection for UOT is that multiple spectral-holes 

can be burned and accessed that will transmit multiple sidebands of the ultrasound-

modulated light. To demonstrate this, we investigated harmonic imaging using the SHB-

UOT system. 

 

The peak to peak pressure at the focus of the 5 MHz ultrasound transducer in the 

experiment was measured to be 2 MPa. At this magnitude, the nonlinear effect in the 

ultrasonic waveform is already significant enough that the higher harmonics have come 

into play in the modulation of the diffused light inside the sample. Fourier analysis 

shows that the second harmonic frequency of a five-cycle 5 MHz ultrasound burst has a 

magnitude of 1/3 of its fundamental frequency contribution, as shown in Fig. 3.7a. This 

implies that in the ultrasound-modulated light, both the 5 MHz and the 10 MHz 

sidebands exist due to the two frequencies’ contribution.  When the two AOM’s were 

tuned to burn two spectral-holes at the 5 MHz and 10 MHz sidebands, both 

components were filtered through the SHB crystal, while the un-modulated light was 

strongly suppressed. The resulting amplitude of the second harmonic UOT signal was 
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half of the fundamental UOT signal, as shown in Fig. 3.7b, indicting better filtering of 

the spectral hole for the higher harmonic.  

 

A harmonic imaging result is shown in Figure 3.8. The sample was a 20-mm thick 

phantom slab having the same composition as the 40-mm thick sample. Two absorbing 

objects were embedded in the middle plane of the phantom, with dimensions of 5×5×5 

mm3 and 8×8×8 mm3, respectively. Their optical absorption coefficient is 10=aμ  mm-

1 because of the addition of black India ink. Both the fundamental image and the second 

harmonic image have adequate resolution and contrast to resolve the two absorbing 

inclusions. 

 

 

 

Figure 3.7a. Acoustic pressure contributed by the fundamental and second harmonic 

frequencies of the 5 MHz focused transducer at its focus perpendicular to the 

ultrasound propagation direction. 3.7b. The detected UOT signals when a spectral-hole 

was burned at the fundamental or second harmonic frequency. The ultrasound burst 

consists of five cycles of a 5 MHz sinusoidal wave emitted by the ultrasound transducer, 

whose focal pressure is 2 MPa.  
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Figure 3.8. Harmonic image of two absorbing objects embedded in a 20-mm thick 

phantom sample. a. acquired when spectral-holes were burned at the fundamental 

frequency; b. acquired when spectral-holes were burned at the second harmonic 

frequency.  

 

3.4 Conclusions  
 

In summary, the SHB-UOT’s high resolution and deep imaging ability in biological 

tissue was experimentally demonstrated. Its ability to distinguish both optically 

scattering and absorbing heterogeneities from the background tissue was verified. 

Currently the burned spectral hole is far from saturation because of the limited optical 

pump power available from the laser. Also, the finite size of the optical window of 

cryostat limits the achievable etendue in detection of the diffused light. Our double-pass 

experiment results suggest that by increasing the optical pump power and optical 

window size of the cryostat, further improvements can be made to exploit the full 

potential of the SHB detection for UOT. With these improvements, SHB-UOT will be 

useful for small animal imaging and clinical diagnostic imaging. 
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The signal detection enhancement by SHB for UOT, as shown in the experimental 

results, is very encouraging. The most recent SHB-UOT experiment result reported by 

other groups69 demonstrated an unprecedented imaging depth of 9 cm in tissue-

mimicking phantom samples, which is close to practical applications, such as early 

breast cancer detection. However, there is still a lot of room to improve this emerging 

technology. Much improvement has to come from the development of a better SHB 

material: it needs to have a very high suppression to the un-modulated component, it 

needs to operate at a optical wavelength within the optical imaging window, it needs to 

have a longer spectral hole life time, and preferably it can work at higher temperature.   
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Chapter 4 
  
Time-Reversed Ultrasonically Encoded 
Optical Focusing 
 

4.1 Motivations 
 
Manipulating light propagation has always been a subject of intense research33-35, 70-72. 

The motivations are obvious: as the only electromagnetic wave sensitive to molecular 

conformation, light is an essential tool to probe the structure and properties of matter, 

and to monitor physical, chemical or biological processes. Light instead of harmful x-

rays is an ideal nonionizing radiation for imaging and treating biological tissues, and 

light is also a basic tool in communication and computing. A better understanding and 

control of light propagation in matter has both immediate benefits and far reaching 

impacts—indeed, any advance in this subject can be readily transferred to other fields 

dealing with wave phenomena73-75.  

 

Of particular interest is the problem of focusing light into a scattering medium. For 

example, high-resolution optical imaging relies on precisely focusing light into the 

medium at desired depths; photodynamic therapy and optogenetics require light to be 

delivered to specific regions of interest inside tissue. However, multiple scattering 

imposes a fundamental optical diffusion limit on direct light focusing in turbid media. 

Consequently, the imaging depth of all forms of focusing optical microscopy, such as 

confocal microscopy, is limited to less than one transport mean free path. A number of 

technologies have been developed to address this problem. For example, light can be 

focused through biological tissue by optical phase conjugation33, or focused into a static 

scattering medium by iterative wave front shaping that maximizes the signal strength of 
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a blurred yet visible implanted target35. However, it is desirable to focus light into 

(instead of through) a scattering medium, to tolerate dynamic microstructures, and to 

rapidly adjust the focal position. These challenges have not been met by previous 

research endeavors. Our method shows great promise in filling this gap. 

 

4.2 Working Principle and Experimental 
Implementation 

 

Our technique, called Time-Reversed Ultrasonically Encoded (TRUE) optical focusing, 

combines ultrasonic modulation of diffused coherent light25, 76 with optical phase 

conjugation47, 77-79 to achieve dynamic focusing of light into a scattering medium.  

 

4.2.1 Experimental Set-up 
 

As shown in Fig. 4.1, the light from a laser source (λ = 532 nm) with long coherence 

length was split into three parts, a sample beam S and two mutually conjugated 

reference beams R and R*. S was transmitted through two acousto-optic modulators 

(AOM) in series to tune its optical frequency to fS = f0 - fa before propagating diffusively 

through the medium, where f0 was the laser frequency and fa was the frequency shift due 

to the two AOMs. A focused ultrasonic wave of the same frequency fa traversed the 

medium and modulated the diffused light. The ultrasonically modulated light could be 

regarded as emanating from a virtual source that was defined by the ultrasonic focus 

and was frequency shifted by ±fa, resulting in two sidebands S(f±) with frequencies f+ = f0  

and f_ = f0 - 2fa. This virtual source served as the internal “guide star”70. Outside the 

medium, the diffused light was holographically recorded by a phase-conjugate mirror, 

here a photorefractive Bi12SiO20 (BSO) crystal. The only stationary hologram that could 

be recorded was from the interference between R and S(f+)45, 46, 51, 80. Then, the hologram 

was read by R* to generate a time-reversed (TR) copy of S(f+), denoted as S*(f+). By 

reversibility, S*(f+) back-traced the trajectory of S(f+) and converged to its virtual source, 
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thereby achieving optical focusing into the scattering medium. The energy in S*(f+) did 

not exceed that in S(f+) as the hologram was read without fixing. However, an intensity 

gain can be achieved with a higher-intensity shorter-duration readout beam R*. Further, 

an energy gain much greater than unity is attainable with hologram fixing or two-step 

recording45, 46.  

 

 

 

Fig. 4.1. Schematic of the experimental setup for TRUE optical focusing. HWPi, ith 

half-wave plate; PBSi, ith polarizing beam splitter; Si, ith shutter; Mi, ith mirror; AOMi, 

ith acousto-optic modulator; Li, ith lens; PDi, ith photodiode; R, reference beam; R*, 

conjugated reference beam; S, signal light; S*, time-reversed signal light; BSO, Bi12SiO20; 

Tx, ultrasonic transducer with centre frequency fa = 3.5 MHz, focal length = 38 mm, 

and focal width = 0.87 mm. Coordinates: x = sample scanning axis, y = acoustical axis, 

and z = optical axis. The time-reversal procedure consisted of recording and readout of 

a hologram. To record a hologram, S1 was opened, and S2 and S3 were closed for 190 

ms; to read the hologram, S1 was closed, and S2 and S3 were opened for 10 ms.  
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4.2.2 Monte Carlo Simulation  
 

To illustrate the concept of TRUE optical focusing in a scattering medium, we used a 

Monte Carlo model81 to simulate the propagation of the sample light S(fS) and the 

ultrasonically encoded S(f+). The light–medium interaction, dominated by elastic 

scattering, is characterized by the scattering mean free path LS and scattering anisotropy 

g. For example, LS ≈ 0.1 mm and g ≈ 0.9 in the human breast82. Optical absorption is 

much weaker than scattering in typical biological tissue and was neglected here. At 

depths beyond one transport mean free path LS’ = LS/(1-g), light propagation is 

sufficiently randomized. In our simulation, a photon was scattered ~ 70 times on 

average before exiting a scattering layer of thickness L = 40LS. With increasing optical 

thickness, the intensity of the multiply-scattered light decreases much more slowly than 

the the intensity of the ballistic light, consistent with our experimental observation. The 

light that can be holographically recorded and time-reversed is therefore predominantly 

multiply-scattered.  
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Fig. 4.2. 2D Monte Carlo simulation of light propagation inside a scattering slab whose 

dimensions were x = 160LS and z = 40LS. Initially, a broad (a–d) or a narrow (e–h) light 

beam was normally incident at the origin of the coordinates. In each panel, the top plot 

shows the trajectories, while the bottom plot shows the photon density distribution(s) 

along the optical axis (total density shown in black). a & e, diffusive trajectories of S(fS) 

propagating through the slab: some (shown in green) reach the phase-conjugate mirror 

and the others (shown in blue) do not. b & f, trajectories of S*(fS) propagating back 

through the slab and converging to the incident point. c & g, trajectories of S(fS) (shown 

in blue) and the ultrasonically encoded component S(f+) (shown in green) inside the slab. 

d & h, trajectories of S*(f+) converging back to the ultrasonic focus (shown in green) 

then back to the incident point (shown in magenta). The black circles in the middle of 

the slab denote the ultrasonic focus. UE: Ultrasonically Encoded light. 

 

The trajectories of S(fS), S(f+), S*(fS) and S*(f+), shown in Fig. 4.2, appear to be random 

walks. However, in ideal time reversal, S*(fS) and S*(f+) would trace back the trajectories 

of S(fS) and S(f+) owing to the deterministic nature of the medium at any instant, leading 

to the convergence to their sources. Without ultrasonic encoding, S*(fS) converged to the 

incident location of S(fS). With ultrasonic encoding, S*(f+) converged to the ultrasonic 

focus instead, which is the source of S(f+).  

 

4.2.3 Experimental Validation 
 

The TRUE optical focusing was validated with imaging experiments (Fig. 4.3). The 

imaging sample was a 10-mm thick scattering slab, made from a mixture of porcine 

gelatin, distilled water, and 0.25% Intralipid, resulting in LS ≈ 0.4 mm, g ≈ 0.9, and an 

absorption length La ≈ 79 mm. The light beam started with a 2-mm diameter on the 

incident plane of the sample and diffused to ~4 mm (FWHM) in the middle plane. The 

middle plane contained three objects with different compositions: two dyed with black 

ink (Obj1 and Obj2) and having an optical absorption coefficient µa ≈ 0.8 mm-1, and 

one having 1%-concentration Intralipid (Obj3), resulting in an LS ≈ 0.1 mm. When the 
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sample was laterally scanned along the x axis, four 1D images were acquired (Fig. 4.3b 

and 4.3c). The first two were acquired without either AOM tuning or ultrasonic 

modulation. To form the first image—a “DC” image, S(fS) was detected by a 

photodiode at the BSO position. To form the second image—a “TRDC” image, S*(fS) 

was transmitted back through the sample and detected by a photodiode PD1. To form 

the third image—a “UOT” image based on conventional Ultrasound-modulated Optical 

Tomography (UOT)51, 53, 80, 83, S(f+) was spectrally filtered by the BSO and was then 

detected by PD2. To form the fourth image—a “TRUE” image, S*(f+) was transmitted 

back through the sample and detected by PD1.  

 

The salient differences in the apparent image resolution and contrast among the four 

imaging methods stem from the inherently distinct imaging mechanisms. The DC and 

TRDC imaging methods, suffering from optical diffusion, lacked sufficient spatial 

resolution to resolve the three objects. The optical diffusion, approximated as a 

Gaussian profile, was convolved with the object profile to fit the experimental data (see 

Appendix B for derivation). The full widths at half maxima (FWHM) of the Gaussian 

profiles, defined as the image resolutions, were 3.4 mm for DC imaging and 3.2 mm for 

TRDC imaging. By contrast, the UOT and TRUE imaging methods, based on imaging 

signals emanating from the internal virtual sources, both adequately depicted the 

profiles of the objects. The ultrasonic focus, approximated as a Gaussian profile, was 

convolved with the object profile to fit the data. The resolutions were 0.89 mm and 0.63 

mm for UOT and TRUE imaging, respectively.  

 

A square law exists if S*(f+) indeed converges to the ultrasonic focus: the TRUE signal is 

proportional to the square of the UOT signal. On the one hand, the optical field for the 

UOT image S(x, f+)|BSO∝C(x)·Sin(fS), where C(x) is a virtual source term and Sin(fS) is the 

incident optical field. On the other hand, for the TRUE image, S*(x, f+)|BSO∝S(x, 

f+)|BSO. As S*(f+) inversely traverses the sample, the virtual source term in its conjugated 

form C*(x) operates on S*(x, f+)|BSO. As a result, the optical field detected by PD1 is S*(x, 

f+)|PD1∝C*(x)· S*(x, f+)|BSO∝|C(x)|2 · Sin(fS). Therefore, the detected light intensities in 
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UOT and TRUE imaging are related by | S*(x, f+)| PD1|
2∝|S(x, f+)| BSO |4. This prediction 

was verified by the normalized amplitudes of the UOT and TRUE images in Fig. 4.3c. 

Furthermore, if the point-spread functions in UOT and TRUE imaging follow Gaussian 

profiles, their widths—defining the spatial resolutions—have a √2:1 ratio. This second 

prediction agrees with the ratio of 1.4 between the image resolutions of UOT (0.89 mm) 

and TRUE (0.63 mm) imaging. In addition, the resolution of UOT is in agreement with 

the ultrasonic focal diameter of 0.87 mm. 

 

 

 

Fig. 4.3. Results from four imaging experiments validating TRUE optical focusing. a, 

photograph of the imaged sample dissected at the middle plane containing two 

absorbing objects (Obj1 and Obj2) and one scattering object (Obj3). The object 

dimensions were x = 1.3 mm, y = 4.5 mm, and z = 1 mm for the two absorbing objects 
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and x = 1.7 mm, y = 4.5 mm, and z = 0.6 mm for the scattering object, while the full 

dimensions of the sample were x = y = 60 mm and z = 10 mm. b, comparison of the 

normalized DC, TRDC, and TRUE images of the sample. The absolute strengths of the 

TRDC and TRUE signals were ~3,000 mV and ~30 mV, respectively. The objects can 

not be distinguished in the DC and TRDC images, while in the TRUE image the objects 

are clearly shown against the background, with 61% contrast for the absorbing objects 

and 31% contrast for the scattering object. c, comparison of the UOT and TRUE 

images of the sample to demonstrate the square law: the TRUE signal is proportional to 

the square of the UOT signal (UOT2 ). The FWHMs of the point-spread functions were 

0.89 mm (UOT) and 0.63 mm (TRUE), whose ratio is 1.4 (≈√2). In b and c, the 

symbols represent experimental data, while the solid curves represent Gaussian fitting. 

 

4.2.4   Comparison of TRUE signal to ballistic light  
 
Compared with wavefront correction techniques that require seconds or even minutes, 

a PRC has much faster response, which monotonically decreases as a function of optical 

illumination intensity45 for the formation of a stable hologram. The response time was 

on the order of 100 ms in our experiment, limited by the weak intensity of the 

modulated light. During the measurements, the recording time was set to 190 ms, which 

effectively averaged out influences from ambient sources, e.g., air disturbance.  In the 

reading procedure, the hologram written on the BSO crystal was almost instantly erased 

by intense illumination, and simultaneously a phase conjugate copy was generated from 

the diffraction on the crystal. An example of the obtained TRUE signal waveform is 

shown in Fig. 4.4, and the amplitude of the peak immediately after both shutters S1 and 

S2 are turned on at time 0 is recorded as a TRUE signal. The noise mainly came from 

shot noise and the spatial noise of randomly distributed charge carriers, both of which 

can be reduced by coherent averaging. 
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Fig. 4.4. An example waveform of the detected TRUE signal from a 5-mm thick 

scattering sample with scattering coefficient µS = 10 mm-1 and scattering anisotropy g = 

0.9.  

 

Compared with the exponential decay of ballistic light, the TRUE signal originating 

from modulated diffused light had a much slower decay rate. Hence, the TRUE signal 

was more resistant to multiple scattering, and more efficient in delivering energy to a 

target in biological tissue. After transmission through a turbid layer with an optical 

thickness of µtL, the output ballistic light intensity I1 = I0 exp(-µtL), where I0 is the input 

laser intensity, µt = µS+ µa  10 mm-1  is the extinction coefficient, and L is the 

thickness of the turbid layer. In contrast, the fluence rate of diffused light is 

characterized by exp(-µeff D), where µeff = √3µa (µa + µS’ ) is the effective attenuation 

coefficient, µS’ = µS (1 - g) the reduced scattering coefficient, 

≈

g  the anisotropic factor of 

a scattering medium, and D the distance between the observation point and the source 

point30. The fluence rate at the middle plane of a diffuse layer, in which the ultrasonic 

focus modulates the diffused light, is proportional to exp(-µeff L/2). The modulated light 

is multiply scattered, and the diffusion of modulated light can be again described by 

diffusion theory, which leads to another decay factor of exp(-µeff L/2). Finally, the 

fluence rate of the transmitted modulated light is proportional to exp(-µeff L). In the 

time-reversal phase of TRUE optical focusing, the optical absorption from the medium 

surface to the virtual source, followed by the random scattering from the virtual source 
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to the opposite tissue surface, further attenuates the TRUE signal. The experimentally 

measured TRUE signal has a decay rate of 0.32 mm-1, which is greater than 200.=effμ  

mm-1, as demonstrated in Fig. 4.5.    

 

 

 

Fig. 4.5. Comparison of the experimental TRUE optical signal and the computed 

ballistic light signal at different thicknesses L. The TRUE signal had a much smaller 

decay rate, while ballistic light decayed as a negative exponential function of thickness.  

 

4.3 Improving Optical Thickness in TRUE 
Focusing 

 
In the previous section, we proposed and experimentally validated TRUE optical 

focusing through a tissue-mimicking phantom sample with an optical thickness of 25. In 

this section, we report an experimental improvement that resulted in TRUE focusing 

through turbid media of greater thicknesses84. This improvement corresponds to an 

increase of optical thickness from 37.5 to 70 for the tissue-mimicking phantoms. We 

also demonstrate the scalability of TRUE focusing with the ultrasonic focus. 
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4.3.1 Improved Experimental Set-up 
 

TRUE focusing consists of two consecutive procedures, holographic recording and 

reading. In the recording procedure, light diffuses inside a scattering medium, where 

part of the light is encoded by a focused ultrasonic wave. The encoded light from this 

virtual source, noted as S, interferes with a reference beam to form a stable hologram, 

which is recorded in the photorefractive crystal (PRC). In the reading procedure, both S 

and R are blocked, and a conjugate reference beam R*, propagating opposite to R, 

illuminates the PRC to generate a wavefront S*, which is the phase conjugate of S. S* 

traces back the trajectories of S to the focused ultrasonic region.   

 

 

 

Fig. 4.6. Schematic of the improved experimental setup for TRUE optical focusing. 

EOM, electro-optic modulator; PBS1-3, polarizing beam splitter; S1-3, shutter; HWP1-3, 

half-wave plate;  M1-3, mirror; AOM1-2, acousto-optic modulator; L1-3, lens; PD1,2, 

photodiode; BE1,2, beam expander; R, reference beam; R*, conjugate reference beam; 
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WT, water tank filled with de-ionized water; UT, ultrasonic transducer; S, collected 

diffused signal light through the sample; S*, time-reversed signal light; PRC, 

photorefractive crystal (a 10×10×5 mm3 BSO was used in the study); HV AC, high 

voltage AC electrical field; xyz, system coordinates  (x = sample scanning axis, y = 

acoustic axis, and z = axis of incident signal beam propagation). 

 

Figure 4.6 is a diagram of the updated experimental setup for TRUE focusing. A CW 

diode-pumped solid state laser (Coherent Verdi V-5, λ = 532 nm) was used as the light 

source. The 45° linearly polarized output from an optical isolator was transmitted 

through an electro-optic modulator (EOM, Conoptics M350-50) to switch the 

polarization between the horizontal and vertical states by varying the driving voltage of 

the EOM. In the recording stage, light was vertically polarized by the EOM, so that 

almost all of the light was transmitted through PBS1. Then the light was split into a 

signal beam S (with vertical polarization) and a reference beam R (also called a pump 

beam, with horizontal polarization) by a variable beam splitter composed of a half-wave 

plate (HWP2) and a polarizing beam splitter (PBS2). The signal beam was sent through 

two acousto-optic modulators AOM1 and AOM2 (IntraAction AOM-802AF1) in series 

to tune its optical frequency to fS = f0 - fa , where f0 is the laser frequency and fa is the net 

frequency shift due to the two AOM’s. The signal beam, after passing through PBS3, 

was incident on the front surface of a tissue-mimicking phantom.  

 

The incident light was multiply scattered in the phantom, and within the focused 

ultrasonic beam it was encoded by an ultrasonic wave with frequency fa. Three different 

ultrasonic transducers were used in the experiment: Panametrics A381S for fa = 3.5 

MHz, Panametrics A302S for fa = 1 MHz, and Sonic Concepts H-148 for fa = 2 MHz. A 

function generator (Agilent 33250A) generated a sinusoidal wave with a specific 

frequency, amplitude, and burst duration (200 ms), which was synchronized for the 

whole period of recording and reading. The synchronized wave was sent to a power 

amplifier (ENI 240L, gain = 50 dB), resulting in focal pressures of 0.70 MPa at fa = 3.5 

MHz, 0.33 MPa at fa = 1 MHz, and 1.44 MPa at fa = 2 MHz. The corresponding 

mechanical indices (MI’s) were 0.37, 0.33, and 1.02, respectively. To maximize the 
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ultrasonic encoding efficiency, the ultrasonic focus was aligned to overlap the center of 

the diffused light profile within the medium. The light encoded by the ultrasonic wave 

had a frequency shift of fa.  

 

The transmitted light exiting the back side of the sample consisted of three spectral 

components: the “un-encoded” photons at fS = f0 - fa , and the two “encoded” photons 

S(f+) and S(f_) at f+ = f0 and f_ = f0 – 2fa, respectively. All three light components were 

collected and mixed with R within a 10×10×5 mm3 BSO crystal, but only S(f+) could 

form a stable interference fringe pattern with R, which was recorded in the crystal; the 

other frequency components formed traveling interference fringes that were averaged 

out within the 190 ms recording time. To enhance the recording efficiency, a 2.1 kHz, 8 

kV (peak-to-peak) high voltage square wave electrical field was applied across the 

crystal. The response time of the crystal was approximately inversely proportional to the 

illuminating light intensity, and was on the order of 100 ms in our study.  

 

In the subsequent reading stage, the EOM changed the laser beam to horizontal 

polarization. As a result, both the signal and reference beams were now turned off, and 

the beam reflected by PBS1 formed R*, which was incident on the crystal in the 

direction opposite to that of R. The polarization of R* was tuned by HWP1 to 

accommodate the optical activity of the BSO crystal. The hologram recorded by S and 

R in the crystal thus could be read by R* to generate a time-reversed copy of S(f+), 

denoted as S*(f+). Due to its reversibility, S*(f+) accurately traced back the trajectories of 

S(f+) to the focused ultrasonic region, hence achieving optical focusing inside the 

scattering medium.  

 

In the ultrasonic focal zone, S*(f+) was again ultrasonically modulated, resulting in three 

components: S*(f+), S*(f++fa), and S*(f+-fa) (with frequencies at f0+fa , f0+2fa , and f0 , 

respectively). All three components were transmitted through the rest of the sample, 

with polarization tuned by HWP3 for maximum reflection at PBS3. The time-reversed 

light was finally focused by lens L1 onto a photodiode PD1 with 13 mm2 of active 

aperture (Thorlabs PDA36A). The collected TRUE signal was digitized by an 
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oscilloscope (Tektronix TDS5034) and downloaded to a computer for further 

processing. 

 

4.3.2 Imaging Results  
 

Three tissue-mimicking phantoms were used in the study. They were made from 

porcine gelatin, water, and intralipid, with different thicknesses but the same anisotropic 

factor. 

 

Optical Thickness = 37.5 The first phantom (Fig. 4.7a&b) was 7.5 mm thick, with 

a scattering coefficient µs = 5 mm-1 at 532 nm, giving an optical thickness of 37.5. Again, 

the scattering anisotropy g = 0.9. Two absorption inclusions (Obj 1 and 2) measuring 

1.5 × 6.0 × 0.8 mm along their XYZ-axes were embedded in the middle. These 

inclusions were made of the same material as the background, except that they were 

dyed with India ink to provide optical absorption contrast (µa = 1.17 mm-1). Two 

ultrasound transducers were used: one with a 3.5 MHz central frequency (Panametrics 

A381S, focal length F = 38 mm, aperture size D = 19 mm, and focal width w = 0.87 

mm) and the other with a 1.0 MHz central frequency (Panametrics A302S, focal length 

F = 41 mm, aperture size D = 25 mm, and focal width w = 2.49 mm). There exists a 

relation, w = cF/faD, where c is the speed of sound in soft tissue. During the experiment, 

the phantom was scanned along the x axis with respect to the light and ultrasound 

beams. At each position, both the TRUE signal and the traditional ultrasound-

modulated optical tomography (UOT) signal were recorded, from which 1-D TRUE 

and UOT images were shown as a function of the phantom position (Fig. 4.7c&d). In 

this study, the laser output was 1.20 W, and the ultrasonic pressures were 0.70 MPa at 

the 3.5 MHz ultrasonic focus and 0.33 MPa at the 1.0 MHz ultrasonic focus.  
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Fig. 4.7. TRUE images of a phantom with an optical thickness of 37.5.  a, illustration of 

the phantom on the YZ plane, showing the plane of the absorbing objects, indicated by 

the gray line, buried in the middle of the phantom. b, cross-section of the phantom on 

the central XY plane. The two absorbing inclusions (Obj 1 and Obj 2) had similar 

dimensions: x = 1.5 mm, y = 6.0 mm, and z = 0.8 mm, while the whole sample’s 

dimensions were x = y = 60.0 mm and z = 7.5 mm. c, comparison of normalized UOT 

and TRUE images of the sample with the 3.5 MHz transducer. The fitted TRUE image 

coincides with the fitted UOT2 image, which is computed by the mathematic square of 

the UOT image signal strength. The coefficients of determination R2 of the TRUE 3.5, 

UOT 3.5, and UOT2 3.5 fits are 0.95, 0.93, and 0.90, respectively. Again, the results 
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verify that the TRUE signal is proportional to the square of the UOT signal (UOT2), 

consistent with the square law85. d, normalized TRUE images with the 3.5 (black cross) 

and 1.0 (green circles) MHz transducers. The R2 value of the 1.0 MHz fit is 0.90. In c 

and d, the symbols represent experimental data, while the solid curves represent 

Gaussian fits.  

 

As shown in Fig. 4.7c, both the TRUE and UOT images can distinguish the two objects 

from the background, and the TRUE image concords with the UOT2 image. The 

resolutions of the TRUE and UOT images—defined as the full widths at half maximum 

(FWHMs) of the approximated Gaussian profiles of the 3.5 MHz transducer—were 

0.63 mm and 0.88 mm, respectively. Because of the square law85, the ratio between the 

resolutions of the UOT and TRUE images with the same transducer is 2 . The square 

relation shows that light can be focused back into a scattering medium with an optical 

thickness of 37.5, i.e., an equivalent thickness of 3.75 mm in tissue. Fig. 4.7d shows the 

comparison of the normalized TRUE images obtained with a 3.5 MHz transducer 

(represented by black crosses and solid line) and with a 1.0 MHz transducer 

(represented by green circles and line). The spatial (FWHM) resolution of the 1.0 MHz 

TRUE image was 1.60 mm. The ratio 2.49 mm/1.60 mm equals 1.5, which agrees 

with 2 . The poor resolution in the 1.0 MHz image is also accompanied by a low 

imaging contrast of 16%, defined by )()( minmaxminmax IIII +− , where I is the relative 

signal amplitude. In comparison, the 3.5 MHz TRUE measurement achieves an imaging 

contrast of 73%. Obviously, tighter focusing can be achieved with higher frequency 

ultrasound. Nevertheless, encoding efficiency is inversely proportional to the square of 

the ultrasonic frequency. Using the 3.5 MHz transducer working at the optimal output, 

we found that light could not be focused into a 5 mm thick tissue-mimicking sample 

with µs= 10 mm-1, even when the laser output was raised to 1.80 W. 

 

Optical Thickness = 50 To focus into a thicker scattering sample, in addition to 

increasing the laser output to 1.80 W, more efficient ultrasonic encoding was applied by 

using a 2.0 MHz HIFU transducer (Sonic H-148, focal length F = 63 mm, aperture size 
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D = 64 mm, and focal width w = 0.70 mm). Optimized pressure at the ultrasonic focus 

was 1.44 MPa. Fig. 4.8 shows the results acquired from a 5 mm-thick phantom, whose 

scattering coefficient µs=10 mm-1 and  optical thickness was 50, equivalent to a 5 mm 

thick tissue. Three inclusions—Obj 1 and 2 (absorbing) and Obj 3 (scattering)—were 

embedded in the middle plane of the phantom, as shown in Fig. 4.8a.   

 

 

 

Fig. 4.8. TRUE image of a phantom with an optical thickness of 50 with the 2.0 MHz 

HIFU transducer. a, photograph of the sample dissected at the middle plane, which 

contains two absorbing objects (Obj 1 and Obj 2, absorption coefficient  µa = 0.80 mm-

1, scattering coefficient µs = 10 mm-1 , and scattering anisotropy g = 0.9) and one 

scattering object (Obj 3, scattering coefficient µs = 50 mm-1 and scattering anisotropy g 

= 0.9). The widths of the three objects were 1.4 mm, 1.2 mm and 3.3 mm, respectively, 

and their lengths and thicknesses were all 6.1 mm and 0.7 mm, respectively. b, 

normalized TRUE images as a function of phantom position along the x direction. 

 

In Fig. 4.8b, the blue dots (experimental data) and solid line (Gaussian fit) represent the 

TRUE image with the 2.0 MHz transducer. As we can see, the experimental data and 
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the Gaussian fit agree quite well (R2=0.90), giving an imaging spatial resolution 

(FWHM) of 0.50 mm, which equals the value of the 2.0 MHz transducer focal width 

(0.70 mm) over 2 . The imaging results verified that light was focused into the tissue-

mimicking phantom at a depth of 2.5 mm, and the focus was determined by the focal 

region of the 2.0 MHz transducer. 

 

Optical Thickness = 70 Based on current setup, the maximum obtained TRUE 

focusing optical thickness was 70, i.e., equivalent to a 7 mm tissue thickness, and the 

results are shown in Fig. 4.9. The agreement between experimental data and the fitted 

curve, despite the relatively low signal-to-noise ratio (SNR) as indicated by an R2 of 0.86, 

demonstrated that light was indeed focused to the ultrasonic focus within the 7 mm 

thick tissue-mimicking sample.  

 

 

 

Fig. 4.9. TRUE image of a phantom with an optical thickness of 70 with the 2.0 MHz 

HIFU transducer. a, photograph of the sample with two absorption objects (Objs 1 & 

2) embedded in the middle plane. The widths of the two objects were 2.0 mm and 1.7 

mm, respectively, and their lengths and thicknesses were all 6.0 mm and z = 0.7 mm. 



 

  61 
 

The full dimensions of the sample were 60 × 60 × 7 mm3. b, a TRUE image of the 

sample.   

 

4.4 Discussion 
 

Previous research endeavors to overcome the depth limitation on optical focusing and 

light propagation in turbid media include optical clearing, optical phase conjugation 

(OPC), and adaptive wavefront shaping. Optical clearing alters the optical properties of 

the medium by introducing optical clearing agents into the medium; OPC can be used 

for turbidity suppression only through, rather than into, a scattering medium; adaptive 

wavefront shaping is implemented through a time-consuming feedback loop which 

relies on the presence of an extraneous guide star.  All of these methods lack a 

mechanism for dynamic, real time light focusing into an arbitrary location inside a 

scattering medium. In contrast, TRUE optical focusing achieves this goal by first 

encoding the diffused coherent light with a focused ultrasonic wave which scatters 1000 

times less than light in soft biological tissue, and then by optically time reversing only 

the ultrasonically encoded light. 

 

Focusing into a scattering medium is much more valuable than focusing through it. In 

practice, the former can be reduced to the latter by moving the focal position. Focusing 

through a medium is used to image a target only outside a scattering medium, which can 

be either viewed directly from the target side or scanned by a collimated laser beam.  

Focusing into the medium must be invoked to image or treat a target embedded inside a 

scattering medium. For example, when a tumor inside biological tissue is optically 

imaged or treated, light must be focused to the tumor. 

 

Dynamically focusing light into a scattering medium, with sufficient speed and 

localization, can profoundly benefit studies involving photophysical, photochemical, 

and photobiological processes. This work has demonstrated the feasibility of TRUE 

optical focusing by combining two key mechanisms—localized ultrasonic encoding of 
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the diffused light and selective time reversal of the encoded light—to suppress the 

scattering effect. The focal spot size can be flexibly scaled with the ultrasonic frequency, 

and the experimental system can be adapted for reflection or other configurations 

according to the application. Improvements can be made by using faster photorefractive 

materials, time-reversal techniques with energy gains greater than unity, and more 

efficient time-reversal configurations. By delivering light into a small targeted volume 

deep within a scattering medium, TRUE optical focusing can be used as a universal 

imaging and light manipulation enhancement method rather than just a specific imaging 

modality. It has a number of important applications in biomedicine alone, including 

imaging, sensing, manipulation, and therapy. For deep-tissue imaging and sensing, 

focusing light improves the spatial resolution and the signal-to-noise ratio. For 

manipulation, focusing light improves penetration without damaging superficial tissue. 

For therapy, focusing light enables treating the tumour without harming the 

surrounding normal tissue. Therefore, TRUE optical focusing can potentially improve 

applications such as fluorescence tomography, oximetry, optogenetics, nerve 

stimulation, photodynamic therapy, and photothermal therapy. 

       



 

  63 
 

 

Chapter 5 
  
Conclusions 
 

5.1 Summary of Work Done 
 
The work presented in this dissertation can be divided into two parts. The first part 

focused on improving the signal detection efficiency for a hybrid optical imaging 

modality, namely ultrasound-modulated optical tomography. The second part focused 

on developing a method, TRUE optical focusing, that effectively focuses light into 

scattering media. On the one hand, UOT is just one of the many emerging optical 

imaging modalities that aim at imaging soft biological tissues; on the other hand, TRUE 

focusing is developed as a universal imaging enhancement tool. While TRUE optical 

focusing found its motivation and required expertise for implementation deeply rooted 

in all of the imaging modalities within our previous research (such as UOT), it is 

distinctly different from the previous endeavor. Its impact goes far beyond the scope of 

optical imaging. Because of its potential impact on both imaging and non-imaging 

applications that require light focusing or delivery deep into scattering media, TRUE 

optical focusing shall be considered and developed as a universal imaging and light 

manipulation enhancement method rather than a specific imaging modality.  

 

Two different detection systems in UOT—one based on photorefractive effect and the 

other on SHB—were explored. Both systems can parallel process multiple speckles of 

the diffused signal wavefront, resulting in an increased etendue in the signal detection. 

The SHB crystal-based detection has an added advantage in that it is also immune to 

speckle decorrelation. Thus, in theory the SHB crystal-based detection is best suited for 

UOT.  
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PRC-UOT In contrast to the initial implementation of PRC-based detection for 

UOT, where pulsed ultrasound was used to modulate the diffused light inside scattering 

media, we propose a PRC-based UOT system with a quasi-CW ultrasound modulation 

scheme, where a one-millisecond long focused ultrasound burst was applied to the 

sample, and the temporal revolution of the detected optical signal was recorded to 

image both the optical and mechanical properties of the sample. The benefits of using a 

millisecond long ultrasound burst are twofold: it improves the SNR; and it also enables 

the detection of the effects of the acoustic radiation force, which happens on the 

millisecond time scale and can be related to the mechanical properties of the sample. 

We demonstrated, using this system, that both optical and acoustical heterogeneities 

could be imaged inside 4-cm thick biological tissue with 2 mm resolutions.   

 

SHB-UOT In the work on SHB-aided detection for UOT, we increased the 

transmission efficiency of the spectral hole with the available optical intensity, and 

applied the SHB-UOT system to image thick tissue-mimicking phantom and chicken 

breast tissue. We demonstrated that absorbing, scattering, and phase objects embedded 

in the middle plane of a 40-mm thick phantom can be imaged with this system, with a 

lateral imaging resolution of 0.5 mm and an axial resolution of 1.5 mm as determined by 

the ultrasound transducer. UOT image was also acquired of a 32-mm thick chicken 

breast sample embedded with several targets. Further, we demonstrated the feasibility of 

harmonic imaging in UOT by burning and accessing multiple spectral-holes in a single 

SHB crystal. The results suggest that the improved SHB-UOT system is one step closer 

to becoming a practical optical imaging application in biological and clinical studies.   

 

TRUE  In the work on TRUE optical focusing, we proposed, experimentally 

implemented, and validated this novel technique to focus light into scattering media by 

combining two key mechanisms: localized encoding of the diffused light and selective 

time reversal of the encoded light. Our experimental system has since been improved to 

focus light into greater depths. TRUE focusing has been demonstrated on thick 

scattering media of optical thickness up to 70. With our invention, the chaotic multiple 

light scattering that deprives optical imaging of spatial resolution in biological tissues is 
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no longer an unbreakable barrier. TRUE focusing opens the door to imaging and 

treating tissues (e.g., breast tumor) with high precision using harmless light instead of 

harmful X-ray. 

 

5.2 Directions for Future Work 
 

Biomedical optical imaging is a fast growing field, with many exciting new 

developments emerging every year. In order to grow into a mature technology and be 

ready for real life applications such as clinical diagnosis, both UOT and TRUE focusing 

need further development. Each has to overcome technical barriers along the way. 

For UOT, the imaging depth must be enhanced for it to be clinically useful. If UOT can 

be used to image optical and/or mechanical heterogeneities at depths greater than 100 

times its imaging resolution, e.g., at 5 cm imaging depth with 0.5 mm resolution, then it 

will become a very powerful diagnostic tool for breast cancer detection. With our PRC-

based system, UOT images can be acquired from beneath a 4-cm thick chicken breast 

tissue with 2 mm imaging resolution. With our SHB-UOT system, images can be 

acquired from a beneath 3.2-cm thick chicken breast tissue with 0.5 mm imaging 

resolution. These are very encouraging achievements towards real world application.  

 

For PRC-UOT The 532 nm optical wavelength used is not ideal for biomedical 

imaging because of the high optical absorption by biological tissue.  By switching to 

another wavelength (e.g., λ = 700 nm) in the NIR, whose optical absorption is one 

order less in biological tissue, greater imaging depth can be achieved for the PRC-UOT 

system. Equally important for in vivo biomedical imaging application is the fast response 

time requirement for the PRC’s used, which must be faster than the speckle 

decorrelation imposed by the biological tissue, usually less than 1 ms.  

 

For SHB-UOT Improvements can be made to push the SHB-UOT system 

toward practical application. Most of these improvements have to come from finding or 

developing a better SHB material that meets the following requirements: it needs to 
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have a very high suppression to the un-modulated component, it needs to operate at a 

optical wavelength within the optical imaging window, it needs to have a longer spectral 

hole life time, and preferably it can work at higher temperature.    

 

For TRUE focusing Just one year after its first successful experimental 

demonstration, this invention has already shown great promise and opened exciting 

possibilities in optical imaging, manipulation, and therapy. However, great technical 

difficulties have to be overcome to deliver the promise. Like the PRC-UOT system, 

TRUE focusing needs to work at a wavelength which has less absorption in biological 

tissues, and the PRC’s must have a faster response time to accommodate the shorter 

speckle decorrelation time of in vivo biological tissue study. In the current experimental 

configuration, the time reversal gain, defined as |S*(f+)|2/|S(f+)|2, is far less than unity 

because reading a recorded hologram simultaneously erases it. This necessitates an OPC 

mechanism for “reading without erasure”, which is possible with “two-step recording”. 

In this scheme, holographic recording by R and S(f+) of a longer wavelength is enabled 

by simultaneously illuminating the photorefractive material with a short-wavelength 

light which sensitizes the photorefractive material. In the absence of the short-

wavelength light, holographic read-out by R* is non-destructive at the absence of the 

short-wavelength light. Thus, arbitrary intensity and duration of S*(f+) are attainable at 

the focus.   
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Appendix A 
 
Two Dimensional Monte Carlo 
Simulation of  Light Propagation inside 
a Scattering Slab 
 
clear all; 

close all; 

 

% inputs 

Ls = 1;     % scattering mean free path is set as unit length 

g = 0.9;    % typical anisotropy for tissue  

N_photon = 100; % number of photons to simulate 

 

% preallocate memory for matrix to store photon trajectory 

MaxSteps = 500; coordinates = 4;   

A = zeros(N_photon, MaxSteps, coordinates); % initialize photon trajectory 

R_photon = zeros(N_photon,7);     % initialize photon record array 

% R_photon(photon#i,1)= isStop: 1, crossing boundary; 2, trapped inside 

% after MaxSteps. 

% R_photon(photon#i,2)= # of steps=rp, 

% R_photon(photon#i,3)= exit side:-1,left;+1,right;-2,bottom;+2,top. 

% R_photon(photon#i,4)= exit uz, 

% R_photon(photon#i,5)= exit ux, 

% R_photon(photon#i,6)= TR?: 1, can be time reversed; 0, No. 

% R_photon(photon#i,7)= TR_UOT?: 1,  yes; 0, no. 
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N_trapped = 0; % number of photons trapped inside after MaxSteps 

s_ = 0; % random seed 

 

% set boundary 

x_bottom = -80*Ls; x_top = 80*Ls; 

z_left = 0; z_right = 20*Ls; 

 

% set US focus, assuming it's a circle centered at the middle of the sample 

z_us = z_left + 0.5*(z_right-z_left);  

x_us = 0; 

r_us = 2*Ls; % assuming US focus diameter=4Ls 

 

% set collecting lens parameters, assuming lens dia = 30mm = 75Ls, f ~ 30mm 

% assuming the lens is 42mm (125ls) away from the back side of the sample 

z_lens = 125*Ls;  

x1_lens = -37.5*Ls; x2_lens = 37.5*Ls; % bottom and top edge of the lens 

% assuming only light exit from -5mm < x < 5mm can be collected by the lens 

x1_collect = -12.5*Ls; x2_collect = 12.5*Ls; 

% slopes of the two boundaries that define the field of view of the lens 

% relative to the collecting area. 

k1 = (x1_lens-x1_collect)/(z_lens-z_right); 

k2 = (x2_lens-x2_collect)/(z_lens-z_right); 

 

% set array for the boundary of the scattering medium 

for i=1:(z_right-z_left+1) 

    p_bottom(i,1) = i - 1 + z_left; p_bottom(i,2) = x_bottom; 

    p_top(i,1) = i - 1 + z_left; p_top(i,2) = x_top; 

end 

 

for j=1:(x_top-x_bottom+1) 

    p_left(j,1) = z_left; p_left(j,2) = j - 1 + x_bottom; 
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    p_right(j,1) = z_right; p_right(j,2) = j -1 + x_bottom; 

end 

 

figure; 

axis equal; axis xy;  

xlim([z_left-5*Ls z_right+5*Ls]); ylim([x_bottom-5*Ls x_top+5*Ls]); 

hold on; 

plot(p_bottom(:,1), p_bottom(:,2), 'LineWidth', 2); 

plot(p_top(:,1), p_top(:,2), 'LineWidth', 2); 

plot(p_left(:,1), p_left(:,2), 'LineWidth', 2); 

plot(p_right(:,1), p_right(:,2), 'LineWidth', 2); 

xlabel('z [L_s]'); ylabel('x [L_s]'); 

 

for n = 1:N_photon 

    rp = 1; % initialize row pointer to first row 

    uz = 1; % initialize photon direction  

    ux = 0; % initialize photon direction 

    x = 0; z = 0; % photon injected at (z0,x0)=(0,0) 

    A(n,1,1) = x; A(n,1,2) = z; A(n,1,3) = uz; A(n,1,4) = ux; 

    isStop = 0; 

     

     

    while (isStop==0) 

        % move photon 

        % generate step size 

        if s_ == 0 

            s_ = -log(rand); 

        end 

        s = s_*Ls; 

        x = x + ux*s; 

        z = z + uz*s; 
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        rp = rp+1; 

        s_ = 0; 

        A(n,rp,1) = z; A(n,rp,2) = x; 

         

        % check if crossing boundary 

        if (x < x_bottom)||(x > x_top)||(z < z_left)||(z > z_right) 

            isStop = 1; 

            if (z < z_left) 

                R_photon(n,3) = -1; % -1 if exit from front side 

            else 

                if (z > z_right)     

                   R_photon(n,3) = 1;   % +1 if exit from back side 

                   % Find out if the photon can be Time Reversed 

                   % see if the photon is within the FOV of the lens. 

                   % First check coordinates 

                   if ((x-x1_collect)>(k1*(z-z_right)))&&((x-x2_collect)<(k2*(z-z_right)))                   

                       % Then check direction                   

                       k_down = (x1_lens-x)/(z_lens-z); k_up = (x2_lens-x)/(z_lens-z); 

                       if (ux>=uz*k_down)&&(ux<=uz*k_up)                    

                           R_photon(n,6)=1; % the photon can be time reversed.                    

                       end 

                   end 

                else 

                    if (x < x_bottom) 

                        R_photon(n,3) = -2; % -2 if exit from bottom 

                    else 

                        R_photon(n,3) = 2;  % +2 if exit from top 

                    end 

                end 

            end 

            % skip to the next iteration of the while loop, where the 
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            % condition (isStop==0) won't be satisfied, so the control 

            % returns to the next iteration of the for loop. 

            continue;  

        else 

            if (rp == MaxSteps)  % check if # of steps reaches maximum 

                isStop = 2; 

                % skip to the next iteration of the while loop, where the 

                % condition (isStop==0) won't be satisfied, so the control 

                % returns to the next iteration of the for loop. 

                continue; 

            end 

        end  

        %Calculate scattering angles 

        if g == 0 

            cos_s = 2*rand - 1; 

        else 

            cos_s = 1/(2*g)*(1+g^2-((1-g^2)/(1-g+2*g*rand))^2); 

        end 

        %Calculate new direction cosines 

        sin_s = sign(rand-0.5)*(1 - cos_s^2)^0.5; 

        if abs(uz) < 0.99999 

            ux_p = sin_s*ux*uz/(1-uz^2)^0.5+ux*cos_s; 

            uz_p = -(1-uz^2)^0.5*sin_s+uz*cos_s; 

        else 

            ux_p = sin_s; 

            uz_p = sign(uz)*cos_s; 

        end 

        ux = ux_p; 

        uz = uz_p; 

        % update the photon trajectory 

        A(n,rp,3) = uz; A(n,rp,4) = ux; 
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    end 

    % when exiting the while loop, these entries need to be updated, even 

    % when no scattering occurs between step #(rp-1) and #rp. this is done 

    % for completeness of the trajectory. 

    A(n,rp,3) = uz; A(n,rp,4) = ux; 

    % book keeping photon record  

    R_photon(n,1) = isStop; % 1 means exit from boundary, 2 means trapped 

    R_photon(n,2) = rp; % # of steps inside, (0,0) is the 1st step 

    R_photon(n,4) = uz; R_photon(n,5) = ux;  

     

    if (isStop==1) 

        plot(A(n,1:rp,1), A(n,1:rp,2)); 

    else 

        if (isStop==2) 

            N_trapped = N_trapped + 1; 

        end 

    end 

end 

 

% plot TR light 

figure; 

axis equal; axis xy;  

xlim([z_left-5*Ls z_right+5*Ls]); ylim([x_bottom-5*Ls x_top+5*Ls]); 

hold on; 

plot(p_bottom(:,1), p_bottom(:,2), 'LineWidth', 2); 

plot(p_top(:,1), p_top(:,2), 'LineWidth', 2); 

plot(p_left(:,1), p_left(:,2), 'LineWidth', 2); 

plot(p_right(:,1), p_right(:,2), 'LineWidth', 2); 

xlabel('z [L_s]'); ylabel('x [L_s]'); 

for n = 1:N_photon 

    if R_photon(n,6)==1 
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        plot(A(n,1:R_photon(n,2),1), A(n,1:R_photon(n,2),2), 'g'); 

    end 

end 

 

% find out if which photons qualify for TR_UOT 

for n = 1:N_photon 

    if R_photon(n,6)==1 % must first qualify for TR 

        % make a copy of the current photon trajectory to B. 

        N_steps = R_photon(n,2); 

        B = squeeze(A(n,1:N_steps,:)); 

        % check if the photon trajectory pass through the US focus O 

        % this is done in the following procedure 

        % first, for all paths r(j,j+1), find out if the distance OD from 

        % the US focus (z_us,x_us) to r(j,j+1) satisfes OD < r_us. 

        % If this is true, then find out if the perpendicular foot D is 

        % inside the section r(j,j+1). 

        % Assuming (z1,x1) is the coordinates of the point r(j), (z0,x0) 

        % is the coordinates of the US focus O, (uz,ux)=(kz,kx) is the 

        % direction of r(j,j+1), and (zd,xd) the coordinates of D, then: 

        % zd = ux^2*z1+uz^2*z0+uz*ux*(x0-x1); 

        % xd = ux^2*x0+uz^2*x1+uz*ux*(z0-z1); 

        % |OD| = |ux*(z1-z0)+uz(x0-x1)|; 

        for j = 1:N_steps-1 

            z1=B(j,1); x1=B(j,2); uz=B(j,3); ux=B(j,4); 

            OD = abs(ux*(z1-z_us)+uz*(x_us-x1)); 

            if OD<=r_us 

                zd = ux^2*z1+uz^2*z_us+uz*ux*(x_us-x1); 

                xd = ux^2*x_us+uz^2*x1+uz*ux*(z_us-z1); 

                if (zd-z1)*(B(j+1,1)-zd)>0 

                    R_photon(n,7) = 1; 

                    % if a photon is found to cross US at step (j,j+1) then 
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                    % there is no need to track the remaining steps. go to 

                    % the next photon 

                    break;  

                else 

                    if zd == z1 % in case r(j),r(j+1)and D has same z. 

                        if (xd-x1)*(B(j+1,2)-xd)>0 

                            R_photon(n,7) = 1; 

                    % if a photon is found to cross US at step (j,j+1) then 

                    % there is no need to track the remaining steps. go to 

                    % the next photon 

                            break; 

                        end 

                    end 

                end 

            end 

        end 

    end 

end 

         

% plot TR_UOT light 

figure; 

axis equal; axis xy;  

xlim([z_left-5*Ls z_right+5*Ls]); ylim([x_bottom-5*Ls x_top+5*Ls]); 

hold on; 

plot(p_bottom(:,1), p_bottom(:,2), 'LineWidth', 2); 

plot(p_top(:,1), p_top(:,2), 'LineWidth', 2); 

plot(p_left(:,1), p_left(:,2), 'LineWidth', 2); 

plot(p_right(:,1), p_right(:,2), 'LineWidth', 2); 

xlabel('z [L_s]'); ylabel('x [L_s]'); 

for n = 1:N_photon 

    if R_photon(n,7)==1 
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        plot(A(n,1:R_photon(n,2),1), A(n,1:R_photon(n,2),2), 'r'); 

    end 

end 
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Appendix B 
 
Derivation of  the Image Resolution in 
TRUE Optical Imaging Experiment 
 
Below is a brief derivation of the image resolution for the TRUE optical imaging 

experiment. 

 

In DC and TRDC imaging, the optical diffusion profile at the middle plane of the 

scattering layer can be approximated as a Gaussian profile g(x), while the embedded 

object profile can be approximated as f(x). By contrast, in UOT and TRUE imaging, the 

ultrasonic focus can be approximated as a Gaussian profile g(x), while the embedded 

object profile is still expressed as f(x).   
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