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 Zinc is a trace element essential for organisms, and organisms have homeostatic 

mechanisms to control zinc metabolism. Zinc metabolism is mediated by numerous 

proteins including zinc transporters, zinc-responsive transcription factors and zinc-

binding proteins. Of these proteins, zinc transporters, composed of CDF and ZIP families, 

play a major role and are implicated in a variety of human diseases. However, the 

mechanisms by which zinc transporters coordinate to regulate zinc homeostasis in whole 

animals and by which they are related to human diseases are not well understood. 

 To address these questions, we used C. elegans as a model system. While three C. 

elegans cdf genes have been characterized previously, the majority of zinc transporters 

remain to be studied. Here, we characterized cdf-2 and ttm-1 and conducted initial 

studies of other zinc transporters. We demonstrated that lysosome-related organelles in 

intestinal cells, termed gut granules, function as a major site of zinc storage. Gut granules 

were important for detoxification of excess zinc as well as mobilization of zinc in 

response to low-zinc environments, and CDF-2 was necessary for these processes. In 
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high zinc conditions, gut granules displayed morphological changes characterized by a 

bilobed morphology with asymmetric distributions of molecules. These findings suggest 

novel mechanisms of zinc storage, detoxification and mobilization in C. elegans. 

 ttm-1 encodes two isoforms, ttm-1a and ttm-1b, by using different transcription 

start sites. TTM-1 plays a role in the excretion of zinc and is involved in zinc 

detoxification via the action of TTM-1B which localizes to the apical membrane of 

intestinal cells. These functions of TTM-1 are critical specifically in the absence of CDF-

2, suggesting that TTM-1coordinates with CDF-2 to regulate zinc homeostasis of whole 

animals. Studies of other zinc transporters including expression pattern analysis 

suggested novel functions of zinc transporters in biological processes. These results 

suggest that further studies of C. elegans zinc transporters may contribute to 

understanding of sophisticated networks of zinc transporters in zinc metabolism and 

elucidate physiological functions of zinc transporters. 
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Metal ions are trace elements essential for all living organisms. Among the many 

metal ions present in biological systems, zinc is the most widely used and is involved a 

broad range of biological processes (Vallee and Falchuk, 1993). Zinc plays an important 

role in the function of numerous proteins by acting as a catalytic and/or structural 

cofactor. Zinc is required for more than 300 metalloproteins in all six major enzyme 

classes, and it is a critical structural component of thousands of proteins including zinc-

finger transcription factors (Vallee and Falchuk, 1993). In humans, it has been estimated 

that about 10% of the proteome are zinc-binding proteins (Andreini et al., 2006). 

Furthermore, zinc functions in signal transduction during development, 

neurotransmission and immune responses by acting as a signaling molecule (Murakami 

and Hirano, 2008). 

The wide use of zinc in biological system is likely to be attributed to its unique 

chemical properties. First, zinc is a nontransition metal which lacks redox activity in 

contrast to other biological metals such as iron and copper (Berg and Shi, 1996). This 

property renders zinc stable and less damaging in physiological conditions where the 

redox state fluctuates. Second, zinc has high coordination flexibility; it can accommodate 

multiple coordination geometries ranging from two to eight coordinate complexes 

(Vallee and Falchuk, 1993). This property enables zinc to make complexes with varying 

ligand types in a broad range of proteins. 

The biological significance of zinc is illustrated by the broad range of defects 

resulting from zinc deficiency. Zinc deficiency results in defects in cell growth and 

proliferation in all organisms (Beyersmann and Haase, 2001). In humans, zinc deficiency 

leads to functional impairment of multiple tissues including of epidermal, gastrointestinal, 
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skeletal, reproductive, nervous, and immune systems (Hambidge, 2000). In addition to 

zinc deficiency, excess zinc is toxic (Fosmire, 1990). Although the mechanism of zinc 

toxicity is not understood, it is thought that excess zinc may interfere with the function of 

other metal ions by competing for their protein binding sites. Therefore, organisms have 

evolved precise homeostatic mechanisms for the regulation of zinc levels and 

distribution at cellular and organismal levels. Over the past several decades, extensive 

studies of zinc metabolism have identified many proteins that are involved in zinc 

homeostasis including zinc transporters, zinc-responsive transcription factors and zinc-

binding proteins. Many of the genes have been implicated in human diseases. However, 

the mechanism by which the zinc metabolism-related genes contribute to zinc 

homeostasis of an individual, how multiple proteins interact to achieve zinc homeostasis, 

and how zinc metabolism is related to human disease are not well understood. 

 

ZINC METABOLISM IN THE YEAST, S. CEREVISIAE 

Studies with the yeast, S. cerevisiae, have made significant contributions to the 

molecular characterization of genes and proteins that mediate zinc metabolism (Eide, 

2006). These studies have uncovered zinc transporters and zinc-responsive transcription 

factors as important players in cellular zinc homeostasis. Zinc transporters are integral 

membrane proteins that mediate the movement of zinc ions across membranes. There are 

six families of zinc transporters from bacteria to mammals (Hantke, 2001). Three of 

these families function only in prokaryotes, and they will not be discussed here. In 

eukaryotes, two families of zinc transporters, CDF (cation diffusion facilitator) and ZIP 

(Zrt-, Irt-like Protein) proteins, are well conserved in bacteria, fungi, plants and 
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mammals (Gaither and Eide, 2001a). CDF proteins decrease cytoplasmic zinc levels by 

transporting zinc to the outside of the cell or into intracellular organelles(Eide, 2006). 

Most CDF proteins have six transmembrane (TM) domains and a histidine-rich motif in 

the loop between TM 4 and 5, which is predicted to be important for zinc binding or zinc 

transport. Many CDF proteins have been reported to make homo- or heterocomplexes. 

Regarding their mechanism of transport activity, CDF proteins appear to be secondary 

active transporters which move zinc using another ion gradient such as H+ and K+. For 

example, the yeast CDF protein Zrc1 is a Zn/H+ antiporter (MacDiarmid et al., 2002). In 

contrast to CDF proteins, ZIP proteins increase cytoplasmic zinc levels through uptake of 

zinc from the extracellular space and transporting zinc out of intracellular organelles . 

ZIP proteins have eight TM domains and a histidine-rich motif in the loop between TM 3 

and 4 similar to CDF proteins (Eide, 2006).  

Zinc transporters regulate the flow of zinc across the plasma membrane, which is 

the first step for the control of cellular zinc homeostasis. The yeast ZIP proteins, Zrt1 and 

Zrt2, are localized on the plasma membrane and mediate the uptake of zinc into the cell 

(Eide, 2006). While Zrt1 has a high affinity for zinc and is required for growth in low 

zinc conditions (Zhao and Eide, 1996a), Zrt2 has a lower affinity for zinc and functions 

during mild zinc deficiency (Zhao and Eide, 1996b). Since yeast CDF proteins on the 

plasma membrane which mediate efflux of zinc have not been identified, the expression 

levels of Zrt1 and Zrt2 proteins affect the uptake rate of zinc and thus regulate overall 

cellular zinc levels. Once taken up into the cytoplasm, zinc is rapidly transported into 

intracellular organelles by zinc transporters because free zinc is toxic. Zinc transporters 

on the membranes of intracellular organelles regulate the level of zinc in the organelles 
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and contribute to the control of intracellular zinc distribution. For instance, Msc2/Zrg17 

CDF-heteromeric complex mediates the transport of zinc into the lumen of the ER and 

Golgi complex (Ellis et al., 2005; Li and Kaplan, 2001), which is thought to be important 

for the supply of zinc to zinc-dependent proteins synthesized in the organelles. The CDF 

proteins Zrc1 and Cot1, and ZIP protein Zrt3 regulate the zinc level in the vacuolar 

lumen (MacDiarmid et al., 2000), which functions as an important site for zinc storage 

and detoxification. In high zinc conditions, Zrc1 and Cot1 move excess zinc into the 

vacuole to protect the cell from zinc toxicity. In response to low zinc conditions, Zrt3 

mobilizes zinc from the vacuole to meet the cellular zinc requirements. 

Another major mechanism to maintain zinc homeostasis in response to 

fluctuating levels of zinc in the environment is transcriptional regulation of the 

expression of zinc-metabolism-related genes. The yeast Zap1 zinc-responsive 

transcription factor senses cellular zinc levels through its zinc-finger domain and controls 

target gene expression by binding to a specific DNA sequence called zinc-responsive 

element (ZRE) (Zhao and Eide, 1997). When zinc is limiting, Zap1 is activated and 

induces the expression of Zrt1 and Zrt2 to promote zinc uptake from the environment 

and Zrt3 to mobilize zinc from the vacuole. Conversely, excess zinc causes the 

downregulation of Zrt1 expression to decrease zinc influx and the induction of Zrc1 and 

Cot1 to sequester excess zinc in the vacuole. Thus, cellular zinc metabolism is a 

sophisticated process that involves the networks of zinc-responsive transcription factors 

and zinc transporters from multiple intracellular localizations. 

 

ZINC METABOLISM IN ANIMALS 
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The mechanisms underlying zinc metabolism in yeast are well conserved in 

higher organisms. However, zinc metabolism in animals is more complicated because it 

involves many processes in multiple tissues: the absorption and secretion of zinc by the 

gastrointestinal tract, the excretion of zinc into urine by the kidneys, and the distribution 

and exchange of zinc between tissues (Krebs, 2000). In addition, a large number of 

proteins are involved in zinc metabolism in animals and they fall into three major 

classes; zinc-binding proteins, zinc-responsive transcription factors and zinc transporters. 

A number of studies have characterized these zinc metabolism-related proteins. 

In animals, metallothioneins (MTs) are zinc-binding proteins that have been 

widely studied and implicated in zinc metabolism. MTs are small intracellular cysteine-

rich proteins that bind metal ions including zinc and cadmium (Coyle et al., 2002). In 

mice, there are four MT genes. MT-1 and MT-2 are ubiquitously expressed, while MT-3 

is mainly expressed in the brain, and MT-4 is found in squamous epithelia and the 

maternal decidua. Although many studies have suggested that MTs function in the 

response to a variety of chemical and physical insults, the function of MTs has yet to be 

clearly defined. One of the most feasible functions of MTs is their protective role against 

metal toxicity. Mice lacking MT-1 and MT-2 displayed relatively normal development 

and growth, but they were susceptible to metal toxicity. On the other hand, transgenic 

mice overexpressing MTs displayed higher zinc accumulation and protection against 

excess zinc and cadmium (Coyle et al., 2002; Klaassen and Liu, 1998). However, the 

precise function of MTs in zinc homeostasis remains still elusive. 

Metal-responsive element-binding transcription factor-1 (MTF-1) is a zinc-

responsive transcription factor (Radtke et al., 1993). Similar to yeast Zap1, MTF-1 is a 
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zinc-finger transcription factor, and its zinc finger domains are critical for sensing 

cellular zinc levels. When zinc is abundant, MTF-1 is activated, translocates to the 

nucleus, binds a metal-responsive element (MRE) in the promoter of its target genes and 

induces expression (Smirnova et al., 2000). The targets of MTF-1 include many zinc 

metabolism-related genes such as MTs and zinc transporters, suggesting it plays an 

important role in zinc metabolism. Homozygous deletion of MTF-1 in mice results in 

embryonic lethality due to degeneration of hepatocytes, suggesting that MTF-1 is 

essential for liver development (Gunes et al., 1998). 

In mammals, there are 10 members in the CDF (also called ZnT or SLC30) 

family and 14 members in the ZIP (also called SLC39) family (Lichten and Cousins, 

2009). Extensive studies using mammalian cell lines and mouse models have been 

characterized each member of the zinc transporter families. ZnT-1, which is the first zinc 

transporter identified in mammals, displays ubiquitous tissue expressions and is localized 

to the plasma membrane (Liuzzi et al., 2001; Palmiter and Findley, 1995). ZnT-1 

expression is regulated by dietary zinc levels via MTF-1 (Langmade et al., 2000). As 

ZnT-1 is highly expressed in the intestine and localized to basolateral membrane of 

enterocytes, it is thought to function in the transport of zinc from enterocytes into the 

bloodstream (McMahon and Cousins, 1998). ZnT-1 deficient mice display early 

embryonic lethality suggesting an essential role in embryonic development. ZnT-2 is 

expressed in the small intestine, liver, kidney and mammary gland, and its expression is 

upregulated by MTF-1 in response to high levels of zinc in the diet (Lichten and Cousins, 

2009; Liuzzi et al., 2001). In contrast to ZnT-1, ZnT-2 is localized to the membrane of 

intracellular vesicles (Palmiter et al., 1996a). ZnT-2 is involved in the transport of zinc 



 8

into milk in the mammary gland, and a mutation in human ZnT-2 causes the production 

of zinc deficient milk (Chowanadisai et al., 2006). ZnT-3 is expressed in the brain, 

especially in the hippocampus and is required for the transport of zinc into synaptic 

vesicles (Cole et al., 1999; Palmiter et al., 1996b). Synaptic zinc is not required for 

normal brain function, as demonstrated by the ZnT-3 knockout mouse, but ZnT-3 is 

likely to be involved in age-related learning and memory (Adlard et al., 2010; Sindreu et 

al., 2011). ZnT-4 was identified by the search for a gene that causes lethal milk (lm) 

syndrome (Huang and Gitschier, 1997). While ZnT-4 localizes to intracellular vesicles 

and is involved in transporting zinc into milk in the mammary gland similar to ZnT-2, its 

expression is independent of dietary zinc levels (Lichten and Cousins, 2009). ZnT-5 is 

ubiquitously expressed but abundant in pancreatic β-cells (Kambe et al., 2002), and it 

functions in the transport of zinc into secretory vesicles in heterooligomeric complexes 

with ZnT-6 (Ellis et al., 2005). ZnT-5 knockout mice display growth defects, abnormal 

bone development and male-specific cardiac arrhythmias, suggesting that ZnT-5 has 

important roles in growth and development (Jackson et al., 2007). ZnT-7 is expressed 

mainly in the lung and small intestine and localized to the Golgi apparatus (Kirschke and 

Huang, 2003). ZnT-7 knockout mice displayed zinc deficiency, poor growth and reduced 

fat content (Huang et al., 2007), suggesting ZnT-7 may function in fat metabolism in 

addition to growth control. ZnT-8 is highly expressed in pancreatic β-cells and localized 

to the membrane of insulin granules where zinc forms a complex with insulin (Chimienti 

et al., 2004). Recent studies using mouse models and human genomic analyses suggest 

that ZnT-8 is involved in pancreatic β-cell function and is implicated in the development 

of diabetes (Rutter, 2010). ZnT-9 and ZnT-10 have been identified but not yet 
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functionally characterized. 

Mammalian ZIP proteins were identified based on the homology with ZIP 

proteins from the yeast and plants. ZIP-1 is expressed a wide range of human tissues and 

involved in zinc uptake (Gaither and Eide, 2001b). ZIP-1 is located on the plasma 

membrane or in intracellular vesicles depending on the type of cell (Lichten and Cousins, 

2009), and its localization is regulated by levels of zinc (Wang et al., 2004). Similar to 

ZIP-1, ZIP-2 and ZIP-3 promote zinc uptake in cells, but their tissue distribution is 

limited compared to ZIP-1 (Dufner-Beattie et al., 2003). Homozygous deletion of ZIP-1, 

ZIP-2, or ZIP-3 in mice resulted in normal development and viability but increased 

embryonic lethality when zinc is limited (Dufner-Beattie et al., 2006; Peters et al., 2007). 

Even triple knockout of ZIP-1, 2 and 3 resulted in no phenotype while mice were fed a 

normal zinc diet and they exhibited hypersensitivity to zinc deficiency (Kambe et al., 

2008). ZIP-4 is the best characterized protein in the ZIP family because mutations in 

ZIP-4 gene cause the genetic disorder acrodermatitis enteropathica which is 

characterized by zinc deficiency (Kury et al., 2002; Wang et al., 2002). ZIP-4 is highly 

expressed in tissues mediating zinc absorption including the intestine. Acting on the 

apical membrane of enterocytes, ZIP-4 mediates the uptake of zinc from the intestinal 

lumen (Wang et al., 2002). ZIP-4 expression is regulated by zinc levels—ZIP-4 

expression is induced by zinc deficiency, zinc excess downregulates ZIP-4 expression. 

Regulation of ZIP-4 expression occurs at multiple levels including transcription, mRNA 

stability, protein localization and stability (Lichten and Cousins, 2009). ZIP-5 displays 

similar tissue distribution as ZIP-4, but it is localized to the basolateral membrane of the 

cells (Dufner-Beattie et al., 2004), suggesting that ZIP-5 may function in the removal of 
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zinc from the blood antagonistically to ZIP-4. ZIP-6 was identified as a novel gene 

whose expression is regulated by estrogen in breast cancer cells (Manning et al., 1988). 

ZIP-6 has a role in the epithelial-mesenchymal transition and the immune response in 

dendritic cells (Kitamura et al., 2006; Yamashita et al., 2004). ZIP-7 is ubiquitously 

expressed and localized to the Golgi apparatus in cells, and it is implicated in breast 

cancer progression (Taylor et al., 2007; Taylor et al., 2008). ZIP-8 is detected in a wide 

range of tissues including lung, kidney, liver, brain and intestine, and it is functionally 

involved in immune activation in human monocytes (Begum et al., 2002). ZIP-10 was 

the first ZIP protein found to be regulated by MTF-1. While other MTF-1-regulated 

genes such as ZnT-1 are activated by MTF-1, ZIP-10 expression is suppressed by MTF-1 

(Wimmer et al., 2005). ZIP-13 has been implicated in the development of connective 

tissues, bone and teeth (Fukada et al., 2008), and ZIP-14 is involved in the response to 

inflammation (Liuzzi et al., 2005). Although many zinc metabolism-related genes in 

animals have been characterized as described above, understanding of the molecular 

mechanisms of their actions and their networks for zinc homeostasis control is still 

limited.  

 

ZINC METABOLISM IN HUMAN HEALTH AND DISEASE 

Zinc metabolism is closely associated with human health and a variety of human 

diseases. First, as zinc is an essential micronutrient, failure to take adequate amounts of 

zinc from the diet leads to zinc deficiency which is a significant problem in 

underdeveloped countries (Hambidge and Krebs, 2007). Zinc deficiency can also be 

caused by inherited genetic mutations. The autosomal recessive disease acrodermatitis 
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enteropathica was identified by the symptoms of zinc deficiency in infants (Moynahan, 

1974). Patients with the disease have a loss-of-function mutation in ZIP-4, which plays a 

major role in the uptake of zinc from the diet in the intestine (Kury et al., 2002; Wang et 

al., 2002). Since the mutations in ZIP-4 result in inefficient uptake of zinc, oral zinc 

supplementation has been a successful treatment to the patient. Studies of infants with 

the symptoms of zinc deficiency have identified loss-of-function mutations in another 

zinc transporter, ZnT-2 (Chowanadisai et al., 2006). ZnT-2 is highly expressed in the 

mammary gland and functions in the supply of zinc into secretory vesicles. Mutations in 

ZnT-2 lead to generation of low zinc breast milk and subsequently cause zinc deficiency 

in breastfed infants. 

Abnormal zinc metabolism is implicated in several types of cancers. Studies of 

prostate cancer demonstrated that there is an association between cellular zinc levels and 

cell proliferation (Costello and Franklin, 2006). While normal prostate cells have higher 

levels of zinc compared to other cell types, prostate cancer cells display significantly 

reduced zinc levels. Treatment with supplemental zinc was shown to suppress cell 

proliferation in prostate cancer cell lines (Liang et al., 1999), suggesting that high levels 

of zinc may have inhibitory effects on cell growth and cancer progression. Zinc 

metabolism is also implicated inbreast cancer progression. In contrast to prostate cancer 

cells which accumulate less zinc, breast cancer cells display higher levels of zinc 

compared to normal cells (Geraki et al., 2002). Studies with breast tissue biopsies 

indicated that there is a correlation between the levels of zinc and the onset of breast 

cancer (Cui et al., 2007b). Molecular studies have demonstrated that ZIP-6 and/or ZIP-7 

are associated with breast cancer; Increased ZIP-6 expression is one of the markers of 
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estrogen-receptor positive cancer (Schneider et al., 2006), and ZIP-7 is required for 

increasing cellular zinc levels in breast cancer cell lines (Taylor et al., 2008). 

Neurodegenerative diseases are associated with imbalance in zinc metabolism. 

The brain contains a large amount of zinc, and zinc is concentrated in the presynaptic 

vesicles in glutamatergic neurons (Frederickson et al., 2005). Upon excitation, zinc is 

released from the neurons along with neurotransmitters, like glutamate, into the synapse 

and then rapidly taken up by cells. During this process, zinc interacts with various ion 

channels and transporters and thereby regulates synaptic activity and plasticity. However, 

excessive release of zinc from synaptic vesicles is toxic and is involved in neuronal and 

glial cell death. For instance, zinc released from dying cells during seizures or ischemia 

contributes to cell death and thereby brain damage (Frederickson et al., 2004). Excess 

zinc is also associated with the pathogenesis of Alzheimer’s disease. Zinc promotes the 

aggregation of amyloid β-peptide, and zinc chelation inhibits the formation of amyloid β-

plaques in Alzheimer’s disease mouse models (Frederickson et al., 2005) 

Diabetes is another disease related to zinc metabolism. The pancreas plays a 

critical role in glucose homeostasis and contains high levels of zinc. Zinc is concentrated 

in insulin-granules of pancreatic β-cells where zinc forms stable complexes with insulin. 

Although the function of zinc stored in insulin granules is not well defined, zinc status 

may be linked to the progression of diabetes. Type 1 diabetes patients display lower 

serum zinc levels compared to the healthy individuals (Terres-Martos et al., 1998). Zinc 

deficiency appears to contribute to pancreatic β-cell function failure (Chausmer, 1998), 

while dietary supplemental zinc has a protective effect in diabetic mouse models (Ho et 

al., 2001).. ZnT-8 has been implicated in the pathology of both of type 1 and 2 diabetes. 
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ZnT-8 is as a major autoantigen in 60~80% of new onset of type 1 diabetes (Wenzlau et 

al., 2007). Recent genome-wide association studies identified genetic variations in ZnT-8 

that are significantly associated with type 2 diabetes (Sladek et al., 2007). Although the 

mechanisms by which the genetic variations affect pancreatic β-cell function are 

unknown, ZnT-8 knockout mice recently have been generated and exhibited glucose 

intolerance in response to a high fat diet (Lemaire et al., 2009), suggesting that ZnT-8 

may play a critical role in pancreatic β-cell function during stress conditions such as 

obesity.  

Recently, Ehlers-Danlos syndrome (EDS) type IV has been associated with 

abnormal zinc metabolism. EDS is characterized by progressive kyphoscoliosis, 

hypermobility of joints, hyperelasticity of skin and severe hypotonia of skeletal muscles, 

caused by abnormal connective tissue development (Beighton et al., 1998). Analysis of 

the genomes of EDS patients identified loss-of-function mutations in ZIP-13 (Giunta et 

al., 2008). ZIP-13 knockout mice displayed phenotypes that are similar to the symptoms 

observed in EDS patients such as defects in the maturation of osteoblasts, chondrocytes, 

odontoblasts and fibroblasts (Fukada et al., 2008), suggesting that zinc metabolism is 

involved in bone and connective tissue development. Despite the implication of zinc 

metabolism in these various diseases, the molecular mechanisms by which zinc 

metabolism affect the diseases are not well understood and remain to be addressed as one 

of the most important topics in zinc pathophysiology.  

 

ZINC METABOLISM IN C. ELEGANS 

 The nematode C. elegans is an important model system that has been used to 
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elucidate fundamental, evolutionarily conserved biological processes, such as apoptosis 

and RNA interference (Fire et al., 1998; Sulston and Horvitz, 1977), and to develop 

innovative experimental techniques, such as in vivo expression of green fluorescent 

protein (GFP) (Chalfie et al., 1994). C. elegans has been a relevant model organism for 

the study of metal biology, including iron and heme metabolism, and metal toxicity 

(Gourley et al., 2003; Liao and Freedman, 1998; Rajagopal et al., 2008).  

 Mechanisms of zinc metabolism are well conserved between C. elegans and 

other species. Analysis of the C. elegans genome revealed that C. elegans has 2 

metallothionein genes (mtl-1 and mtl-2), 14 putative cdf genes and 14 zip genes (Kambe 

et al., 2006). Intriguingly, there is no protein identified that has sequence similarity to the 

known zinc-responsive transcription factors, the yeast Zap1 or mammalian MTF-1, 

suggesting that C. elegans may have unique gene expression regulatory mechanisms for 

zinc metabolism. C. elegans has several advantages to study zinc metabolism compared 

to other model organisms such as the yeast and mouse. While it is a multicellular animal 

that is complex enough to study the networks of zinc metabolism in the whole animal, it 

has a simpler anatomy than mammals which facilitates the analysis of the system. C. 

elegans is genetically tractable, allowing forward genetics, reverse genetics and the 

analysis of genetic interactions among multiple genes. Furthermore, culture methods that 

permit precise control over dietary zinc have been established (Bruinsma et al., 2008; 

Davis et al., 2009; Szewczyk et al., 2003). 

 C. elegans has provided novel insights into zinc metabolism. The C. elegans cdf 

genes cdf-1 and sur-7 were identified in a forward genetic screen for suppressors of Ras-

mediated signaling during vulva development (Bruinsma et al., 2002; Yoder et al., 2004). 
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These studies demonstrated not only the functional role of CDF-1 and SUR-7 in the 

control of zinc metabolism of the animal but also the novel biological function of zinc 

ions as signaling molecules that modulate developmental processes. Studies using 

forward genetic screens also identified multiple mutations that confer resistance to zinc 

toxicity and subsequently characterized a novel gene that mediates zinc resistance, haly-1 

(Bruinsma et al., 2008; Murphy et al., 2011). These studies revealed a novel mechanism 

of zinc metabolism in which histidine can act as a zinc buffering system to control zinc 

toxicity. We recently developed various analytic methods to measure zinc metabolism, 

such as maturation rate, population growth rate and total zinc content, and we applied 

these methods to identify and characterize another cdf gene, cdf-2 (Davis et al., 2009).  

 

ANALYSIS OF ZINC TRANSPOTERS IN C. ELEGANS 

 The analysis of C. elegans zinc transporters is important to understand the 

function of these proteins in zinc metabolism and other biological processes. 

Furthermore, the discoveries made by the analysis of C. elegans zinc transporters will 

contribute to the understanding of the complicated processes of zinc metabolism and how 

they are related to human disease. 

 In this study, I describe the function of zinc transporters in the regulation of zinc 

metabolism in C. elegans and their roles in other biological processes. In Chapter 2, I 

demonstrate that zinc is stored in lysosome-related organelles called gut granules in C. 

elegans intestinal cells . Labile zinc was stored in gut granules by the action of the CDF-

2 zinc transporter, and zinc storage was important for zinc detoxification and 

mobilization in response to fluctuating levels of zinc. Gut granules displayed novel 
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morphological changes, the formation of asymmetric bilobed vesicles, in response to 

high levels of zinc. These results suggest that zinc is stored in C. elegans gut granules by 

active mechanisms that involve zinc transporters and vesicular transformation. 

 In Chapter 3, I describe the function of a novel cdf gene, ttm-1 (toxin-regulated 

target of p38MAPK). ttm-1 encodes two isoforms, ttm-1a and ttm-1b, by using different 

transcription start sites. Genetic analysis demonstrated that TTM-1 is important for zinc 

excretion and involved in zinc detoxification, and TTM-1B plays a key role in these 

processes by acting on the apical membrane of intestinal cells. TTM-1 interacts with 

CDF-2 in regulating zinc metabolism. These studies suggest that TTM-1 is another 

important player in the zinc metabolism of C. elegans. 

 In Chapter 4, I discuss the implication of these studies and the future studies to 

further extend our knowledge of zinc metabolism. 

In Appendix A, we report new methods to monitor zinc metabolism in C. 

elegans and the initial studies of cdf-2. CDF-2 was expressed in the intestine and 

localized to the membrane of intracellular vesicles, and a loss-of-function mutation in 

cdf-2 caused reduced total zinc content. These findings led to the hypothesis that CDF-2 

plays a role in zinc storage in C. elegans. In Appendix B, I describe the initial analyses of 

uncharacterized C. elegans zinc transporters with the focus on ZIP family proteins. 

Expression pattern studies identified the tissue distributions and intracellular localization 

of many ZIP proteins. Genetic analysis using loss-of-function mutations suggested 

several zinc transporters are involved in specific biological processes. 
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CHAPTER 2 
 

 

Lysosome-Related Organelles in Intestinal Cells 

Function as a Zinc Storage Site in C. elegans 

 

 

 

 

 
[The work in Chapter 2 will be published with the following citation: Hyun Cheol Roh, 
Sara Collier, James Guthrie, J. David Robertson, and Kerry Kornfeld. Lysosome-Related 
Organelles in Intestinal Cells Function as a Zinc Storage Site in C. elegans. 
 
H.C.R designed and performed all experiments and analyses except: S.C. provided 
assistance in generating transgenic strains, and J.G. and J.D.R. performed the ICP-MS 
(Figure 2.2B and Supplemental Figure 2.3). H.C.R and K.K wrote the manuscript.] 
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ABSTRACT 

 

 Zinc is an essential trace element involved in many biological processes and 

human diseases. Animals require homeostatic mechanisms to store and mobilize zinc in 

response to dietary fluctuations, but these mechanisms are not well defined. Here we 

demonstrate that lysosome-related organelles called gut granules present in intestinal 

cells of C. elegans function as the major site of zinc storage. Zinc storage in gut granules 

promotes detoxification and subsequent mobilization, since mutant animals lacking gut 

granules were defective in both processes. The cation diffusion facilitator protein CDF-2 

plays a critical role in this process by transporting zinc into gut granules. In response to 

high dietary zinc, gut granules displayed structural changes characterized by a bilobed 

morphology with asymmetric distributions of molecular markers. Glo genes were 

required for this structural change of gut granules. These findings elucidate novel 

mechanisms of zinc storage, detoxification and mobilization in C. elegans and may be 

relevant to other animals. 
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INTRODUCTION 

 

 Zinc is a trace nutrient that is essential for all life. Zinc has roles in many 

biological processes; protein-bound zinc contributes to enzymatic activity and protein 

structure, and labile zinc functions in signal transduction (Murakami and Hirano, 2008; 

Vallee and Falchuk, 1993). Zinc is important for human health, since zinc deficiency 

causes a broad range of defects in multiple organ systems including skin, immune, 

skeletal and reproductive (Hambidge, 2000). Zinc deficiency caused by inadequate 

dietary intake is a major world-wide problem. Zinc deficiency is also associated with 

genetic diseases caused by mutations of zinc transporters, such as acrodermatitis 

enteropathica. Excess zinc is also deleterious, since it may displace other trace metals or 

bind low affinity sites, leading to protein dysfunction (Fosmire, 1990). Therefore, 

organisms require mechanisms for zinc metabolism and homeostasis to control the levels 

and distribution of this essential metal. 

 Zinc metabolism in animals involves many processes: the absorption and 

secretion of zinc by gastrointestinal tracts, the excretion of zinc into urine by kidney, and 

the distribution and exchange of zinc between tissues (Cummings and Kovacic, 2009; 

Krebs, 2000). Within cells, zinc is partitioned between the cytosol and the lumen of 

intracellular organelles, and it can be labile or protein bound. Two families of zinc 

transporters play critical roles in eukaryotic organisms: cation diffusion facilitator 

(CDF/SLC30) and Zrt-, Irt-like protein (ZIP/SLC39) (Cragg et al., 2005; Eide, 2006; 

Feeney et al., 2005). CDF proteins decrease cytoplasmic levels by transporting zinc 

across the plasma membrane or into intracellular organelles, whereas ZIP proteins 



 20

increase cytoplasmic levels by transporting zinc in the opposite direction. Mammals 

contain 10 CDF and 14 ZIP proteins that have specific tissue distributions and 

intracellular localizations (Lichten and Cousins, 2009). Thus, a network of zinc 

transporters is likely to regulate zinc metabolism in animals. 

 Organisms have evolved to deal with variable nutrient availabilities by having 

mechanisms to regulate uptake and excretion. Furthermore, when nutrients are replete, 

excess nutrients are stored so that they can be mobilized under nutrient deficient 

conditions. In natural environments, the availability of metal is variable, so it is likely 

that organisms have mechanisms for metal storage and mobilization. For example, iron is 

essential in mammals for erythropoietic function and oxidative metabolism, and iron is 

stored in the liver in the forms of ferritin or hemosiderin (Munoz et al., 2009). 

Mechanisms of zinc storage have been characterized in the yeast Saccharomyces 

cerevisiae. When zinc is abundant, the CDF proteins Cot1 and Zrc1 transport zinc into 

the vacuole, which functions to store excess zinc and protect from zinc toxicity. When 

yeast are challenged with zinc deficient conditions, the ZIP protein Zrt3 mobilizes stored 

zinc by transporting it out of the vacuole (Eide, 2006). 

 In mammals, it has been demonstrated that high levels of zinc are detected in 

several tissues and intracellular organelles. Synaptic vesicles in neuronal cells (Palmiter 

et al., 1996b), insulin granules in pancreatic β-cells (Chimienti et al., 2004) and secretory 

vesicles in mammary cells display high levels of zinc (Kelleher and Lonnerdal, 2003). 

Studies using zinc-specific fluorescent dyes have demonstrated that zinc is detected in 

punctate vesicles in a variety of cell types, which are putatively termed as zincosomes 

and may be endosomal or lysosomal compartments (Eide, 2006). However, the role of 
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these zinc-containing organelles in zinc storage and mobilization in response to 

fluctuating dietary zinc at organism levels has not been well characterized. 

 The nematode C. elegans has been a relevant model organism for the study of 

metal biology, including iron and heme metabolism, metal toxicity, and zinc signaling 

(Bruinsma et al., 2002; Gourley et al., 2003; Liao and Freedman, 1998; Rajagopal et al., 

2008; Vatamaniuk et al., 2001; Yoder et al., 2004). We are using C. elegans to study zinc 

metabolism, because this animal has conserved mechanisms of zinc metabolism, 

powerful genetics and culture system (Bruinsma et al., 2002; Bruinsma et al., 2008; 

Davis et al., 2009). We demonstrated that C. elegans exposed to a high zinc diet 

accumulate substantial amounts of zinc, indicating that these animals store excess zinc. 

(Davis et al., 2009). In this study, we sought to identify the site of zinc storage by 

developing methods to visualize zinc in C. elegans using a zinc-specific fluorescent dye, 

FluoZin-3. Labile zinc was detected in gut granules in intestinal cells. Gut granules have 

been classified as lysosome-related organelles based on the presence of lysosomal 

proteins and staining with lysosome-specific fluorescent dyes such as LysoTracker 

(Clokey and Jacobson, 1986; Hermann et al., 2005; Kostich et al., 2000). To assess the 

function of gut granules, we analyzed gut-granule-loss (Glo) mutant animals. These 

animals displayed zinc storage defects and zinc hypersensitivity, indicating that gut 

granules are critical for zinc storage and detoxification. The cation diffusion facilitator 

protein CDF-2 plays a critical role in the mechanism of zinc storage. CDF-2 localized to 

the membrane of gut granules, and cdf-2 loss-of-function mutant animals were defective 

in zinc storage and hypersensitive to high levels of dietary zinc. We demonstrated that 

zinc stored in gut granules can be mobilized in zinc deficient conditions. Finally, we 
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characterized a novel morphology of gut granules, asymmetric bilobed vesicles, in 

response to high dietary zinc, and glo genes are necessary for the morphological change. 

These findings identify the site of zinc storage in an animal and demonstrate a key role 

for a CDF protein during zinc storage. 

 

 

RESULTS 

 

Gut Granules Contain Labile Zinc 

 By using inductively coupled plasma-mass spectrometry (ICP-MS) to measure 

total zinc content in worm extracts, we previously demonstrated that culturing C. elegans 

with high dietary zinc results in elevated levels of total zinc, suggesting that excess zinc 

is stored (Davis et al., 2009). To elucidate the spatial distribution of zinc and identify the 

site of zinc storage, we used zinc-specific fluorescent dyes to visualize zinc. We 

conducted pilot studies with several dyes and selected FluoZin-3 based on its high zinc-

sensitivity and specificity (Gee et al., 2002). Hermaphrodites were cultured on noble agar 

minimal medium (NAMM) dishes (Bruinsma et al., 2008) containing FluoZin-3, and live 

animals were analyzed by fluorescence microscopy. Wild-type animals cultured without 

supplemental zinc displayed green fluorescence in vesicles in the intestinal cells (Figure 

2.1A). To test if the FluoZin-3 fluorescence is due to zinc binding, we manipulated 

dietary zinc using supplemental zinc and the zinc chelator, N,N,N′,N′-Tetrakis (2-

pyridylmethyl) ethylenediamine (TPEN). FluoZin-3 fluorescence intensity displayed 

significant, dose-dependent enhancement and diminishment in worms cultured with 



 23

supplemental zinc and TPEN, respectively (Figures 2.1A and 2.1B). These results 

indicate that FluoZin-3 fluorescence monitors labile zinc in live worms, and zinc is 

concentrated in vesicles of intestinal cells. 

 To investigate the relationship between FluoZin-3 fluorescent vesicles and 

intestinal gut granules, we performed costaining experiments using LysoTracker 

(Hermann et al., 2005). With no supplemental zinc, the patterns of FluoZin-3 and 

LysoTracker fluorescence were highly overlapping in intestinal cells (Figure 2.1C and 

Supplemental Figure 2.1), indicating that zinc detected by FluoZin-3 is stored in gut 

granules. Because gut granules contain birefringent and autofluorescent materials, we 

determined how autofluorescence compares to FluoZin-3 fluorescence by comparing 

animals cultured with FluoZin-3 to control animals cultured with no dye. Animals 

cultured with FluoZin-3 displayed 2.6, 3.5 and 4.3-fold higher signal than control 

animals when cultured with 0μM, 100μM and 200μM supplemental zinc, respectively 

(Supplemental Figure 2.2). These results indicate that the signal is primarily due to 

FluoZin-3 binding zinc with a minor contribution from autofluorescence. 

 

Gut Granules are the Major Site of Zinc Storage 

 To characterize the function of gut granules in zinc storage, we analyzed Glo 

mutant animals that have reduced numbers of gut granules due to defects in lysosome 

biogenesis (Hermann et al., 2005). We analyzed three genes, pgp-2, glo-1 and glo-3, 

because well characterized loss-of-function mutations in these genes cause Glo 

phenotypes of different severities; wild-type animals contain hundreds of gut granules, 

whereas pgp-2(kx49) animals contain 10~100 gut granules, and glo-1(zu391) and glo-
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3(zu446) animals contain less than 10 gut granules (Hermann et al., 2005; Rabbitts et al., 

2008; Schroeder et al., 2007). pgp-2 encodes an ABC transporter that is localized to the 

membrane of gut granules, glo-1 encodes a predicted Rab GTPase that localizes to gut 

granules, and glo-3 has not been molecularly identified. All of the Glo animals displayed 

reduced FluoZin-3 fluorescence compared to wild-type animals at 0μM and 100μM 

supplemental zinc (Figure 2.2A). Consistent with the severity of Glo phenotype, pgp-2 

mutant animals contained a small number of FluoZin-3 positive granules, and glo-1 and 

glo-3 mutant animals displayed very few granules stained with FluoZin-3. These results 

support the conclusion that gut granules are the site of labile zinc detected by FluoZin-3. 

 To quantify zinc storage defects in Glo animals, we used ICP-MS as an 

independent method to measure total zinc content. In culture conditions with 0μM and 

200μM supplemental zinc, pgp-2 mutants displayed a moderate reduction of total zinc 

content, and glo-1 mutants displayed a severe reduction of total zinc content compared to 

wild-type animals (Figure 2.2B). The total zinc content of the Glo animals was well 

correlated with the severity of the Glo phenotype. With 200μM supplemental zinc, glo-1 

mutants contained approximately 50% of the total zinc content of wild-type animals. 

These results indicate that gut granules are the major site of zinc storage in C. elegans 

that contains about half of the total zinc in the body. 

 To determine whether gut granules are also used to store additional metals, we 

analyzed the total metal content of four additional physiological metals from Glo animals 

using ICP-MS. Glo animals did not exhibit a consistent change in total levels of 

magnesium, iron, manganese or copper compared to wild-type animals (Supplemental 

Figure 2.3). These results indicate that gut granules are specifically involved in zinc 
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storage. 

 

High Dietary Zinc Induces CDF-2 Expression, and CDF-2 Promotes Zinc Storage in 

Gut Granules 

 cdf-2 mRNA levels are increased by high dietary zinc, and CDF-2 is expressed 

specifically in intestinal cells and localized to autofluorescent vesicles (Davis et al., 

2009). To analyze the regulation of CDF-2 protein expression by dietary zinc, we used 

transgenic animals expressing CDF-2::GFP. The level of CDF-2::GFP was induced in a 

concentration-dependent manner by approximately 3-fold and 4-fold at 100 and 200μM 

supplemental zinc, respectively, compared to 0μM supplemental zinc (Figures 2.3A and 

2.3B). These results suggest that high levels of CDF-2 play an important role in the 

response to high dietary zinc. To elucidate the relationship between CDF-2 and zinc 

storage, we cultured transgenic animals expressing CDF-2::mCherry on NAMM dishes 

containing FluoZin-3. In animals cultured with no supplemental zinc, FluoZin-3 and 

CDF-2::mCherry fluorescence overlapped almost completely (Supplemental Figure 2.4, 

left), indicating that CDF-2 is localized to the gut granules that concentrate zinc. 

 To determine the function of CDF-2 in zinc storage in gut granules, we analyzed 

animals with reduced or increased levels of CDF-2 activity. Activity was reduced by the 

cdf-2(tm788) deletion mutation that causes a strong loss-of-function, whereas activity 

was increased by generating transgenic animals that contain multicopy, 

extrachromosomal arrays expressing CDF-2::mCherry in the cdf-2(tm788) background. 

cdf-2(tm788) mutant animals displayed significantly lower FluoZin-3 fluorescence at 

both 0μM and 100μM supplemental zinc compared to wild-type animals (Figures 2.3C 
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and 2.3D). ICP-MS analysis revealed that cdf-2(tm788) mutant animals had a severe 

reduction of total zinc content, similar to glo-1 mutant animals (Figure 2.2B), consistent 

with our previous studies (Davis et al., 2009). These results indicate that CDF-2 is 

necessary to concentrate zinc into gut granules. Since cdf-2(tm788) mutant animals 

displayed slightly increased FluoZin-3 fluorescence at 100μM compared to 0μM 

supplemental zinc, a CDF-2 independent mechanism might concentrate zinc in gut 

granules. One possibility is that an alternative zinc transporter is induced in cdf-2 mutant 

animals, and differences were observed in mRNA levels of other cdf genes in cdf-2 

mutants animals compared to wild-type animals (data not shown). Transgenic animals 

that overexpress CDF-2::mCherry displayed higher FluoZin-3 fluorescence at 0μM and 

100μM supplemental zinc compared to cdf-2 mutants and wild-type animals (Figures 

2.3C and 2.3D). Thus, overexpression of CDF-2 was sufficient to concentrate zinc into 

gut granules. 

 Transgenic animals containing extrachromosomal arrays display mosaic 

expression of transgenes spontaneously and at a low frequency. To determine whether 

CDF-2 functions cell-autonomously, we analyzed mosaic animals that lack transgene 

expression in specific intestinal cells. Because these animals contain the cdf-2(tm788) 

mutation, an intestinal cell that lacks transgene expression lacks all CDF-2 function. The 

intestinal cells lacking CDF-2::mCherry expression displayed lower FluoZin-3 

fluorescence compared to the flanking cells that express CDF-2::mCherry (Figure 2.3E). 

These results indicate that CDF-2 functions cell-autonomously in intestinal cells to 

promote zinc concentration in gut granules. 
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High Dietary Zinc Alters Gut Granule Morphology 

 To characterize how the intracellular localization of CDF-2 responds to high 

dietary zinc, we examined the colocalization of CDF-2 and LysoTracker. In the absence 

of supplemental zinc, CDF-2::GFP colocalized completely with LysoTracker (Figure 

2.4A, left). This observation demonstrates directly that CDF-2 localizes to the membrane 

of gut granules. In the presence of 200μM supplemental zinc, CDF-2::GFP expression 

remained restricted to gut granules, but gut granules displayed altered morphology. Many 

vesicles had a bilobed appearance, and the two lobes displayed distinct staining patterns; 

one side was positive for both CDF-2 and LysoTracker, whereas the other side was 

positive for CDF-2 and negative for LysoTracker (Figure 2.4A, right). Since LysoTracker 

labels acidic organelles, these results indicate that one lobe may lack the determinants 

that concentrate the LysoTracker or the LysoTracker dye may be present but not 

fluorescent due to high pH. To examine a possible pH difference, we used LysoSensor 

Green DND-153, which is highly fluorescent in neutral compartments (Zhang et al., 

2010). Colocalization analysis with CDF-2::mCherry demonstrated that LysoSensor 

Green strain only one side of the bilobed gut granules (Supplemental Figure 2.5), similar 

to LysoTracker staining. These results suggest that asymmetric staining of bilobed 

vesicles may reflect an asymmetric distribution of the molecules that bind these 

fluorescent probes. 

 To characterize additional differences between the two dies of bilobed gut 

granules, we first investigated the distribution of zinc. Zinc was visualized with FluoZin-

3, and gut granules were visualized with LysoTracker. With 100μM supplemental zinc, 

FluoZin-3 and LysoTracker fluorescence displayed asymmetric staining in the bilobed 



 28

gut granules. The LysoTracker-positive side displayed relatively weak FluoZin-3 staining, 

whereas the LysoTracker-negative side displayed relatively strong FluoZin-3 staining 

(Figure 2.1C, right). To examine the relationship between zinc levels and CDF-2 protein 

in the bilobed gut granules, we visualized zinc using FluoZin-3 and CDF-2::mCherry. 

Whereas FluoZin-3 fluorescence was asymmetric and strong in only one side of bilobed 

granules, CDF-2::mCherry was localized to both sides (Supplemental Figure 2.4, right). 

These results indicate that while the distribution of labile zinc may be asymmetric in 

bilobed gut granules, CDF-2 protein may be symmetric. 

 C. elegans has been used to identify and characterize genes that are localized to 

specific endosomal and lysosomal compartments. To define the molecular properties of 

bilobed gut granules, we examined the localization of several of these marker proteins. 

The GTPase Rab-5 is localized to early endosomes in mammalian cells (Zerial and 

McBride, 2001), and C. elegans RAB-5 expressed in intestinal cells localizes to small 

punctate structures that appear to be early endosomes (Chen et al., 2006; Hermann et al., 

2005). RAB-5 did not colocalize with LysoTracker or CDF-2 (data not shown), 

indicating that CDF-2 does not accumulate in early endosomes. C. elegans RAB-7::GFP 

appears to stain early endosomes and late endosomes, similar to the localization patterns 

in other systems (Chen et al., 2006; Zerial and McBride, 2001). Lysosome associated 

membrane proteins (LAMPs) are localized predominantly in lysosomes in vertebrates, 

and C. elegans LMP-1 localizes to specific gut granules of intestinal cells (Kostich et al., 

2000). A subset of LMP-1 and RAB-7 colocalized with LysoTracker in gut granules 

(Figure 2.4B and Supplemental Figure 2.6A). In high zinc, LMP-1 and RAB-7 were 

localized on only one side of the bilobed vesicles that were visualized using CDF-
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2::mCherry (Figure 2.4C and Supplemental Figure 2.6B). These results indicate that the 

gut granules that contain CDF-2 also contain the late endosomal/lysosomal proteins 

RAB-7 and LMP-1. The bilobed granules displayed an asymmetric distribution of RAB-

7 and LMP-1, indicating that one lobe has typical lysosomal characteristics whereas the 

other lobe lacks lysosomal proteins.  

 C. elegans PGP-2 is an ABC transporter that localizes specifically to the gut 

granule membrane (Schroeder et al., 2007). With no supplemental zinc, CDF-2::mCherry 

and PGP-2::GFP colocalized completely in gut granules; these gut granules also 

displayed autofluorescence (Supplemental Figure 2.7, left). In the presence of 100μM 

supplemental zinc, CDF-2 and PGP-2 fully colocalized on both sides of the bilobed gut 

granules. Autofluorescence displayed an asymmetric pattern and was only prominent on 

one side, similar to the LysoTracker staining pattern (Supplemental Figure 2.7, right). 

These results indicate that bilobed gut granules contain proteins that are symmetrically 

distributed on both lobes, such as PGP-2 and CDF-2, and proteins that are 

asymmetrically localized, such as RAB-7 and LMP-1.  

 

Glo Genes are Required for the Formation of Bilobed Gut Granules 

 To identify mechanisms that are important for the formation of bilobed gut 

granules, we examined the gut granule morphology in mutant animals by colocalization 

experiments of PGP-2::GFP, LysoTracker and FluoZin-3. cdf-2 mutant animals displayed 

bilobed vesicles that contain PGP-2::GFP symmetrically on both lobes and LysoTracker 

asymmetrically on one lobe (Supplemental Figure 2.8A). As expected, bilobed gut 

granules did not stain with FluoZin-3 in cdf-2 mutant animals (Supplemental Figure 
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2.8B). These results indicate that the formation of bilobed vesicles does not require cdf-2 

activity, but acculumation of zinc in these vesicles does require cdf-2. 

 To dissect the molecular process involved in the bilobed gut granule formation, 

we blocked lysosome biogenesis and endocytosis pathways by RNAi knockdown of rab-

7 and rme-8, respectively, and examined its effect on gut granule morphology. Bilobed 

vesicles were detected in rab-7 and rme-8 RNAi fed animals (Figure 2.5), indicating that 

neither lysosome biogenesis nor endocytosis is required for the formation of bilobed gut 

granule. Since only gut granule-specific proteins were found on both sides of bilobed 

vesicles, we hypothesized that bilobed vesicle formation may be also regulated by gut 

granule-specific processes. To test the hypothesis, we knockdowned glo genes, pgp-2 and 

glo-3. In pgp-2 and glo-3 RNAi fed animals, bilobed morpholgy was not detected, and 

there were separate compartments which display CDF-2:GFP but not LysoTracker 

(Figure 2.5). These results indicate that Glo genes that function in gut granule formation 

are required for the formation of bilobed morphology in response to high zinc. 

 

Gut Granules are Necessary for Zinc Detoxification 

 To investigate whether storage in gut granules is a protective mechanism that 

promotes zinc detoxification, we analyzed the growth rate of animals in response to 

increasing levels of dietary zinc. Animals were synchronized at the first larval (L1) stage, 

cultured on NAMM dishes supplemented with zinc for a specific time period, and 

analyzed individually to measure length as an indicator of growth. Wild-type animals 

displayed a dose-dependent decrease in growth rate, indicating that high dietary zinc 

inhibits growth (Figure 2.6A). pgp-2, glo-1 and glo-3 mutant animals displayed 
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significantly lower growth rates than wild-type animals with all supplemental zinc 

(Figure 2.6A). The severity of the zinc sensitivity phenotype correlated with the severity 

of Glo phenotype; pgp-2 mutants were moderately zinc sensitive whereas glo-1 and glo-3 

mutants were strongly zinc sensitive. These results indicate that gut granules play an 

important protective role in response to zinc toxicity. To determine the role of CDF-2 in 

this mechanism of zinc detoxification, we examined a cdf-2 loss-of-function mutant that 

is defective in zinc storage. Similar to Glo animals, cdf-2 mutants were hypersensitive to 

dietary zinc compared to wild-type animals (Figure 2.6B). Since cdf-2 mutants have 

normal formation of gut granules shown by LysoTracker staining (Supplemental Figure 

2.8B), these findings indicate that CDF-2 mediated zinc transport into gut granules is a 

critical mechanism for zinc detoxification. 

 To investigate whether gut granules have a general role in metal detoxification, 

we examined the sensitivity of Glo animals to the toxic effects of additional metals. Glo 

animals were similar to wild-type animals in sensitivity to dietary cadmium (Figure 

2.6C) and copper (data not shown), indicating that gut granules are not necessary to 

detoxify these metals. The growth of cdf-2(tm788) mutant animals was also similar to 

wild-type animals in the presence of supplemental cadmium (Figure 2.6D) and copper 

(data not shown). These results indicate that CDF-2 function is specific to zinc and 

support the conclusion that gut granules are not a general site of metal storage and may 

be specific for zinc storage. 

 

Gut Granules Provide a Source of Zinc that Can Be Mobilized in Response to 

Deficiency. 
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 One possible function of storing zinc in gut granules is to provide a supply of 

zinc that can be mobilized in response to zinc deficient conditions. To test this model, we 

monitored the levels of zinc in gut granules using FluoZin-3 in the shift from high zinc to 

different zinc conditions. Wild-type animals were first cultured with 200μM 

supplemental zinc. There was approximately 2.5-fold increase in FluoZin-3 fluorescence 

compared to the control animals cultured with no supplemental zinc, indicating that zinc 

is stored in gut granules during the preculture with high zinc (Figures 2.7A and 2.7B). 

Animals were then shifted to high (200μM supplemental zinc), normal (0μM 

supplemental zinc) or low zinc (100μM TPEN) conditions, and analyzed to measure 

FluoZin-3 fluorescence. When animals were continuously cultured with 200μM 

supplemental zinc, FluoZin-3 fluorescence further increased (Figures 2.7A and 2.7B). 

When animals were shifted to the normal zinc condition, FluoZin-3 fluorescence 

increased by ~1.7-fold after 24h of the shift and then after 48h it slightly decreased. 

When animals were shifted to the low zinc, FluoZin-3 fluorescence increased by ~1.4-

fold after 24h, but after 48h FluoZin-3 fluorescence dramatically decreased below the 

initial fluorescence. These results indicate that zinc stored in gut granules can be 

mobilized in response to low zinc conditions. 

 To independently investigate zinc mobilization, we analyzed the growth of 

animals that were precultured with either normal or high zinc conditions and 

subsequently cultured in low zinc conditions. Wild-type animals precultured with 50μM 

supplemental zinc displayed a significantly increased growth rate in the presence of 

TPEN compared to animals precultured with 0μM supplemental zinc (Figure 2.7C). 

These results indicate that wild-type animals store zinc that can be used later to cope 
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with zinc deficiency. cdf-2 mutant animals precultured with 0μM or 50μM supplemental 

zinc displayed similar growth rates in the presence of TPEN (Figure 2.7C). These results 

indicate that CDF-2 is necessary for preculturing with high zinc to promote the resistance 

to subsequent zinc deficiency, probably because CDF-2 promotes the storage of zinc in 

gut granules. 

 To test the model that gut granules are the source of zinc that is mobilized during 

zinc deficiency, we examined Glo animals. glo-1, glo-3 and pgp-2 mutants precultured 

with 0μM supplemental zinc displayed slower growth rates than wild-type animals when 

challenged with zinc deficient conditions (Figure 2.7D). Furthermore, whereas wild-type 

animals displayed a significant increase in growth when preincubated with 50μM 

supplemental zinc, preincubation with supplemental zinc did not significantly affect the 

growth of Glo animals (Figure 2.7D). Thus, glo-1, glo-3, pgp-2 and cdf-2 were necessary 

for animals to respond to preincubation with supplemental zinc. These results indicate 

that gut granules, which are the major site of zinc storage during dietary excess, are the 

source of zinc mobilized during zinc deficiency. 

 

 

DISCUSSION 

 

Gut Granules in Intestinal Cells Function as a Zinc Storage Site 

 Zinc is essential, but zinc availability fluctuates. Thus, mechanisms to store and 

mobilize zinc are important. We used C. elegans to characterize the site of zinc storage in 

an animal by developing methods to visualize labile zinc using a zinc-specific 
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fluorescent dye, FluoZin-3.  Labile zinc was detected primarily in lysosome-related 

organelles in intestinal cells called gut granules. The biogenesis of gut granules has been 

studied using Glo mutant animals that have reduced numbers of gut granules (Hermann 

et al., 2005; Rabbitts et al., 2008; Schroeder et al., 2007). We used these mutants to 

demonstrate that Glo animals have reduced levels of labile zinc and total zinc, and the 

severity of the Glo phenotype correlated with the reduction in zinc levels. Glo animals 

had wild-type levels of other metals such as copper. Thus, these results support the 

conclusion that gut granules function specifically in zinc storage, and provide direct 

evidence for the presence of a zinc-specific storage site in animals. 

In the yeast Saccharomyces cerevisiae, the vacuole plays a central role in zinc storage 

(Eide, 2006). In mammals, zinc storage has not been well defined. Kinetic studies using 

zinc stable isotopes have suggested that exchangeable pools of zinc are limited (Krebs 

and Hambidge, 2001). However, these studies have limitations because these studies 

examined a very small fraction of total zinc pools and the range of dietary zinc that can 

be tested was relatively narrow. Our studies using C. elegans with a wider range of 

dietary zinc allowed the identification of a site of zinc storage. Since C. elegans has 

conserved mechanisms of zinc metabolism, such as zinc transporter proteins and 

metallothioneins, these results suggest that zinc storage mechanisms may be present in 

higher animals.  

 C. elegans gut granules and yeast vacuoles both have lysosomal properties. This 

similarity leads us to speculate that lysosome-related organelles may have a role in zinc 

storage in higher animals. In fact, labile zinc is detected by zinc-responsive fluorescent 

dyes in intracellular organelles called zincosomes in various types of mammalian cells, 
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which have lysosomal properties (Eide, 2006). Furthermore, there are specialized 

lysosome-related organelles that may function in zinc storage, similar to C. elegans gut 

granules. For instance, secretory granules in paneth cells in the intestine contain zinc, and 

paneth cell number and the granule morphology are affected by dietary zinc conditions 

(Giblin et al., 2006). Acidocalcisomes are acidic organelles conserved from bacteria to 

human that contain calcium and polyphosphate, and zinc is found in acidocalcisomes in 

several species (Docampo et al., 2005). Thus, the roles of these lysosome-related 

organelles in zinc storage and zinc homeostasis of animals will be intriguing future topics 

to be studied. 

The cation diffusion facilitator protein CDF-2 plays a critical role in zinc storage. 

Colocalization experiments with gut granule markers demonstrated that CDF-2 is 

localized to the membrane of gut granules. Reducing the activity of cdf-2 with a loss-of-

function mutation and increasing the activity of cdf-2 by overexpression demonstrated 

that cdf-2 is both necessary and sufficient for zinc storage in gut granules. Consistent 

with the model that CDF-2 directly transports zinc into gut granules, CDF-2 functions 

cell-autonomously in intestinal cells to promote zinc accumulation. C. elegans CDF-2 is 

homologous to mammalian ZnT2 which plays a role in the secretion of zinc into breast 

milk (Chowanadisai et al., 2006). Similar to CDF-2, ZnT2 is localized to intracellular 

vesicles and upregulated by dietary zinc (Liuzzi et al., 2001), suggesting that ZnT2 may 

be involved in zinc storage in mammals. 

 

Zinc Storage in Gut Granules Promotes Detoxification and Provides a Source of 

Zinc that is Mobilized During Deficiency 
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We characterized two functions of zinc storage in gut granules. The first is detoxification.  

Glo animals were hypersensitive to zinc toxicity, and the hypersensitivity correlated with 

the severity of the Glo defect. These findings indicate that gut granules have a critical 

role in zinc detoxification. cdf-2 loss-of-function mutants which had normal gut granules 

were hypersensitive to dietary zinc, and CDF-2 was induced by dietary zinc, suggesting 

that CDF-2 mediated transport of zinc into gut granules is an important mechanism to 

detoxify high levels of dietary zinc. The yeast vacuole plays a role in zinc detoxification. 

In multicellular animals, the protective role of zinc-containing organelles in the whole 

body zinc homeostasis has not been demonstrated. Thus, these studies of C. elegans 

document a novel role of lysosome-related organelles in zinc metabolism in animals. 

High levels of dietary zinc induce changes in gene expression, such as induction of 

metallothionein genes, and these alterations in gene expression may play a role in 

detoxification (Lichtlen and Schaffner, 2001). An important direction for future research 

will be to determine how zinc sequestration in lysosome-related organelles relates to 

other mechanisms of zinc tolerance such as expression of zinc-binding proteins. 

 The second function of zinc storage in gut granules is to provide a source of zinc 

that can be utilized during dietary deficiency. To test this process, we examined the zinc 

level in gut granule using FluoZin-3 in the shift from high zinc to low zinc conditions. 

For the first 24h after the shift, FluoZin-3 fluorescence slightly increased, but after 48h, 

it significantly decreased. These results indicate that zinc stored in gut granules during 

preculture in high zinc can be mobilized in the shift to low zinc conditions, and zinc 

mobilization appeared to occur between 24h and 48h after the shift conditions. It is 

possible that, within the 24h, gut granules keep taking up remaining excess zinc in the 
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animal. Between 24h and 48h after the shift, animals perhaps experience zinc deficiency 

and begin to mobilize zinc from gut granules.  

 As an independent approach, we also examined the growth of animals in the 

shift from high zinc to low zinc conditions. Wild-type animals with a high level of zinc 

storage grew better in zinc deficient conditions than animals with a low level of zinc 

storage, indicating that stored zinc can be mobilized during zinc deficiency. An 

alternative explanation for this observation is that exposure to high dietary zinc results in 

another change, such as altered gene expression, that promoted growth in zinc deficient 

conditions. The analysis of Glo animals and cdf-2 mutants suggests this is unlikely, since 

gut granules and CDF-2 mediated zinc transport were necessary for effective storage and 

mobilization. Therefore, we propose that zinc stored in gut granules during periods of 

dietary excess can be mobilized to support growth during periods of zinc deficiency. This 

process requires Glo genes that mediate biogenesis of gut granules and CDF-2 that 

transports zinc into gut granules. 

 Mobilization of stored zinc has been analyzed in yeast. The ZIP protein Zrt3 is 

localized to the vacuole and transports zinc into the cytoplasm in response to zinc 

deficiency (MacDiarmid et al., 2000). In multicellular animals, although the loss of zinc 

from zinc-containing organelles has been observed in the process of signal transduction 

(Aydemir et al., 2009), zinc mobilization from a site of zinc storage in response to dietary 

deficiency has been not demonstrated. The characterization of gut granules described 

here is the first documentation of a specific site of zinc storage that is mobilized during 

dietary deficiency. Mobilization is likely to require a transporter that shuttles zinc from 

the lumen of gut granules to the cytoplasm, and future studies will focus on the 
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identification of this transporter. 

 

Gut Granules Change Morphology in High Dietary Zinc 

Gut granules displayed novel morphological changes in response to high dietary zinc. In 

standard culture conditions, gut granules were typically round in shape, autofluorescent, 

stained with LysoTracker, LysoSensors, and FluoZin-3, and the membrane contained 

CDF-2, RAB-7, LMP-1 and PGP-2 (Supplemental Figure 2.9). In high dietary zinc, gut 

granules were frequently bilobed in shape. The bilobed vesicles displayed asymmetric 

distribution of molecules; one side displayed almost the identical molecular properties to 

normal state gut granules, whereas the other side contained only gut granule-specific 

proteins, PGP-2 and CDF-2, and displayed strong FluoZin-3 staining (Supplemental 

Figure 2.9). These results suggest that one side that has a high concentration of zinc may 

have unique molecular properties and specialized functions in zinc metabolism. 

 We speculate that bilobed vesicles may have two functions. First, this structural 

change may be a mechanism to promote zinc storage. Generating additional adjacent 

vesicles which are devoted to storing zinc can improve the capacity of storage and 

facilitate rapid sequestration. Second, bilobed vesicles may function in the secretion of 

excess zinc beyond the gut granule capacity. When zinc is accumulated over the capacity 

of gut granules in high zinc conditions, gut granules may undergo the structural changes 

to make specialized secretory vesicles full of excess zinc. Thus, gut granules may play a 

role in the balance between storage and excretion of zinc. Studies of the fate of bilobed 

vesicles will be future research to understand the function of the structure. 

 To study the process of bilobed gut granule formation, we tested the role of 
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CDF-2. Interestingly, cdf-2 mutants displayed bilobed vesicles containing PGP-2, but 

these vesicles did not show strong FluoZin-3 fluorescence, indicating that there may be 

other processes that sense zinc levels and induce this morphological changes 

independently of CDF-2. To investigate this process, we tested lysosome biogenesis and 

endocytosis process by RNAi of rab-7 and rme-8. RNAi of these genes did not block the 

formation of bilobed morphology, indicating the general lysosome biogenesis or 

endocytic pathways are not likely to be required for the process. On the other hand, 

RNAi of glo genes, pgp-2 and glo-3 blocked the formation of bilobed morphology. These 

results indicate that gut granule specific trafficking pathway is critical for the generation 

of bilobed vesicles. The discovery of this novel structure raises important new questions 

concerning the relationship between intracellular trafficking and zinc metabolism. 

 

 

EXPERIMENTAL PROCEDURES 

 

General Methods and Strains 

C. elegans strains were cultured at 20℃ on nematode growth medium (NGM) seeded 

with E. coli OP50 unless otherwise noted (Brenner, 1974). The wild-type C. elegans and 

parent of all mutant strains was Bristol N2. The following mutations and transgenes were 

used: pgp-2(kx48) I (Schroeder et al., 2007), unc-119(ed3) III (Praitis et al., 2001), cdf-

1(n2527) X (Bruinsma et al., 2002), cdf-2(tm788) X (Davis et al., 2009), glo-1(zu391) X 

(Hermann et al., 2005), glo-3(zu446) X (Rabbitts et al., 2008), amIs4(cdf-2::GFP::unc-

119(+)) (Davis et al., 2009), pwIs50 (lmp-1:GFP) (Treusch et al., 2004), pwIs72 (Pvha-
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6::GFP::rab-5) (Hermann et al., 2005), pwIs170 (Pvha-6::GFP::rab-7) (Chen et al., 

2006), and kxEx98(pgp-2::GFP;rol-6D) (Schroeder et al., 2007). amEx132(cdf-

2::mCherry;rol-6D), and amEx142(cdf-2::mCherry::unc-119(+)) are described here. 

Double mutant animals were generated by standard methods, and genotypes were 

confirmed by PCR or DNA sequencing.  

 

Transgenic Strain Construction 

We previously described amIs4, an integrated transgene generated by bombardment 

transformation that expresses CDF-2::GFP from the cdf-2 promoter (Davis et al., 2009). 

cdf-2(tm788);amIs4 animals were generated by standard methods and used to analyze 

CDF-2::GFP expression. We generated pSC6 by inserting the coding sequence for 

mCherry from pCJF104 (a gift from M. Nonet), the unc-54 3’UTR from pPD95.77 (a 

gift from A. Fire), and the cdf-2 promoter region and coding sequences into pBluescript 

SK+ (Stratagene). pSC6 and the marker pRF4 were microinjected into cdf-2(tm788) 

animals (Mello et al., 1991). Two independently derived strains containing 

extrachromosomal arrays were isolated, amEx129 and amEx132. We made pSC23 by 

inserting CDF-2::mCherry coding sequences from pSC6 into plasmid pMM016 (a gift 

from J. Austin) that contains unc-119(+) (Praitis et al., 2001). pSC23 was transformed 

into unc-119(ed3) animals by bombardment to generate amEx142. For colocalization 

analysis, amEx142 animals were crossed with animals containing pwIs72, pwIs170, 

pwIs50 or kxEx98. 

 

Metal Sensitivity Assays 



 41

Gravid adult hermaphrodites were treated with NaOH and bleach, and eggs were 

incubated in M9 solution overnight to allow hatching and synchronized arrest at the L1 

stage. L1 animals were transferred to NAMM dishes supplemented with zinc sulfate 

(ZnSO4), cadmium chloride (CdCl2) or copper sulfate (CuSO4), and seeded with 

concentrated OP50. After 3 days, animals were washed twice in M9 containing 0.01% 

Tween-20, paralyzed with 10mM sodium azide (NaN3) in M9, and mounted on a 2% 

agarose pad on a microscope slide. Nomarski images were captured with a Zeiss 

Axioplan 2 microscope equipped with a Zeiss AxioCam MRm digital camera. Length of 

animals was measured using ImageJ software (NIH) by drawing a line from the nose to 

the tail tip. 

 

Quantitative Analysis of CDF-2::GFP Expression by Fluorescence Microscopy 

cdf-2(tm788);amIs4 animals were synchronized at L1 stage and cultured on NGM dishes. 

L4 stage hermaphrodites were then cultured for 24h on NAMM dishes supplemented 

with ZnSO4 and seeded with concentrated OP50. Animals were paralyzed with 0.1% 

tricaine and 0.01% tetramisole in M9, mounted on 2% agarose pads on microscope slides, 

and imaged with a Zeiss Axioplan 2 microscope equipped with a Zeiss AxioCam MRm 

digital camera using identical settings and exposure times. GFP fluorescence intensity 

was quantified using ImageJ software (NIH). Briefly, the Spot Enhancing Filter 2D 

plugin was used to amplify signals from gut granules, and then threshold settings were 

used to specifically select the fluorescent regions of gut granules. The selected regions 

were overlaid on the original images and analyzed for mean fluorescence intensity of the 

area. 
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Staining with FluoZin-3, LysoTracker and LysoSensors 

FluoZin-3 acetoxymethyl (AM) ester (Molecular Probes F24195) was reconstituted in 

dimethylsulfoxide (DMSO) to generate a 1mM stock solution, diluted in M9 and 

dispensed on NAMM dishes to yield a final concentration of 3μM. L4 stage 

hermaphrodites were cultured on these dishes for 12-24 h in the dark, transferred to 

NGM dishes without FluoZin-3 for 30 min to reduce FluoZin-3 in the intestinal lumen, 

and analyzed by fluorescence microscopy as described above. The intestine on the 

anterior half of each animal was analyzed because this structure was typically observed 

in the same focal plane. Residual fluorescence from the intestinal lumen was manually 

removed and excluded from the analysis. 

 LysoTracker RED DND-99 (1mM, Invitrogen L7528), or LysoSensor Green 

DND-153 (1mM, invitrogen L7534) were diluted in M9 and dispensed on NAMM dishes 

to yield a final concentration of 2μM. L4 stage hermaphrodites were cultured for 12-24 h 

in the dark, transferred to NGM dishes without dye for 30 min to reduce the dyes in the 

intestinal lumen, and imaged as described above. Confocal microscopy was performed 

using an Olympus FV500 confocal microscope system equipped with multi-line argon 

(458/488/515nm) and krypton (568nm) lasers. 

 

Metal Content Analysis by Inductively Coupled Plasma-Mass Spectrometry (ICP-

MS) 

To obtain a large population of animals, we cultured hermaphrodites on multiple 100mm 

NGM dishes, washed the animals three times in M9 containing 0.01% Tween-20, 
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resuspended the animals in concentrated OP50 in M9, and cultured the animals on 

multiple 100mm NAMM dishes supplemented with ZnSO4. After 24 h, animals were 

washed three times in magnesium-free (Mg-free) M9 containing 0.01% Tween-20, 

incubated in 1mM serotonin in Mg-free M9 for 30 min to remove bacteria from the 

intestinal lumen, washed twice in Mg-free M9, and transferred to preweighed tubes and 

frozen at -80℃. The metal content was determined as described by Davis et al. (2009). 

Briefly, samples were freeze-dried, reweighed to obtain the dry pellet weight, and 

digested by incubation in a hot block digester at 90℃ for 1.5h with concentrated nitric 

acid (HNO3) and hydrogen peroxide (H2O2) solution. The solution was diluted to a 

volume of approximately 10mL with deionized water, and internal standards were added 

to correct for matrix effects. Instrument calibration standards were prepared from multi-

element stock solutions (High-Purity Standards) to generate a linear calibration curve, 

and samples were analyzed using a VG Axiom high-resolution ICP-MS (Thermo Fisher 

Scientific). The content of zinc, iron, copper, magnesium and manganese was determined 

as a value in parts-per-million (ppm) by dividing metal weight by dry pellet weight 

(μg/g). 

 

Zinc Shift Assay 

L4 stage animals were cultured for 12-16h on NAMM dishes with FluoZin-3 containing 

0 or 200μM ZnSO4, and then analyzed by fluorescence microscopy. Animals from the 

NAMM dishes with 200μM ZnSO4 were washed, transferred to NAMM dishes with 

FluoZin-3 containing 0 or 200μM ZnSO4 or 100μM TPEN with FluoZin-3, and analyzed 

for fluorescence microscopy after 24h and 48h.  
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 To analyze growth assay, we cultured synchronized L1 stage animals on NAMM 

dishes supplemented with 0 or 50μM ZnSO4 for 12h. We chose 50μM supplemental zinc 

because it caused relatively mild toxicity as measured by subsequent growth, whereas 

100 and 200μM supplemental zinc caused substantial toxicity (data not shown). Animals 

were washed three times, incubated in M9 containing 0.01% Tween-20 for 30 min to 

minimize residual bacteria, and washed one time in M9 containing 0.01% Tween-20. 

Animals were cultured for 3 days on NGM dishes supplemented with TPEN and seeded 

with concentrated OP50, and the length of each animal was determined. 

 

RNA interference 

RNAi feeding experiments were performed as described by Kamath et al. (2001) with 

minor modifications using the Ahringer RNAi library (Geneservice). Briefly, bacteria 

containing an RNAi clone were cultured in LB containing carbenicillin (50μg/ml) 

overnight. The bacterial culture was diluted into LB containing carbenicillin and cultured 

for ~6h, and the bacteria were seeded on NGM containing carbenicillin and IPTG (1mM) 

and dried overnight. RNAi of rab-7 and rme-8 causes embryonic lethality (Kamath et al., 

2003) , and RNAi of pgp-2 and glo-3 causes the Glo phenotype (Rabbitts et al., 2008; 

Schroeder et al., 2007). To avoid affecting embryonic development, we cultured cdf-

2(tm788);amIs4 animals at the L1 stage on NGM dishes seeded with RNAi bacteria. L4 

stage animals were stained with LysoTracker and analyzed by fluorescence microscopy 

as described above. 

 

Statistics 
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All data were analyzed by two-tailed unpaired Student’s t-test, and p <0.05 was 

considered statistically significant. 
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FIGURE LEGENDS 

 

Figure 2.1. Zinc is stored in gut granules (A) Wild-type hermaphrodites cultured with 

FluoZin-3 and the indicated levels of supplemental zinc and TPEN. Fluorescence images 

of live animals were captured with identical settings and exposure times. Each panel 

displays the anterior half of the intestine of a single animal with pharynx to the left and 

tail to the right. Scale bar: 50μm. (B) Quantification of fluorescence images like those 

shown in panel A using ImageJ software. The fluorescence intensity (shown in arbitrary 

units, A.U.) was normalized by setting the value at 0μM supplemental Zn equal to 1.0. 

Bars indicate mean values ± SEM (n=15) (** p<0.001; *** p<0.0001). (C) Fluorescence 

images of live wild-type animals costained with FluoZin-3 (green) and LysoTracker (red). 

Boxed regions are magnified in the right panels. Animals cultured with 100μM 

supplemental zinc displayed bilobed gut granules with asymmetric staining; one side was 

strongly positive for FluoZin-3 (arrow), and the other side was strongly positive for 

LysoTracker (arrowhead). Scale bars: 10μm and 2μm (boxed regions) (see also 

Supplemental Figure 2.1 and 2.2). 

 

Figure 2.2. Gut granules are the major site of zinc storage (A) Fluorescence 

microscope images of live wild-type, pgp-2(kx48), glo-1(zu391) and glo-3(zu446) 

animals cultured with FluoZin-3 and the indicated levels of supplemental zinc. Images 

show the intestine with pharynx to the left and tail to the right. All images had identical 

exposure times and settings. Scale bar: 50μm. (B) Total zinc content of wild-type, pgp-

2(kx48), glo-1(zu391) and cdf-2(tm788) animals. Populations of animals consisting of a 
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mixture of developmental stages were cultured on NAMM dishes with the indicated 

levels of supplemental zinc, and total zinc content was determined by ICP-MS and 

calculated in parts-per-million (ppm). Bars indicate mean values ± SEM of two 

independent experiments (see also Supplemental Figure 2.3). 

 

Figure 2.3. CDF-2 functions cell autonomously to promote zinc storage in gut 

granules (A) Fluorescence microscope images of live transgenic animals containing an 

integrated array, amIs4, expressing CDF-2::GFP, and the cdf-2(tm788) mutation. L4 

stage hermaphrodites were cultured with the indicated levels of supplemental zinc, and 

images were captured with the identical settings and exposure times. Each panel displays 

one representative animal oriented with pharynx to the left and tail to the right. Scale bar: 

100μm. (B) Quantification of fluorescence images like those shown in panel A. The 

fluorescence intensity (shown in arbitrary units, A.U.) was normalized by setting the 

value at 0μM supplemental zinc equal to 1.0. Bars indicate mean values ± SEM (n=15) 

(*** p<0.0001). (C) Fluorescence microscope images of wild-type, cdf-2(tm788), and 

transgenic cdf-2(tm788) animals containing a multicopy extrachromosomal array, 

amEx132, expressing CDF-2::mCherry. Images show the intestine (pharynx to the left, 

tail to the right) of live animals cultured with FluoZin-3 and the indicated levels of 

supplemental zinc. Scale bar: 50μm. (D) Quantification of fluorescence images like those 

shown in panel A. The fluorescence intensity (shown in arbitrary units, A.U.) was 

normalized by setting the value of wild-type animals at 0μM supplemental Zn equal to 

1.0. Bars indicate mean values ± SEM (n=15) (* p<0.01; ** p<0.001; *** p<0.0001). (E) 

Images of a live cdf-2(tm788);amEx132 animal that displayed mosaic expression of the 
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CDF-2::mCherry. The animal was cultured with FluoZin-3 and no supplemental zinc, 

and the intestine was imaged by fluorescence microscopy (pharynx to the left, tail to the 

right). The intestinal cell lacking CDF-2::mCherry expression is marked with a star (*). 

Scale bar: 50μm (see also Supplemental Figure 2.4). 

 

Figure 2.4. High zinc induces the formation of asymmetric bilobed gut granules (A) 

Fluorescence images of live transgenic animals expressing CDF-2::GFP cultured with 

LysoTracker and the indicated levels of supplemental zinc. The differential interference 

contrast (DIC) image shows the intestinal lumen (triangle) and adjacent intestinal cells 

with pharynx to the left and tail to the right. Boxed regions are magnified in the right 

panels. With 200μM supplemental zinc, many gut granules appear to be bilobed and 

asymmetric; one side is positive for CDF-2::GFP and LysoTracker (arrowhead), whereas 

the other side is positive for CDF-2::GFP and negative for LysoTracker (arrow). Scale 

bars: 10μm and 2μm (boxed regions) (see also Supplemental Figure 2.5). (B) Confocal 

microscope images of live transgenic animals expressing LMP-1::GFP cultured with 

LysoTracker and the indicated levels of supplemental zinc. Images show intestinal cells 

with pharynx to the left and tail to the right. Scale bar: 10μm and 2μm (insets). (C) 

Confocal microscope images of live transgenic animals expressing LMP-1::GFP and 

CDF-2::mCherry cultured with 200μM supplemental zinc. Images show intestinal cells 

with pharynx to the left and tail to the right. Insets are magnified images of the boxed 

regions. Scale bar: 10μm and 2μm (insets) (see also Supplemental Figures 2.6 and 2.7).  

 

Figure 2.5. Bilobed gut granule formation is dependent on Glo genes. Fluorescence 
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microscope images of live transgenic animals expressing CDF-2::GFP transgenic 

animals stained with LysoTracker. L1 stage animals were fed RNAi bacteria to reduce 

expression of the indicated genes, L4 stage animals were cultured with LysoTracker and 

200μM supplemental zinc for ~16h and visualized. Images shows intestinal cells with 

pharynx to the left and tail to the right, Boxed regions are magnified in the bottom panels. 

Scale bar: 10μm and 2μm (bottom) (see also Supplemental Figure 2.8). 

 

Figure 2.6. Zinc storage in gut granules promotes detoxification. Wild-type, pgp-

2(kx48), glo-1(zu391), glo-3(zu446) and cdf-2(tm788) hermaphrodites were synchronized 

at the L1 stage and cultured on NAMM dishes for 3 days with the indicated levels of 

supplemental zinc (A, B) or supplemental cadmium (C, D). The length of individual 

animals was measured using microscopy and ImageJ software. To compare strains that 

have different growth rates under optimal conditions, we normalized the length of worms 

by setting the value at 0μM supplemental zinc equal to 1.0 for each strain. Each point 

indicates mean values ± SD (n=10 for Zn, and n=20 for Cd). 

 

Figure 2.7. Zinc in gut granules can be mobilized in response to zinc deficiency (A) 

FluoZin-3 staining of animals in the shift from high zinc to different zinc conditions. 

Wild-type L4 stage hermaphrodites were first cultured on NAMM dishes containing 

FluoZin-3 with 0 or 200μM supplemental zinc. Next, animals from 200μM supplemental 

zinc were transferred to NAMM dishes containing the indicated levels of zinc or TPEN. 

After 24h and 48h of subsequent culture, FluoZin-3 fluorescence was analyzed by 

fluorescence microscopy. (B) Quantification of fluorescence images like those shown in 



 50

panel A. The fluorescence intensity (shown in arbitrary units, A.U.) was normalized by 

setting the value at 0μM supplemental Zn before the shift equal to 1.0. Each point 

indicates mean values ± SEM (n=10). (C) Wild-type and cdf-2(tm788) L1 stage 

hermaphrodites were precultured for 12h on NAMM dishes containing 0 or 50μM 

supplemental zinc, cultured for 3 days on NGM dishes with the indicated levels of TPEN, 

and analyzed individually for length. Each point indicates mean value ± SD (n=20). (D) 

Wild-type, glo-1(zu391), glo-3(zu446) and pgp-2(kx48) animals were analyzed as 

described in panel C. The results with 100μM TPEN are presented, because this 

concentration was the most informative with wild-type animals. The length of individual 

worms at 100μM TPEN was divided by the average length at 0μM TPEN. Bars indicate 

mean values ± SD (n=20). This ratio compares the growth of worms in deficient and 

normal zinc conditions - lower values indicate more severely reduced growth in response 

to zinc deficiency. Animals were precultured with 0 (black) or 50μM (white) 

supplemental zinc. For each strain, the white bar was compared to the black bar (*** 

p<0.0001). All the mutant strain black and white bar values were significantly different 

than the wild-type black and white bar values, respectively. 

 

Supplemental Figure 2.1. FluoZin-3 and LysoTracker colocalize in gut granules of 

intestinal cells Wild-type L4 stage hermaphrodites were cultured with the indicated 

levels of supplemental zinc and costained with FluoZin-3 and LysoTracker. Images show 

an entire live hermaphrodite from pharynx (upper left) to tail (bottom right): bright field 

shows morphology, green displays FluoZin-3 fluorescence, red displays LysoTracker 

fluorescence, and the merge shows green and red. FluoZin-3 fluorescence was captured 
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with the identical settings and exposure times. Scale bar: 100μm. 

 

Supplemental Figure 2.2. FluoZin-3 detects zinc in gut granules (A) Fluorescence 

microscope images of live wild-type animals cultured with or without FluoZin-3. L4 

stage hermaphrodites were cultured with the indicated levels of supplemental zinc. 

Images were captured with the identical settings and exposure times. Images of animals 

cultured with FluoZin-3 are identical to Figure 1A. Fluorescence of gut granules of 

animals cultured with FluoZin-3, which is a combination of FluoZin-3 and 

autofluorescence, was much brighter than fluorescence of gut granules of control animals, 

which is entirely autofluorescence. (B) Quantification of fluorescence images like those 

shown in panel A. The fluorescence intensity (shown in arbitrary units, A.U.) was 

normalized by setting the value of animals cultured without FluoZin-3 at 0μM 

supplemental Zn equal to 1.0. Bars indicate mean values ± SEM (n=15) (*** p<0.0001, 

compared to no dye control at the same concentration of supplemental zinc). 

 

Supplemental Figure 2.3. Gut granules are not a general site of metal storage Total 

magnesium (Mg), iron (Fe), manganese (Mn) and copper (Cu) content of wild-type, pgp-

2(kx48), glo-1(zu391) and cdf-2(tm788) animals. Populations of animals consisting of a 

mixture of developmental stages were cultured on NAMM dishes with the indicated 

levels of supplemental zinc, and total metal content was determined by ICP-MS and 

calculated in parts-per-million (ppm). Bars indicate mean values ± SEM of two 

independent experiments. The same samples were used to measure total zinc content in 

Figure 2B.  
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Supplemental Figure 2.4. Colocalization of CDF-2 and zinc in gut granules 

Fluorescence microscope images of intestinal cells of live transgenic animals expressing 

CDF-2::mCherry cultured with FluoZin-3 and the indicated levels of supplemental zinc. 

Green displays FluoZin-3 and red displays CDF-2::mCherry protein. Boxed regions are 

magnified in the right panels. Animals cultured with 100μM supplemental zinc displayed 

bilobed gut granules. CDF-2::mCherry localized symmetrically to the membrane of both 

sides, whereas FluoZin-3 staining was asymmetric, with one side staining strongly 

(arrow) and the other side staining weakly (arrowhead). The scale bars represent 10μm 

and 2μm (boxed region). 

 

Supplemental Figure 2.5. Neutral lysosomal pH indicators display similar staining 

patterns to LysoTracker Confocal microscope images of live transgenic animals 

expressing CDF-2::mCherry cultured with the indicated levels of supplemental zinc and 

LysoSensor Green DND-153. Images show intestinal cells with pharynx to the left and 

tail to the right, red displays CDF-2::mCherry, green displays LysoSensor Greens, and 

the merge shows green and red. Insets are magnified images of the boxed regions. The 

scale bars represent 10μm and 2μm (boxed region). 

 

Supplemental Figure 2.6. Asymmetric distribution of molecules in bilobed gut 

granules (A) Confocal microscope images of live transgenic animals expressing 

GFP::RAB-7 cultured with LysoTracker and the indicated levels of supplemental zinc. 

Images shows intestinal cells with pharynx to the left and tail to the right, green displays 
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GFP::RAB-7, red displays LysoTracker, and the merge shows green and red. The scale 

bar represents 10μm. (B) Confocal microscope images of live transgenic animals 

expressing GFP::RAB-7 and CDF-2::mCherry cultured with 200μM supplemental zinc. 

Images shows intestinal cells with pharynx to the left and tail to the right, green displays 

GFP::RAB-7, red displays CDF-2::mCherry, and the merge shows green and red. The 

scale bar represents 10μm. 

 

Supplemental Figure 2.7. CDF-2 and PGP-2 colocalize on the membrane of gut 

granules Fluorescence microscope images of live transgenic animals expressing CDF-

2::mCherry and PGP-2::GFP cultured with the indicated levels of supplemental zinc. Red 

displays CDF-2::mCherry, green displays PGP-2::GFP, and blue displays 

autofluorescence. Images show a lateral view of intestinal cells, and boxed regions are 

magnified in the right panels. In the presence of 100μM supplemental zinc, gut granules 

appear to be bilobed and asymmetric. CDF-2::mCherry and PGP-2::GFP proteins fully 

colocalized on the membrane of gut granules at both 0μM and 100μM supplemental zinc 

(arrow). Autofluorescence fully colocalized with CDF-2::mCherry and PGP-2::GFP with 

0μM supplemental zinc (triangle), but autofluorescence was detected only on one side of 

bilobed granules with 100μM supplemental zinc (arrowhead). The scale bars represent 

10μm and 2μm (boxed regions). 

 

Supplemental Figure 2.8. Bilobed gut granules formation is independent of CDF-2 

activity (A) Fluorescence microscope images of live transgenic animals expressing PGP-

2::GFP in the background of the cdf-2(tm788) mutation cultured with 200μM 
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supplemental zinc. Images show a lateral view of intestinal cells, green displays PGP-

2::GFP, red displays LysoTracker, and merge displays green and red. The scale bar 

represents 10μm. (B) Fluorescence microscope images of wild-type and cdf-2(tm788) 

mutant animals costained with FluoZin-3 and LysoTracker and cultured with the 

indicated levels of supplemental zinc. Images show intestinal cells, green displays 

FluoZin-3, red displays LysoTracker, and merge displays green and red. While wild-type 

animals display bilobed morphology of gut granules with an asymmetric staining of 

FluoZin-3 and LysoTracker, cdf-2 mutants display single round shape of gut granules. 

The scale bar represents 10μm. 

 

Supplemental Figure 2.9. Molecular properties of gut granules in normal and high 

zinc conditions In normal zinc conditions, gut granules are round vesicles that are 

autofluorescent and stained by LysoTracker, LysoSensors, and FluoZin-3 staining. Gut 

granule membrane contains late endosomal or lysosomal proteins, RAB-7 and LMP-1, 

and gut granule-specific proteins, CDF-2 and PGP-2, not an early endosomal protein, 

RAB-5. In high zinc conditions, gut granules are bilobed in shape, and the bilobed 

granules display different distribution of molecules. One side displays autofluorescence, 

staining of LysoTracker, LysoSensors, and FluoZin-3, and the localization of RAB-7, 

LMP-1, CDF-2 and PGP2 proteins, identical to regular state gut granules. The other side 

contains PGP-2 and CDF-2 and displays strong FluoZin-3 staining. The plus (+) and 

minus (-) signs indicate the presence and absence of the molecules, respectively. The low 

and high indicate the relative levels of the molecule.  
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CHAPTER 3 
 

 

The Cation Diffusion Facillitator TTM-1 

Functions in Zinc Excretion in C. elegans 

 

 

 

 

 
 
[The work in Chapter 3 is in preparation for submission with the following authors: Hyun 
Cheol Roh, Sara Collier, James Guthrie, J. David Robertson, and Kerry Kornfeld. 
 
H.C.R designed and performed all experiments and analyses except: S.C. performed 
quantitative RT-PCR (Figures 3.2, 3.5B, 3.5C), and J.G. and J.D.R. performed the ICP-
MS (Figure 3.5A).] 
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ABSTRACT 

 

 Zinc is the most widely used essential trace metal element. Organisms have 

evolved precise mechanisms to maintain zinc homeostasis, and zinc transporters play an 

important role in this process. Although many zinc transporters have been studied, how 

multiple zinc transporters act in a coordinated manner is not well defined. Here we 

characterize a C. elegans cdf gene, ttm-1, and its two isoforms, ttm-1a and ttm-1b. TTM-

1A localized to intracellular compartments of the intestine and hypodermis, and 

expression was not induced by dietary zinc. TTM-1B localized to the apical membrane 

of intestinal cells, and expression was induced by dietary zinc. Analyses of loss-function 

mutations demonstrated that TTM-1 is involved in zinc excretion and is important for 

zinc detoxification in the absence of CDF-2. These findings indicate that TTM-1 plays a 

role in zinc detoxification and excretion in concert with CDF-2 in C. elegans. 
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INTRODUCTION 

 

 Zinc is an essential trace element that is required for a wide range of biological 

processes and implicated in a variety of human diseases (Vallee and Falchuk, 1993). 

Since zinc deficiency and excess zinc are deleterious (Fosmire, 1990; Hambidge, 2000), 

organisms have evolved mechanisms to achieve zinc homeostasis. As positively charged 

zinc ions cannot move across the membrane of lipid bilayers, transmembrane zinc 

transporter proteins are necessary for the movement of zinc in the cell (Eide, 2006).  

 Zinc transporters are divided into two major families, cation diffusion facilitator 

(CDF/ZnT/SLC30) and Zrt-, Irt-like protein (ZIP/SLC39) (Kambe et al., 2006). CDF 

proteins have six conserved transmembrane motifs, and they transport cytoplasmic zinc 

out of the cell or into intracellular organelles, resulting in the decrease in the cytoplasmic 

zinc concentrations. In contrast, ZIP proteins have eight conserved transmembrane 

motifs, and they move zinc either from the outside of the cells or from intracellular 

compartments into the cytoplasm. In mammals, there are 10 members in the CDF family 

and 14 members in the ZIP family. Each zinc transporter displays different tissue 

distributions and intracellular localizations (Lichten and Cousins, 2009), and the 

cooperation of zinc transporters at multiple locations contributes to the regulation of zinc 

homeostasis in the cell and in the whole organism. For example, in intestinal epithelial 

cells, ZIP-4 localizes to the apical membrane while ZnT-1 localizes to the basolateral 

membrane. These proteins function antagonistically to modulate intracellular zinc levels, 

and the interaction between these zinc transporters is critical for the uptake of zinc from 

the diet and the distribution of zinc to other tissues of the body. However, although 
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previous studies have identified many zinc transporters, our understanding of the 

networks of zinc transporters in an entire individual is limited. 

 C. elegans is an excellent system to study zinc metabolism (Bruinsma et al., 

2008; Davis et al., 2009; Murphy et al., 2011). Unlike the yeast, C. elegans contains 

multiple tissues such as an intestine, musculature, nervous system, reproductive tracts 

and epithelia, which allows the study of networks of zinc transporters at multiple 

locations. The powerful genetic techniques in C. elegans biology facilitate the analysis of 

functional interaction between zinc transporters, which have been difficult in mammalian 

system. In addition, culture conditions have been developed that allow precise control 

over dietary zinc(Bruinsma et al., 2008; Davis et al., 2009).  

 Previous studies of C. elegans characterized three C. elegans CDF proteins 

which function in the control of zinc metabolism in the intestine. CDF-1 is localized to 

the plasma membrane of intestinal cells, probably on the basolateral side, and transport 

zinc from the intestine to the body cavity similar to mammalian ZnT-1. Zinc transported 

by CDF-1 is excreted from the body perhaps via the excretory cell (Bruinsma et al., 

2002). CDF-2 localizes to the membrane of lysosome-related organelles, termed gut 

granules, which store excess zinc during high zinc conditions (Davis et al., 2009). SUR-7 

is present in the ER/Golgi complex and appears to be involved in the excretion of zinc by 

transporting it into secretory vesicles (Yoder et al., 2004). Therefore, the intestine is a 

critical tissue for maintaining zinc homeostasis in C. elegans and multiple CDF proteins 

contribute to this process. 

 Here, we characterize the C. elegans cdf gene, ttm-1 (toxin-regulated target of 

p38MAPK). ttm-1 was identified as a downstream transcriptional target of p38 kinase in 
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response to bacterial toxins (Huffman et al., 2004). TTM-1 is also involved in the 

response to environmental cadmium (Cui et al., 2007a). We demonstrate that ttm-1 is 

composed of two isoforms, ttm-1a and ttm-1b, that are specified by different 

transcription start sites. Expression of ttm-1a was not responsive to dietary zinc and 

TTM-1A localized to intracellular compartments. In contrast, ttm-1b was strongly 

induced by dietary zinc and TTM-1B localized to the apical membrane of intestinal cells. 

Genetic analysis demonstrated that TTM-1B is involved in zinc excretion and is 

important for zinc detoxification in combination with CDF-2. These results advance our 

understanding of networks of zinc transporters for the regulation of zinc homeostasis in 

animals.  

 

 

RESULTS 

 

Gene Structure of ttm-1 

Based on the computational algorithm Gene Finder and the analysis of 

expression sequence tags (ESTs), it was predicted that ttm-1 contained five exons and 

encoded two variants, ttm-1a and ttm-1b (Figure 3.1A). To determine the molecular 

mechanism that is responsible for the generation of the two isoforms, we performed 5’ 

rapid amplification of cDNA ends (5’ RACE). Using a primer specific to both predicted 

isoforms of ttm-1, we detected two different mRNA products fused to the SL1 trans-

spliced leader sequence at the 5’ end. While SL1 of ttm-1a mRNA is 3 bp apart from the 

start codon, SL1 of ttm-1b mRNA is 4 bp apart from the start codon (data not shown). 
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These results suggest that ttm-1 generates at least two isoforms using different 

transcription start sites (Figure 3.1A). 

BLAST searches indicated that TTM-1A/B are closely related to C. elegans 

CDF-2 and human ZnT-2, but they are also similar to human ZnT-3, 4, and 8 (Figure 

3.1B). TTM-1A and TTM-1B contain distinct N-terminal sequences (Figure 3.1B). Most 

CDF proteins contain a conserved histidine motif, (HX)n in the loop between the fourth 

and fifth transmembrane motifs, and this motif is presumed to regulate zinc transporter 

activity (Gaither and Eide, 2001a; Kawachi et al., 2008).TTM-1B has a unique histidine- 

and glycine-rich motif at its N-terminus which is similar to the (HX)n motif in the loop 

between the fourth and fifth transmembrane motifs (Figures 3.1B and C). This N-

terminal (HX)n motif is unique to C. elegans TTM-1B and may be an important 

regulatory or functional domain. 

 

Regulation of ttm-1b by Dietary Zinc 

The expression of genes involved in zinc metabolism, such as mtl-1, mtl-2 and 

cdf-2, are regulated by the level of dietary zinc (Davis et al., 2009; Freedman et al., 

1993). To determine whether ttm-1 expression is affected by dietary zinc levels, we 

performed quantitative RT-PCR on animals grown with different levels of zinc. ttm-1a 

mRNA levels were constant across all zinc concentrations. In contrast, ttm-1b mRNA 

was strongly induced by 200μM supplemental zinc compared to 0μM supplemental zinc 

(Figure 3.2). These results suggest that only ttm-1b is responsive to excess dietary zinc 

and may be more important than ttm-1a for the response to high zinc conditions. 
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Tissue Distribution of ttm-1 

To determine the cell types expressing ttm-1a and ttm-1b, we generated 

transgenic animals that express GFP under the control of the predicted ttm-1a and ttm-1b 

promoters. For ttm-1a, the region between the ttm-1a start codon and the 3’ end of the 

adjacent upstream gene was used to drive GFP expression (Figure 3.1A). Pttm-1a::GFP 

transgenic animals displayed GFP expression in the hypodermis and the intestine (Figure 

3.3A). For ttm-1b, because its transcription starts upstream of exon 3, intro 2 is likely to 

function as a promoter region. The large size of intron 2 (~10kbp) suggests that it may 

contain important promoter elements that drive ttm-1b expression. We built a construct 

containing ~6kb upstream of the ttm-1b start codon (Pttm-1b(-6kb)::GFP) (Figure 3.1A). 

Transgenic animals containing this construct displayed GFP expression in multiple 

tissues including the intestine, head neurons, seam cells, hypodermis and the vulva 

(Figure 3.3B). These results suggest that each ttm-1 isoform has the unique tissue 

distribution. 

To determine if the expression patterns observed in transgenic animals reflects 

the endogenous ttm-1b expression pattern, we tested whether GFP expression was 

induced in Pttm-1b(-6kb)::GFP transgnic animals (Figure 3.2). When incubated with 

200μM supplemental zinc, these animals displayed a significant increase in intestinal 

GFP expression (Figure 3.3C, a-b). This induction of GFP was restricted to the intestine. 

GFP expression in head neurons, for example, was not affected by zinc (Figure 3.3C, c-

d). These results suggest that the 6kb fragment immediately upstream of the TTM-1B 

start codon contains elements important for tissue specific and zinc-responsive 

expression. 



 78

To determine the location of the key promoter elements responsible for ttm-1b 

expression, we built a truncated construct that contains ~2.4kb upstream of the ttm-1b 

start codon (Pttm-1b(-2.4kb)::GFP) (Figure 3.1A). In Pttm-1b(-2.4kb)::GFP transgenic 

animals, GFP expression was absent from intestinal cells but detected in the other tissues 

where Pttm-1b(-6kb)::GFP was expressed (Supplemental Figure 3.1A). In addition, GFP 

was not induced in response to high zinc levels in Pttm-1b(-2.4kb)::GFP transgenic 

animals (Supplemental Figure 3.1B). These results suggest that the region between ~6kb 

and ~2.4kb upstream of the ttm-1b start codon contains elements required for intestinal 

and zinc-responsive expression of ttm-1b.  

 

Intracellular Localization of TTM-1 

To determine the intracellular localization of TTM-1A and TTM-1B proteins, we 

generated transgenic animals that express TTM-1A or TTM-1B protein fused to GFP 

under the control of each respective promoter (Figure 3.1A). In the head and body 

hypodermis, TTM-1A::GFP localized to intricate intracellular networks (Figures 3.4A 

and 3.4B). To identify the compartments containing TTM-1A::GFP, we performed 

colocalization experiments using MitoTracker and autofluorescence from gut granules. 

TTM-1A::GFP was not colocalized with MitoTracker (data not shown) or 

autofluorescence from gut granules in the intestine (Figure 3.4C) These data suggest that 

TTM-1A is not present in mitochondria or gut granules. We are currently testing 

additional molecular markers to identify the TTM-1A intracellular localization. 

In intestinal cells, TTM-1B::GFP localized to the apical plasma membrane, 

whereas it localized to intracellular structures in other tissues such as hypodermis and 
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neurons (Figure 3.4D), suggesting that the intracellular localization of TTM-1B may be 

different depending on the type of tissues. To determine if TTM-1B levels are induced by 

dietary zinc, we analyzed TTM-1::GFP expression in response to supplemental zinc. 

Consistent with the induction of ttm-1b mRNA expression, TTM-1B::GFP on the apical 

membrane of intestinal cells was increased in the presence of 100μM supplemental zinc 

(Figure 3.4E), suggesting that high levels of TTM-1B proteins on the apical membrane of 

intestinal cells may play an important role in the response to high levels of zinc. In the 

other tissues such as neurons and hypodermis, TTM-1::GFP expression was not changed 

(data not shown), consistent with the observation from Pttm-1b(-6kb)::GFP transgenic 

animals. These results suggest that TTM-1B may have two distinct functions. In the 

tissues including neurons and hypodermis, TTM-1B may be involved in the flow of zinc 

into intracellular compartments. In the intestine, it may play a role in the excretion of 

zinc by transporting it directly into the intestinal lumen in response to high levels of zinc. 

 

Role of TTM-1 in Excretion of Zinc 

To study the function of TTM-1 in zinc metabolism, we examined the mutant 

allele ttm-1(ok3503) which was generated by the C. elegans Gene Knockout Consortium. 

We analyzed the genomic sequence of the ttm-1 locus of the ok3503 strain and found that 

the ok3503 allele is a deletion of 877 bp from exon 4 to intron 4 (Figure 3.1A). This 

deletion is predicted to remove transmembrane motifs II through VI and may cause an 

early translation termination due to a splicing site disruption and subsequent frame shift 

(Figure 3.1B). Because of the loss of a large portion of the transmembrane region, we 

predict ttm-1(ok3503) is a loss-of-function allele. Since the deleted region is common to 
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both of ttm-1a and ttm-1b isoforms, the ttm-1(ok3503) is predicted to inactivate both 

isoforms. 

Based on the localization of TTM-1B, we hypothesized that one of the functions 

of ttm-1 is to excrete zinc in high zinc conditions. To test the hypothesis, we measured 

the total zinc content of ttm-1(ok3503) animals by using inductively coupled plasma-

mass spectrometry (ICP-MS). In normal conditions without supplemental zinc, the zinc 

content of ttm-1(ok3503) animals was similar to wild-type animals. However, in the 

presence of 200μM supplemental zinc, ttm-1(ok3503) animals displayed approximately 

40% higher total zinc than wild-type animals, indicating more zinc had accumulated in 

the mutant animals (Figure 3.5A). These results suggest that TTM-1 promotes the 

excretion of zinc during high zinc conditions. 

To examine the excretory role of TTM-1 by an independent approach, we 

measured mRNA levels of metallothionein genes. Metallothionein gene expression is 

upregulated by increased levels of cytoplasmic zinc (Davis and Cousins, 2000). In 

normal conditions without supplemental zinc, ttm-1(ok3503) animals displayed 

approximately 3-fold higher levels of mtl-1 compared to wild-type animals. In the 

presence of 100μM and 200μM supplemental zinc, there was also approximately 2-fold 

increase in mtl-1 mRNA levels in ttm-1(ok3503) animals compared to wild-type animals 

(Figure 3.5B). Similar results were observed for mtl-2 mRNA expression (Figure 3.5C). 

These results suggest that ttm-1 mutant animals contain higher levels of cytoplasmic zinc 

both in normal and high zinc conditions. Furthermore, mtl-1/2 expression may be a more 

sensitive measure of cytoplasmic zinc levels than ICP-MS. 
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Role of ttm-1 in Zinc Detoxification 

To determine the role of TTM-1 in zinc detoxification, we examined zinc 

sensitivity by measuring growth rate in the presence of different concentrations of 

supplemental zinc as described in Chapter 2. ttm-1(ok3503) animals grew similarly to 

wild-type animals in under all zinc conditions (Figure 3.6A), suggesting that TTM-1 may 

not be required for zinc detoxification. CDF-2 is the zinc transporter that is most similar 

to TTM-1 in C. elegans. To determine if these proteins have overlapping functions, we 

examined zinc sensitivity of ttm-1(ok3503);cdf-2(tm788) animals. ttm-1(ok3503);cdf-

2(tm788) animals displayed a reduced growth rate in normal zinc conditions and an 

enhanced sensitivity to high levels of zinc compared to cdf-2(tm788) animals (Figure 

3.6A). These data indicate that TTM-1 may play a role in zinc detoxification in the 

absence of CDF-2.  

To further explore the relationship between TTM-1 and CDF-2, we measured 

mRNA levels of mtl-1/2 in ttm-1(ok3503);cdf-2(tm788) animals. Without supplemental 

zinc, ttm-1 and cdf-2 single mutant animals displayed approximately 3-fold and 1.5-fold 

increase in mtl-1 expression, while ttm-1(ok3503);cdf-2(tm788) animals displayed an 

approximately 18-fold increase (Figure 3.5B). In the presence of 100μM supplemental 

zinc, ttm-1(ok3503);cdf-2(tm788) animals also displayed a synergistic increase of mtl-1 

expression. mtl-2 mRNA levels displayed similar patterns to mtl-1 mRNA (Figure 3.5C). 

These results suggest that TTM-1 and CDF-2 function in parallel to detoxify cytoplasmic 

zinc. 

To test whether TTM-1 cooperates with other known CDF members, we 

examined alleles of cdf-1 and sur-7. Animals carrying cdf-1(n2527) or sur-7(ku119) were 
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hypersensitive to zinc (Bruinsma et al., 2002; Yoder et al., 2004) (Figure 3.6B and 

Supplemental Figure 3.2). Both ttm-1(ok3503);cdf-1(n2527) and ttm-1(ok3503);sur-

7(ku119) animals were indistinguishable from cdf-1(n2527) and sur-7(ku119) animals, 

respectively, in the growth-rate assay (Figure 3.6B and Supplemental Figure 3.2). These 

results suggest that neither CDF-1 nor SUR-7 functionally interact with TTM-1. 

 

Role of TTM-1B in Zinc Detoxification 

To determine which isoform of TTM-1 is important for zinc excretion and 

detoxification, we performed a rescue experiment by expressing each isoform. We 

generated transgenic animals expressing either TTM-1A::GFP or TTM-1B::GFP in the 

ttm-1(ok3503);cdf-2(tm788) animals, and measured zinc sensitivity. TTM-1A::GFP did 

not rescue the zinc hypersensitivity of ttm-1(ok3503);cdf-2(tm788) animals, TTM-

1B:GFP expression displayed a partial rescue of the phenotype (Figure 3.6C). These 

results suggest that TTM-1B, but not TTM-1A, plays a critical role in zinc detoxification 

by promoting excretion of zinc from the intestine. 

 

 

DISCUSSION 

 

 ttm-1 was originally identified as one of the downstream targets of p38 kinase 

(Huffman et al., 2004). ttm-1 expression is increased in response to pore-forming 

bacterial toxins via the p38 MAPK signaling pathway, and RNAi of ttm-1 causes 

hypersensitivity to the same toxins. ttm-1 expression is also induced by cadmium 
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exposure, and it is important for cadmium tolerance (Cui et al., 2007a). However, the 

function of ttm-1 has not been determined. 

 We demonstrate that TTM-1 plays a role in zinc excretion and is important for 

zinc detoxification in response to high levels of dietary zinc. Loss of ttm-1 results in 

elevated zinc contents and mtl-1/2 mRNA levels. These data suggest that zinc 

accumulates in ttm-1(ok3503) animals and TTM-1 functions in excretion of zinc in 

response to high zinc. To study the action of TTM-1, we characterized the tissue 

distribution and intracellular localization of TTM-1A/B. TTM-1A is localized to 

intracellular compartments in intestinal and hypodermal cells. TTM-1B displayed two 

different localizations; while TTM-1B is on the apical plasma membrane of intestinal 

cells, it is localized to intracellular compartments in other tissues such as hypodermis and 

neurons. These results suggest that TTM-1A/B has multiple functions depending on the 

type of cells. 

One function of TTM-1 may be to supply zinc to intracellular compartments via 

the action of TTM-1A. Since ttm-1a expression is constant regardless of zinc status, 

TTM-1A may mediate the flow of zinc into zinc-requiring intracellular compartments. 

We demonstrated that the intracellular compartments containing TTM-1A are neither 

mitochondria nor gut granules, and further experiments are required to determine the 

localization of this protein. Additionally, we are conducting assays to determine the 

function of TTM-1A. 

Given that ttm-1 mutant animals displayed a zinc accumulation phenotype, the 

major function of TTM-1 appears to be the excretion of zinc via the action of TTM-1B. 

ttm-1b was most strongly expressed in the intestine which is a metabolically active tissue 
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in C. elegans. TTM-1B was localized on the apical plasma membrane of intestinal cells, 

and its expression was strongly induced by high levels of dietary zinc. Additionally, 

TTM-1B::GFP rescued the zinc hypersensitivity phenotype of ttm-1(ok3503);cdf-

2(tm788) animals. Taken together, these results suggest that TTM-1B promotes excretion 

of zinc from intestinal cells into the lumen during high zinc conditions. To further define 

the role of TTM-1B, we will use tissue-specific promoters to determine the site of TTM-

1B action. 

TTM-1 functions with CDF-2 in zinc detoxification. Although TTM-1 plays a 

role in zinc excretion, it was not required for efficient zinc detoxification. TTM-1 was, 

however, critical for zinc detoxification in the absence of CDF-2. These results raise two 

possibilities. First, zinc excretion by TTM-1 plays a minor role in zinc detoxification, 

and its role is detectable only in sensitized strains that are hypersensitive to zinc. Second, 

TTM-1 communicates with CDF-2 to control the flow of intracellular zinc. To test these 

possibilities, we tested the role of TTM-1 in other zinc hypersensitive strains including 

cdf-1 and sur-7 mutant animals. In contrast to ttm-1;cdf-2 double mutant animals, neither 

ttm-1;cdf-1 nor ttm-1;sur-7 double mutant animals displayed additive phenotypes, 

suggesting a specific functional interaction between TTM-1 and CDF-2. 

As TTM-1 was important in the absence of CDF-2, it is likely that CDF-2 is 

sufficient for zinc detoxification, and only when CDF-2 is not functional does the role of 

TTM-1 become critical. Zinc is a valuable nutrient to animals. When exposed to zinc 

abundant environments, animals store excess zinc rather than excrete it. Therefore, it is 

natural that zinc storage by CDF-2 in gut granules has the priority for zinc detoxification 

over zinc excretion by TTM-1 in high zinc conditions. This study demonstrates that 
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functional interaction between zinc transporters is an important mechanism to control 

zinc metabolism in an efficient manner. For the molecular mechanism by which CDF-2 

has priority over TTM-1, it is possible that CDF-2 has higher affinity for zinc than TTM-

1B so that excess zinc is mainly transported into gut granules. Alternatively, TTM-1B has 

a unique histidine-rich motif at its N-terminus, which may receive a signal to attenuate 

TTM-1B transporter activity. The interaction between multiple zinc transporters will be 

an important future research topic to be addressed in zinc physiology. 

 

 

MATERIALS AND METHODS 

 

General Methods and Strains 

C. elegans strains were cultured at 20℃ on nematode growth medium (NGM) and the E. 

coli OP50 strain was used for food (Brenner, 1974). The wild-type C. elegans and parent 

of all mutant strains was Bristol N2. The following mutations were used: cdf-1(n2527) 

(Bruinsma et al., 2002), cdf-2(tm788) (Davis et al., 2009) and sur-7(ku119) (Yoder et al., 

2004). ttm-1(ok3503) was generated by the C. elegans Gene Knockout Consortium and 

obtained from the Caenorhabditis Genetics Center. ttm-1(ok3503) was backcrossed five 

times before analysis. The molecular lesion of ttm-1(ok3503) was determined by 

sequencing of the PCR-amplified ttm-1 locus using the following primers: 

cccgccaaaaattattcaga and accgtaatgggacagacagc. Double mutant animals were generated 

by standard methods, and genotypes were confirmed by PCR or DNA sequencing. 
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5’ Rapid Amplification of cDNA Ends (RACE) 

To determine the presence of ttm-1a and ttm-1b isoform transcripts and to study the 

mechanism by which those isoforms were encoded by the ttm-1 genomic locus, we 

performed 5’ RACE using the 5’ RACE System for Rapid Amplification of cDNA Ends 

Version 2.0 according to the manufacturer’s protocol (Invitrogen, Carlsbad, CA). Briefly, 

RNA was purified from wild-type adult animals using TRIzol and reverse-transcribed 

using a gene specific primer (GSP1) which hybridizes to exon 4. Next, cDNA was tailed 

with oligo(dC) and amplified by PCR using Abridge Anchor Primer and another gene 

specific primer (GSP2) which is ~30bp 5’ of GSP1. Two different PCR products were 

observed after agarose gel electrophoresis and then purified and sequenced. GSP1 is 

gtaaccgaatgaaagacgct, and GSP2 gagaattcaagacgtgcacaacgaatcg. 

 

Quantitative real-time PCR 

To generate samples of synchronized adult animals, eggs were isolated from gravid adult 

hermaphrodites by bleaching, hatched in M9 overnight, and the worms were cultured on 

NGM dishes for approximately 2.5 days. Synchronized animals at L4/young adults were 

washed off and then cultured on noble agar minimum medium (NAMM) dishes 

supplemented with zinc sulfate (ZnSO4) and seeded with concentrated OP50. After 16-

24hr, animals were washed off and collected for RNA purification. RNA analysis was 

performed as described by Davis et al. (2009) with modifications. Briefly, RNA was 

purified using TRIzol and treated with DNase I, and cDNA was synthesized using the 

High-Capacity cDNA Reverse Transcription kit according to the manufacturer’s protocol 

(Applied Biosystems, Foster City, CA). PCR was performed using a BioRad MyiQ 
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Single Color Real-Time PCR Detection System thermocycler and iQ SYBR Green 

Supermix (BioRad Laboratories, Hercules, CA). Fold change was determined by 

comparing the changes in target gene expression between different conditions to the 

changes in reference gene expression (ama-1 and rps-23) under the same conditions.  

 

Transgenic Strain Construction & Microscopy 

To generate promoter fusion constructs, we inserted the putative promoter region of ttm-

1a or ttm-1b, coding sequence of GFP and the unc-54 3’UTR into pBluescript SK+ 

(Stratagene, Santa Clara, CA). For ttm-1a, the region between the ttm-1a start codon and 

the 3’ end of the adjacent upstream gene (~1.2kb) was amplified by PCR using wild-type 

genomic DNA and used to make pSC27 [Pttm-1a::GFP]. For ttm-1b, ~6kb and ~2.4kb 

regions upstream of exon 3 were amplified by PCR using wild-type genomic DNA and 

used to make pHR6 [Pttm-1b(-6kb)::GFP] and pSC28 [Pttm-1b(-2.4kb)::GFP], 

respectively. To generate translational fusion constructs, ttm-1a cDNA was amplified by 

PCR using the EST clone, yk1572h06, which was obtained from the National Institutes 

of Genetics in Japan. ttm-1b cDNA was generated by combining the exon 4-5 fragment 

PCR-amplified from the EST clone, yk1572h06, and the exon 3 fragment PCR-amplified 

from wild-type genomic DNA. Next, the promoter, cDNA of ttm-1a or ttm-1b without 

the stop codon, coding sequence of GFP and the unc-54 3’UTR were inserted into 

pBluescript SK+ to build pSC29 [TTM-1A::GFP] and pHR7 [TTM-1B::GFP]. 

Transgenic animals were generated by coinjecting each plasmid construct and the 

coinjection marker pCJF104 [Pmyo-3::mCherry].  

For fluorescence microscopy, animals were paralyzed in a drop of 10mM 
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levamisole in M9 on 2% agarose pads on microscope slides. Images were captured using 

a Zeiss Axioplan 2 microscope equipped with a Zeiss AxioCam MRm digital camera.  

 

Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) 

Metal content analysis was performed as described by Davis et al. (2009) with 

modifications. For the preparation of samples, large populations of animals were 

generated by culturing on multiple 100mm NGM dishes. Animals were then washed off 

and cultured on multiple 100mm NAMM dishes supplemented with ZnSO4 and seeded 

with concentrated OP50. After ~24 h, animals were washed three times in magnesium-

free (Mg-free) M9 containing 0.01% Tween-20, incubated in 1mM serotonin in Mg-free 

M9 for 30 min to remove bacteria from the intestinal lumen, washed twice in Mg-free 

M9, and transferred to preweighed tubes and frozen at -80°C. For ICP-MS, samples were 

freeze-dried, reweighed to obtain the dry pellet weight, and digested by incubation in a 

hot block digester with concentrated nitric acid and hydrogen peroxide solution. The 

solution was diluted with water, and internal standards were added to correct for matrix 

effects. Instrument calibration standards were prepared from multi-element stock 

solutions (High-Purity Standards) to generate a linear calibration curve, and samples 

were analyzed using a VG Axiom high-resolution ICP-MS (Thermo Fisher Scientific). 

The content of zinc, iron, copper, magnesium and manganese was determined as a value 

in parts-per-million (ppm) by dividing metal weight by dry pellet weight (μg/g). 

 

Zinc Sensitivity Assays 

Eggs were isolated from gravid adult hermaphrodites by treating with NaOH and bleach 
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and hatched in M9 overnight. Synchronized L1 animals were then cultured on noble agar 

minimum medium (NAMM) dishes supplemented with ZnSO4 and seeded with 

concentrated OP50. After about 3 days, animals were washed off, paralyzed with 10mM 

sodium azide (NaN3) in M9, and then mounted on a 2% agarose pad on a microscope 

slide. Images were captured as described above. Length of animals was measured using 

ImageJ software (NIH) by drawing a line from the nose to the tail tip. 
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FIGURE LEGENDS 

 

Figure 3.1. Gene structure and protein sequence of ttm-1. (A) ttm-1 encodes two 

isoforms, ttm-1a and ttm-1b using different transcription start sites near exon 1 and exon 

3, respectively, as indicated by arrows. Both ttm-1a and ttm-1b mRNA contain SL1 at 

their 5’ ends. The ok3503 allele is a deletion of 877bp in the region between exon 4 and 

intron 4. Transgene constructs used for expression pattern analysis are depicted. (B) 

TTM-1A/B protein sequence alignment with C. elegans CDF-2 and human orthologs. 

Identical and similar amino acids are displayed in black and gray, respectively. Blue 

boxes indicate six predicted transmembrane motifs (labeled I-VI) conserved in the CDF 

family. The pair of red triangles indicates the region deleted by the ok3503 allele. The 

red bar indicates the region containing the unique N-terminal histidine-rich motif of 

TTM-1B, the green bar indicates the conserved (HX)n motif of CDF proteins in the loop 

between the fourth and fifth transmembrane motifs. (C) The unique N-terminal histidine-

rich motif (red bar) and the conserved (HX)n motif in the loop between the fourth and 

fifth transmembrane motif (green bar) are compared. Histidine residues are displayed in 

red.  

 

Figure 3.2. Expression of ttm-1a and ttm-1b mRNA by high dietary zinc. mRNA levels 

of indicated genes were analyzed by quantitative RT-PCR. The Y-axis represents the fold 

changes of relative mRNA levels between 0 and 200μM supplemental zinc, and the bars 

indicate the average ± SEM of two independent experiments. While ttm-1a displays the 

constant mRNA levels, ttm-1b displays significant induction of mRNA expression by 
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200μM supplemental zinc. ama-1 is a reference gene which is not responsive to zinc, and 

cdf-2 is a positive control which is induced by zinc.  

 

Figure 3.3. Fluorescence microscope images of transgenic animals expressing GFP 

under the control of ttm-1a or ttm-1b promoter. (A) ttm-1a expression in the hypodermis 

and intestine. (B) ttm-1b expression in the head neurons, intestine, hypodermis including 

seam cells and vulva. (C) (a-b) ttm-1b expression is induced in the intestine by 200μM 

supplemental zinc. The arrows indicate either end of the intestine. (c-d) The head of an 

animal including the first pair of intestinal cells is displayed (anterior to the right and 

posterior to the left). While intestinal cells (triangles) display induction of ttm-1b by 

200μM supplemental zinc, ttm-1b expression is not responsive to zinc in the head 

neurons (arrows). 

 

Figure 3.4. Fluorescence microscope images of transgenic animals expressing TTM-1A 

or TTM-1B translationally fused to GFP. Localization of TTM-1A::GFP to intracellular 

compartments in the head hypodermis (A), body hypodermis (B), and intestine (C). In 

the intestine, green displays TTM-1A::GFP, and blue display autofluorescence from gut 

granules. TTM-1A::GFP does not colocalize with gut granule autofluorescence. (D) 

Localization of TTM-1B::GFP on the apical membrane of intestinal cells (top) and to 

intracellular compartments of the tail hypodermis (bottom). The arrows indicate the 

lumen of the intestine. (E) Induction of TTM-1B::GFP on the apical membrane of 

intestinal cells by 100μM supplemental zinc. The arrows indicate the lumen of the 

intestine.  
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Figure 3.5. (A) Total zinc contents of wild-type (WT) and ttm-1(ok3503) animals 

measured by ICP-MS. (B-C) mRNA levels of mtl-1 (B) and mtl-2 (C) in wild-type (WT), 

ttm-1(ok3503), cdf-2(tm788), and ttm-1(ok3503);cdf-2(tm788) animals. mRNA levels 

were analyzed by quantitative RT-PCR.  

 

Figure 3.6. (A) Zinc sensitivity of wild-type (WT), ttm-1(ok3503), cdf-2(tm788), and 

ttm-1(ok3503);cdf-2(tm788) animals. Animals synchronized at the L1 stage were 

cultured with the indicated levels of supplemental zinc for 3 days. The length of 

individual animals was measured using microscopy and ImageJ software. The values 

indicate the average of the length of animals ± SD (n=20). (B) Zinc sensitivity of wild-

type (WT), ttm-1(ok3503), cdf-1(c2527), and ttm-1(ok3503);cdf-1(n2527) animals. (C) 

Zinc sensitivity of wild-type (WT), ttm-1(ok3503), cdf-2(tm788), ttm-1(ok3503);cdf-

2(tm788), and transgenic animals expressing TTM-1A::GFP or TTM-1B::GFP in the ttm-

1(ok3503);cdf-2(tm788) mutation.  

 

Supplemental Figure 3.1. Fluorescence microscope images of transgenic animals 

expressing GFP under the control of the short ttm-1b promoter. (A) GFP is observed in 

the head neurons, hypodermis and vulva. (B) GFP is not induced by 200μM 

supplemental zinc.  

 

Supplemental Figure 3.2. Zinc sensitivity of wild-type (WT), ttm-1(ok3503), sur-

7(ku119), and ttm-1(ok3503);sur-7(ku119) animals. 
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CHAPTER 4 
 

 

Conclusions, Discussions and Future Directions 
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Identification of zinc storage site in animals  

 Organisms have evolved homeostatic mechanisms to regulate uptake, 

consumption, excretion and storage of nutrients. In these processes, storage of nutrients 

is critical for survival of organisms in particular in natural environments where nutrient 

availability fluctuates. When nutrients are replete, excess nutrients are stored so that they 

can be mobilized under nutrient deficient conditions. For example, carbohydrates and 

lipids are stored in the forms of glycogen and triacylglycerols in the liver and adipocytes 

which are specialized tissues for fat storage. In response to nutrient deficiency, the stored 

nutrients are mobilized to meet the need for energy. In the wild, the availability of metal 

is also variable, so organisms have mechanisms for metal storage and mobilization. For 

instance, iron is essential in mammals for erythropoietic function and oxidative 

metabolism, and iron is stored in the liver in the forms of ferritin or hemosiderin (Munoz 

et al., 2009).  

 Mechanisms of zinc storage have been described in the yeast Saccharomyces 

cerevisiae. The vacuole plays a role as a zinc storage site where CDF and ZIP proteins 

shuttle zinc across the membrane in response to zinc level changes (Eide, 2006). 

However, zinc storage in multicellular animals has not been well defined. It has been 

thought that zinc is unlikely to be stored in higher animals, such as mammals, based on 

kinetic studies using stable zinc isotopes (Krebs and Hambidge, 2001). However, these 

studies need to be interpreted with caution because they examined a small fraction of the 

total zinc pools and the range of testable dietary zinc levels was relatively narrow. Our 

studies of C. elegans using a variety of experimental approaches and wider ranges of 

dietary zinc, described in Chapter 2 and Appendix A, identified a site of zinc storage in 
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the animal. Lysosome-related organelles in intestinal cells, called gut granules, play a 

critical role in zinc storage in C. elegans, and this discovery suggests a possibility that 

zinc storage mechanisms may be present in higher animals. 

 Given that both the yeast vacuole and C. elegans gut granules have lysosomal 

properties, we can hypothesize that lysosome-related organelles may have an 

evolutionary conserved role in zinc storage. In fact, labile zinc is detected by zinc-

specific fluorescent dyes in intracellular organelles which have lysosomal properties and 

often called zincosomes in various types of mammalian cells (Eide, 2006). There are also 

specialized lysosome-related organelles in mammals that may be involved in zinc 

homeostasis. For instance, paneth cells located in the bases of the small intestine contain 

a large number of secretory granules that have lysosomal proteins and high levels of zinc. 

The number of paneth cells and their secretory granule morphology are affected by 

dietary zinc levels (Giblin et al., 2006), suggesting that these cells and the granules might 

play a role in zinc storage in mammals. Therefore, the investigation of zinc storage in 

lysosome-related organelles in higher animals will be an important research topic in zinc 

physiology. 

 

Physiological functions of zinc storage in gut granules 

Zinc storage in gut granules has two functional roles in the control of zinc 

metabolism. One function is zinc detoxification in response to high zinc conditions. 

When there are defects in gut granule biogenesis or zinc transport into gut granules, 

animals become hypersensitive to high levels of dietary zinc and suffer severely from 

zinc toxicity. In yeast, the vacuole functions in zinc detoxification. However, in 
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multicellular animals, zinc-containing organelles have not been demonstrated to protect 

organisms from zinc toxicity. Thus, our studies of C. elegans document a novel role of 

lysosome-related organelles in zinc detoxification in animals. Metal detoxification 

processes are also mediated by many other genes such as metallothionein genes. An 

important direction for future research can be to study how zinc sequestration in 

lysosome-related organelles cooperates with other genes such as zinc-binding proteins. 

 The second function of zinc stored in gut granules is to provide a source of zinc 

that can be utilized during dietary deficiency. Our studies demonstrated that stored zinc is 

mobilized from gut granules to meet the need for zinc by visually monitoring gut granule 

zinc levels and measuring growth rates of animals in the shift from high to low zinc 

conditions. Mobilization process of stored zinc has been well studied in the yeast, but it 

has not demonstrated in multicellular animals. Although zinc level changes in organelles 

of mammalian cells have been detected, it is not a homeostatic process in response to 

dietary zinc level changes. Our results here provide the first evidence of a site of zinc 

storage in animals that is mobilized during dietary deficiency. In the yeast, a ZIP protein 

Zrt3 play a critical role in zinc mobilization by moving zinc out of the vacuole in 

response to zinc deficiency (MacDiarmid et al., 2000). In C. elegans gut granules, 

mobilization is also likely to require a ZIP protein that shuttles zinc from the lumen of 

gut granules to the cytoplasm, and future studies will focus on the identification of this 

zinc transporter. 

 

Function of CDF-2 in zinc storage 

 The initial study described in Appendix A proposed the role of CDF-2 in zinc 
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storage based on its localization on gut granules and the phenotype of reduced total zinc 

levels of cdf-2 mutant animals. Further thorough experiments described in Chapter 2 

provide direct evidence of the role of CDF-2 in gut granule zinc storage. Colocalization 

experiments using markers confirmed that CDF-2 is localized to the membrane of gut 

granules. CDF-2 expression is induced by high levels of dietary zinc, suggesting its 

functional importance during high zinc conditions. Most importantly, while zinc storage 

was reduced by a loss-of-function mutation of cdf-2, it was elevated by overexpression of 

CDF-2 proteins, suggesting that cdf-2 is necessary and sufficient for zinc storage in gut 

granules. Consistent with the model that CDF-2 directly transports zinc into gut granules, 

the action of CDF-2 is cell-autonomous in intestinal cells to promote zinc accumulation. 

Intriguingly, we observed that a small amount of zinc is likely to be stored even in cdf-2 

mutant animals, suggesting that there may be a CDF-2 independent mechanism that can 

move zinc into gut granules such as using alternative zinc importer or vesicular 

trafficking. C. elegans CDF-2 is homologous to mammalian ZnT-2. Similar to CDF-2, 

ZnT-2 is also localized to intracellular vesicles and upregulated by high levels of zinc 

(Liuzzi et al., 2001). This similarity proposes a possibility that ZnT-2 may be involved in 

zinc storage in mammals and it can be one way to approach to zinc storage mechanisms 

of higher animals. 

 

Morphological changes of gut granules in high zinc 

 In normal conditions, gut granules are single round-shaped vesicles. However, 

we observed that when exposed to high zinc conditions, gut granules undergo 

morphological changes and display the shape of bilobed vesicles with asymmetric 
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distribution of molecules. In particular, lysosomal markers were positive for one side, 

whereas zinc was highly concentrated in the other side. These findings suggest that high 

levels of zinc lead to the novel structural changes of gut granules that may have 

important functions in zinc metabolism. First, it is possible that this structural change is a 

mechanism to promote zinc storage. Generation of additional adjacent vesicles devoted 

to storing zinc may improve the capacity of storage and facilitate rapid sequestration. 

Second, bilobed vesicles may be utilized for the secretion of zinc which exceeds the 

capacity of gut granule storage. Excess zinc is concentrated in one side of bilobed 

vesicles, and this side is secreted via certain trafficking pathways to the extracellular 

space. Thus, the bilobed structure may be imporant for the control of the balance 

between zinc storage and excretion. These possible functions of the bilobed structure can 

be studied by monitoring dynamic structures of gut granules in different zinc conditions 

using time-lapse live imaging. 

 Genetic analysis to dissect pathways involved in bilobed vesicle formation 

demonstrated that neither lysosome biogenesis process nor endocytosis is required for 

this process. Bilobed vesicle formation was also independent of CDF-2 activity. In 

contrast, Glo genes that are required for gut granule biogenesis during development such 

as pgp-2 and glo-3 genes were are also necessary for this morphological change during 

high zinc conditions. These results suggest that the formation of bilobed vesicles may be 

mediated by processes specific to gut granules and that intracellular trafficking may play 

a role in zinc metabolism. The mechanism by which intracellular trafficking regulates 

zinc metabolism in the aspects of storage or secretion will be important topics to be 

studied.  
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Characterization of a cdf gene, ttm-1 in zinc metabolism 

 ttm-1 (toxin-regulated target of p38MAPK) is a cdf gene which is the most 

similar to C. elegans cdf-2 and human ZnT-2. ttm-1 was originally identified as one of 

downstream targets of p38 kinase in the response to bacterial toxins (Huffman et al., 

2004). ttm-1 expression is increased in response to pore-forming bacterial toxins via the 

p38 MAPK signaling pathway, and RNAi of ttm-1 causes hypersensitivity to the the 

same toxins. ttm-1 is also involved in cadmium toxicity (Cui et al., 2007a); ttm-1 

expression is induced by cadmium, and it is important for cadmium tolerance. However, 

the function of ttm-1 has not yet been studied.  

The work presented in Chapter 3 describes the functional role of ttm-1 in zinc 

metabolism in C. elegans. Unlike the C. elegans cdf genes previously characterized, ttm-

1 encodes two isoforms, ttm-1a and ttm-1b, suggesting that ttm-1 may have multiple 

functions. First, TTM-1 may function in providing zinc into intracellular compartments 

via the action of TTM-1A. Since TTM-1A is localized to intracellular compartments and 

ttm-1a expression is not affected by zinc levels, it appears that TTM-1A mediates 

constant influx of zinc into the intracellular compartments where it is needed for the 

synthesis or activity of zinc-dependent proteins. Second, TTM-1 functions in the 

excretion of zinc via action of TTM-1B. TTM-1B expression is strongly induced by high 

levels of zinc and TTM-1B is localized on the apical membrane of intestinal cells where 

it appears to move cytoplasmic zinc out to the lumen. It is important to note that no CDF 

protein that mediates zinc efflux on the plasma membrane has been identified in the yeast. 

In humans, ZnT-5 is reported to be localized on the apical membrane of small intestinal 
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cells. However, it is not clear whether it promotes uptake or excretion of zinc (Cragg et 

al., 2002; Cragg et al., 2005). Therefore, these findings demonstrate the first evidence 

that there is a direct flow of zinc from intestinal cells into the lumen to regulate zinc 

levels in animals and suggest that mammals may have similar mechanisms to control 

zinc homeostasis.  

 Interestingly, ttm-1 functionally interacts with cdf-2. Although zinc excretion by 

ttm-1 is not required for efficient zinc detoxification, it becomes critical in the absence of 

cdf-2, suggesting that cdf-2 may suppress ttm-1 activity and thereby that zinc storage 

process has priority over excretion process. This regulatory mechanism is important for 

the efficient use of dietary zinc. Once zinc is transported into intestinal cells at the cost of 

energy, it should be utilized by animals. Thus, ttm-1 may be fully activated only when 

zinc excretion is necessary. For example, when zinc storage is saturated or defective due 

to mutations, zinc excretion by ttm-1 can be an effective way to detoxify excess zinc. 

These findings suggest that interactions between zinc transporters can be a key 

mechanism to achieve the efficient control of zinc metabolism. The molecular 

mechanism by which cdf-2 suppresses ttm-1 activity will be an interesting question to be 

addressed in the future research. It is possible that CDF-2 has a significantly higher 

affinity for zinc than TTM-1B so it has the biochemical priority to zinc. This possibility 

can be tested by comparing zinc transporter activity of CDF-2 and TTM-1. Another 

possible mechanism is that the unique histidine- and glycine-rich motif at its N-terminus 

of TTM-1B may receive a signal from CDF-2 and regulate its activity. This possibility 

can be tested by analyzing engineered TTM-1B protein that has deletions or mutations in 

the motif. 
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Action of multiple CDF proteins in the intestine 

Previous studies and this work have identified and characterized four C. elegans 

cdf genes, cdf-1, cdf-2, sur-7 and ttm-1, all of which contribute to the control of zinc 

metabolism (Bruinsma et al., 2002; Davis et al., 2009; Yoder et al., 2004). The intestine 

is the major site for the regulation of zinc metabolism in C. elegans, where the CDF 

proteins act at multiple locations (Figure 4.1). CDF-1 moves zinc through the basolateral 

membrane into the body cavity, and it functions in the distribution of zinc from the 

intestine to other tissues of the body and the indirect excretion of zinc perhaps via the 

excretory cell. SUR-7 moves zinc into the ER/Golgi complex, and it is probably involved 

in the distribution of zinc via secretory vesicles. Since cdf-1 and sur-7 expressions are 

not affected by dietary zinc levels, they appear to play an important role in the constant 

flow of zinc throughout the body. CDF-2 moves zinc into gut granules for storage, and 

its expression is strongly induced by high levels of dietary zinc. Zinc storage in the 

intestine mediated by CDF-2 is critical to survive in the wild where zinc levels fluctuate 

by functioning in detoxification and mobilization. TTM-1 moves zinc across the apical 

membrane to the intestinal lumen, and its expression is also induced by zinc similar to 

CDF-2. However, TTM-1 activity appears to be partially suppressed by CDF-2 for the 

efficient use of zinc via unknown mechanisms. In the condition when CDF-2 is not 

functional, TTM-1 promotes direct excretion of zinc out of the body to deal with zinc 

toxicity. Therefore, this network of CDF proteins plays a key role in zinc metabolism 

from the distribution of zinc to the response to unfavorable zinc conditions. There may 

be other zinc transporters acting in the intestine that have not been identified yet. For 
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example, ZIP proteins acting on the apical membrane like mammalian ZIP-4 have not 

been identified. Identification and characterization of these zinc transporters should be an 

important research topic in the C. elegans zinc biology.  

 

Analysis of other zinc transporters 

To expand our knowledge of zinc transporters, the work described in Appendix 

B conducted the initial studies of unknown 8 zip genes and 1 cdf gene. While many zinc 

transporters displayed similar expression patterns to their mammalian counterparts, 

others displayed differences, suggesting that C. elegans zinc transporters have conserved 

functions, but some of them may be specific to C. elegans or other nematodes. In the 

analysis of mutant animals, it is not surprising that many mutant animals had no 

phenotype, because there are a large number of zinc transporters and some of them may 

be functionally redundant with one another. In addition, the assays used in this study 

were limited to identify complicated phenotypes. Thus, the analysis of genetic 

interactions between multiple zinc transporters and the development of various types of 

assays are necessary in the study of zinc transporters. In this regard, the zinc transporters, 

F55F8.9 and F28F3.3 are interesting to follow up for further studies. F55F8.9 and 

F28F3.3 mutant animals displayed the vulva positioning defect phenotype and the 

sperm-related sterility phenotype, respectively. Further analysis of these mutant animals 

may reveal novel functions of zinc and/or zinc transporters in biological processes.  

 

 

Identification of novel proteins in zinc metabolism: Future studies 
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 All the studies presented here are based on the reverse genetic approaches and 

have been successful to characterize C. elegans zinc transporters. However, in our effort 

to expand the knowledge of zinc metabolism, this type of reverse genetic approach has 

limitations; it is impossible to identify novel proteins involved in zinc metabolism. 

Therefore, different approaches should be considered for further studies. 

 

Identification of zinc-responsive transcription factors 

 Regulation of gene expression in response to the changes in zinc levels is an 

important mechanism to control zinc metabolism. The yeast Zap1 and the mammalian 

MTF-1 proteins play a key role in this process by acting as a zinc-responsive 

transcription factor. However, in C. elegans, zinc-responsive transcription factors have 

not yet been identified. There is no candidate protein that is homologous to Zap1 or 

MTF-1. Therefore, reverse genetic approaches are not feasible here, and other unbiased 

methods are needed. 

 To identify zinc-responsive transcription factors, we can use traditional forward 

genetic screens. To set up the screens, we generated a zinc-responsive reporter system 

which is a transgenic animal containing an integrated array that expresses GFP under the 

control of the cdf-2 promoter. As cdf-2 expression is responsive to zinc, GFP expression 

was induced by high levels of zinc (Figure 4.2A). Using the transgenic animals, we can 

perform forward genetic screens for mutations that cause defects in the gene expression 

induction in response to high zinc levels. These screens may identify zinc-responsive 

transcription factors which directly control gene expression similar to Zap1 and MTF-1. 

It is also possible that other proteins which respond to zinc and transmit the signals to the 
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gene expression machinery would be identified from the screens. These studies may 

contribute to dissecting of the molecular processes that regulate the gene expression in 

zinc metabolism. 

 For the identification of zinc-responsive transcription factors, we can take 

another approach using the zinc-responsive gene promoters. We first analyzed the 

promoter sequences of the four known zinc-responsive genes, mtl-1/2, cdf-2 and ttm-1. 

Using computational analysis, we identified a DNA element that is found in the promoter 

of all the four genes (Figure 4.2B). DNA mutagenesis analysis demonstrated that this 

element is necessary for the induction of mtl-1/2 (Deshmukh and Dimitrov, unpublished 

observation). We can identify candidate zinc-responsive transcription factors that bind to 

the element using the yeast-one-hybrid system or protein pull-down assays using biotin-

labeled DNA element.  

 

Identification of novel proteins involved in zinc metabolism 

 In addition to forward genetic screens, microarray experiments can be a useful 

and unbiased approach to identify novel proteins that play a role in zinc metabolism. We 

previously conducted microarray experiments to compare gene expression profiles across 

different zinc conditions. We identified numerous genes whose expression is induced in 

response to high levels of zinc (Deshmukh and Kornfeld, unpublished observation). In 

the list of the genes, there were the genes previously known to be induced by zinc, such 

as mtl-1/2 and cdf-2 (data not shown), suggesting that the microarray results are reliable. 

There were many other genes that have not been implicated in zinc or metal metabolism. 

Studies of these genes, therefore, may identify novel genes important for zinc 
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metabolism. For example, we found that RNAi of one of the genes, B0218/clec-52, 

which encodes a C-type lectin, resulted in mild zinc hypersensitivity, suggesting that this 

gene may be involved in the zinc detoxification. These studies will broaden our 

knowledge of the mechanism that controls zinc metabolism.  

 

Final Thoughts 

 Zinc was first recognized as a mineral essential for the growth of a fungus more 

than a hundred years ago, and it has since been demonstrated that zinc is also an essential 

micronutrient for humans. However, it is just over the past few decades that we have 

started to understand the molecular aspects of zinc metabolism and its implication in 

human diseases. We have just begun to appreciate the complexity of zinc metabolism and 

its significance in human health. There are much more important biological functions of 

zinc metabolism that remain to be uncovered. 

 A major obstacle to the studies of zinc metabolism has been its complexity that 

involves numerous proteins across multiple tissues. In this work, our approach using C. 

elegans was useful to overcome this problem. We have established the functional 

networks of CDF proteins in the intestine to control the whole body zinc metabolism and 

proposed possible physiological functions of zinc or zinc transporters. Therefore, I 

believe that as C. elegans has been powerful in a variety of fields of biology, it will 

advance our understanding of zinc, zinc transporters and/or zinc metabolism. 

Furtheremore, studies of zinc metabolism using C. elegans may lead to new medical and 

pharmaceutical approaches for dieases implicated in abnormal zinc metabolism. 



 114

FIGURE LEGENDS 

 

Figure 4.1. Action of multiple CDF proteins in the intestine. CDF-1 (blue) is localized 

on the basolateral membrane and transports zinc into the body cavity. CDF-2 (red) is 

localized on the membrane of gut granules and transports zinc into the lumen of gut 

granules. SUR-7 (green) is localized in the ER and transports zinc into the lumen of the 

ER. TTM-1 (yellow) is localized on the apical membrane and transport zinc out to the 

intestinal lumen. 

 

Figure 4.2. Future studies to identify of zinc-responsive transcription factors. (A) 

Fluorescence microscope images of live transgenic animals containing an integrated 

array, amIs4, which expresses GFP under the control of the cdf-2 promoter [Pcdf-

2::GFP]. Whole animals at the adult stage are displayed with the pharynx to the bottom 

left and the tail to the upper right. GFP expression is highly increased in 200μM 

supplemental zinc. (B) DNA element present in the known zinc-responsive genes: mtl-1, 

mtl-2, cdf-2 and ttm-1b. The bottom panel displays its location and sequence of the 

promoter region of each gene. This element was identified using the MEME module 

(Bailey and Elkan, 1994). 
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APPENDIX A 
 

The cation diffusion facilitator gene cdf-2 

mediates zinc metabolism in Caenorhabditis 

elegans 

 

 

 
[This work in Appendix A has been published with the following citation: Diana E. Davis, 
Hyun Cheol Roh, Krupa Deshmukh, Janelle J. Bruisma, Daniel L. Schneider, James 
Guthrie, J. David Robertson, and Kerry Kornfeld (2009) The cation diffusion facilitator 
gene cdf-2 mediates zinc metabolism in Caenorhabditis elegans. Genetics 182: 1015-
1033. 
 
H.C.R. conducted and analyzed the expression pattern experiments (Figure A.6). D.E.D. 
designed, performed and analyzed the majority of the experiments, K.D. assisted in the 
qRT-PCR experiments (Figure A.5), J.G. and J.D.R. performed the ICP-MS analysis 
(Figures A.3 and A.9, Supplemental Table A.1), D.L.S. provided technical Assistance, J.J. 
provided intellectual contributions, and K.K. designed and analyzed experiments. D.E.D. 
and K.K. wrote the manuscript.] 
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ABSTRACT 

 

 Zinc is essential for many cellular processes. To use C. elegans to study zinc 

metabolism, we developed culture conditions allowing full control of dietary zinc and 

methods to measure zinc content of animals. Dietary zinc dramatically effected growth 

and zinc content; wild-type worms survived from 7 µM to 1.3 mM dietary zinc, and zinc 

content varied 27 fold. We investigated cdf-2, which encodes a predicted zinc transporter 

in the cation diffusion facilitator family. cdf-2 mRNA levels were increased by high 

dietary zinc, suggesting cdf-2 promotes zinc homeostasis. CDF-2 protein was expressed 

in intestinal cells and localized to cytosolic vesicles. A cdf-2 loss-of-function mutant 

displayed impaired growth and reduced zinc content, indicating that CDF-2 stores zinc 

by transport into the lumen of vesicles. The relationships between three cdf genes, cdf-1, 

cdf-2, and sur-7, were analyzed in double and triple mutant animals. A cdf-1 mutant 

displayed increased zinc content, whereas a cdf-1 cdf-2 double mutant had intermediate 

zinc content, suggesting cdf-1 and cdf-2 have antagonistic functions. These studies 

advance C. elegans as a model of zinc metabolism and identify cdf-2 as a new gene that 

has a critical role in zinc storage.  
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INTRODUCTION 

 

 Zinc plays many roles in biological systems, including binding to proteins and 

promoting specific conformations, such as the zinc finger, and contributing to the active 

site of enzymes (Vallee and Falchuk, 1993). Reflecting its multiple uses, organisms that 

do not obtain adequate dietary zinc display a wide range of defects (Chowanadisai et al., 

2005; Cole et al., 1999; Dufner-Beattie et al., 2007; Herbig et al., 2005; Kambe et al., 

2004). For example, humans that are zinc deficient have abnormalities of multiple 

systems including the skin and immune system (Chowanadisai et al., 2006; Hambidge 

and Krebs, 2007; Hambidge, 2000; Maverakis et al., 2007). Excess dietary zinc can also 

cause defects as a result of zinc toxicity (Koh et al., 1996; Nies, 2007). The mechanisms 

underlying zinc toxicity have not been clearly defined but may involve the substitution of 

zinc for other metals such as copper (Zhao and Eide, 1997). Animals have evolved 

sophisticated mechanisms to regulate zinc metabolism to ensure an adequate supply of 

zinc but avoid zinc toxicity. Zinc metabolism involves uptake of zinc from dietary 

sources into intestinal cells, distribution of zinc throughout the body to supply non-

intestinal cells, insertion of zinc into zinc-requiring proteins and excretion of excess zinc 

from cells and the animal. An essential aspect of zinc metabolism is adapting to changing 

levels of dietary zinc. Homeostasis is likely to involve sensors that monitor available zinc 

and effector mechanisms that adjust intake, storage, and excretion of zinc (Tapiero and 

Tew, 2003). These important processes are not well characterized.  

 Zinc in biological systems is the Zn2+ ion, and Zn2+ does not diffuse across lipid 

bilayers (Stryer, 1995). In metazoans, two families of transmembrane proteins play 
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critical roles in transporting zinc, the cation diffusion facilitator (CDF/SLC30) family 

(Palmiter and Huang, 2004) and the Zrt-, Irt- like protein (ZIP/SLC39) family (Eide, 

2004; Eng et al., 1998; Guerinot, 2000). The CDF family evolved in prokaryotes and has 

been conserved in fungi, plants, and animals. Yeast contain multiple CDF proteins, which 

are localized to specific membrane compartments (Eide, 2006). Vertebrates contain 10 

predicted CDF proteins (Liuzzi and Cousins, 2004; Palmiter and Huang, 2004; Seve et 

al., 2004). Mutations in human ZnT-2 are implicated in diseases characterized by 

inadequate zinc in breast milk, suggesting that CDF proteins play essential roles in zinc 

metabolism in humans (Chowanadisai et al., 2006). Most CDF proteins are predicted to 

contain six transmembrane regions, and the N- and C- termini are predicted to be 

cytoplasmic. Recent crystallographic data suggest that the E. coli CDF protein YiiP 

functions as a dimer (Lu and Fu, 2007), consistent with the results of cell biology studies 

in yeast (Ellis et al., 2005). The energy source for CDF proteins appears to be ion 

gradients, such as H+ and K+ (Chao and Fu, 2004; Guffanti et al., 2002). 

 Given that animals contain multiple CDF proteins, a critical question is how do 

these proteins function in a coordinated manner to mediate zinc metabolism throughout 

the animal? One mechanism is cell-type specific expression. For example, vertebrate 

ZnT-3 is expressed primarily in neuronal cells, where it promotes zinc accumulation in 

synaptic vesicles (Cole et al., 1999; Palmiter et al., 1996b). A second mechanism is 

localization to specific membrane compartments. For example, vertebrate ZnT-8 is 

localized to insulin granules (Chimienti et al., 2004), whereas vertebrate ZnT-1 is 

localized to the plasma membrane (Palmiter and Findley, 1995). A third mechanism is 

intrinsic differences in activity, which might include differences in affinity for zinc (Km), 
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differences in the rate of zinc transport (Vmax), and differences in metal specificity. A 

fourth mechanism is differences in regulation that adjust protein abundance and activity 

in response to fluctuating dietary zinc, which might include transcriptional, post-

transcriptional, and post-translational regulation. These mechanisms are not mutually 

exclusive, and additional mechanisms may also be utilized. An understanding of how 

multiple CDF proteins function coordinately in an animal will require a genetically 

tractable model system that can be used to dissect the complementary, redundant, and 

antagonistic activities of multiple CDF proteins. 

 The nematode Caenorhabditis elegans has been a powerful model system to 

study many biological processes, but studies of nutrient biology have been limited. The 

use of C. elegans to study metal biology has included analyses of heme, magnesium, zinc, 

and cadmium (Bruinsma et al., 2002; Bruinsma et al., 2008; Dong et al., 2008a; Kemp et 

al., 2009; Rajagopal et al., 2008). The fully sequenced C. elegans genome contains 14 

predicted genes that encode CDF proteins (Kambe et al., 2004, K. Deshmukh and K. 

Kornfeld unpublished observation). Two of these genes have been analyzed genetically, 

cdf-1 and sur-7 (Bruinsma et al., 2002; Yoder et al., 2004). Loss-of-function mutations of 

cdf-1 and sur-7 were identified in forward genetic screens for modifiers of abnormal 

vulval cell fates caused by constitutively activated Ras. In addition to promoting Ras-

mediated signal transduction, cdf-1 and sur-7 promote survival in high dietary zinc, since 

loss-of-function mutations of these genes cause sensitivity to high dietary zinc (Bruinsma 

et al., 2002; Yoder et al., 2004). cdf-1 is expressed in intestinal cells and vulval cells, and 

CDF-1 protein is localized to the plasma membrane (Bruinsma et al., 2002). sur-7 is 

expressed in non-intestinal cells, and SUR-7 protein is diffusely localized to the cytosol, 
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suggesting it is localized to an internal membrane (Yoder et al., 2004). The functions of 

the remaining predicted cdf genes in C. elegans have not been determined.  

 To use C. elegans as a model system to study zinc metabolism and CDF protein 

function, we developed culture conditions that allow full control of dietary zinc. Here we 

show that worms are sensitive to both low and high dietary zinc and that sensitivity to 

dietary zinc can be used to assay zinc metabolism. We developed methods to measure the 

zinc content of C. elegans and demonstrated that dietary zinc strongly influences zinc 

content of wild-type animals. These methods advance the utility of C. elegans as a model 

system to study zinc metabolism. We investigated the function of a new predicted cdf 

gene, which we named cdf-2. CDF-2 is most similar to vertebrate ZnT-2, which is 

localized to vesicles and implicated in human diseases of zinc deficiency (Chowanadisai 

et al., 2006). The cdf-2 transcript abundance was increased at high levels of dietary zinc, 

suggesting that cdf-2 is involved in zinc homeostasis. CDF-2 protein was expressed in 

intestinal cells and localized to cytosolic vesicles. A strong loss-of-function mutation of 

cdf-2 was characterized; mutant animals displayed growth defects and reduced zinc 

content compared to wild-type animals, indicating that cdf-2 functions in zinc storage. To 

explore the relationship between the functions of multiple cdf genes, we analyzed double 

and triple mutant animals with mutations in cdf-1, cdf-2, and sur-7. The results indicate 

that cdf-1 and cdf-2 have antagonistic functions in mediating zinc content and cdf-2 plays 

an important role in zinc storage by sequestering zinc in the lumen of cytosolic vesicles. 

 

 

MATERIALS AND METHODS 



 123

 

General methods and strains: C. elegans were cultured at 20º on nematode growth 

medium (NGM) dishes with live E. coli as described by Brenner (1974) or in C. elegans 

maintenance medium (CeMM, described below) (Szewczyk et al., 2003). The wild-type 

strain and parent of all mutant strains was Bristol N2. The following mutations were used. 

unc-119(ed3 R113Stop) is a loss-of-function mutation that causes a strong uncoordinated 

phenotype and an inability to form dauer larvae (Maduro and Pilgrim, 1995). let-

60(n1046 G13E) is a semi-dominant, gain-of-function allele of the Ras gene (Beitel et al., 

1990). cdf-1(n2527 Q156Stop) is a strong loss-of-function allele caused by a nonsense 

change in exon four (Bruinsma et al., 2002). sur-7(ku119) is a partial loss-of-function 

allele caused by a single nucleotide change near the splice donor of exon three (Yoder et 

al., 2004). cdf-2(tm788) has an 804 bp deletion with a 68 bp insertion that removes the 

first 34 codons and is likely to cause a strong loss-of-function (described here). cdf-1, 

cdf-2, and sur-7 are located on chromosome X, and we generated cdf-1 cdf-2, cdf-1 sur-7, 

and cdf-2 sur-7 double mutant animals using standard techniques and confirmed the 

genotypes by PCR and gel electrophoresis (cdf-2) and DNA Pyrosequencing (cdf-1 and 

sur-7; PSQ 96 MA, Biotage, Charlottesville, VA). A cdf-1 cdf-2 sur-7 triple mutant was 

generated from cdf-1 cdf-2 and cdf-2 sur-7 double mutant animals using standard 

techniques. 

 

Preparation of CeMM and culturing worms in CeMM: 2x CeMM was prepared as 

described by Szewczyk et al. (2003) with minor modifications. Briefly, we prepared five 

solutions (amino acids, nucleic acids, water-soluble growth factors and vitamins, 
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triethanolamine-soluble growth factors and vitamins, and trace metal salts without zinc 

chloride), combined these to yield 2x CeMM with no added zinc, adjusted the pH to 5.9 

with 10% (w/v) NaOH, filtered the medium through a 0.22 µm cellulose acetate filter 

(Corning Inc. Life Sciences, Lowell, MA), and stored the medium in the dark at 4º for up 

to 8 months. To use the CeMM, we diluted with water from a Milli-Q Synthesis A10 

machine (Millipore, Billerica, MA) to yield 1x CeMM. To achieve the final zinc 

concentration of 1x CeMM, we added the appropriate volume of 1 mm, 10 mm, 100 mm, 

or 1 m zinc chloride (Z0152, Sigma-Aldrich, St. Louis, MO) diluted in 40 mm HCl. To 

equalize the amount of HCl diluent added to each medium sample, we added the 

appropriate volume of 40 mm HCl with no added zinc. The 1x CeMM with added zinc 

was used promptly and not stored.  

 To introduce worms that were growing on NGM with live E. coli into CeMM, 

we collected adults and treated the animals with NaOH and bleach to generate eggs free 

of bacterial contamination (Wood, 1988). Subsequent procedures were performed in a 

tissue culture hood using sterile technique. Eggs were transferred to 25 cm2 T-flasks (TPP, 

Trasadingen, Switzerland) containing 5 mL M9 buffer (85 mm NaCl, 22 mm KH2PO4, 

42 mm Na2HPO4, 1 mm MgSO4) and 10 µL/mL Antibiotic-Antimycotic solution (10,000 

units penicillin, 10 mg streptomycin, and 25 µg amphotericin B per milliliter, Sigma-

Aldrich). Eggs were cultured at 20º for 2-3 days to allow the hatching and developmental 

arrest of L1 larvae. Larvae were washed 2x in M9 buffer, transferred to a 25 cm2 T-flask 

in 5 mL CeMM containing 30 µm zinc chloride, and cultured at 20º with no agitation for 

3-4 weeks until visual inspection revealed significant growth of the population. Worms 

were collected using Pasteur pipets, pelleted by centrifugation at 1,000 rpm for 5 min at 
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15º, washed 2x in M9 buffer, resuspended in 15 mL CeMM containing 30 µm zinc 

chloride and transferred to 75 cm2 T-flasks (TPP).  

 

Maturity Analysis: Worms were grown on NGM with live E. coli and treated with 

NaOH and bleach to collect eggs. For experiments scored with a dissecting microscope, 

eggs were diluted in CeMM (19 zinc concentrations), seeded in 24-well plates (TPP) at a 

concentration of 100 eggs in 500 µL, and incubated at 20º in a box containing moist 

paper towels to increase humidity. After nine days, animals were collected, examined 

using a dissecting microscope, and scored as larval (less than 1 mm and larval 

morphology) or adult (greater than 1 mm and adult morphology). For experiments using 

the COPAS BIOSORT (Union Biometrica, Holliston, MA), eggs were added to 5 mL M9 

buffer containing 10 µL/mL Antibiotic-Antimycotic solution (Sigma-Aldrich) and 

incubated for 2-3 days at 20º. Resulting L1 larvae were diluted in CeMM (18 zinc 

concentrations), seeded in 24-well plates at a concentration of 100 L1 larvae in 500 µL, 

and incubated at 20º in a box containing moist paper towels. After 12 days, animals were 

transferred to 96-well plates and analyzed using the REFLEX option of a COPAS 

BIOSORT. 

 

Population growth rate analysis: To prepare 15-16 cultures for a comparative analysis, 

we generated a large population of worms growing in CeMM containing 30-75 µm zinc 

chloride. We counted an aliquot to determine the number of worms in the sample, 

collected the worms by centrifugation, washed 2x in M9 buffer, and resuspended at 

10,000 worms/mL in CeMM with no added zinc. For cultures scored using a dissecting 
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microscope, 2.5 mL of worms were transferred to a 25 cm2 T-flask containing 2.5 mL of 

CeMM with added zinc to generate final zinc concentrations that ranged from 0 to 2 mm. 

For cultures scored using the COPAS BIOSORT, 7.5 mL of worms were transferred to a 

75 cm2 T-flask containing 7.5 mL of CeMM with added zinc to generate final zinc 

concentrations that ranged from 0 to 2.5 mm. In both cases, the initial worm 

concentration was 5,000 worms/mL. The cultures were incubated at 20º for up to 22 days. 

To determine the number of worms in the sample using a dissecting microscope, we 

removed 100 µL of the culture, diluted the sample with M9 buffer containing 0.01% 

Triton X-100 to yield an approximate worm concentration of 1 worm/µL, spotted 100 µL 

onto an NGM dish, and counted the number of larvae and adults. Each sample was 

scored three times. To determine the number of worms in the sample using the COPAS 

BIOSORT, we employed 45 µm fluorescent beads (Fluoresbrite beads, Poly Sciences, 

Inc., Warrington, PA) as a counting standard. Beads were diluted to a concentration of 

approximately 20 beads/µL. We combined a known number of beads with a sample of 

worms in ~8 mL M9 buffer with 0.01% Triton X-100, used the COPAS BIOSORT to 

count the number of beads and the number of worms, calculated the ratio of worms to 

beads, and then calculated the concentration of worms in the initial culture. The use of 

the fluorescent beads allowed us to determine the total number of worms in an aliquot 

even though not all of the aliquot flowed past the detector. To determine the population 

growth rate, we plotted the number of worms per milliliter versus the number of days in 

culture and performed a linear regression analysis using Microsoft Excel (Microsoft Co., 

Redmond, WA). The linear portion of the plot was from day 7 to day 17 (Figure A.2B 

and data not shown), and we defined this slope as the population growth rate. To 
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determine the population growth rates that were half the maximal population growth rate 

(EC50 and IC50), we analyzed the 16 population growth rates determined during a single 

growth trial using GraphPad Prism 5.0 (GraphPad Software, Inc., La Jolla, CA). The 

EC50 and IC50 were determined from the population growth rates at dietary zinc 

concentrations from 1 µm to 120 µm and 60 µm to 2.5 mm, respectively, by fitting these 

data to a dose-response curve with the bottom constrained to zero and a variable Hill 

slope. Two to three independent EC50 and IC50 values were determined for each strain, 

and the average, standard deviation, and p-values were calculated using Microsoft Excel 

(Microsoft Co.). 

 

Determination of zinc content of C. elegans using radioactive 65Zn: 65ZnCl2 was 

purchased from Perkin Elmer (Waltham, MA), and the initial specific activity varied 

from ~1 to 3 µCi/µg. To culture worms with 65Zn, we determined the concentration of 

worms in a large starting culture, pelleted the worms, washed the worms 2x in M9 buffer, 

resuspended the worms in CeMM with no added zinc, dispensed 30,000 worms in 300 

µL into 24-well plates, and added 300 µL of CeMM with added zinc to yield final zinc 

concentrations of 6 µm, 10 µm, 30 µm, 75 µm, 350 µm, 1 mm, and 2 mm. To generate 

CeMM with zinc concentrations of 6 µm, 10 µm, and 30 µm, we used undiluted 65ZnCl2 

with a specific activity of ~1µCi/µg. To generate CeMM with zinc concentrations of 75 

µm, 350 µm, 1 mm, and 2 mm, we combined 65ZnCl2 (~1µCi/µg) with non-radioactive 

ZnCl2 to yield samples where the specific activity of the 65Zn was reduced by the dilution 

factors 2.5, 11, 33, and 67, respectively. Samples were incubated at 20º for 12-15 days. 

To minimize evaporative loss, we placed samples in plastic bags with moist paper towels. 
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Worms were collected in a 0.2 µm Nanosep MF filtration device (Pall Scientific, East 

Hills, NY) by centrifugation and washed 2x in M9 with 100 mm EDTA to chelate 

unincorporated zinc. To eliminate 65Zn in the intestinal lumen, we incubated the worms 

for 30 min in CeMM with the corresponding unlabeled zinc concentration and 1 mm 

serotonin (Sigma-Aldrich) to stimulate pharyngeal pumping and defecation (Horvitz et 

al., 1982). Thirty minutes was sufficient time for worms to expel 65Zn from the intestinal 

lumen (data not shown). Worms were collected in a 0.2 µm Nanosep filtration device by 

centrifugation and washed 2x in M9 with 100 mm EDTA. Serial dilutions of 65ZnCl2 

were measured with a Beckman gamma 4000 (Beckman Coulter Inc., Fullerton, CA) to 

generate a standard curve that was used to determine the amount of 65Zn in each worm 

sample. The samples were stored at -80º. To determine the amount of protein in each 

worm sample, we added 100 mm NaCl containing Complete Mini Protease Inhibitor 

Cocktail tablets (Roche, Basel, Switzerland) to each sample, sonicated to disrupt the 

cuticle using a Digital Sonifer 450-D (Branson Ultrasonics Corporation, Danbury, CT), 

and determined the amount of protein using the Micro BCA Protein Assay Reagent Kit 

(Pierce, Rockford, IL) according to the manufacturer’s instructions. The zinc content of 

worms (ng zinc/µg protein) was calculated using the formula: [65Zn (µCi)/sample ÷ 

specific activity (µCi/µg) x 1000 ng/µg] ÷ [protein (µg)/volume x volume/sample]. 

 

Determination of zinc content of C. elegans using inductively coupled plasma-mass 

spectrometry (ICP-MS): A large population of worms growing in CeMM containing 30 

µm zinc chloride was generated to initiate seven cultures for a comparative analysis. We 

determined the number of worms in the sample, collected the worms by centrifugation, 
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and washed the worms 2x in M9 buffer. The worms were resuspended at 20,000 

worms/mL in CeMM with no added zinc, and 7.5 mL of worm solution was transferred 

to a 75 cm2 T-flask containing 7.5 mL of CeMM with added zinc to yield the zinc 

concentrations 6 µm, 10 µm, 30 µm, 75 µm, 350 µm, 1 mm, and 2 mm, and an initial 

worm concentration of 10,000 worms/mL. Samples were cultured at 20º for 16-18 days. 

Worms were collected by centrifugation and washed 2x in M9 buffer. To eliminate zinc 

in the intestinal lumen, we incubated the worms for 30 min in M9 buffer with 1 mm 

serotonin. Worms were washed 2x in M9 buffer, transferred to pre-cleaned and pre-

weighed 15 mL polypropylene tubes (Stockwell Scientific, Scottsdale, AZ) and frozen at 

-80º. The metal content of the sample was determined using ICP-MS as described by 

Dong et al. (2008b). Briefly, the sample was desiccated, weighed, digested with 

concentrated nitric acid and hydrogen peroxide solution (HNO3, Fisher OPTIMA Grade, 

Thermo Fisher Scientific, Wilmington, DE; 30% H2O2, Fluka TraceSELECT Ultra, 

Sigma-Aldrich) in an ultrasonic bath at 60º for 1 hour, diluted with ultra-pure 18.2 

MΩ·cm deionized water, re-weighed, mixed by repeated inversion, and diluted with 2% 

HNO3 in H2O. Empty tubes were processed identically to the samples as a control. An 

internal standard was added to each sample and control to correct for matrix effects in the 

instrument. Weights were recorded at each step so that exact gravimetric dilution factors 

could be calculated for all samples and controls. The copper, iron, manganese, and zinc 

content of each sample and control was determined using a VG Axiom high-resolution 

ICP-MS (Thermo Fisher Scientific). Instrument calibration standards were prepared by 

diluting ICP-MS Multielement calibration standards (High-Purity Standards, Charleston, 

SC), which are manufactured following National Institute of Standards and Technology 
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Standard Reference Materials procedures. The instrument limit of detection (LOD) was 

calculated as three times the standard deviation of the concentration of a given analyte 

measured in ten runs of a zero point standard (2% HNO3 solution with internal standard). 

The sample LOD was calculated by multiplying the instrument LOD by the total sample 

dilution factor. The metal content of the worms was calculated using the following 

formula: [zinc/sample ÷ sample weight]. 

 One consideration with using CeMM is the possibility that worm metabolism 

during the culture period significantly changes the medium composition. Szewczyk et al. 

(2003) monitored pH during a two week incubation and demonstrated that the starting 

pH of 6 gradually increases to about 7. We confirmed these results and observed that 

after ~25 days in culture the pH begins to increase significantly; therefore, worms were 

not cultured for longer than 22 days.  To monitor changes in media zinc concentrations, 

we used radioactive 65Zn to determine the fraction of total zinc incorporated into worms 

in 109 independent samples with zinc concentrations ranging from 6 µm to 2mm and 

initial worm concentrations of 50 worms/µL. The fraction of total zinc incorporated into 

worms that were cultured for 12-15 days varied from 0.02% to 2.4%. There was a trend 

towards lower fractional zinc incorporation as the dietary zinc concentration increased. 

These results indicate that worm metabolism has a minimal effect on the concentration of 

dietary zinc in the medium during the course of these experiments.  

 

Analysis of cdf-2 transcripts: RNA was isolated from wild-type animals cultured on 

NGM dishes with live E. coli. Mixed-staged animals were collected, washed in M9 

buffer, and solubilized in TRIzol (Invitrogen, Carlsbad, CA). The RNA concentration and 
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quality was determined using a NanoDrop 100 (Thermo Fisher Scientific). cDNA was 

generated using the SuperScript III First-Strand Synthesis System for RT-PCR 

(Invitrogen) using either an oligo(dT) primer or random hexamer oligonucleotide primers. 

PCR and DNA sequencing were performed according to standard methods. Primers 

annealing in exon 1 and exon 8 amplified the expected 959 bp product and did not 

amplify any shorter products, suggesting that any alternatively spliced transcripts are of 

low abundance. A primer annealing in exon 7 and an oligo(dT) primer amplified an ~425 

bp product. DNA sequencing demonstrated a ~30 bp adenosine tract immediately 

following the sequence ACAGC, indicating the addition of a poly-adenosine tail 120 bp 

downstream of the stop codon. 

 

Quantitative, real-time PCR analysis: To generate cultures for a comparative analysis, 

we began by generating a large population of worms growing in CeMM containing 30 

µm zinc chloride. Worms were collected by centrifugation, washed 2x in M9 buffer, 

resuspended in CeMM with 2 µm, 10 µm, 30 µm, 250 µm, 500 µm, 1 mm, or 2 mm zinc 

chloride, transferred to 25 cm2 T-flasks, and incubated at 20º for six days. To collect a 

synchronous population of adult worms, we diluted the culture in 50 mm Tris HCl, pH 

6.4 containing 2 µm, 10 µm, 30 µm, 250 µm, 500 µm, 1 mm, or 2 mm zinc chloride, 

respectively, and used the COPAS BIOSORT to select 1,000 adults from a mixed-stage 

population. RNA was purified using TRIzol, resuspended at a concentration of ~250 

ng/µL, and treated with DNase I (Turbo DNA Free Kit, Applied Biosystems, Foster, CA). 

cDNA was synthesized using the High-capacity cDNA Reverse Transcription Kit from 

Applied Biosystems according to the manufacturer’s instruction using random hexamer 



 132

oligonucleotide primers. Quantitative, real-time PCR was performed using a BioRad 

MyiQ Single Color Real-Time PCR Detection System thermocycler and iQ SYBR Green 

Supermix (BioRad Laboratories, Hercules, CA). Forward and reverse amplification 

primers were: ama-1, atcggagcagccaggaactt and ggactgtatgatggtgaagctgg; cdf-1, 

gcattaaaatcgctactcgcc and ccgtacacataaagattccgttg; cdf-2, atagcaatcggagagcaacg and 

tgtgacaattgcgagtgagc; rps-23, aaggctcacattggaactcg and aggctgcttagcttcgacac; sur-7, 

ctttatcgaaccgctggaac and cgagtgggtcgctgaattg. The amplified products were confirmed 

by DNA sequencing. The efficiency (E) of each primer pair was determined using cDNA 

from mixed-stage worms as template. The average primer pair efficiency was calculated 

from three independent experiments and ranged from 87% and 109%. To calculate the 

change in transcript abundance between two conditions, we used the approach of Pfaffl 

(2001) by calculating the relative expression ratio (R) using the formula, R= 

[Etarget^(ΔCPtarget)] ÷ [Ereference^(ΔCPreference)], where ΔCP=Ctcontrol-Ctsample. The Ctcontrol 

was the Ct value at 2 µm dietary zinc, and the Ctsample was the Ct value at 2 µm to 2 mm 

dietary zinc. The relative expression ratio was determined independently for two 

reference genes, and the average of these values is represented as Fold Change (Figure 

A.5) according to Vandesompele et al. (2002). 

 

Analysis of CDF-2::GFP: To determine the expression pattern of cdf-2, we generated 

the plasmid pDG222 as follows: Beginning with pBluescript SK+ (Stratagene, Santa 

Clara, CA), we inserted the ~3.4 kb genomic region containing cdf-2 from 1,371 bases 

upstream to 2,006 bp downstream of the ATG (eliminating the stop codon) in frame to 

the coding region for green fluorescent protein (GFP) and the unc-54 3´ UTR, both 
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amplified from pPD95.77, a gift from A. Fire (Stanford University, Palo Alto, CA). 

Transgenic animals were generated by co-injecting pDG222 and the dominant 

transformation marker pRF4 (Mello et al., 1991) into wild-type animals, selecting F1 Rol 

progeny, and selecting three independently-derived strains that transmitted the Rol 

phenotype. For each of these strains, the Rol phenotype was transmitted to only a subset 

of self-progeny, indicating that these three transgenes are extra-chromosomal, and we 

designated these arrays amEx1032, amEx1033, and amEx1201. To generate plasmid 

pDP15 for biolistic transformation, we modified the plasmid pMM016, a gift from J. 

Austin (Praitis et al., 2001), that contains unc-119(+) by digesting it with Acc651 and 

HincII and inserting a ~4.8 kb EagI/Acc651 fragment of pDG222 containing the cdf-2 

promoter and coding region, gfp, and the unc-54 3´ UTR. Biolistic transformation was 

used to introduce pDP15 into unc-119(ed3) mutant animals (Praitis et al., 2001). Three 

independently-derived transgenic animals that were non-Unc and segregated only non-

Unc progeny were isolated. Since the unc-119 transgenes were transmitted to all the 

progeny of these three strains, the transgenes are likely to be integrated in the genome 

and were designated amIs2, amIs4, and amIs5.  

 To analyze the distribution of GFP using an anti-GFP antibody, we followed the 

protocol described by Duerr (2006). Briefly, we cultured animals on NGM with live E. 

coli, collected mixed-stage animals, washed in M9 buffer, fixed in methanol and acetone, 

rehydrated through 90%, 60%, 30% and 10% acetone, blocked in 5% bovine serum 

albumin in phosphate-buffered saline with 0.5% Triton X-100, stained with 1:100 

dilution of Molecular Probes rabbit anti-GFP primary antibody (A11122, Invitrogen) and 

1:200 dilution of Molecular Probes Alexa Fluor 488 goat anti-rabbit secondary antibody 
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(A11008, Invitrogen), and visualized the fluorescence using a Zeiss Axio Imager Z1 

(Oberkochen, Germany). GFP localization in live animals was analyzed using the same 

culture conditions by directly visualizing GFP fluorescence. 

 

Analysis of cdf-2(tm788): cdf-2(tm788) was a gift of the Mitani laboratory (National 

Bioresource Project, Tokyo Women’s Medical University, Japan). cdf-2(tm788) was 

backcrossed to wild type four times. To eliminate potential mutations linked in cis to cdf-

2(tm788) on chromosome X, we created a triple mutant of cdf-1(n2527) cdf-2(tm788) 

sur-7(ku119), crossed the strain to wild type and selected cdf-1(+) cdf-2(tm788) sur-7(+) 

animals. The cdf-2(tm788) molecular lesion was analyzed by determining the DNA 

sequence of the PCR amplified cdf-2 locus. 

 

 

RESULTS 

 

The use of completely-defined, axenic medium to manipulate dietary zinc: The most 

commonly used culture medium for C. elegans is nematode growth medium (NGM) that 

is dispensed in a Petri dish and seeded with a bacterial lawn of E. coli (Brenner, 1974). 

NGM provides nutrients for E. coli growth, and the worms obtain nutrients by eating the 

E. coli. In these growth conditions, worms develop from egg to adult in approximately 

3.5 days at 20º and generate about 300 self-progeny in the first five days of adulthood 

(Riddle et al., 1997). In our initial attempts to manipulate dietary zinc, we supplemented 

NGM with zinc sulfate and seeded this medium with E. coli (Bruinsma et al., 2002). cdf-
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1(n2527) mutant animals displayed dose-dependent impairment of growth, indicating 

these medium conditions resulted in increased dietary zinc. However, zinc was not 

highly soluble in NGM, limiting the utility of this approach. To address the limitation of 

zinc solubility, we developed a culture medium that allowed effective supplementation 

with zinc sulfate, which we named noble agar minimal media (NAMM) (Bruinsma et al., 

2008). Culture conditions involving NGM and NAMM have two significant limitations. 

First, the worms consume E. coli, which is a food source with a level of zinc that is 

undefined and difficult to manipulate. Second, while these cultures can be supplemented 

with zinc, these conditions do not permit depletion of dietary zinc. To overcome these 

limitations, we used C. elegans maintenance medium (CeMM), a completely-defined, 

axenic, liquid medium (Szewczyk et al., 2003). CeMM is formulated from purified 

vitamins, growth factors, amino acids, nucleic acids, heme, β-sitosterol, sugar, salts, and 

trace metals. CeMM provides adequate nutrition for indefinite propagation of C. elegans 

cultures (Szewczyk et al. 2003). Compared to worms cultured on NGM with live E. coli, 

worms cultured in CeMM display phenotypes suggestive of mild nutrient deprivation, 

such as delayed development, an extended life-span, diminished self-fertile brood sizes, 

and a thin adult body morphology. However, the proportion of the life cycle spent in each 

larval stage is similar in both media conditions (Szewczyk et al., 2003; Szewczyk et al., 

2006). 

Standard CeMM contains 75 µm zinc chloride (Szewczyk et al., 2003). To use this 

medium to manipulate dietary zinc, we prepared CeMM with no added zinc chloride 

(See Materials and Methods). To determine the level of zinc contamination in the 

medium components, we used inductively coupled plasma-mass spectrometry (ICP-MS) 
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to measure zinc. Medium that was formulated with no added zinc contained 

approximately 30 ± 18 parts per billion by weight zinc (mean of seven independent 

medium preparations). This corresponds to approximately 0.25 µm zinc, indicating that 

there is minimal zinc contamination in the medium components. 

 

Maturation and population growth of wild-type worms required a minimal level of 

dietary zinc and were inhibited by high dietary zinc: To determine how dietary zinc 

affects the development and maturation of worms, we cultured worms on NGM dishes 

with live E. coli and transferred eggs to CeMM with 18-19 different concentrations of 

zinc, ranging from no added zinc to 2 mm zinc (Figure A.1A). Development was 

monitored after 80% of wild-type animals matured to adulthood with optimal 

concentrations of zinc, which required nine to twelve days in culture (Figure A.1B). 

Initially, maturation was monitored using a dissecting microscope, and animals were 

scored as larvae or adults. To automate the analysis, we employed a COPAS Biosort 

instrument that evaluates each animal with a laser microbeam and measures time of 

flight (TOF) and extinction (EXT). Time of flight measures the time necessary for the 

animal to flow past the laser, which is an indication of the length of the animal. 

Extinction measures the percent of light transmission that is blocked during the time of 

flight, which is an indication of the width and optical density of an animal. Time of flight 

and extinction are highly correlated, and both measurements indicate the size and 

maturity of an animal, with high values indicating a larger, more mature animal (Pulak, 

2006). Figures 1B and C show that maturation is strongly affected by dietary zinc. At 

concentrations of 0 and 1 µm zinc, worms displayed minimal maturation. At 
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concentrations from 2 µm to 15 µm zinc, worms displayed measurable but impaired 

maturation. Worms displayed maximal maturation in 30 µm to 200 µm zinc and did 

nearly as well up to ~500 µm zinc. At zinc concentrations greater than 500 µm, worms 

displayed concentration-dependent impairment of growth. 

 The maturation assay evaluates development and growth from the egg or L1 

larva to the adult stage. To examine the complete life cycle, including reproductive 

performance, we analyzed the growth rate of a population (Figure A.2A). Worms were 

cultured in CeMM containing 30-75 µm zinc for multiple generations, since these 

concentrations are in the range for maximal growth. Worms were transferred to CeMM 

containing 16 different zinc concentrations ranging from no added zinc to 2.5 mm zinc. 

To determine the maximum growth rate for the population, we counted the number of 

worms in the population at several times after transfer to the new medium. Population 

growth was approximately linear between 7 and 17 days in culture (Figure A.2B). 

Overall the results were similar to the maturation assay. With no added zinc, there was no 

significant population growth (Figure A.2C, D). With 1 µm to 2 µm added zinc, there 

was measurable but severely impaired population growth. From 2 µm to 30 µm zinc, 

there was a dose-dependent increase in population growth. To quantify these data, we 

determined the effective concentration (EC50) of zinc that resulted in a population growth 

rate that was half the maximal population growth rate. The EC50 for wild-type animals 

was 6.8 ± 1.1 µm zinc (Table A.1). From 30 µm to 1 mm zinc, there was relatively 

optimal population growth (Figure A.2C, D). Concentrations greater than 1 mm caused a 

reduction of population growth rates. We determined the inhibitory concentration (IC50) 

of zinc, and the IC50 for wild-type animals was 1.3 ± 0.3 mm zinc (Table A.1). These 
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results indicate that worms require dietary zinc for efficient maturation and reproduction, 

thrive in a wide-range of dietary zinc concentrations from 30 µm to 1 mm, and are 

susceptible to zinc toxicity at concentrations above 1 mm. 

 

Zinc content of wild-type worms is correlated with dietary zinc: To complement the 

analysis of how dietary zinc affects maturation and population growth, we developed two 

methods to measure the zinc content of animals. The first method utilized radioactive 

65Zn. Animals were cultured with a range of dietary zinc and a trace amount of 65Zn, the 

amount of internalized 65Zn was determined using a gamma counter, and the sample size 

was determined by measuring the protein concentration. The second method utilized 

ICP-MS, a technique that can measure the concentration of several different elements in 

a single sample, including zinc. Worms were cultured with a range of dietary zinc, the 

metal content was determined by ICP-MS, and the dry weight was determined to 

establish the sample size. Both methods demonstrated that the zinc content of wild-type 

C. elegans was strongly influenced by the level of dietary zinc (Figure A.3A and 

Supplemental Table A.1). Worms cultured in 6 µm zinc had a zinc content of ~40 parts 

per million (ppm), whereas worms cultured in 2 mm zinc had a zinc content of ~1,000 

ppm, a 27-fold difference. By contrast, the content of three other physiologic metals, iron, 

copper, and manganese, was not strongly affected by dietary zinc (Figure A.3B). The iron 

content displayed minimal change, and copper and manganese contents declined less 

than 2-fold. Figure A.3C shows that when the zinc content of wild-type animals 

increased above ~400 ppm there was a corresponding decrease in population growth rate 

that was caused by high concentrations of dietary zinc. 
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While an increase in dietary zinc always resulted in an increase in total zinc content, the 

quantitative relationship between the change in zinc content and the change in dietary 

zinc (the slope) displayed an interesting pattern. Figure A.3D shows that at the lowest 

concentrations of dietary zinc (6-10 µm), the zinc content displayed the greatest change 

in response to increased dietary zinc (3.4 ppm/µm). As the dietary zinc concentration was 

increased to an optimal level (75-350 µm), the rate of change of zinc content 

progressively decreased to 0.6 ppm/µm. As the dietary zinc concentration was increased 

to toxic levels (1-2 mm), the rate of change of zinc content was relatively stable (0.4-0.5 

ppm/µm). These results indicate that worms cultured in low concentrations of zinc 

undergo robust changes in zinc content when additional dietary zinc is provided, whereas 

worms cultured in high concentrations of zinc are resistant to changes in zinc content 

when challenged with additional dietary zinc. However, wild-type worms continued to 

accumulate zinc even at toxic concentrations of dietary zinc greater than 1 mm. 

 

C. elegans cdf-2 encodes a member of the cation diffusion facilitator family: 

Vertebrates contain CDF proteins localized to the plasma membrane, ZnT-1, and to 

vesicular membranes, ZnT-2, ZnT-3, ZnT-4, and ZnT-8 (Gaither and Eide, 2001a; Kambe 

et al., 2004; Palmiter and Findley, 1995). We demonstrated previously that C. elegans 

CDF-1 is most similar to the vertebrate ZnT-1 sub-family by sequence criteria and by the 

experimental observation that ZnT-1 can functionally substitute for CDF-1 (Bruinsma et 

al., 2002). To investigate a C. elegans cation diffusion facilitator protein that is closely 

related to the  ZnT-2, ZnT-3, ZnT-4, and ZnT-8 sub-family, we initiated an analysis of 

the predicted gene T18D3.3. The computer algorithm Gene Finder predicted that the 
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T18D3.3 gene contains 8 exons and encodes a protein of 360 amino acids, and we 

experimentally validated the predicted gene structure (Figure A.4A and Materials and 

Methods). The predicted T18D3.3 protein contains hallmarks of the CDF family 

including six transmembrane-spanning segments and two histidine motifs, (HX)3, in the 

loop between the fourth and fifth transmembrane segments (Figure A.4B), and we thus 

named it CDF-2. Compared to vertebrate proteins, CDF-2 is most similar to ZnT-2, 

which is localized to intracellular vesicles and is involved in zinc secretion into breast 

milk (Chowanadisai et al., 2006; Palmiter et al., 1996a). While these sequence 

similarities indicate that CDF-2 functions as a zinc transporter, the biochemical activity 

of CDF-2 has not yet been demonstrated experimentally. 

 

cdf-2 transcript levels were regulated by dietary zinc: To investigate how dietary zinc 

regulates the expression of cdf-2, we used quantitative, real-time PCR to monitor the 

abundance of cdf-2 mRNA. Wild-type worms were cultured in CeMM with added zinc 

chloride for six days to achieve stable gene expression. Adult animals were collected, 

and the abundance of cdf-2 transcripts was determined. For comparison, the abundances 

of cdf-1 and sur-7 transcripts were also determined. The abundances of transcripts from 

these genes were normalized to the abundance of two genes that displayed stable 

expression over a range of zinc concentrations, ama-1 and rps-23 (data not shown). 

At the low concentration of 2 µm zinc, cdf-1 transcripts were most abundant, cdf-2 

transcripts were intermediate in abundance, and sur-7 transcripts were least abundant 

(data not shown). As the concentration of dietary zinc was increased, the abundance of 

cdf-2 transcripts increased progressively, displaying about 2-fold induction at 30 µm zinc 
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and 3-4 fold induction at 250 µm to 2 mm zinc (Figure A.5). By contrast, the abundances 

of cdf-1 and sur-7 transcripts were not increased. At the high concentration of 2 mm zinc, 

cdf-2 transcripts were more abundant than cdf-1 or sur-7 transcripts. These findings 

suggest that cdf-2 has an important function in the response to increased dietary zinc. 

 

CDF-2 localized to vesicles in intestinal cells: To determine the cells that express CDF-

2 and the subcellular localization of the protein, we expressed a cdf-2::gfp fusion protein 

under the control of the predicted cdf-2 promoter in transgenic worms. In an attempt to 

include all the relevant promoter elements that might mediate cell type specific 

expression, we designed the reporter construct to include 1,371 bp upstream of the 

predicted initiation codon, the entire open reading frame, and all of the introns. To 

include all of the relevant protein domains that might mediate subcellular localization, 

we included the entire CDF-2 protein sequence. The plasmids were introduced into wild-

type animals by microinjection to yield extra-chromosomal arrays (Mello et al., 1991) 

and into unc-119(ed3) mutant animals by biolistic bombardment to yield integrated 

arrays (Praitis et al., 2001). To determine the reproducibility of the observed expression 

patterns, we identified six independently derived transgenic lines. The expression pattern 

of CDF-2::GFP was similar in all six independently-derived transgenic lines, indicating 

that this pattern is not influenced by the genomic integration sites or by rearrangements 

that may have occurred during the formation of extrachromosomal arrays. In wild-type 

animals, the intestinal cells contain granules that display autofluorescence. 

Autofluorescence is first detected in embryos and becomes progressively more intense as 

animals mature. Live CDF-2::GFP transgenic worms appeared to display enhanced 
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fluorescence in embryos compared to wild-type worms. As animals matured and the 

intestinal granules displayed more intense autofluorescence, we could no longer observe 

enhanced fluorescence in live CDF-2::GFP transgenic worms. Because autofluorescence 

of intestinal granules made it difficult to observe CDF-2::GFP, we fixed embryos and 

animals, a process that eliminates autofluorescence, and visualized CDF-2::GFP using an 

anti-GFP antibody. CDF-2::GFP was expressed in embryos (Figure A.6E-L), larvae 

(Figure A.6M-P), and adults (Figure A.6Q-T). The CDF-2::GFP protein was expressed in 

intestinal cells in a punctate pattern that appears to be the membrane of small vesicles 

(Figure A.6U). To investigate the relationship between the punctate pattern of CDF-

2::GFP and the punctate pattern of autofluorescent intestinal granules, we analyzed 

fluorescence in live adult worms (Figure A.6A-D). These results indicate that CDF-

2::GFP is only expressed in puncta that are autofluorescent. These data are consistent 

with the possibilities that all or only some of the autofluorescent puncta contain CDF-

2::GFP, and suggest that CDF-2::GFP is not expressed outside of autofluorescent puncta. 

A CDF-1::GFP fusion protein is also expressed in intestinal cells, but it is localized to the 

plasma membrane (Bruinsma et al., 2002), and it is not localized to the vesicles that 

contain CDF-2. Therefore, the subcellular localization of CDF-2::GFP is unlikely to be 

mediated by the GFP fusion partner and appears to be specific for CDF-2. While the 

CDF-2::GFP fusion protein was designed to indicate the expression pattern of 

endogenous CDF-2, the function of the CDF-2::GFP fusion protein has not been 

analyzed, and it is possible that endogenous CDF-2 is expressed in a broader or more 

restricted pattern than the CDF-2::GFP reporter. These results indicate that CDF-2 is 

localized to vesicular membrane compartments similar to the related vertebrate proteins 
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ZnT-2, ZnT-3, Znt-4, and ZnT-8 (Gaither and Eide, 2001a; Kambe et al., 2004). 

 

A cdf-2 loss-of-function mutation resulted in delayed population growth and 

decreased zinc content: To investigate the function of cdf-2, we obtained the tm788 

deletion allele from the Mitani laboratory (National Bioresource Project, Tokyo, Japan). 

We determined the sequence of the cdf-2 locus and confirmed that tm788 is an 804 base 

pair deletion that removes 594 base pairs upstream of the ATG, exon 1, intron 1, and 69 

base pairs of exon 2 (Figure A.4A). In addition, there is a 68 base pair insertion at the site 

of the deletion. The deleted DNA encodes the first 34 predicted amino acids of the CDF-

2 protein. The tm788 deletion is predicted to affect the cdf-2 transcript in two important 

ways. First, tm788 is predicted to reduce the abundance of cdf-2 transcripts by removing 

the 5' upstream region that might contain promoter elements and the transcription 

initiation site. Second, any cdf-2 transcripts that are produced must have an abnormal 

structure, since exon 1 and part of exon 2 are absent. Such abnormal transcripts would 

definitely lack the codons for the first 34 predicted amino acids and might lack additional 

codons. The first methionine codon in the cdf-2 open reading frame that remains in the 

tm788 mutant is codon 65, and a protein that initiated at codon 65 would lack half of the 

highly conserved first transmembrane domain. 

 To determine how the cdf-2(tm788) mutation affects the abundance of the cdf-2 

transcript, we used the sensitive method of reverse transcription-PCR. The abundance of 

the cdf-2 transcript was dramatically reduced by approximately 1,000-fold in the cdf-

2(tm788) mutant compared to wild type, and the residual cdf-2 transcript was not induced 

by dietary zinc (Supplemental Figure A.1). These findings indicate that the cdf-2(tm788) 
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deletion eliminates sequences that are critical for transcript initiation and/or sequences in 

the transcribed region that are critical for transcript stability. These results suggest that 

the cdf-2(tm788) mutation causes a strong loss-of-function. 

To analyze the phenotype of the cdf-2(tm788) mutant, we first backcrossed the strain to 

wild-type animals to remove extraneous mutations. cdf-2(tm788) mutant animals 

appeared to have normal morphology and body movement. cdf-2(tm788) did not cause 

significant lethality, and cdf-2(tm788) hermaphrodites and males were fertile (data not 

shown). The cdf-2(tm788) mutation did not suppress the multi-vulval phenotype caused 

by constitutively activated let-60(n1046) Ras (data not shown), by contrast to loss-of-

function mutations of cdf-1 and sur-7 (Bruinsma et al., 2002; Yoder et al., 2004). To 

carefully monitor the ability of cdf-2(tm788) mutant animals to grow and develop in a 

wide range of dietary zinc conditions, we used CeMM to conduct maturity and 

population growth assays. Figure A.7A shows that maturation from L1 to adult was 

similar for cdf-2(tm788) mutant and wild-type animals in a wide range of dietary zinc. 

By contrast, cdf-2(tm788) mutant animals displayed reduced population growth 

compared to wild-type animals in 30 µm to 480 µm dietary zinc (Figure A.7B). In 

extremely low and high dietary zinc conditions, cdf-2(tm788) mutant and wild-type 

animals displayed similar population growth, and the EC50 and IC50 values for cdf-

2(tm788) mutant animals were 3.8 ± 1.0 µm zinc and 1900 ± 160 µm zinc, respectively 

(Table A.1). These findings indicate that cdf-2 is necessary for wild-type levels of 

population growth when dietary zinc is in the optimal range.  

 To determine how cdf-2 influences zinc content, we analyzed cdf-2(tm788) 

mutant animals using ICP-MS. Figure A.7C shows that cdf-2(tm788) mutant animals 
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displayed reduced zinc content at dietary zinc concentrations of 30 µm and higher 

compared to wild-type animals (Supplemental Table A.1); at a dietary zinc concentration 

of 75 µm, the zinc content of the cdf-2 mutant was reduced 2-fold, and at dietary zinc 

concentrations of 350 µm, 1 mm, and 2 mm the zinc content of the cdf-2 mutant was 

reduced 3-fold. In conjunction with the localization data, these results suggest that CDF-

2 functions to store zinc in vesicles of intestinal cells. 

Loss-of-function mutations in cdf-1 and sur-7 affect sensitivity to dietary zinc and 

zinc content: cdf-1 and sur-7 are critical for Ras-mediated signal transduction and 

resistance to high levels of dietary zinc when animals are cultured with live E. coli 

(Bruinsma et al., 2002; Yoder et al., 2004). The role of these genes in conditions of low 

dietary zinc has not been determined. We used CeMM to analyze the functions of cdf-1 

and sur-7 in a full range of dietary zinc. The strong loss-of-function cdf-1(n2527) 

mutation is a nonsense change that is predicted to truncate the protein at amino acid 156 

of 519, resulting in the absence of three highly conserved transmembrane domains 

(Bruinsma et al., 2002). The partial loss-of-function sur-7(ku119) mutation affects a 

predicted splice site and reduces but does not eliminate sur-7 transcripts (Yoder et al., 

2004). We cultured cdf-1 and sur-7 mutant animals in a wide range of dietary zinc and 

measured the ability of L1 larvae to mature to adulthood. Both cdf-1 and sur-7 mutant 

animals displayed reduced maturation at low and high concentrations of zinc, whereas 

they displayed wild-type levels of maturation at intermediate zinc concentrations (Figure 

A.8A, B). Both cdf-1 and sur-7 mutant animals displayed reduced population growth at 

concentrations of dietary zinc from 10 µm to 2.5 mm (Figure A.8C, D). The EC50 for 

population growth rate was similar for these mutant animals and wild type, whereas the 
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IC50 was reduced for both cdf-1 and sur-7 mutant animals (Table A.1). These results 

indicate that cdf-1 and sur-7 are necessary for optimal maturation in low dietary zinc, a 

result that has not been previously reported. These genes are necessary for optimal 

population growth in a wide-range of dietary zinc and are essential for survival at high 

dietary zinc, consistent with previous reports (Bruinsma et al., 2002; Bruinsma et al., 

2008; Yoder et al., 2004). 

 To determine the role of cdf-1 and sur-7 in regulating zinc content, we analyzed 

loss-of-function mutant animals using ICP-MS. cdf-1 mutant animals displayed increased 

zinc content at dietary zinc concentrations of 30 µm and higher (Figure A.8E and 

Supplemental Table A.1). sur-7 mutant animals displayed a zinc content similar to wild 

type (Figure A.8F and Supplemental Table A.1). The finding that sur-7 mutant animals 

displayed dramatic growth defects and relatively normal zinc content suggests that the 

distribution of zinc is abnormal in mutant animals. This analysis shows that cdf genes can 

have strikingly different effects on zinc content; cdf-2 promotes zinc accumulation, 

whereas cdf-1 inhibits zinc accumulation. 

 

Analysis of cdf-1, cdf-2, and sur-7 double and triple mutant animals: To investigate 

the genetic interactions between these three genes, we generated the three possible 

double mutant strains and the triple mutant strain and measured maturation, population 

growth, and zinc content of each strain (Table A.1, Supplemental Tables A.1-3). The cdf-

1 cdf-2 and cdf-1 cdf-2 sur-7 mutant animals were particularly informative (Figure A.9). 

Loss-of-function mutations in cdf-1 and cdf-2 have opposite effects on zinc content. The 

cdf-1 cdf-2 double mutant displayed a zinc content that was intermediate between the 
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two single mutant strains (Figure A.9E).  The cdf-1 cdf-2 double mutant had slightly 

impaired maturation rates compared to the cdf-1 mutant (Figure A.9A), but had slightly 

improved population growth rates compared to the cdf-1 mutant (Figure A.9C). These 

results suggest that cdf-1 and cdf-2 have antagonistic functions with respect to zinc 

content and the more normal zinc content of the cdf-1 cdf-2 mutant may account for the 

increase in the population growth rate. 

 The cdf-1 cdf-2 sur-7 triple mutant was also intermediate between the cdf-1 and 

cdf-2 single mutant animals with respect to zinc content; furthermore, the cdf-1 cdf-2 sur-

7 mutant had a zinc content that was similar to wild type (Figure A.9F). Figure A.9G 

compares the change in zinc content as a function of dietary zinc for single and triple 

mutant animals. The cdf-2 single mutant displayed smaller changes in zinc content 

compared to wild type at all concentrations of dietary zinc. By contrast the cdf-1 single 

mutant displayed larger changes compared to wild type in most intervals. Consistent with 

the interpretation that cdf-1 and cdf-2 have antagonistic functions, the values for the 

triple mutant were usually intermediate between cdf-1 and cdf-2 mutant animals. 

Furthermore, at the highest concentrations of dietary zinc, cdf-1 and cdf-1 cdf-2 sur-7 

mutant animals displayed a trend toward increasing values in contrast to wild-type 

animals that displayed decreasing or stable values (Figure A.9H). These findings suggest 

that cdf genes are necessary for animals to resist changes in zinc content when 

challenged with the highest levels of dietary zinc. The cdf-1 cdf-2 sur-7 mutant had 

increased population growth rates at optimal dietary zinc concentrations compared to the 

cdf-1 mutant, but triple mutant animals were very sensitive to zinc toxicity and had an 

IC50 of 220 µm (Figure A.9D and Table A.1). The failure of the cdf-1 cdf-2 sur-7 mutant 
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to control zinc content at high dietary zinc may be responsible for the increased 

sensitivity to zinc toxicity. 

 

 

DISCUSSION 

 

Zinc metabolism and homeostasis in wild-type C. elegans: C. elegans is typically 

cultured with E. coli as a food source, which limits the ability to manipulate dietary 

constituents such as zinc. Chemically defined media that support long term culture of the 

related nematode C. briggsae have been developed (Buecher et al., 1966; Hieb and 

Rothstein, 1968; Hieb et al., 1970; Lu et al., 1978). These culture conditions were 

adapted for the study of C. elegans by Lu and Goetsch (1993), and the growth 

characteristics of C. elegans in fully defined medium were described by Szewczyk et al. 

(2003; 2006). To develop culture conditions that allow complete control of dietary zinc, 

we analyzed worms using CeMM with no added zinc and a wide range of supplemental 

zinc. These experiments revealed that C. elegans cannot mature or reproduce in CeMM 

with no added zinc (approximately 0.25 µm zinc), demonstrating that dietary zinc is 

essential for C. elegans survival. When dietary zinc was in the range of 1 µm  to 10 µm, 

C. elegans displayed impaired but measurable growth, and the EC50 for dietary zinc was 

~7 µm. When dietary zinc was in the range of 30 µm to 1 mm, C. elegans displayed 

optimal growth. The finding that optimal growth occurs over a 30-fold range in dietary 

zinc indicates that C. elegans have evolved mechanisms to thrive in a relatively broad 

range of dietary zinc. When dietary zinc was in the range of 1 mm to 2.5 mm, C. elegans 
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displayed dose-dependent impairment of growth, and the IC50 for dietary zinc was ~1.3 

mm. The EC50 and IC50 for dietary zinc differ by 190-fold and define the range of zinc 

that permits C. elegans survival. 

 The culture conditions described here have important advantages compared to 

the culture conditions that have been used previously to manipulate dietary zinc 

(Bruinsma et al., 2002; Bruinsma et al., 2008; Dong et al., 2008a; Yoder et al., 2004). We 

previously supplemented NGM or NAMM with zinc; these media conditions allowed for 

supplemental dietary zinc but did not allow for depletion of dietary zinc, since E. coli is 

the food source. The use of CeMM allowed us to quantitatively determine for the first 

time the minimum, optimum, and maximum dietary zinc levels for C. elegans. Similar 

quantitative measurements of levels have not been systematically established for other 

animals, and these studies provide new information about the capacity of multicellular 

animals to metabolize zinc. 

 An important method for analyzing zinc metabolism is the measurement of zinc 

content. The zinc content of C. elegans has not been previously reported. We developed 

two independent methods to measure zinc content. One method employed radioactive 

65Zn as a tracer and the second method utilized physical measurements of zinc performed 

by ICP-MS. Our results indicate that total animal zinc content is proportional to the 

concentration of dietary zinc. Over the ~30-fold range of dietary zinc that promotes 

optimal growth (30 µm-1 mm), worms displayed an ~7-fold increase in zinc content. 

However, the relationship between dietary zinc and zinc content displayed an interesting 

pattern. At the lowest concentrations of dietary zinc, wild-type worms displayed the most 

responsiveness to changes in dietary zinc, measured as the change in zinc content per 
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change in dietary zinc. This responsiveness decreased as dietary zinc was increased to 

the optimal range for population growth and then stabilized as dietary zinc increased to 

high levels. These findings suggest that at low concentrations of dietary zinc, worms are 

in a physiological state that promotes uptake of dietary zinc and/or minimizes zinc 

excretion, so that the animals respond to an increase in dietary zinc with a robust increase 

in zinc content. By contrast, at high concentrations of dietary zinc, worms are in a 

physiological state that minimizes uptake of dietary zinc and/or maximizes zinc 

excretion, so that animals respond to an increase in dietary zinc with a minimal increase 

in zinc content. Because zinc content never appears to be independent of dietary zinc, 

even at toxic levels of dietary zinc, it appears that worms do not have the capacity to 

maintain a consistent zinc content when challenged with increasing dietary zinc. These 

results support the model that excess zinc content is the cause of dietary zinc toxicity. 

 The analysis of metal content of worms indicated that there is a relationship 

between zinc metabolism and the metabolism of other metals, specifically copper and 

manganese. Wild-type worms displayed approximately two-fold decreases in copper and 

manganese content as dietary zinc was increased. Interestingly, this effect was abrogated 

in cdf-1 mutants. In humans, excess dietary zinc can cause copper deficiency (Prasad et 

al., 1978; Vallee and Falchuk, 1993). Although the mechanisms have not been well 

established, one possibility is that processes that are regulated to excrete excess zinc 

and/or limit zinc uptake also act on other metals such as copper, perhaps due to 

overlapping specificity. Our results suggest that similar events occur in C. elegans, and 

raise the possibility that mechanisms that promote zinc excretion or limit zinc uptake 

may also act on copper and manganese. 
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 Studies of zinc in widely divergent species have led to the proposal that these 

systems have similar concentrations of zinc and that there is a universal zinc quotient 

(Eide, 2006; Outten and O'Halloran, 2001). The results of our studies indicate that zinc 

content is dependent upon the concentration of dietary zinc and, therefore, highly 

variable. These findings suggest that animals have a measurable but limited capacity to 

moderate changes in zinc content in response to changing dietary zinc, and probably 

have also evolved mechanisms to cope with a wide range of zinc content. Our studies 

measured total zinc content of the animals, and it is possible that the distribution of zinc 

within the animal is dynamic so that some cells or compartments maintain a relatively 

constant zinc concentration. For example, zinc may be sequestered in specific cells or 

compartments under conditions of high dietary zinc. Our analysis of cdf-2 suggests that 

zinc is stored in vesicles of intestinal cells. The development of methods to localize zinc 

will be important for elucidating how worms partition zinc to different compartments, 

which may be an important aspect of zinc homeostasis. 

 

cdf-2 encodes a predicted zinc transporter that is localized to vesicles in intestinal 

cells: We investigated cdf-2 because it is predicted to encode a highly-conserved member 

of the CDF family that is most similar to vertebrate ZnT-2 and is highly related to ZnT-3, 

ZnT-4, and ZnT-8. ZnT-2 is expressed in the small intestine, kidney, seminal vesicle, 

testis, and prostate and localized to the endosomal compartment (Palmiter et al., 1996a). 

ZnT-4 is expressed ubiquitously and localized to the trans golgi network and endosomal 

compartment (Murgia et al., 1999). ZnT-3 is expressed in neurons and localized to 

synaptic vesicles (Palmiter et al., 1996b), and ZnT-8 is expressed in the pancreas and 
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localized to insulin-containing vesicles (Chimienti et al., 2004; Chimienti et al., 2006). 

We used a CDF-2::GFP fusion protein to demonstrate that CDF-2 is localized to vesicles 

of intestinal cells. The vesicles that contain CDF-2::GFP co-localize with autofluorescent 

intestinal granules. Autofluorescent intestinal granules have been characterized by 

electron microscopy, leading to the conclusion that these structures are secondary 

lysosomes (Clokey and Jacobson, 1986). Furthermore, autofluorescent intestinal granules 

colocalize with LysoTracker Red-stained compartments and acidified, acridine orange-

stained comportments, strongly suggesting that these granules are components of 

lysosome-related organelles (Hermann et al., 2005). In light of these studies, our results 

indicate that CDF-2 resides on the membrane of secondary lysosomes/lysosome-related 

organelles. Thus, CDF-2 resembles ZnT-3 and ZnT-8 since it is expressed in a specific 

tissue and localized to specialized vesicles. 

 The discovery that CDF-2 is localized to lysosome-related organelles raises the 

interesting question, what is the role of zinc in the lumen of this compartment? cdf-2 

loss-of-function mutations caused impaired growth, indicating that the function of cdf-2 

in lysosome-related organelles is critical for optimal zinc metabolism and growth. The 

cdf-2 mRNA was significantly increased by high dietary zinc, indicating that cdf-2 may 

mediate a response to zinc stress. Taubert et al. (2008) analyzed the MDT-15 

transcriptional coregulator and showed that the increase in cdf-2 transcripts requires 

MDT-15. In conditions of high dietary zinc, CDF-2 may function to reduce cytosolic 

levels of zinc by sequestration in the lumen of lysosome-related organelles. Consistent 

with this possibility, cdf-2 mRNA is induced by high dietary zinc and cdf-2 mutant 

animals have reduced zinc content at high dietary zinc, suggestive of a storage defect. 
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Strikingly, the zinc content of cdf-2 mutant animals is one-third the zinc content of wild-

type animals at high dietary zinc, suggesting that two-thirds of the zinc content of wild-

type animals is stored in the lumen of intestinal vesicles. Another possibility is that CDF-

2 functions to provide zinc for lysosomal enzymes. There are precedents for metal 

transporters supplying proteins resident in vesicles, such as the recent demonstration that 

ATP7A supplies copper to tyrosinase by functioning within specialized organelles called 

melanosomes (Setty et al., 2008). The yeast CDF proteins Msc2 and Zrg17 transport zinc 

into the ER to supply zinc to proteins in the secretory pathway (Eide, 2006; Ellis et al., 

2005), and vertebrate ZnT-3 and ZnT-8 transport zinc into synaptic vesicles and insulin-

containing vesicles, respectively (Palmiter and Huang, 2004). Our studies lay the 

foundation for further testing these hypotheses directly by establishing a model system to 

study the function of a CDF protein that is localized to the vesicular membrane. 

 

cdf-1 and cdf-2 function antagonistically to regulate zinc metabolism: Animals such 

as C. elegans and vertebrates contain extensive families of CDF proteins (Eide, 2006; 

Kambe et al., 2004; Liuzzi and Cousins, 2004; Palmiter and Huang, 2004). It is 

important to determine the extent to which these proteins have independent, redundant, 

or antagonistic functions. In vertebrates, loss-of-function mutations have been described 

for ZnT-1, ZnT-3, ZnT-4 and ZnT-5 (Palmiter and Huang, 2004); only ZnT-1 is essential 

for survival (Andrews et al., 2004). However, mutant animals that lack the function of 

two or more vertebrate cdf genes have not been reported. 

 Three C. elegans genes encoding cation diffusion facilitator proteins have now 

been characterized genetically and molecularly- cdf-1, cdf-2, and sur-7. cdf-1 encodes a 
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protein whose most similar vertebrate homolog is ZnT-1. CDF-1 and ZnT-1 are localized 

to the plasma membrane, ZnT-1 can functionally substitute for CDF-1 in C. elegans, and 

both proteins modulate Ras-mediated signaling in vertebrates and C. elegans (Bruinsma 

et al., 2002). cdf-1 is expressed in vulval precursor cells, and it appears to act cell 

autonomously in these cells to affect Ras-mediated signaling. cdf-1 is also highly 

expressed in intestinal cells, and cdf-1 appears to act non-autonomously in intestinal cells 

to affect Ras-mediated signaling in vulval precursor cells. CDF-1 may transport zinc 

from intestinal cells to the body cavity or intestinal lumen and thereby influence zinc 

metabolism in vulval precursor cells. A cdf-1(lf) mutant was previously demonstrated to 

be hypersensitive to high dietary zinc (Bruinsma et al., 2002). Here we confirmed this 

result using fully defined CeMM. We determined that the maturation of a cdf-1(lf) mutant 

was normal at optimal levels of dietary zinc but sensitive to low and high dietary zinc. 

The population growth rate of cdf-1(lf) mutant animals was reduced at all concentrations 

of dietary zinc, but the mutant animals were extremely sensitive to high dietary zinc. cdf-

1(lf) mutant animals displayed increased zinc content that was most pronounced at high 

levels of dietary zinc. These results indicate that cdf-1 activity promotes zinc excretion 

and/or limits zinc uptake. One model to explain this observation is that CDF-1 transports 

zinc across the plasma membrane of intestinal cells and into the intestinal lumen, thus 

directly promoting zinc excretion. Alternatively, CDF-1 may transport zinc from 

intestinal cells into the body cavity, thereby indirectly promoting zinc excretion by 

another cell such as the excretory cell. The findings that cdf-1 mutant animals cultured 

with high dietary zinc displayed increased zinc content and decreased survival suggest 

that the increased zinc content may cause the reduced survival.  
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 sur-7 encodes a CDF protein that does not have a closely related homolog in 

vertebrates. Yoder et al. (2004) reported that a SUR-7::GFP fusion protein was expressed 

in non-intestinal cells in a cytosolic pattern suggestive of endoplasmic reticulum, 

indicating that sur-7 may provide zinc to proteins resident in this compartment and 

promote excretion of zinc from cells through the secretory pathway. Here we 

demonstrated that sur-7(lf) mutant animals displayed reduced maturation and population 

growth rates in high dietary zinc, consistent with previous reports (Yoder et al., 2004). 

Maturation was also reduced at low dietary zinc, whereas mutant and wild-type animals 

displayed similar maturation at a narrow range of optimal dietary zinc. The zinc content 

of sur-7 mutant animals was similar to wild-type animals. Because the growth defects of 

sur-7 mutants are evidence for altered zinc metabolism, the finding that the overall zinc 

content is similar to wild type indicates that the distribution of zinc in the sur-7(lf) 

mutant animals is abnormal. The sur-7 phenotypes may be caused by reduced zinc in the 

secretory pathway and/or increased zinc in another compartment. 

 Because CDF-1, CDF-2, and SUR-7 are all predicted to reduce the concentration 

of zinc in the cytoplasm, it is possible that the functions of these proteins are redundant. 

In this case, double or triple mutant animals might display phenotypes that are stronger 

than any single mutant. In general, we did not observe this pattern, since most double and 

triple mutant animals displayed similar phenotypes to one of the single mutants. 

However, for the phenotype of controlling zinc content in high dietary zinc (Figure 

A.9H), the triple mutant was much more impaired than any single mutant. This result 

suggests that CDF-1, CDF-2, and SUR-7 might function redundantly to control zinc 

content at high dietary zinc. 
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 By contrast to the similar effects that all CDF proteins are predicted to have on 

the cytoplasmic zinc concentration, CDF-1 and CDF-2 are predicted to have distinct 

effects on zinc concentrations in the extracellular space and lumen of intracellular 

compartments. Whereas cdf-1(lf) mutant animals displayed increased zinc content in high 

dietary zinc, suggesting cdf-1 is necessary to excrete zinc, cdf-2(lf) mutant animals 

displayed reduced zinc content in high dietary zinc, suggesting cdf-2 is necessary to store 

zinc. The cdf-1 cdf-2 double mutant displayed an intermediate zinc content, suggesting 

that cdf-1 and cdf-2 function antagonistically. CDF-1 and CDF-2 are both expressed in 

intestinal cells; CDF-1 is localized to the plasma membrane, whereas CDF-2 is localized 

to vesicles. As shown in Figure A.10, we propose that CDF-1 and CDF-2 compete for 

cytosolic zinc. If CDF-1 transports zinc across the plasma membrane, then the zinc 

content of the animal is directly or indirectly decreased. If CDF-2 transports zinc into the 

vesicle lumen, then the zinc content of the animal is increased. This model accounts for 

the changes observed in the cdf-1 and cdf-2 mutant animals and explains why the cdf-1 

cdf-2 double mutant animals have an intermediate phenotype. These findings 

demonstrate the power of the C. elegans model system to dissect the relationships 

between CDF family members. 

 

 

ACKNOWLEDGEMENTS 

 

Some strains were provided by the Caenorhabditis Genetics Center. We are grateful to Dr. 

Shohei Mitani for providing the cdf-2(tm788) allele, Dr. Min Han for providing the sur-



 157

7(ku119) allele, Dr. Andrew Fire for providing the pRF4 and pPD95.77 plasmids, Dr. 

Judith Austin for providing the pMM016 plasmid, Dr. Sudhir Nayak for assistance with 

biolistic bombardment,  Dr. Shin-ichiro Imai for use of the spectrophotometer, Dr. 

Irving Boime fo helpful discussions, Danielle Pepin for generating the pDG222 and 

pDP15 plasmids, Ivan Dimitrov for cDNA preparation, and Christopher Pickett for help 

in immunostaining. This research was supported by grants from the National Institutes of 

Health to K.K. (GM068598, AC84271, and AG026561). K.K. is a Senior Scholar of the 

Ellison Medical Foundation. 

 



 158

FIGURE LEGENDS 

 

Figure A.1. The maturation of wild-type worms is affected by dietary zinc. A. To 

monitor maturation, we cultured adults on NGM with live E. coli, transferred eggs or L1 

larvae to CeMM (18-19 different zinc concentrations) in 24 well plates, cultured for 9-12 

days, and evaluated maturation using a dissecting microscope (B) or a COPAS Biosort 

(C). B. Wild-type worms were cultured in CeMM with added zinc, displayed on a 

logarithmic scale. To calculate the percent of eggs that matured to an adult, we counted 

immature and mature animals and calculated the percent mature. C. Maturation was 

monitored using the COPAS Biosort to measure time of flight (TOF). TOF is a measure 

of the time that the animal blocks light transmission and is shown in arbitrary units. The 

TOF value of animals at the beginning of the experiment was approximately 80 units. 

Values are the average (± standard deviation, SD) of four biological replicates.  

 

Figure A.2. The population growth rate of wild-type worms is affected by dietary zinc. A. 

To monitor the growth rate of the population, we cultured worms in CeMM with 30-75 

µm zinc for multiple generations, transferred worms to flasks of CeMM (15-16 different 

zinc concentrations), and counted the number of worms per mL of culture medium at 

multiple times. Counting was performed using a dissecting microscope (B, C) or a 

COPAS BIOSORT (D). B. Wild-type worms were cultured in CeMM with different 

concentrations of added zinc shown in µm and indicated by colored lines. The numbers 

of worms per mL were determined at culture days 1, 4, 7, 10, 14, 17, and 22. The 

increase in population was maximal and approximately linear between days 7 and 17. C. 
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The slopes of the lines defined by the linear range shown in panel B were used to 

calculate population growth rates in worms/mL/day. The concentration of added zinc is 

displayed on a logarithmic scale. The colors of the data points correspond to the colors of 

the lines shown in panel B. Values are the average (± SD) of three independent 

experiments, one of which is shown in panel B. D. Population growth rate was monitored 

using the COPAS BIOSORT to measure the number of animals at four time points 

between days 9 and 17. Values are the average (± SD) of three independent experiments. 

The growth rates calculated from the COPAS BIOSORT data are somewhat higher than 

the growth rates calculated from the dissecting microscope data, probably because 

human observers are more stringent than the instrument in scoring objects as worms. 

Nonetheless, the effect of zinc on population growth rate was similar when measured 

using a dissecting microscope or the COPAS BIOSORT.  

 

Figure A.3. Zinc content of mixed-stage wild-type animals. Worms were cultured in 

CeMM with a range of added zinc, shown on a logarithmic scale. A. The zinc content 

was determined by ICP-MS (parts per million, closed green circles), or radiolabeled 65Zn 

(average ng zinc/µg protein ± SD, n=2, open green circles) in independent experiments. 

B. ICP-MS was used to measure the content of copper (Cu, blue triangles), iron (Fe, red 

squares), manganese (Mn, pink diamonds), and zinc (Zn, green circles) of each sample. 

The dietary concentrations of copper, iron, and manganese in CeMM were 37.5 µm, 150 

µm, and 112.5 µm, respectively, in all the samples. C. Zinc content was determined by 

ICP-MS (green circles), and population growth rate was determined by COPAS 

BIOSORT (black squares) in independent experiments. D. Bars indicate the change in 
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zinc content (ppm) divided by the change in dietary zinc (µm) for the two dietary zinc 

concentrations shown below. Values are the slope of the line defined by the ICP-MS data 

in panel A. 

 

Figure A.4. cdf-2 gene structure and predicted amino acid sequence. A. The line 

represents genomic DNA, and boxes represent exons that are untranslated (open) or 

translated (black). The green line indicates the extent of the tm788 deletion, and the 

green triangle denotes the tm788 insertion. B. An alignment of the predicted CDF-2 

protein with human ZnT-2 and C. elegans CDF-1.  Identical and similar amino acids are 

highlighted in black and grey, respectively. Green lines indicate codons deleted in the 

tm788 allele. Putative zinc binding motifs, (HX)n, are red. Predicted transmembrane 

segments are boxed and labeled I to VI. 

 

Figure A.5. cdf-2 transcript abundance was regulated by dietary zinc. Wild-type animals 

were cultured in CeMM with added zinc, shown on a logarithmic scale. The abundance 

of transcripts from cdf-1 (open circles), cdf-2 (black diamonds), and sur-7 (grey 

triangles) was measured by performing quantitative, real-time PCR. The axis represents 

the fold change in transcript abundance, which was calculated by comparing the 

transcript abundance at 2 µm, 10 µm, 30 µm, 250µm, 500 µm, 1 mm, and 2 mm dietary 

zinc to transcript abundance at 2µm dietary zinc. Values for transcript abundance were 

corrected for RNA recovery and the efficiency of primer amplification (see Materials and 

Methods). The fold change of each gene at 2 µm zinc was set equal to 1.0, and other 

values were normalized relative to 2 µm zinc. Values are the average of four independent 
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replicates (±SD). Compared to transcript abundance at 2 µm zinc, cdf-2 transcripts were 

significantly higher at zinc concentrations of 250 µm to 2 mm zinc (~3-4 fold, p<0.05, 

Welch’s t-Test), whereas cdf-1 and sur-7 transcripts were significantly decreased at 2 mm 

zinc (~2-fold, p<0.05, Welch’s t-Test). 

 

Figure A.6. CDF-2 was expressed in intestinal cells and localized to membrane-bound 

vesicles. Transgenic animals expressing CDF-2::GFP were cultured on NGM with live E. 

coli. Live adults were immobilized and mounted (A-D). Mixed-stage worms were fixed 

and stained with an anti-GFP antibody (E-U). Differential interference contrast images 

display organism morphology (A, E, I, M, Q), green displays CDF-2::GFP and 

autofluorescence (B) or only CDF-2::GFP (F, J, N, R, U), red displays autofluorescence 

(C, G, K, O, S), yellow displays overlap between CDF-2::GFP and autofluorescence (D), 

and blue displays nuclear morphology using DAPI (H, L, P, T). Red in panel C shows a 

punctate pattern of autofluorescence in intestinal cells, whereas red in panels G, K, O, 

and S shows that there is no specific localization of autofluorescence following fixation, 

and exposure times for red in these panels were at least 5-fold longer than for green. 

CDF-2::GFP was first detected during embryogenesis at the E16-E20 stage (F), and 

expression persisted throughout embryogenesis (J). CDF-2::GFP was expressed in a 

punctate pattern in intestinal cells during all larval stages (N) and in adults (R). Puncta 

appear to be membrane-bound vesicles (→, U). 

 

Figure A.7. cdf-2 mutant phenotypes. Wild-type and mutant animals were cultured in 

CeMM with a range of added zinc, shown on a logarithmic scale. A. Maturation of wild 
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type (WT, black squares) and cdf-2(tm788) (open diamonds) was monitored using the 

COPAS Biosort. Values are the average (± SD) of four biological replicates and are 

representative of two independent experiments. B. Population growth rate was monitored 

using the COPAS BIOSORT, and values are the average (±SD) of two to three 

independent experiments. C. Zinc content was measured using ICP-MS. 

 

Figure A.8. Maturation, population growth rate, and zinc content of cdf-1 and sur-7 

mutant animals. Wild-type and mutant animals were cultured in CeMM with a range of 

added zinc, shown on a logarithmic scale. A, B. Maturation of wild type (WT, black 

squares), cdf-1(n2527) (open circles), and sur-7(ku119) (open triangles) was monitored 

using the COPAS Biosort. Values are the average (± SD) of four biological replicates and 

are representative of two independent experiments. C, D. Population growth rate was 

monitored using the COPAS BIOSORT, and values are the average (± SD) of two to 

three independent experiments. E, F. Zinc content was measured by ICP-MS. 

 

Figure A.9. Maturation, population growth rate, and zinc content of double and triple 

mutant animals. Wild-type and mutant animals were cultured in CeMM with a range of 

added zinc, shown on a logarithmic scale. A, B. Maturation of wild type (black squares), 

cdf-1(n2527) (open blue circles), cdf-2(tm788) (open red diamonds), sur-7(ku119) (open 

green triangles), cdf-1(n2527) cdf-2(tm788) (grey squares), and cdf-1(n2527) cdf-

2(tm788) sur-7(ku119) (grey squares) was monitored using the COPAS Biosort. Values 

are the average of four biological replicates. C, D. Population growth rates were 

monitored using the COPAS Biosort. Values are the average of two to three independent 
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experiments. Values (±SD) are shown in Supplemental Table A.2 (Maturation) and 

Supplemental Table A.3 (Population growth rate). E-H. Zinc content was measured by 

ICP-MS. The change in zinc content as a function of change in dietary zinc is displayed 

in units of ppm/µm (panel G) or normalized by setting the values for 75-350 µm equal to 

1.0 (panel H). 

 

Figure A.10. A model of zinc distribution in wild-type and cdf mutant animals. Each 

diagram shows a polarized intestinal cell. CDF-1 (blue) localizes to the plasma 

membrane, and CDF-2 (red) localizes to the membrane of an intracellular compartment. 

The absence of CDF-1 and CDF-2 in mutant animals is illustrated by an X (B-D). The 

size of the Zn2+ indicates the concentration of zinc in a compartment. We propose that 

CDF-1 and CDF-2 function as zinc transporters based on sequence similarity to well-

characterized CDF proteins, and the size of the arrow indicates the amount of zinc flux. 

A. In wild-type animals, CDF-1 and CDF-2 compete for cytosolic zinc, resulting in 

intermediate levels of zinc in the cytosol, the extracellular space, and the vesicle lumen. 

B. In cdf-1(lf) mutant animals, the level of cytosolic zinc increases, and CDF-2 transports 

additional zinc into the vesicle lumen. C. In cdf-2(lf) mutant animals, the level of 

cytosolic zinc increases, and CDF-1 transports additional zinc into the extracellular space. 

D. In cdf-1(lf) cdf-2(lf) double mutant animals, zinc transport into the vesicle lumen and 

extracellular space both decrease. 

 

Supplemental Figure A.1. cdf-2 transcript levels were decreased ~1,000-fold in cdf-

2(tm788) mutant animals. Mixed-stage wild-type and cdf-2(tm788) animals were 
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cultured on NAMM dishes containing E. coli (Bruinsma et al. 2008) and no 

supplemental zinc (-) or 0.5 mm supplemental zinc (+) for 40 hours at 20º. Animals were 

collected in M9 buffer and solubilized in TRIzol (Invitrogen). 590 ng of RNA was 

reverse transcribed using random hexamer primers and the SuperScript III First-Strand 

Synthesis System for RT-PCR (Invitrogen). cDNA was diluted in water and PCR 

amplified using KlenTaq LA DNA Polymerase (Sigma-Aldrich). The amount of input 

cDNA is indicated in arbitrary units (1, no dilution; 0.1, 10x dilution; 0.01, 100x 

dilution), and the intensity of the amplified products demonstrates the semi-quantitative 

nature of the assay. A 325 bp cdf-2 product was amplified using primers that annealed to 

exon 5 and to the junction of exons 7 and 8. These exons are not affected by the tm788 

deletion. A 330 bp cdf-1 product was amplified using primers that annealed to exons 3 

and 4. As a control for contamination of individual reaction components, we substituted 

water for the templates and either PCR amplified (W) or reverse transcribed and PCR 

amplified (RT) the reaction mixes with each primer set. PCR products were separated on 

a 2% TAE agarose gel containing ethidium bromide and visualized using UV light. 

Molecular weight markers (M) are labeled (100 bp DNA ladder, New England Biolabs, 

Ipswich, MA). The identities of the amplified products were verified by DNA sequencing. 

In wild-type animals, cdf-2 transcripts were readily detected and induced by 

supplemental zinc. In cdf-2(tm788) animals, cdf-2 transcript levels were reduced ~1,000-

fold compared to wild-type animals since they were barely detectable with 1 unit of input 

cDNA. Furthermore, cdf-2 transcripts in the mutant animals were not induced by 

supplemental zinc. The cdf-1 control demonstrates that equivalent levels of amplifiable 

cDNA were present in all of the samples. 
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INTRODUCTION 

 

 Zinc transporters play a major role in the control of zinc metabolism. There are 

two families of zinc transporters, CDF and ZIP (Eide, 2006). CDF proteins move 

cytoplasmic zinc out of the cell or into intracellular compartments, resulting in the 

decrease in the cytoplasmic zinc level. In contrast, ZIP proteins uptake zinc from the 

outside of the cells or move zinc from intracellular compartments to the cytoplasm, 

leading to the increase in the cytoplasmic zinc level. Each zinc transporter family has 

multiple members. For example, in mammals, there are 10 members in the CDF family 

and 14 members in the ZIP family (Lichten and Cousins, 2009). Many zinc transporters 

have been studied for their expression, regulation and function. Theses studies suggested 

that each zinc transporter has its unique function but there are also networks of zinc 

transporters to control biological processes and to regulate zinc homeostasis in the body. 

However, due to the complexity caused by a large number of zinc transporters, 

understanding of the function of zinc transporters in animals is still limited.  

 C. elegans can be useful to study the function of zinc transporters because it has 

conserved multiple zinc transporters in its simple body, and thereby it can facilitate the 

analysis of networks of zinc transporters. In addition, the genetic power of C. elegans 

allows various and efficient approaches to study the function of zinc transporters. 

Genomic sequence analysis revealed that C. elegans has 14 putative CDF and 14 ZIP 

proteins (Table B.1) (Kambe et al., 2006; Krupa et al., unpublished data). Three CDF 

proteins have been previously characterized (Bruinsma et al., 2002; Davis et al., 2009; 

Yoder et al., 2004), but little is known about the other zinc transporters. Therefore, it is 
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important to perform the comprehensive study of C. elegans zinc transporter to better 

understand zinc metabolism and zinc-related physiological processes.  

 To characterize zinc transporters, we analyzed their expression patterns by 

generating transgenic animals and examined the phenotypes of loss-of-function mutant 

animals. Studying all C. elegans zinc transporters in this single study was practically 

impossible. The priority of zinc transporters was thus determined by the criteria such as 

the homology to human genes, implication in human heath, availability of mutant alleles 

and easiness of gene cloning. A subset of zinc transporters was studied (Tables B.3 and 

B.4). The results demonstrated that many C. elegans zinc transporters have similar 

expression patterns to their mammalian counterparts but some have differences. Genetic 

analysis identified new phenotypes of zinc transporter mutant animals, suggesting that 

those zinc transporters may be involved in specific biological processes. This study 

demonstrate that C. elegans is useful to study zinc transporter and zinc metabolism and 

suggest novel functions of zinc and zinc transporters. 

 

 

RESULTS AND DISCUSSION 

 

Expression Pattern Analysis 

Since the tissue distribution and intracellular localization of zinc transporters are 

critical to understand their function in zinc metabolism, we performed expression pattern 

analysis. To determine the cell types expressing zinc transporters and the intracellular 

localization of zinc transporters, we generated transgenic animals expressing zinc 
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transporters fused to GFP under the control of their predicted promoter region. Of the 9 

target zinc transporters, we successfully expressed four of them in transgenic animals, 

while one of them (C30H6.2) was made in multiple transgenic lines but its expression 

was not detected. H13N06.5, which is the most close to mammalian ZIP-7, was mainly 

expressed in the hypodermis and likely to be localized to the ER/Golgi (Figure B.1A). 

F55F8.9, which is similar to mammalian ZIP-2, was expressed in the hypodermis and 

highly in the intestine. F55F8.9 displayed cytoplasmic localization near apical membrane 

of intestinal cells (Figure B.1B), suggesting that it may be localized to endosomal 

vesicles. F59A3.4, which is C. elegans ortholog of mammalian ZIP-11 and close to the 

yeast Zrt3, was expressed in the hypodermis, intestine and spermatheca and likely 

localized to ER/Golgi (Figure B.1C). TOC-1, which is close to mammalian ZnT-6, was 

expressed in the neurons, hypodermis and intestine. As TOC-1 displayed punctate 

patterns in the cell, it is predicted to be localized to lysosomes (Figure B.1D). While 

H13N06.5 and F55F8.9 displayed the intracellular localizations which are consistent 

with their mammalian homologous proteins, F59A3.4 and TOC-1 displayed distinct 

patterns. These results suggest that C. elegans zinc transporters have conserved functions 

between species, but some of them may have C. elegans-specific unique functions. 

 

Phenotype Analysis 

To identify the physiological functions of zinc transporters, we analyzed mutant 

animals containing loss-of-function mutations. We have requested the identification of 

mutations in all C. elegans zinc transporters from the C. elegans knockout consortium. 

To date, we have obtained at least one mutant allele in 8 zinc transporter genes (Table 
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B.4). Of these, we tested the following strains: Y54G9A.4 (ok2094), F55F8.9 (ok2221), 

C30H6.2 (ok745), T11F9.2 (ok875) and T28F3.3 (ok971). First, we tested whether these 

mutant animals have phenotypes in zinc sensitivity. To determine zinc sensitivity, growth 

rate of animals from L1 stage with different concentrations of supplemental zinc was 

measured. All five strains tested displayed no significant difference from the wild 

animals (Table B.4 and data not shown). These results suggest that these genes may not 

be involved in the control of zinc toxicity or that there may be other genes functionally 

redundant with them.  

To investigate biological processes in which zinc transporters are involved, we 

screened for phenotypes of mutant strains that are visibly noticeable based on growth, 

morphology or behaviors. Y54G9A.4 (ok2094), C30H6.2 (ok745) and T11F9.2 (ok875) 

displayed no phenotypes and appeared to be similar to wild type animals. F55F8.9 

(ok2221) displayed scrawny body, slower growth rate, high larval lethality and smaller 

brood size compared to wild type animals (Figure B.2A and data not shown). F55F8.9 

(ok2221) also exhibited vulva positioning defects; while the vulva of wild type animals 

was typically located in the middle of the body, its location in F55F8.9 (ok2221) was 

slightly shifted to the posterior side (Figure B.2B). As vulval cell patterning are 

controlled by the progeny of ventral hypodermal Pnp cells via the MAPK and Notch 

signaling pathway (Sulston and Horvitz, 1977; Sundaram, 2004), these result suggest that 

F55F8.9 zinc transporter may regulate those signaling pathways. In addition, a zebrafish 

ZIP protein ZIP-6 is involved in cell migration process during gastrulation (Yamashita et 

al., 2004), suggesting that F55F8.9 may function in the migration of ventral hypodermal 

cells. 
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F28F3.3 (ok971) strains were similar to wild type animals in growth rate and 

morphology. However, F28F3.3 (ok971) strains displayed sterility phenotype with a 

partial penetrance, and this phenotype was temperature sensitive. When eggs were 

cultured at 15°C, ~92% (12/13) of them were sterile. At 20°C, ~54% (7/13) were sterile, 

whereas none of the animals (0/12) were sterile at 25°C. While staying sterile, F28F3.3 

(ok971) strains layed unfertilized oocytes (Figure B.3A), suggesting that the mutant 

strains appear to have defects in the sperm formation or mating process, not in the oocyte 

development. Consistently, while sterile F28F3.3 (ok971) strains displayed relatively 

normal morphology of the gonad, their uterus appeared to be empty (Figure B.3B). To 

examine whether F28F3.3 (ok971) strains have defects in the sperm formation, we mated 

sterile F28F3.3 (ok971) mutant hermaphrodites with wild type males. After mating, 

sterile F28F3.3 (ok971) hermaphrodites displayed wild type-like morphology of the 

uterus full of eggs and became fertile (Figure B.3C). These results suggest that the sperm 

development is likely to be defective in F28F3.3 (ok971) strains. As this sterility 

phenotype is more severe at lower temperatures, it is possible that mutant sperm mobility 

in the mutant is not as active as wild type so that increased mobility by high temperature 

could rescue the phenotype.  

 

 

MATERIALS AND METHODS 

 

General Methods and Strains 

C. elegans strains were cultured at 20°C on nematode growth medium (NGM) seeded 
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with E. coli OP50 (Brenner, 1974). The wild-type C. elegans and parent of all mutant 

strains was Bristol N2. The following mutations were used: Y54G9A.4 (ok2094), 

F55F8.9 (ok2221), C30H6.2 (ok745), T11F9.2 (ok875), H13N06.5 (ok960), T28F3.3 

(ok971), T01D3.5 (ok876). Before analyze the phenotypes, the following mutant animals 

were backcrossed with N2 wild-type animals by standard methods, and the genotypes 

were confirmed by PCR: Y54G9A.4 (ok2094) five times, F55F8.9 (ok2221) three times, 

C30H6.2 (ok745) five times, and T28F3.3 (ok971) three times. 

 

Transgenic Strain Construction 

For the generation of GFP-fused zinc transporter constructs, I built plasmids with 

pBluescript SK+ (Stratagene, Santa Clara, CA) by inserting the genomic fragment of 

zinc transporter genes including promoter regions and coding sequence without the stop 

codon, the coding sequence of GFP and the unc-54 3’UTR from pPD95.77 (a gift from A. 

Fire). The genomic fragment of zinc transporter genes was amplified by PCR using the 

primers listed in Table B.2 and fosmids as templates. To make mCherry-fused constructs, 

the zinc transporter genomic regions were subcloned using enzyme digestion and ligation 

from the GFP-fused plasmids into pSC3 which contains the coding sequence for 

mCherry from pCJF104 (a gift from M. Nonet), and the unc-54 3’UTR. Transgenic 

animals were generated by coinjecting each plasmid construct and the coinjection marker 

pCJF104 (Pmyo-3::mCherry). All the plasmids and transgenic animals built are listed in 

Table B.3. 

 

Microscopy 
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For differential interference contrast (DIC) and fluorescence microscopy, animals were 

placed into a drop of 10mM levamisole in M9 on 2% agarose pads on microscope slides. 

Images were captured using a Zeiss Axioplan 2 microscope equipped with a Zeiss 

AxioCam MRm digital camera.  

 

Zinc Sensitivity Assays 

Eggs were isolated from gravid adult hermaphrodites by treating with NaOH and bleach 

and were hatched in M9 overnight to obtain synchronized L1 animals. Animals were then 

cultured on noble agar minimum medium (NAMM) dishes supplemented with zinc 

sulfate (ZnSO4) and seeded with concentrated OP50. After about 3 days, growth rate was 

determined by measuring length of animals cultured with different concentrations of zinc.  

 

Brood Size Analysis 

Ten hermaphrodite animals at L4 stages were individually cultured on NGM plates, and 

transferred to new plates every 1-2 days until they stops laying eggs. When progenies 

reached L3/L4 stage, the number of progenies was counted and the total progeny number 

was determined as a brood size. 

 

 

ACKNOWLEDGEMENT 

We thank the Caenorhabditis Genetics Center, and the National Bioresource Project for 

providing strains, Sara Collier for her assistance generating plasmids, Krupa Deshmukh 

for her assistance maintaining worm strains, and Sara Jin, Joohyun Lim and Kurt 



 188

Warnhoff for their assistance analyzing worm strains. 

 



 189

FIGURE LEGENDS 

Figure B.1 

Fluorescence microscope images of transgenic animals expressing GFP-fused H13N06.5 

(A), F55F8.9 (B), F59A3.4 (C), and TOC-1 (D). The type of cells and intracellular 

organelles where each zinc transporter is localized are described on the right of the table.  

 

Figure B.2 

Phenotype analysis of F55F8.9 (ok2221) mutant strain. (A) Brood size analysis (B) 

Vulva positioning defects. The wild type animal displays the vulva (arrow) in the middle 

of the body (dotted line), whereas F55F8.9 (ok2221) strain displays the vulva (arrow) 

which is shifted to the right, posterior, of the middle line (dotted line).  

 

Figure B.3 

Phenotype analysis of F28F3.3 (ok971) mutant strain. (A) A normal fertilized egg laid by 

fertile F28F3.3 (ok971) (left, arrow head) and a string of unfertilized oocytes laid by 

sterile F28F3.3 (ok971) (right, arrow). (B) DIC images of the reproductive tissue of a 

sterile hermaphrodite. While the germline and the gonad appear to be normal, the uterus 

(parenthesis) is empty. (C) A sterile hermaphrodite was mated with wild type males and 

then became fertile. The uterus is full of eggs similar to wild type hermaphrodites 

(parenthesis). 
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Table B.1 

 

CDF family ZIP family 

C. elegans Gene Human Ortholog C. elegans Gene Human Ortholog

cdf-1 ZnT-1, 10 Y54G9A.4 

cdf-2 F55F8.9 

ttm-1 F30B5.7 

F19C6.5 

ZnT-2,3,4,8 

C06G8.3 

Y105E8A.3 ZnT-5,7 C18A3.2 

toc-1 ZnT-6 F31C3.4 

ZIP-1,2,3 

Y71H2AM.9 ZnT-9 C30H6.2 

F41C6.7 T11F9.2 

ZK185.5 Y55F3BL.2 

ZIP-

4,5,6,8,10,12,14 

K07G5.5 H13N06.5 

PDB1.1 T28F3.3 
ZIP-7 

R02F11.3 T01D3.5 ZIP-9 

F56C9.3 

None 

(Homologous to A. 

thaliana AtMTPc3)

F59A3.4 ZIP-11 

sur-7 None C14H10.1 ZIP-13 
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Table B.2 

 

Gene Forward Primer Sequence Reverse Primer Sequence 

F55F8.9 
ATA GGG CCC AGT CTG GTG ACT 

GCT TC 

TCG CCC GGG ATG TCC ATA 

GTC ATC AAA AG   

C30H6.2 
GGG GTA CCT GAA TCT CAT CGT 

TGC GGA 

CCC CCC GGG GAT GTG AAA 

GCT ATA ATA 

T11F9.2 
CGC AAG CTT CTG TGA AAT CTT 

ATA C  

GCG ATA TCA AAG TCC ACA 

GAG TTC AC 

H13N06.5 
GGG GTA CCT GAA CAT AGC CGC 

CTC GTT C 

CCC CCG GGC TCA TTG CTA 

TTT ATG AG 

T28F3.3 
CGG GTA CCG CAA TTC CTA AAT 

ACT TAC  

GAG AAT TCC TCG ACC AAA 

CTG ACG 

T01D3.5 
CCG GGT ACC GCC CTT ATA AAC 

TAT TC 

ATC CCG GGA TGA GAG TGA 

CCA GAA G 

F59A3.4 
GGG GTA CCT TCG GTC AAA TAT 

TTA GC 

CCG GAA TTC ACC CAA TCC 

AAC ATC CAT G 

toc-1 
ATA GGT ACC GAG AAC TAG ACG 

GAT ACG 

CCG GAA TTC ATG ATA AAA 

AAC GCC GTC 
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Table B.3 

 

Gene 
Human 

Ortholog 

GFP-fusion 

plasmid 

mCherry-

fusion plasmid
Transgenic animals 

Y54G9A.4 ZIP-2 N/A N/A N/A 

F55F8.9 ZIP-2 pSC4 pSC17 amEx128, amEx130 

C30H6.2 ZIP-4 pSC2 pSC16 amEx125, amEx126 

T11F9.2 ZIP-4 pSC13 pSC19 N/A 

H13N06.5 ZIP-7 pSC1 pSC15 amEx123, amEx124 

T28F3.3 ZIP-7 pSC14 pSC22 N/A 

T01D3.5 ZIP-9 pSC12 pSC21 N/A 

F59A3.4 ZIP-11 pSC11 pSC20 amEx134 

toc-1 ZnT-6 pSC5 pSC18 amEx131 
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Table B.4 

 

Gene 
Human 

Ortholog 
Mutant Alleles Visible Phenotype 

Zinc 

Sensitivity 

Y54G9A.4 ZIP-2 ok2094 None WT-like 

F55F8.9 ZIP-2 ok2221 

Slow growth, small brood 

size, high larval lethality, 

vulva positioning defects 

WT-like 

C30H6.2 ZIP-4 ok745, gk254 None WT-like 

T11F9.2 ZIP-4 
ok875, gk250, 

gk251 
None WT-like 

H13N06.5 ZIP-7 ok960, gk256 N/A N/A 

T28F3.3 ZIP-7 ok971 Partial sterility WT-like 

T01D3.5 ZIP-9 ok876 N/A N/A 

F59A3.4 ZIP-11 N/A N/A N/A 

toc-1 ZnT-6 tm4492 
embryonic lethal (clear 

body color by RNAi) 
N/A 
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