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Chapter 1: Introduction
1.1 Roots

1.1.1 Motivation

Figure 1.1: Some motivating applications of plant phenotyping. (A) Yuan Longping, the
father of hybrid rice. (B) Growing drought-resistant sorghum varieties in sub-saharan
Africa (C) low-input agriculture minimizes use of pesticides and fertilizers.

Roots are the primary means by which the plant absorbs water and nutrients. Increasing

the capacity of roots to obtain resources from the soil is vital to improve crop yields and

minimizing farmer’s use of fertilizers, which consume large amounts of energy and cause

environmental pollution [1]. As the climate warms, the role of roots in crop productivity

has become especially important in arid regions such as sub-Saharan Africa, where deple-

tion of soil fertility has contributed to food insecurity in the region [2]. Besides absorbing

resources from the soil, roots also form a symbiotic relationship with the soil by releasing

products of photosynthesis (e.g. sugars, amino acids, and proteins) to surrounding bacteria

and fungus, which in turn control the proliferation of harmful pathogens, thus producing

a healthy environment around the roots. Finally, roots provide anchorage to the plant and

reduce soil erosion by holding the soil together [3]. Roots are of particular interest to those

who study cereal crops, such as maize, wheat, rice, sorghum, and millet, which account

for more than 50 percent of the world’s daily caloric intake [4]. Understanding the role

1



that roots play in improving the production and survivability of these crops will be one

of the keys to the future of food security as the world’s population grows and the climate

changes.

1.1.2 Root system architecture

Figure 1.2: The root system architecture of fibrous root systems such as that of Maize.

These functions are closely related with root system architecture (RSA) [5, 6, 7], which

both describes the geometry of individual roots and their hierarchical relationships. Each

root is typically classified as one of several types depending on hierarchy level (Fig. 1.2).

The hierarchy begins at the stem, which forms the main axis of the root system in a di-

rection roughly perpendicular to the soil. Nodal roots emerge from the stem. For some

species such as Maize and Rice, the starting points of the nodal roots will form whorls

which are groups of roots emanating from roughly the same point along the stem. First-

order lateral roots emerge from nodal roots, second-order lateral roots emerge from first-

2



order ones, and so forth. Root architectures can be further classified into tap root sys-

tems and fibrous root systems. Tap root systems have a single main root that grows down,

while fibrous root systems form a dense network of roots that is closer to the soil surface.

Quantitatively describing RSA enables efforts to discover the genetic basis that controls

root traits. Knowing which traits are favourable for field growth, and breeding crops with

those traits, has the potential to improve crop yield while minimizing adverse environmen-

tal effects [7].

1.2 Capturing root architecture

1.2.1 Traditional methods

Figure 1.3: Traditional methods for capturing root architecture often involve a combi-
nation of (A) Digging up the roots (B) Washing the roots (picture from Topp Lab in-
ternship, 2018) , and (C) dissecting and measuring individual roots using devices such as
calipers. Such methods are destructive.

In contrast to the visible half of the plant above the soil, roots are considered as the “hid-

den half” of the plane due to their poor accessibility, which make it much more challenging

to investigate RSA. Traditional methods for analyzing root structure either involve pick-
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ing the root apart or only provide a very limited 2D view of the plant (Fig. 1.3). In Shov-

elomics, the root is excavated from the soil and traits such as the numbers of roots, angles,

densities, and lengths are measured using devices such as calipers, protractors, and scales

[8]. Often times roots are clipped off in order to measure them individually, both alter-

ing the geometry and killing the plant, making it impossible to measure traits over time.

Measurements of lateral roots by hand are also very challenging due to their minisculity.

Lastly, roots may be accidentally lost when the root system is washed after being dug up

from the soil, which affect not only root counts, but also average statistics for other traits.

1.2.2 2D imaging

In contrast to destructive methods, non-destructive methods for investigating root archi-

tecture involve either 2D or 3D imaging. The root could be placed on a flatbed scanner,

providing a compressed 2D view of the root’s structure. Due to their simplicity, 2D pho-

tographs taken from the side of the plant are also used for large-scale studies [9]. In a Rhi-

zotron setup, a laboratory is constructed underground, with viewing windows to the soil

compositions coming from all sides of a central corridor, to study the root’s interactions

with the soil, other plants, and animals. These allow the root to be grown and studied in

its natural soil environment. However, all of these mentioned methods fail to fully capture

the full 3D geometry of the root architecture due to occlusions between roots when viewed

from a single 2D perspective [10].
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1.2.3 3D imaging

Figure 1.4: X-ray CT imaging setup used throughout this dissertation. The excavated root
is placed on a turntable, with a radiograph being taken every few degrees of rotation (left).
Customized software converts the projects into a 3D grayscale image (right). Picture pro-
vided courtesy of the Topp Lab.

More recently, 3D imaging techniques including CT, MRI, and optical imaging have been

developed [11, 12, 13], which can address the limited views provided by 2D imaging by

non-destructively capturing the entirety of 3D root structures in their natural environ-

ments. Among these techniques, X-ray CT has been used to study both the visible and

the hidden half of the plant with high resolution and throughput [14, 15]. In an X-ray

setup (Fig. 1.4), the pot with the root inside is placed on a turntable, which is rotated 360

degrees while X-ray source shoots beams at it which are received by a flat panel detector

on the other side. By illuminating the “hidden” half of the plant, 3D imaging methods in-

cluding CT have paved the way for recent efforts towards automatic quantification of root

system architecture [16, 17].
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1.3 Challenges in root image analysis

While high resolution 3D root images can now be produced with high throughput, there

are still many computational challenges before any useful architectural traits can be ob-

tained from those images. These include the tasks of segmenting the root from the rest of

the image and computing the architecture from that segmentation.

1.3.1 Root segmentation

Reconstructing a shape from the image which accurately captures its architecture, through

image segmentation, is a challenging task for several reasons. Due to the insufficient con-

trasts between the roots and their surroundings (e.g. soil or pebbles), the resulting seg-

mentation may contain parts which are not a part of the root. Just as important, a host of

topological issues can be present in the segmentation due to resolution and power limits of

the imaging. Individual roots may not be adequately separated from each other in the seg-

mentation, resulting in topological handles. Given that the desired hierarchy is inherently

an acyclic construct, these handles must be removed correctly according to the known se-

mantics of the root architecture. If the imaging resolution is not high enough, the images

also may fail to fully capture thinner roots, which can become disconnected in the seg-

mentation, hence affecting both the root counts and lengths. Lastly, Limits in the power

of the imaging may result in the interior of the root to not be fully captured, resulting in

topological voids. As we will see in second part of the dissertation, these voids can prevent

the stem from being fully captured, resulting in cascading errors in the hierarchy compu-

tation. Most segmentation techniques which have been used for roots have involved either

global or local thresholding, which work well when there is a clear contrast between the

roots and its surroundings, but struggle to separate the root from the soil [18, 19]. Other

methods follow a region-growing approach [20], or attempt to track the shape of the root

one image slice at a time [21, 22]. More recently, deep learning techniques have also been
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applied to label each voxel as either root or soil [23]. In situations where the root system

is not complex, semi-automatic segmentation can also be performed using image process-

ing software such as ImageJ [24] and Volume Graphics Studio Max [25, 26]. Few of these

methods address topological issues, and the few that do only guarantee that the root is a

single connected component [27].

1.3.2 Computing root traits

Even after image segmentation, further steps are needed to compute a full description of

the architecture. While global traits such as volume, convex hull volume, surface area, to-

tal length can be easily measured from the segmentation, other more fine-grained traits,

including branching hierarchy, root lengths, angles, and individual root growth over time,

require a much more involved analysis. Because of this, most studies and analysis tools

have only outputted global traits [27, 22, 28, 24], being limited by the presence of topo-

logical features, and by the lack of a method to compute the hierarchy. Only the method

of [29] attempts to compute the hierarchy. However, the method depends on the quality

of the image segmentation, and by itself can not compute traits from a grayscale image or

resolve topological issues. In the second part of the proposal, we provide a detailed com-

parison of our method with DynamicRoots.
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1.3.3 Capturing root growth

Figure 1.5: A motivating application of the final aim of this dissertation seeks to topologi-
cally simplify reconstructions of root systems captured across multiple time points.

As the imaging throughput increases, it has become more possible to use 3D imaging to

capture the growth of the root system across multiple time points. How a root dynam-

ically interacts with its environment plays a critical role in its absorption of water and

nutrients, which is in turn determined by the plant’s genetics [30, 31, 32]. Given limited

resources from the soil, a plant must decide how to allocate its growth in terms of the

expansion of existing roots, the creation of new ones, and the directions of these growth

patterns. [33] Understanding the genetic basis behind root growth would support efforts

at improving crop survivability in the context of sustainable agriculture development and

climate change [34, 35]. Both 2D and 3D phenotyping platforms have been used to math-

ematically model root growth, but just like in the static case, 3D platforms have seen an

increase in popularity due to the avoiding of occlusion issues. Aside from the mentioned

challenges for obtaining fine-grained architecture for the static case, capturing dynamic

growth is even more challenging due to the consistency of the shape and architecture which

must be maintained at different time points. The root segmentation at a previous time

point must be a strict subset of the root at a later time. Also, roots which are classified

to be one hierarchy level at an earlier time point must be at the same hierarchy level at
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a later time. There are very few works in either the computer graphics or root analysis

community for addressing the first issue, and only the work of [29] attempts to address the

second issue, with limited success.

1.4 Applications outside roots: computer graphics and

imaging

While the original motivation for the work in this dissertation was for root architecture

analysis, the underlying topological issues which are present in root imaging are also preva-

lent in other fields.
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1.4.1 Topological Simplification

Figure 1.6: Reconstructing shapes from raw data is a common task within computer
graphics. Whether its a grayscale image such as a CT scan (left), or a point cloud (right),
the surfaces produced by these reconstructions often have an excessive number of topologi-
cal features in the form of connected components, handles, and cavities.

Many applications within computer graphics and biomedical imaging require reconstruct-

ing a shape from raw data, such as a CT scan or a point cloud. Examples of such appli-

cations include brain MRI segmentation, indoor reconstructions for virtual reality, and 3D

scene reconstruction from laser scans for autonomous driving. The shapes, which can be

represented as a binary volume or a surface, often contain excessive topological features

(components, handles, and cavities), some of which are intended, and others which are

noisy artifacts. Topological noise can be detrimental to many geometry processing tasks,

including mesh parameterization, shape analysis (as in the roots application), and physical

simulation.
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The problem of topological simplification thus aims to reduce the number of connected

components, handles, and cavities of a shape while minimizing the change to the geom-

etry. Prior to this dissertation, existing methods for this task limited their modifications

to be only cutting, or only filling, or chose a greedy approach. These methods often re-

sulted in excessive changes to the shape. In contrast, the topological simplification algo-

rithm presented in chapter 2 of this thesis uses a global optimization approach to minimize

the number of topological features while also minimizing the change to the geometry. The

algorithm demonstrates robust results on both complex root images, other biomedical im-

ages, and 3D graphics models.

1.4.2 Topological Simplification of Nested Shapes

Figure 1.7: Outside of growing roots, the different layers of the brain as captured here by
a CT scan also represent a sequence of nested shapes, each with its own potential topologi-
cal issues.

Just like how topological issues in growing roots need to be repaired consistently, many

other applications also require reconstructing a series of nested shapes with minimal topo-

logical features across all of the shapes. Example applications include different iso-surfaces

of a scalar field (e.g. X-ray CT scan of a bone or other biomedical image), or shapes which

are inherently layered (e.g. Fig. 1.7 gray matter, white matter, cerebrospinal fluid of a
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brain). Ideally, each shape in the nested sequence should be simply connected (with a sin-

gle connected component and no cycles or cavities), but minimal changes to the geometry

should be used to achieve such a shape.

In chapter 4, we introduce an algorithm for topological simplification of nested shapes.

While prior works either could not guarantee consistency or repair all three types of topo-

logical issues, the algorithm presented in that chapter consistently repairs a sequence of

nested shapes while removing all three types of topological features in a geometrically min-

imal fashion.

1.4.3 Goals

This dissertation seeks to (1) fill the need of computational methods for root architectural

analysis from 3D imaging (2) develop approaches for topological simplification for both

a single shape and a sequence of nested shapes. We first address topological issues in the

imaging, then develop a full image-to-analysis pipeline, and lastly extend this pipeline for

time-series imaging. In the process, we develop topological simplification algorithms with

applications both within and outside root analysis.

• Aim 1: Topological simplification: To address topological errors in shapes recon-

structed from raw data, we develop a global optimization approach to topological

simplification. Our algorithm seeks to maximally simplify all three types of topologi-

cal features (connected components, handles, and voids) while minimizing the change

to the geometry.

• Aim 2: Computing fine-grained root architecture: to address the need for accurate

computation of root architecture from 3D imaging with high throughput, we develop

a pipeline of geometric algorithms (TopoRoot) for automatically computing architec-

tural traits from the grayscale images. Our pipeline demonstrates improved accuracy

and variety of traits compared to previous methods.
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• Aim 3: Topological simplification of nested shapes: Given a sequence of nested shapes,

we aim to simplify the topology of all shapes in the sequence in a consistent fashion

while minimizing the change to the geometry.

1.4.4 Timeline

All three goals have been achieved at the time of this writing. Aim 1 was achieved in 2020,

published to SIGGRAPH Asia. Aim 2 was achieved in 2021, published to Plant Methods

Journal. Aim 3 was achieved in Spring 2022, with the manuscript currently under review

for publication to the European Symposium on Geometry Processing.

13



Chapter 2: Topological Simplification
2.1 Introduction

Reconstructing shapes from raw data is an important task in many graphics and imag-

ing applications. Whether it’s a grayscale image such as a CT scan, or a point cloud, ob-

taining surface reconstructions from these data can be a very challenging task. The re-

sulting shapes often have many topological features in the form of connected components,

handles, and cavities. While some of these features are intended as part of the natural se-

mantics of the shape, other features are artifacts of the reconstruction. Excessive topolog-

ical features make it quite challenging for many tasks in imaging and geometry process-

ing, such as shape analysis, parameterization, and physical simulations. These challenges

have led to the growing field of topological data analysis (TDA), which seeks to provide

topological and geometric tools to determine the most salient features for complex, noisy

data. A key component of TDA is topological simplification, which seeks to remove ex-

cessive topological features from a shape by either cutting contents from the shape or

filling in content. Cutting and filling can both have the same topological effects, but can

have different effects on the geometry of the shape. Ideally, a topological simplification al-

gorithm should maximally simplify the shape in terms of its topology while minimizing

the change to its geometry. A variety of monotonic and non-monotonic algorithms have

emerged to address topological simplification. Most methods fall under the monotonic

category, performing only cutting or only filling to the shape. These methods can make

excessive changes to the shape when there are some features that should be cut and oth-

ers which should be filled in the same shape. A few other methods take a non-monotonic

approach, cutting some topological features away, while filling others in. However, these

methods perform heuristics which only locally minimize the change to the geometry, that

can result in globally suboptimal decisions (Fig. 2.1).
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Figure 2.1: To simplify the topology of a 3D shape (a), performing cutting alone (b) or
filling alone (c) results in excessive changes, such as removing large components (box C in
(b)), creating long bridges to distant islands (box A in (c)) and large patches to fill in a
handle (box B in (c)). Given a set of pre-computed cuts and fills, our method optimally
selects a subset of them to maximally simplify topology while minimizing the impact on
the geometry (d). (β: number of connected components, handles, and cavities; g: geomet-
ric cost)

2.2 Previous works

Here we provide a brief review of existing methods for topological simplification of 3D

shapes, with an emphasis on how the decisions of where to cut and fill are made. An in-

depth review of many of these methods can be found in the survey [36].

2.2.1 Monotonic methods

These methods perform either only cutting or only filling on the 3d shape. Several meth-

ods in this category remove topological handles by representing the shape as a connectiv-

ity graph, and weight the edges by a geometric cost of cutting or filling. The graphs can

be constructed in a variety of ways: axis-aligned reeb graphs [37, 38], an adjacency graph

of segmented parts [39], and a curve skeleton [40]. A minimum spanning tree (MST) can

then be computed from the graph. This approach solves the handle-cutting or handle-
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fitting problem optimally, but does not make globally optimal decisions between cutting

and filling. To simplify all three types of topological features, morphological opening or

closing can also be applied to voxelized shapes [41]. A structuring element can be used to

perform opening to cut away voxels from the shape or closing to add voxels to the shape.

However, morphological operations can add new topological features to the shape, and

there is no direct way to control the resulting topology. [42, 43, 44] control simplification

by either deflating or inflating an initial seed towards the shape while not allowing (or

only conditionally allowing) topological changes. [45] uses a heuristic to explore candidate

fills in order to maximally simplify the topology. However, since all of these methods are

monotonic, they can lead to excessive shape modifications.

2.2.2 Non-Monotonic methods

These methods perform both cutting and filling on the shape. Most non-monotonic meth-

ods only remove topological handles, and minimize different metric of geometric changes,

including the lengths of loops on the surface [46], the volume of voxels to be cut or filled

[43], and the volume weighted by the image intensity [47]. Prior to our work, only the

MendIT method of [48] can remove all three types of topological features. All of these

methods use a greedy heuristic to decide which feature should be removed in the current

step and whether it should be cut or filled. However, greedy strategy often fails to make

globally optimal decisions. An example can be seen in Figure 2.2.

2.3 Definitions

Our algorithm operates on shapes represented as cell complexes (Figure 2.3). We pro-

vide here a brief review on their definitions and properties. An in-depth discussion can

be found in [49]. A cell complex decomposes a space into topologically simple units, called

cells. A k-dimensional cell is an open set homeomorphic to an open k-dimensional ball. A
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Figure 2.2: A scenario where a greedy heuristic for deciding where to cut and fill produces
a suboptimal result. To reduce the number of connected components of the shape in (a),
a greedy heuristic would cut away the smaller middle island in (b), but this simplification
creates a large gap between the bottom and top components, which forces the greedy ap-
proach to remove the bottom component in (c). The optimal solution, with a lower overall
change to the shape, would instead keep the middle island in order to bridge the larger
two components (d).

cell x is a face of cell y if x is contained in the boundary of y. A set of disjoint cells is a

cell complex if, for each cell in the complex, all its faces are also in the complex. Two sets

of cells are connected if some cell in on set is the face of a cell in the other set.

The n-th Betti number βn of a cell complex is the rank of the n-th homology group. β0(X)

is the number of connected components of X, β1(X) is the number of topological handles

of X, and β2(X) is the number of cavities in X. The alternating sum of Betti numbers de-

fines the Euler characteristic γ:

γ(X) = β0(X)− β1(X) + β2(X) (2.1)

The euler characteristic can also be found by the alternating sum of the number of cells in
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X in different dimensions:

γ(X) = k0(X)− k1(X) + k2(X)− k3(X) (2.2)

where kd(X) represents the number of d-dimensional cells in X.

Figure 2.3: A simple sketch of a 2D cell complex.

2.4 Problem Statement

Topological simplification aims to remove as many topological features as possible (con-

nected components, handles, cavities). However, since the number of possible modifica-

tions to the shape is virtually infinite, we instead consider a limited space of shape modifi-

cations in the form a predefined set of cuts and fills. These cuts and fills can be computed

by running any of the monotonic simplification methods from section 2.2.1, or by perform-

ing morphological opening or closing. Using the notion of cuts and fills, the problem re-

duces to choosing a subset of the cuts and fills with the lowest total geometric cost such

that the resulting shape has the simplest topology.

Formally, we represent each shape in the sequence by a 3D cell complex Ω. Let O be the

set of all 3-cells (e.g. hexahedra or tetrahedra). Our input is a set of shape cells T ⊂ O,

cut cells C ⊂ T and fill cells F ⊂ O T, and a geometric cost g(v) for each cut or fill cell v.

For the purpose of counting topological features, we define the shape as the closure Ω(T),

which is the cell complex composed of 3-cells in T and their lower-dimensional faces. We
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seek a binary labelling of the cut and fill cells (label 1 for object, label 0 for background)

such that the resulting shape has the lowest number of topological features, and the sum

of the geometric costs of all selected cuts and fills is minimal. Given the labelling as L and

the cut cells as C (resp. fill cells F), the cut cells which are selected to be removed from

the shape and fill cells which are selected to be added to the shape are denoted as CL,0

and FL,1. For each shape in the input sequence, we seek to minimize the following vector

lexicographically:

{β0(X) + β1(X) + β2(X),
∑

v∈CL,0∪FL,1

g(v)} (2.3)

This objective may be expressed as minimizing the following scalar energy:

E(L) = 2λ ∗ (β0(X) + β2(X))− λ ∗ γ(X) +
∑

v∈CL,0∪FL,1

g(v) (2.4)

where λ is any constant greater than ∑
v∈CL,0∪FL,1

g(v) and γ(X) is the Euler characteristic.

2.5 Graph formulation

Figure 2.4: Given a shape (left) partitioned into kernel (k1), cut (c1 and c2), fill (f1 and
f2), and neighborhood (n1) regions, we construct a graph (right) representing its connec-
tivity.
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To solve our labeling problem, we first re-formulate it as a graph labelling problem. To

faithfully capture the topology of the shape, our graph represents a partitioning of the 3D

space into regions of different types (Figure 2.4). These are cut cells, fill cells, kernel cells

(shape cells subtracted by the cut cells), and neighborhood cells (the complement of the

shape cells plus fill cells). Our graph is constructed such that each connected component

of the cells also corresponds to a connected component in our graph. To guarantee this,

we first provide a ranking of the four types of cell in the decreasing order of kernel, cut,

fill and neighborhood. We define a rank-based connectivity, called R-connectivity, in which

two 3-cells u,v are R-connected if they share a common face that is not the face of another

3-cell whose rank is higher than both u and v. In the appendix, we prove the following

proposition:

Proposition 1. A labelling L is called proper if it satisfies the following constraint: if a

cut node s and a fill node t are connected by an edge, than either L(s) = 1 or L(t) = 0.

Denote the modified shape as X = (∪L(s)=1Os). For any proper labelling L,

1. β0(X) = β0(GL,1).

2. β2(X) = β0(GL,0)− 1.

where β0(S) counts the number of connected components in a graph S.

By this proposition, our graph, based upon R-connectivity, captures the topology of the

shape such that the connected components of the 1-labelled subgraph (resp 0-labelled

subgraph) are equivalent to the connected components of the 1-labelled cells (resp. 0-

labelled cells). Each cut or fill node is associated with a node-wise cost, that is obtained

from the euler characteristic and geometric cost of the cells which compose the node. A

cut node with a 0-labelling or a fill node with a 1-labelling both have positive costs since

these are opposite to their labellings in the original shape. We seek a 1/0-labeling that

minimizes the sum of the number of connected components of the 1-labelled and 0-labelled
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subgraphs, and the total labelling costs of all nodes. The goal of the topological labeling

(TL) problem is to find a proper labelling L of graph G that minimizes

EG(L) = 2λ ∗ (β0(GL,0) + β0(GL,1)) +
∑

s∈VC∪VF

h(s, L(s)). (2.5)

2.6 Graph Labeling

2.6.1 As-connected-as-possible (ACAP) Labeling

Given that the TL problem involves connectivity, this naturally led us in the direction of

Steiner Trees, a problem for which mature optimizers have been developed. To make this

transformation, we come up with a variant of TL in which the two labelled subgraphs GL,0

and GL,1 are constrained to be as connected as possible. We introduce the concept of a

reachable set, which is a set of kernel (resp. neighborhood) nodes that are connected when

all cut and fill nodes are labelled 1 (resp. 0). We call a labelling as-connected-as-possible

(ACAP) if any reachable set of kernel (resp. neighborhood) nodes are connected in the 1

(resp. 0)-labelled subgraph. ACAP-TL differs from TL in two ways. First, the solution

to ACAP-TL may not be the solution of TL, because a labelling that minimizes the TL

energy may not have to be ACAP. For example, the solution of TL may have more con-

nected components than the solution of ACAP-TL, but still have fewer handles. Second, a

solution of ACAP-TL may not exist, if no labelling can satisfy the ACAP constraint. For

example, a cut or fill node may be both an articulation node in the 1-labeled and 0-labeled

subgraph. These differences are addressed in section 2.6.3.
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2.6.2 Reduction to Node-weighted Steiner Tree

Figure 2.5: Constructing our augmented graph from the initial graph of our formulation.

We reduce the ACAP-TL problem to the Node-Weighted Steiner Tree (NWST) problem

through the construction of a new graph (H) (Figure 2.5) derived from the original graph

of our formulation (G). We provide here a brief summary, with further details being pro-

vided in the paper. We create a terminal node in H for each kernel node and neighborhood

node in G. For each group of terminals representing a reachable set of kernel nodes, we

select a terminal in that group and connect it with an auxiliary terminal node. We fur-

ther create two types of non-terminal nodes in H, each representing a group of cut and fill

nodes in G. Selecting a node representing a group of nodes from the original graph corre-

sponds to labelling all cut and fill nodes within the group as 1 or 0, and that any NWST

solution will result in a proper labelling of the shape (as defined in proposition 1). A new

type of terminal node is constructed for each cut and fill node. These terminals ensure

that in a subgraph of H that connects all terminal nodes (the result of a valid NSWT),

each cut or fill node of G will be represented by at least one non-terminal node, and hence

provided with a labelling.
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2.6.3 Algorithm

Figure 2.6: Cut c1 is an articulation node in both the 1 and 0-labeled subgraphs. In such a
case, the steiner tree solver, when run on the augmented graph, would label c1 to be both
1 and 0 in order to connect both subgraphs.

While the reduction to NWST solves ACAP-TL, a few adjustments are needed to recon-

cile the differences with respect to the original TL problem. First, a cut or fill node may

be labeled to both 1 and 0 if either a solution to ACAP-TL does not exist, or the Steiner

Tree solver produces a suboptimal solution. An example would be a double-articulation

node, a node which is necessary to connect the reachable kernel and neighborhood nodes

in both the 1 and 0-labelled subgraphs. Second, a labelling that minimizes the energy of

ACAP-TL may be different from that which minimizes the different energy for TL.

To resolve the first issue, doubly-labelled nodes are greedily sent to the object or back-

ground, depending on which has the lowest lexicographical cost in the topological change

and geometric change. For the second issue, the cuts and fills are not doubly labeled, but

rather the solution is suboptimal with respect to TL. In these cases, we greedily iterate

through the cut and fill nodes, and flip the labeling if doing so results in a more optimal

solution in terms of the TL energy.

23



2.7 Results

Experiments were performed on cuts and fills computed using two methods: intensity-

based and morphological opening and closing-based. Intensity-based cuts and fills may

be produced by running existing monotonic simplification methods [42, 43, 50] in either

fill-only or cut-only modes. All of these methods operate on a voxel grid. We compare

our method to TopoMender [40], a method that removes handles using an MST-based

approach, and MendIT [48], a non-monotonic method that follows a greedy approach to

remove all three types of topological features. We solve the NWST problem using the the

recent branch-and-bound solver of [51], which performed well on public benchmarks (e.g.

[52]) as well as on our own data. We found that our solver is able to return an optimal

solution within seconds for medium-sized graphs, in some cases containing thousands of

nodes. Presented here are results using intensity-based cuts and fills.

2.7.1 Intensity-based cuts and fills

We first provide results computed using intensity-based cuts and fills.
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Figure 2.7: Hip model: Comparing the amount of topological simplification and geometric
cost for only cutting, only filling, and our method. Our method performs smaller geomet-
ric changes by using a combination of cutting and filling.

On a hip model with two handles, only cutting results in an excessive removal of voxels

for the smaller handle, while only filling results in an excessive addition for the larger one.

Our method is able to use a combination of cutting and filling to make a smaller total geo-

metric change than either method.

Figure 2.8: Heart iso-surface: Comparing the amount of topological simplification and ge-
ometric cost for a greedy method, MendIT [27], and our method. Our method performs
smaller geometric changes by using a combination of cutting and filling.

25



On a heart example with multiple components, handles, and cavities, our method is able

to fully simplify the topology, while the greedy strategy incurs a larger geometric cost.

The greedy method iteratively goes through all cut and fill nodes and flips them to the

opposite of their original labeling as long as their is a topological or (secondarily) a geo-

metric benefit. The arrows show regions where both the greedy method and MendIT [48]

make excessive geometric changes.

Figure 2.9: Iso-surface of a sorghum panicle, before and after topological simplification.

On an iso-surface from a CT scan of a sorghum panicle with thousands of topological fea-

tures, our method is able to perform a combination of cutting and filling to drastically re-

duce the number of topological features within a matter of seconds.
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Figure 2.10: Iso-surface of a corn root, before and after topological simplification..

On an even more topologically example, an iso-surface from a CT scan of a corn root with

thousands of topological features, our method is able to perform a combination of cutting

and filling to drastically reduce the number of topological features within a matter of sec-

onds.
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2.7.2 Morphological cuts and fills

Figure 2.11: (a) A heart segmentation. (b): Result of opening (bottom), which contains
several new islands (box A), and the corresponding cut voxels (top). (c): Result of closing
(bottom), which merges nearby vessels (box B) and thereby creating new handles, and the
corresponding fill voxels (top). (d): Voxels selected by our algorithm (top) and the modi-
fied shape (bottom). The insert examines a handle that is removed in all three methods.

We next provide results computed using cuts and fills computed using morphological open-

ing and closing. Morphological opening and closing are often used to simplify the topolo-

gies of voxelized shapes. However, they may introduce new topological features that are

not present in the original shape. As an example, opening may create new components

(box A in Figure 2.11). Opening and closing may also result in excessive modifications to

the shape, most of which do not contribute to simplifying the toplogy (see cut and fill vox-

els at the top of Figure 2.11 (b,c)). Additionally, opening and closing are monotonic opera-

tions, since opening only performs cutting, while closing only performs filling. We address

these shortcomings by running our algorithm on the results of both opening and closing,

taking the difference between the shape and its opening (resp. closing) as the cut (resp.

fill) voxels, and assign each voxel a unit geometric cost. Our algorithm removes topologi-

cal features and incurs a lower geometric cost than either opening or closing alone (Figure

2.11 (d)).
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2.7.3 Conclusion

We developed a global optimization algorithm which attempts to maximally simplify all

three types of topological features (connected components, handles, and voids) of a 3D

shape, while minimizing geometric change. While existing methods limited their modifica-

tions to be only cutting or only filling, or take a greedy heuristic, we consider the problem

of finding a globally optimal solution. We show that the problem can be formulated as

graph labelling, and solve it through a transformation to the Node-Weighted Steiner Tree

problem. We show significant improvements over existing simplification methods in both

topological simplicity and geometric distortion, and perform these simplifications within

seconds even on very complex examples.
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Chapter 3: Computing root traits
With an algorithm to repair topological noise which is often present in 3D imaging of maize

roots, we are better equipped to address goal 2 of this dissertation.

3.1 Introduction

As discussed in Chapter 1, root system architecture (RSA) plays a crucial role in the health

and growth of the plant. Analyzing the genetic control of RSA traits enables potentially

leads to the development of highly productive crops while minimizing adversarial environ-

mental effects. However, traditional studies of RSA involve excavating the roots from the

soil, washing them, and measuring them using devices such as rulers, calipers, and pro-

tractors. This process is not only labor-intensive but also prone to human errors. More

importantly, many aspects of RSA, particularly those pertaining to lateral roots of higher

order, are almost impossible to measure by hand.

Advances in 3D imaging, including X-ray CT, MRI, and optical imaging [13, 11, 12], have

allowed root shapes to be captured digitally either after excavation or in situ. However,

most image-based root phenotyping methods only compute overall traits such as the vol-

ume, depth, convex hull volume, total root length, and root number [28, 53, 22, 54]. Though

useful, these traits do not capture the branching structure or the hierarchical organization

of individual roots, which provide a much more comprehensive description of RSA.

To our knowledge, DynamicRoots [29] is the only published and validated root phenotyp-

ing method that produces a full branching hierarchy and root traits associated with each

hierarchy level in 3-dimensions. DynamicRoots is designed for a time-series of root sys-

tems grown in transparent gel [55]. These seedling-stage root systems tend to have a rel-

atively simple geometry and structure, which makes it possible to obtain high quality 3D

voxelized reconstructions using multi-view imaging [56]. While, in theory, DynamicRoots

can process any segmented 3D root image, its accuracy can be significantly affected by the
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number of topological errors in the segmentation, such as disconnected root components

and root branches forming loops due to touchings. Although such errors are scarce in the

multi-review reconstruction of simple seedling-stage roots, they can be abundant in 3D im-

ages of more complex root systems. In addition, DynamicRoots requires a time series to

obtain the correct root hierarchy.

3.2 Background

3.2.1 Topology simplification

As mentioned in the first part of the proposal, root segmentations often contain many

topological errors in the form of excessive connected components (e.g. disconnected roots),

cycles (e.g. false intersections between branches), and voids (empty regions within the

stem and roots). These errors are detrimental to recovering the correct branching struc-

ture of the root, which ideally should be composed of a single connected component with

zero genus and no internal voids. Few works have attempted to resolve topological issues

in the context of root imaging. [56] proposed a 3D reconstruction method from 2D im-

ages of roots growing in gel, which can ensure that the segmentation is a single connected

component. However, the result can have a high genus. In the graphics community, many

methods were developed to simplify the topological structure of a 3D shape [40, 45, 37,

38, 39, 57]. In this pipeline, we employ the global optimization method of the first part of

the proposal in order to fix all three types of topological errors, through a combination of

cutting (removing voxels from the shape) and filling (adding voxels) that minimizes the

change to the geometry, while also considering the image intensity.
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3.2.2 Skeletonization

Skeletons provide for a concise representation of the geometry and organization of the root

structure. As such, several existing image-to-analysis pipelines have used skeletons to ex-

tract coarse-grained traits [27, 28, 24]. There are generally two types of skeletons: vox-

elized and geometric. Methods to generate voxelized skeletons [58, 59, 60, 61] are usually

easy to implement and numerically robust, but are often expensive in both time and mem-

ory since they compute the skeleton from the interior of the shape. Voxel-based methods

also lack theoretical guarantees on the ability to approximate the geometry of the input

shape. In contrast, geometric skeletons save time and space by sampling points along the

boundary of the shape instead of from the interior, and are equipped with strong theoret-

ical guarantees on preserving the topology and geometry of the input shape [44]. In our

work, we compute a geometric skeleton in a two-step process, first thinning the image seg-

mentation to its 2D medial axis using the Voxelcore method [62] and further down to a

one-dimensional, noise-pruned curve skeleton using the erosion thickness method proposed

in [63]. Compared to other methods for computing geometric skeletons, our combination

of [62] and [63] is more scalable to large volumes, numerically robust, and specifically de-

signed for voxelized shapes, while retaining similar theoretical guarantees as other geomet-

ric skeletons.

3.3 Our Contributions

In this part of the dissertation we present TopoRoot, a method for obtaining the com-

plete root hierarchy and associated fine-grained traits of a mature maize root system (or

crown) from a single 3D image. Compared with DynamicRoots, TopoRoot is designed to

deal with topological errors, which are common in images of complex root systems, and to

infer the hierarchy without the need for a time series. TopoRoot builds on several state-

of-the-art algorithms from computer graphics, including topological simplification and 3D
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skeletonization, and introduces customized heuristics tailored to the maize root structure.

TopoRoot is validated on both real and simulated data. On a set of 45 X-ray CT scans of

excavated maize root crowns, TopoRoot shows dramatic improvements in accuracy over

DynamicRoots in counting the number of nodal roots. On another set of 495 synthetically

generated images of maize root systems simulated by OpenSimRoot [64] with varying age,

complexity, and noise level, TopoRoot exhibits improved accuracy in a variety of coarse-

grained and fine-grained traits over DynamicRoots and GiaRoots [54].

TopoRoot is completely automated and requires setting only three thresholds for each im-

age. On a standard desktop computer, TopoRoot runs within a few minutes for images

at the resolution range of 4003. This makes TopoRoot suited for batch processing a large

set of images in a high-throughput analysis pipeline. The software package is freely dis-

tributed on GitHub with our X-ray CT dataset.

3.4 Method

The input to the TopoRoot pipeline is a 3D grayscale image, I, of a maize root crown or

root system, represented as a stack of 2D image slices. The pipeline assumes that I has

sufficient contrast between the roots and their surroundings (e.g., soil), so that intensity

thresholding can be used to segment the roots. TopoRoot produces a root hierarchy and

fine-grained root traits in four steps.
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Figure 3.1: The pipeline of TopoRoot for computing fine-grained traits from a 3D image.
Beginning from a 3D grayscale image I represented as a stack of image slices (A), Topo-
Root first computes a topologically simple segmentation B (B), then it creates a geometric
skeleton S capturing the branching structure (C), from which a hierarchy H is obtained
(D) and the traits are subsequently computed.

3.4.1 Segmentation

Each maize root system has a simple topology: it is connected, free of handles (“loops”) or

voids (“air bubbles”). However, due to limits in imaging resolution, contrast, and/or noise

level, simple thresholding of the input grayscale image often yields a segmentation with

numerous disconnected components, handles and voids (see Fig. 3.2A). These erroneous

topological features pose significant challenges for the subsequent hierarchy inference. An-

other issue with simple thresholding is that due to the relatively low intensity in the in-

terior of thick roots (e.g., the stem), only the outer shell of these roots is included in the

segmentation (see Fig.3.2A). These hollow shells would lead to complex skeletons that do

not accurately capture the tubular shape of the roots. Given an input image I, the first

step extracts a segmentation B that fills the hollow root interior and has minimal topolog-

ical errors.

We start by filling the hollow interior of roots using an erosion approach. The observation

is that these hollow spaces become voids (i.e., closed off by the root’s shell) when the im-

age I is thresholded by a sufficiently low value. Our heuristic identifies these voids at a

34



low threshold and fills them in after “growing” them back to the normal threshold. The

heuristic takes in two user-specified thresholds, tmid and tlow, such that tmid best captures

the shape of the root while tlow < tmid closes off most of the hollow spaces within roots.

We denote the segmented, voxelized shapes at these two thresholds as Bmid and Blow re-

spectively (see Fig. 3.3A). To grow the voids in Blow back to the hollow spaces in Bmid,

we maximally erode the voxels in Blow while maintaining its topology and preventing vox-

els in Bmid from being eroded. This results in another shape, denoted as B
′
mid, which is a

minimal superset of Bmid with its hollow spaces closed off (see Fig. 3B). We then take all

voxels in the voids of B
′
mid, together with those voxels in B

′
mid \Bmid adjacent to the voids,

and “fill” them by setting their intensity values to be tmid (see Fig. 3.3C). We denote the

resulting image as I
′ .

Figure 3.2: Segmenting a root image. (A) Thresholding the image I yields numerous topo-
logical errors such as disconnections (red box) and handles (cyan and purple boxes), and
the stem has a hollow interior (green box). (B) Applying our filling heuristic followed by
the algorithm of [57] yields a segmentation B with these topological errors removed and
the stem filled
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Figure 3.3: Filling the hollow space inside the stem and thick roots. (A) A slice of I show-
ing the cross-section of the stem with the outline of segmentations Bmid, Blow (red and
blue) at thresholds tmid, tlow. The hollow space within the stem is connected to the outside
in Bmid but is closed off by the stem’s shell in Blow. (B) Eroding Blow onto Bmid, while
preserving its topology, results in the shape B

′
mid (green), which adds a minimal set of vox-

els to Bmid to “close off” the hollow space. C The hollow space is filled by raising the in-
tensity value of the voxels in the void of B

′
mid and the voxels in B

′
mid \Bmid adjacent to the

void to Bmid. This creates a new image I
′ .

Next, we compute a segmentation of the hollow-space-filled image I
′ using the algorithm

of [57]. This algorithm uses global optimization to extract a segmentation bounded be-

tween two intensity thresholds that has the least number of topological features. It takes

three thresholds with increasing values, tlow ¡ tmid ¡ thigh, where tlow,tmid are the same as

in the filling algorithm above. Let the segmented shapes of I
′ at these thresholds be Blow,

Bmid, Bhigh. The algorithm of [20] computes a shape B such that Bhigh ⊆ Bmid ⊆ Blow

and the following vector energy is minimal in lexicographical order,

{β0(B) + β1(B) + β2(B), diff(B, Bmid)} (3.1)

Here, β0, β1, β2 counts the number of connected components, handles and voids of B, and

diff is a difference measure between two voxel sets that considers both the number and

intensity of voxels that are in one of the sets but not the other. Intuitively, B makes the

least change to the shape Bmid (in terms of diff) to remove as many topological features
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on Bmid as possible while sandwiched between Bhigh and Blow.

An example result of this step (filling hollow spaces and then applying the algorithm of

[57]) is shown in Fig. 3.2B. The three thresholds tlow, tmid, thigh control the trade-off be-

tween topological simplicity and geometric fidelity of the segmentation B. A larger gap

between tmid and tlow, tmid gives the algorithm [57] more room to remove topological fea-

tures, and hence the result has fewer topological errors. But this comes at the cost of pos-

sibly large and undesirable geometric changes; for example, a root may be broken in the

middle to remove a topological handle. We found that the best results are obtained by set-

ting tlow to be the highest value such that thin roots remain connected in Blow and setting

thigh to be the lowest value before roots start to merge in Bhigh. The resulting segmenta-

tion B will not be completely free of topological errors but fixing these remaining errors in

a geometrically correct way requires a more global context of the root shape. This will be

addressed in the next step and with the help of a geometric skeleton.
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3.4.2 Skeletonization

Figure 3.4: Computing a cycle-free skeleton. A An initial curve skeleton S0 computed by
the methods of [62, 63], where color indicates the thickness of the roots (redder curves lie
in thicker roots). B A skeleton junction (in the boxed region in (A)) caused by two roots
touching in the segmentation, which leads to a cycle in the skeleton. C The same region
on the final skeleton S where the cycles have been removed using a graph-based algorithm

The tubular shape of roots makes them representable by curve skeletons. The graph struc-

ture of a skeleton is the key that enables subsequent analysis of branching hierarchy and

traits. Given the segmentation B produced by the previous step, this step produces a geo-

metric skeleton S capturing the shape and branching structure of the roots. We will utilize

the structural information provided by the skeleton to resolve the topological errors that

remain from the previous step, so that S is connected and free of cycles.

We first compute an initial curve skeleton S0 from the voxel shape B using the algorithms

described in [62, 63]. These methods have been recently used in skeleton-based phenotyp-

ing of sorghum panicles [14]. Specifically, the Voxel Core method of [62] extracts an ap-

proximate medial axis of B, which is a triangulated 2-dimensional non-manifold that lies

at the center of B. Taking the medial axis as the input, the Erosion Thickness method of

[63] reduces it to a polygonal 1-dimensional skeleton S0. Compared with other means for

computing skeletons, this approach has several features important for root analysis. Both
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methods [62, 63] are robust to irregular shape boundaries, and hence spurious skeleton

branches are minimized. Both methods also preserve the topology of B exactly, and hence

S0 carries the same set of topological features as B without adding new features. Both

methods are highly optimized and capable of processing large 3D images. Unlike methods

that produce skeletons made up of voxels, S0 is made up of vertices and edges, and hence

it can be conveniently processed by graph algorithms. Finally, the method of [63] also out-

puts a “thickness” measure for each edge of S0, which will be utilized later. An example of

this initial skeleton is shown in Fig. 3.4A (also in Fig. 3.1C).

Figure 3.5: Illustration of the graph-based algorithm for cycle removal. (A) A synthetic
segmentation (gray) and its skeleton with two cycles (red). (B) A graph G where each
node represents either a skeleton junction (blue) or a skeleton branch (yellow) and each
arc (black) connects two nodes representing a junction and an adjacent branch. (C) A
spanning tree of G excludes two arcs. (D) The resulting skeleton after detaching two
junction-branch pairs (dashed boxes) corresponding to the excluded arcs in C. Note that
the spanning tree is not unique, and the one shown in C is just an example and not neces-
sarily the optimal one.

The remaining topological features on the segmentation B manifest as disconnected com-

ponents and cycles on the initial skeleton S0. Figure 3.4B shows an example of a cycle

caused by two touching roots. To remove these features, we take the largest component
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of S0, denoted by S1, and remove cycles in S1 using a graph-based approach. We first con-

struct a graph G = {N, A} with nodes N and arcs A as follows: each node represents ei-

ther a junction (a vertex incident to three or more skeleton edges) or a branch (a sequence

of skeleton edges between two junctions or between a junction and an end vertex) on S1,

and each arc connects two nodes representing a junction and a branch at that junction

(see Fig. 3.5A, B). Next, we extract a spanning tree of G (see Fig. 3.5C). The final skele-

ton, S, is then obtained from A
′ as follows: for each arc a ∈ A that does not exist in A

′ ,

the pair of skeleton branch and junction presented by a is “detached” from each other (see

Fig. 3.5D). Note that cycle-removal using this approach prevents a skeleton branch from

being broken in the middle.

To find a spanning tree that best captures the structure of the root, we associate each arc

a ∈ A with a positive weight w(a) and compute the spanning tree A
′ with the minimal

total arc weights. A
′ is known as the minimal spanning tree (MST) of G, and it can be

computed efficiently using standard algorithms such as Prim’s or Kruskal’s. The weight

w(a) measures the likelihood that the pair of skeleton junction and branch represented by

a should be detached. It is defined as:

w(a) = wangle(a) + λwdis(a) (3.2)

The first term wangle(a) measures the continuity of skeleton orientation at the junction.

Let j,b be the skeleton junction and branch represented by the arc a, ω be the set of all

branches at j, and b⃗ be the unit vector representing the tangent direction of the branch b

oriented towards j. The angle term is defined as:

wangle(a) = min
b′∈Ω

(1 + b⃗ · b⃗′) (3.3)

This term reaches the minimum of 0 if there is some other branch b
′ at junction j that has

the same tangent direction as b. The second term wdis(a) measures the distance from the
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junction j represented by the arc a to the root stem. This term exists to discourage de-

taching branches representing nodal roots from the stem, which would have a great impact

on the branching hierarchy. We use the algorithm reported in [14] to identify the stem as

the longest non-branching sequence of skeleton edges on the skeleton S1 whose thickness

measure is above a given threshold. Figure 3.4C shows the skeleton obtained from the

MST of the weighted graph. Observe that the touching between two roots in the high-

lighted view are correctly detached.

3.4.3 Inferring hierarchy

Given the cycle-free skeleton S obtained from the previous step, we next label each vertex

of the skeleton as either part of the stem, a nodal root, or a lateral root of a specific order.

This results in a branching hierarchy denoted as H. The hierarchy plays a key role in the

final step to obtain traits concerning each type of roots.

We first identify the path of skeleton edges capturing the stem using the heuristic of [14],

as already done in the previous step. This path is called a stem path. We then consider

all skeleton edges within a cylindrical region around the stem path, where the radius of

the cylinder varies along the stem path and is set to be 1.6 times the thickness measure

stored on the skeleton vertices on the path. These skeleton edges make up the stem region.

The factor 1.6 was chosen empirically to ensure that all skeleton junctions representing the

beginning of nodal roots are included in the stem region. Both stem path and stem region

are labelled as hierarchy level 0.

To identify nodal roots and lateral roots of different orders, we make the following two as-

sumptions, which are shared by DynamicRoots and have been supported by studies of root

systems [12, 64, 65]. First, roots higher up in the hierarchy are generally longer. For exam-

ple, nodal roots are generally longer than 1st-order lateral roots, which in turn are gener-

ally longer than 2nd-order lateral roots, and so on. Second, the maximum number of hier-

archy levels in a root system is generally kept low. With these assumptions, we developed
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a heuristic that minimizes the depth of the hierarchy while favoring longer roots higher up

in the hierarchy.

Our heuristic proceeds in two stages, a bottom-up traversal of the skeleton and then a top-

down traversal. They are illustrated in Fig. 3.6 using a cartoon example. We start with a

skeleton S labelled only by the stem region (Fig. 3.6A). Recall that a branch is a sequence

of skeleton edges between two junctions or between a junction and an end vertex. Since

S has no cycles, it is a “tree”. We consider the stem region as the “root” of this tree, and

this induces a partial ordering on the skeleton such that each junction (outside the stem

region) is incident to exactly one parent branch and two or more children branches. The

first stage of the heuristic computes, at each skeleton junction, the association between

the parent branch with one of the children branches as the continuation of the same root

(see arrows in Fig. 3.6B). The association is computed by visiting the skeleton branches

from the leaves of the skeleton tree towards the stem and updating a depth d(b) (num-

bers in Fig. 3.6B) and a distance l(b) at each visited branch b, as follows. First, for each

branch b incident to an end vertex, we set d(b) = 0 and l(b) as the length of b. We then

iteratively visit parent branches whose children branches have already been visited. For a

parent branch b whose children are b1, . . . , bn, we associate b with the child bi that has the

maximal depth d(bi). If multiple children have the same maximal depth, b is associated

with the bi with maximal length l(bi). We then set d(b)=d(bi)+1 and l(b) to be l(bi) plus

the length of b. In the second stage, we visit all branches from the stem to the leaves and

assign the hierarchy levels. We assign each branch attached to the stem region a hierarchy

level of 1 (i.e., nodal roots). For each parent branch assigned with level k, we assign level

k to the child branch associated with the parent (computed from the first stage) and level

k+1 to all other children branches. The resulting hierarchy labelling is shown in Fig. 3.6C.
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Figure 3.6: Illustration of the heuristic for inferring hierarchy. (A) The input skeleton
S with only the stem region labelled (blue). (B) The first stage associates each parent
branch with one of its children branches (indicated by arrows). The numbers are the depth
d(b) stored at each branch b, an intermediate quantity used to determine the parent–child
association. (C) The second stage assigns hierarchy levels (shown as numbers and grouped
by colors) to each skeleton branch segment based on the parent–child association. These
level labels make up the hierarchy H

3.4.4 Computing traits

Given the skeleton S and the hierarchy labelling H, TopoRoot computes a suite of coarse-

grained and fine-grained traits. Like existing works (e.g. [54]), we compute global traits

which are aggregated over all roots regardless of their location in the hierarchy, including

the total root length, number of roots, and average root length. For fine-grained traits, for

each hierarchy level (e.g., nodal roots, 1st-order lateral roots, 2nd-order lateral roots, etc.),

we compute the root count, average and total root length, average root tortuosity, average

root thickness, average number of children, and the average emergence, midpoint, and tip

angle. We also report the length and thickness of the stem. Some of these traits, such as

stem length and per-level angle traits, have not been previously reported by existing tools

(including DynamicRoots [29]). Details on how each of these traits is computed can be

found in the supplementary section of the paper.

43



3.5 Results

3.5.1 Data preparation

TopoRoot is tested on two sets of maize root images, one consisting of 45 X-ray CT scans

of excavated root crowns, and another consisting of 495 synthetic images of simulated

maize root systems. For validation, we collected ground truth data of nodal root counts

for the CT data set and a variety of fine-grained traits for the synthetic data set.

A cohort of 59 maize seeds were planted in June 2020 at Planthaven Farms in O’Fallon,

Missouri (latitude 38.84871204483824, longitude -90.68711352048403) in silt loam soil.

The cohort consists of both wild-types (Rt1-2.4 WT) and mutants (Rt1-2.4 MUT) with

mutation on the Rootless1 gene, which are known to have decreased nodal root counts

[66]. Seeds were planted using jabtype planters into 3.65-m long rows ( 25.4-cm within

row spacing) on 0.9144-m row-to-row spacing. Fields received fertilization with ammonium

nitrate. After 54–57 days of growth, the roots were excavated using the Shovelomics pro-

tocol [26] in September 2020 and washed to remove large soil chunks (the impact of soil

on our method is discussed in the Discussion section). An X5000 X-ray imaging system

and efX-DR software (NSI, Rogers, MN) were used to collect X-ray computed tomogra-

phy (XRT) data (see in Fig. 3.7). The X-ray source was set to a voltage of 70 kV, cur-

rent of 1700µA, and focal spot length of 119 µm. Samples were clamped and placed on

a turntable for imaging at a magnification of 1.17X and 10 frames per second (fps), col-

lecting 1800 16-bit digital radiographs over a 3 min scan time. efX-CT software was used

to reconstruct the scan into a 3D image at 109 µm voxel resolution. This 3D image was

exported as a 16-bit RAW file, then ImageJ was used to store the RAW file as a stack of

2D image slices perpendicular to the z-axis. Finally, 14 3D images were removed from the

analysis due to excessive soil present in the imaging or missing whorls, resulting in a total

of 45 3D images or validating TopoRoot. We performed manual counting of nodal roots

44



for each of the 45 root crowns. Each sample was dissected starting at the highest node

(stalk end) moving downward to the root tips. Only attached roots were counted towards

the total number of developed roots at each node.

Figure 3.7: X-ray CT imaging of root crowns. (A) Each maize root crown was clamped
and placed on a turntable, which was rotated for 3 min while radiographs were collected
at a rate of 10 frames per second. (B) efX-CT software was used to reconstruct a 3D
grayscale image from the scan, which is represented as a stack of image slices perpendic-
ular to the z-axis

It is generally difficult to obtain manual measurement of fine-grained root traits beyond

counting the nodal roots. To validate other fine-grained traits produced by our method,

we supplement the CT data set with a large benchmark of synthetically generated root
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images. We adopt OpenSimRoot [64], a highly customizable 3D root growth simulation

software that has been widely used in modeling and visualizing root growth [67, 68]. We

used OpenSimRoot to create 55 maize root systems ranging in days of growth from 30 to

40 days, numbers of nodal roots ranging from 31 to 69, number of whorls from 5 to 6, and

lateral root branching frequency from 0.3 to 0.7 cm / branch. The diameter of the stem

was set to be 2 cm, starting diameter for nodal roots is 0.3 cm (gradually decreasing to

0.1 cm after 10 days of growth), lateral roots is 0.04 cm, and fine lateral roots is 0.02 cm.

OpenSimRoot provides a detailed hierarchy for each of the simulated roots, from which we

obtain the ground-truth traits (roots less than one voxel long in the ground truth model

were excluded). For each simulated root system, we synthesize a 5123 image by computing

the signed distance field from the surface of the root using the method of [69] with the in-

side of the surface having positive values and the outside having negative values. To mimic

various levels of image noise, we randomly perturb the distance value at each voxel, with

the amount of perturbation ranging from 0 to 0.08 cm in 0.01 increments. This results in

9 images at increasing noise levels for each of the 55 roots, and thus 495 images in total.

Figure 3.8 shows images of one simulated root (at day 40) synthesized at different noise

levels. Note that the amount of geometric irregularity and topological noise (e.g., discon-

nected components and loops) increase with the noise level.
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Figure 3.8: Synthetic maize root images with increasing amounts of noise (e) generated
from a simulated root system at 40 days of growth. The closeups show fine lateral roots.
With increased noise, the roots exhibit less regular geometry and more topological errors
(e.g., disconnections and loops)

3.5.2 Experiment settings

The only parameters of TopoRoot that need to be individually tuned for each input image

are the three thresholds used in the segmentation step. As explained earlier, tmid should be

chosen to best capture the overall root shape, tlow should be low enough to connect most

of the roots, and thigh should be high enough to prevent roots from touching. Due to the

varying contrast in the CT images, the thresholds tend to vary as well (the values are in-

cluded in our online data distribution). For the synthetic images, we found that setting

tlow=0.15,tmid=0,thigh=0.03 works well on all images.

We compared TopoRoot with two previous tools, DynamicRoots [16] (for both global and

fine-grained traits) and a 3D version of GiaRoots [54] first published in [27] (for global
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traits only). We used default parameters for both tools. Since both tools take in a binary

segmentation, we ran them after thresholding each image at the threshold tmid. To study

the impact of topological errors on these tools, we also experimented with first performing

the segmentation step of TopoRoot and then running DynamicRoots or GiaRoots on the

topologically simplified segmentation (instead of naive thresholding at tmid). We call the

new protocols DynamicRoots+ and GiaRoots+ respectively.

3.5.3 Experimental results: excavated root crowns

Figure 3.9 visually compares the root hierarchies computed by TopoRoot, DynamicRoots,

and DynamicRoots+ on an example root crown. DynamicRoots produces a point cloud

where each point represents an input voxel and is labelled by its hierarchy level (0, 1, 2,

etc.). Observe DynamicRoots mis-labelled many roots, such as those highlighted in the

black boxes. This is primarily since the methodology of DynamicRoots is designed for

much less complex, seedling-stage roots. In addition, a significant portion of the root is

missing, as highlighted by the red box. This is because DynamicRoots takes in the naively

thresholded image, which has many disconnected parts. Although performing the topolog-

ical simplification step in TopoRoot allows DynamicRoots+ to recover a more complete

root shape, mislabelling of hierarchy levels remains (black boxes). In contrast, TopoRoot

produces a more visually plausible hierarchy separating the stem (region), nodal roots, and

lateral roots.
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Figure 3.9: Visual comparison of root hierarchies computed by TopoRoot, DynamicRoots
and DynamicRoots+ from the X-ray CT scan of an excavated maize root crown. Hierar-
chy levels are colored as follows: 0 (stem): dark blue, 1 (nodal roots): light blue, 2 (1st-
order lateral roots): green, 3 (2nd-order lateral roots): orange, 4 (3rd-order lateral roots):
red,≥ 5: dark red. Black boxes highlight incorrect levels obtained by DynamicRoots and
DynamicRoots+, and the red box highlights a missing component in DynamicRoots

We next compare the nodal root count obtained by various tools and by hand measure-

ment. Figure 3.10 plots the per-sample hand-measured nodal root counts and those com-

puted by TopoRoot (A), DynamicRoots (B) and DynamicRoots+(C) for all 45 samples.

The plots also report Pearson’s correlation coefficients (ρ) and the normalized root mean

squared errors (RMSEn). TopoRoot exhibits a much higher correlation (ρ=0.951) and

lower error (RMSEn=0.141) than either DynamicRoots (ρ=−0.0452, RMSEn=2.637) or

DynamicRoots+(ρ=0.160, RMSEn=3.090). We also computed the per-sample relative er-

49



ror of a tool as the ratio of the difference between the tool’s and the hand measurements

over the hand measurement, and found that TopoRoot exhibits a much lower mean and

standard deviation (σ) of the relative error (mean=8.3%, σ=5.6%) than either Dynami-

cRoots (mean=159.5%, σ=190.0%) or DynamicRoots+(mean=235.4%, σ=244.4%). The

significant over-counting of DynamicRoots+ is mostly caused by the mislabeling of nodal

roots as level-0 roots, as shown in Fig. 3.9, which leads to many lateral roots being la-

belled as level-1 roots. Furthermore, both the nodal root counts computed by TopoRoot

and the hand measurements exhibited a significant difference between the mutant and

wild type samples, as measured by the independent two-sided Wilcoxon rank sum test

(p=0.00013 for TopoRoot, p=0.00349 for hand measurements). Neither DynamicRoots

(p=0.126) nor DynamicRoots+(p=0.0199) showed a significant difference between the mu-

tant and wild-type. This shows that TopoRoot can be useful for differentiating the root

system architecture between these two varieties.

Figure 3.10: Correlation plots of nodal root count between hand measurements and those
obtained by TopoRoot (A), DynamicRoots (B), and DynamicRoots+(C). Blue and red
dots indicate wild type and mutant samples. The regression line is in red, and the dashed
green line indicates the ideal correspondence between the two measurements. Also re-
ported are Pearson’s correlation coefficients (ρ) and the normalized root mean squared er-
rors (RMSEn)
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3.5.4 Experimental results: simulated roots

Figure 3.11 visually compares the root hierarchies produced by TopoRoot and Dynami-

cRoots/DynamicRoots+ as well as the voxelized skeletons produced by GiaRoots/Gia-

Roots+ on three synthetic root images at different noise levels (0, 0.04 cm, 0.08 cm). This

root system is simulated to be 34 days old, with five whorls, 34 nodal roots, and a lateral

root branching frequency between 0.3 and 0.7 cm / branch. As the noise level increases,

DynamicRoots and GiaRoots miss more root parts, whereas TopoRoot as well as the ex-

tended protocols, DynamicRoots+ and GiaRoots+, retain much of the root shape. Ob-

serve that, like the CT dataset, the hierarchies produced by DynamicRoots+ incorrectly

label many nodal roots as level 0 (black boxes). In contrast, the hierarchies produced by

TopoRoot are more visually plausible.

51



Figure 3.11: Comparing hierarchies and skeletons computed by different tools from images
synthesized at increasing noise levels from a simulated maize root. Hierarchy levels 0, 1,
2, 3 and 4 produced by TopoRoot and DynamicRoots/DynamicRoots+ are colored dark
blue, light blue, green, orange, and red. The voxelized skeletons produced by GiaRoots/-
GiaRoots+ are colored brown. Black boxes highlight mislabeling of nodal roots as level 0
roots by DynamicRoots and DynamicRoots+

We report the mean and deviation of the relative errors of these tools for each fine-grained

or coarse-grained trait in Tables 1, 2, 3, 4 of the paper (GiaRoots/GiaRoots are considered

for global traits only). In the supplementary files of the paper, we take a closer look at

the accuracy of TopoRoot and the other tools as a function of the noise level of the input

images. In general, we observe that higher image noise leads to larger mean errors and/or

greater variance by TopoRoot. For most of the traits, TopoRoot maintains a lower error

than other tools across all noise levels.
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Figure 3.12: Box plots of relative errors in stem traits computed by TopoRoot. Each box
shows the quantiles of relative errors over all 55 synthetic samples at each noise level.

As the base of the hierarchy, the stem traits are among the most accurate (Paper Table

1, Fig. 3.12). As the noise increases, portions of the stem region are lost, resulting in a

thinner stem. Increased noise also causes the stem to wiggle more in the direction perpen-

dicular to its main path, resulting in an increased stem length.
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Figure 3.13: Box plots of relative errors in nodal root traits computed by TopoRoot, Dy-
namicRoots and DynamicRoots+. Each box shows the quantiles of relative errors over all
55 synthetic samples at each noise level.

Among the nodal root traits (Paper Table 2, Fig. 3.13), the most accurate ones are the

root count (mean error 8.3% up to noise level e=0.04, 10.3% up to e=0.08) and emer-

gence/midpoint angles (mean error 5.7/7.1% up to e=0.04, 9.1/9.5% up to e=0.08). The

lowest accuracy is seen for the number of children (mean error 40.0% up to e=0.04, 48.6%

up to e=0.08) and thickness (mean error 39.2% up to e=0.04, and 38.2% up to e=0.08).

54



These errors are due to misclassifications when the nodal root becomes entangled with

higher-order lateral roots. TopoRoot slightly underestimates the average and total length

due to faulty cycle breaking and misclassification errors in portions of nodal roots further

away from the stem. TopoRoot’s error in nodal root tortuosity is higher than that of Dy-

namicRoots for two reasons. First, the ground truth tortuosity is close to 1 (only for the

simulated data, but not for the real maize roots), and DynamicRoots coincidentally pro-

duces values close to this because it mistakes many shorter lateral roots as nodal roots, as

evidenced by its much shorter average nodal root length and the black boxes of Fig. 3.11.

Second, nodal roots sometimes are misclassified by TopoRoot closer to their tips due to

the large number of intersections between roots of different hierarchy levels, resulting in

excessive winding. TopoRoot slightly overestimates angle measurements due to misclassi-

fication errors further away from the stem which bend the detected paths sideways; these

explain the errors in the tip angle measurements.
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Figure 3.14: Box plots of relative errors in lateral root traits computed by TopoRoot, Dy-
namicRoots and DynamicRoots+. Each box shows the quantiles of relative errors over all
55 synthetic samples at each noise level.
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The errors for the lateral root traits (Paper Table 3) are generally larger than nodal root

traits, primarily because the imaging noise has a greater impact on the thinner roots more

than the thicker ones. There is a greater underestimation of both the total first-order lat-

eral roots and their total length (Fig. 3.15), due to both the misclassification of the hi-

erarchy levels and the loss of many thin roots in the distance field. On the other hand,

the misclassified first-order lateral roots are counted as lateral roots of higher orders, and

hence less errors lie in the total lateral root count (mean error 22.2% up to e=0.04 and

37.0% up to e=0.08) and lengths (mean error 24.3% up to e=0.04 and 24.4% up to e=0.08)

over all orders. All methods significantly overestimate the first-order lateral root thick-

ness due to limits in the resolution, but TopoRoot produces the lowest error. The low-

est errors are seen in the first-order lateral emergence/midpoint/tip angles (mean error

3.4%/4.1%/5.4% up to e=0.04 and 3.0%/4.0%/5.9% up to e=0.08) and tortuosity (mean

error 4.6% up to e=0.04 and 4.5% up to e=0.08).

Figure 3.15: Box plots of relative errors in global root traits computed by TopoRoot, Dy-
namicRoots, DynamicRoots+, GiaRoots and GiaRoots+. Each box shows the quantiles of
relative errors over all 55 synthetic samples at each noise level.

Finally, combining nodal and lateral roots, TopoRoot produces on average 35.4% relative

error (21.5% up to e=0.04) in the total root count and 25.4% relative error (25.0% up to

e=0.04) in the total root length, which are much lower than DynamicRoots/Dynamic-

Roots+ and GiaRoots/GiaRoots+ (Paper Table 4). Note that both DynamicRoots and
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GiaRoots significantly underestimate the root count and total length, even after topolog-

ical simplification, and the amount of underestimation generally increases with the level

of noise (Fig. 3.15). The only global trait that TopoRoot does not have the lowest error is

the average length, due to a combination of DynamicRoots being coincidentally closer due

to its underestimation of both the total length and number of roots, and TopoRoot count-

ing an excessive number of roots at higher noise levels. These are the same reasons why

the two methods have similar lateral root average length errors.

3.6 Discussion

A gap exists in the phenotypic measure of root system architecture between fine-grained

analyses that can be conducted on entire seedling root systems in laboratory settings,

and much coarser global analyses available to field researchers. Since root systems are an

emergent property of their many hundreds, thousands, or tens of thousands of constituent

roots, this gap is a major hindrance to a comprehensive understanding of root system

development, environmental interaction, and the genetics that influence these processes.

In previous work, we showed that when global 3D analysis of field excavated maize root

crowns was compared to 3D seedling analysis in gellan gum, genetically encoded differ-

ences were consistent despite major differences in developmental stage and the growth en-

vironment. Whereas DynamicRoots was previously developed for fine scale measurements

of 3D seedling root systems containing dozens to hundreds of roots, no similar tool existed

for more complex mature root crowns, containing hundreds to thousands of roots. The or-

ders of magnitude of increased complexity motivated unique solutions using both state-of-

the-art techniques in computer graphics [20,21,22] and novel algorithms which eventually

led to the development of TopoRoot.
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3.6.1 Error analysis

The steps of our pipeline that are most prone to errors are segmentation and skeletoniza-

tion. While the algorithm of [20] is very effective in reducing the topological complexity, it

may occasionally do so at the cost of altering the structure of the roots (e.g., by breaking

a thin root or merging two nearby roots), thereby introducing errors in the hierarchy and

fine-grained traits. The problem can be alleviated by pushing thresholds Tlow, Thigh closer

to Tmid, thus limiting the amount of changes that the algorithm can make. This solution,

however, will increase the number of topological errors in the segmentation that need to

be resolved in the skeletonization stage. On the other hand, our method for extracting a

connected and cycle-free skeleton has several limitations itself. First, we only consider the

largest connected component of the skeleton and hence would miss any root parts that

are not connected to the main roots in the segmentation stage. Second, our hand-crafted

weights (w(a)) on the graph arcs in the cycle-removal algorithm may not correctly distin-

guish between real and false junctions, and as a result the algorithm may detach branches

from junctions in the wrong places. Third, the MST formulation of cycle removal cannot

recover branches that are already broken in the segmentation stage. These and other lim-

itations all lead to downstream errors in hierarchy and trait analysis. Improving the accu-

racy of these two steps calls for development of more robust and shape-aware algorithms

for topological simplification and tree extraction from a skeleton.

Our method can be sensitive to the amount of soil attached to the roots being imaged.

The method works well when the roots are reasonably clean and free of large dirt chunks.

Small dirt particles are expected to remain after washing, and our method is designed to

handle images containing localized topological noise caused by the dirt particles. If the

root contains large chunks of dirt, and due to the similarity in intensity between the dirt

and roots, a naive segmentation method (such as thresholding) may create many false

and/or cluttered roots. Our method cannot fix these large-scale errors and will produce
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incorrect hierarchies and traits. Besides more thorough cleaning, an alternative solution is

to employ advanced image segmentation methods that are capable of separating soil from

roots prior to the application of our method.

3.6.2 Running time

On average, TopoRoot completes in 7 min and 13 s for each sample in the CT scan dataset

(downsampled by a factor of 4 to the resolution of 369×369×465). Since this is much shorter

than the time spent imaging and reconstructing one sample, TopoRoot is well suited for

high-throughput analysis. The computation time is dominated by the first two steps, topo-

logical simplification (3 min and 6 s) and skeletonization (3 min and 44 s). The time com-

plexity of both these steps may increase quickly with the image resolution. For example,

running TopoRoot on the original CT images downsampled by a factor of 2, which re-

sults in 3D images of resolution 737×737×931, would take 63 min and 39 s, with 32 min

and 25 s spent on topological simplification and 29 min and 9 s on skeletonization. On the

other hand, we have not observed a notable improvement in the accuracy of the nodal root

count for this data set with the increased image resolution.

3.6.3 Extensions

In addition to the per-level traits reported in this work, the hierarchy obtained by Topo-

Root potentially enables computation of other fine-grained traits, such as inter-whorl dis-

tances, per-whorl measurements, and the numbers of nodal roots above and below the soil.

Preliminary experiments show promising results of whorl detection by clustering the nodal

roots branches along the stem path of the skeleton. The soil plane can be potentially iden-

tified by the emergence of a large cluster of 1st-order lateral roots along the direction of

the stem.

While TopoRoot is designed for high-contrast images (e.g., CT scans) of maize roots, it

can be adapted to other types of root systems and images. For root crowns with multi-
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ple tillers (e.g., sorghum), we offer a mode of TopoRoot which extends the stem-detection

heuristic (during the skeletonization step) by producing a stem path within each region of

the skeleton above a given thickness threshold. Preliminary visual experiments show that

TopoRoot’s multiple-tiller mode produces plausible hierarchies at a quality like that seen

in the single-tiller mode (Fig. 3.16). Further expanding the stem-detection heuristic to

identify the primary root would make the pipeline applicable to taprooted systems as well.

Finally, TopoRoot can be extended to work on 3D images that lack a sufficiently high con-

trast between the roots and the surroundings (e.g., soil), such as in situ imaging of grow-

ing roots, provided that the roots can be segmented from its surroundings using a third-

party image segmentation algorithm. Examples of such algorithms include region-growing

[70], tracking tubular features [19, 71], deep learning [72, 23], and semi-automatic anno-

tation [53, 24]. Some of these methods (e.g., deep learning) produce a probability density

field, which can be fed into TopoRoot as the input 3D grayscale image. Others (e.g., re-

gion growing) produce a binary 3D image, and TopoRoot can be applied after converting

the binary 3D image into a Euclidean distance field (e.g., using [69]).

Figure 3.16: Hierarchies of sorghum roots computed by TopoRoot, showing one tiller (A),
two tillers (B), and four tillers (C). Hierarchy levels 0, 1, 2, 3 and 4 are colored dark blue,
light blue, green, orange, and red.
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3.7 Conclusions

We introduced TopoRoot, a high-throughput method for computing the hierarchies and

fine-grained traits from 3D images of maize roots. TopoRoot specifically addresses topo-

logical errors, which are common in segmenting 3D images and are barriers for obtaining

accurate root hierarchies. Our method combines state-of-the-art methods developed in

computer graphics with customized heuristics to compute a wide variety of traits at each

level of the root hierarchy. When tested on both 3D scans of excavated maize root crowns

and synthetic images of simulated root systems with artificially added noise, TopoRoot ex-

hibits superior accuracy over existing tools (DynamicRoots and GiaRoots) in both coarse-

grained and fine-grained traits. Furthermore, the efficiency and automation of TopoRoot

makes it suited for a high-throughput analysis pipeline. The results are readily compatible

with the Root System Markup Language (RSML; [73]), and major plant structural–functional

modelling frameworks such as CRootBox [74] and OpenSimRoot [64].
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Chapter 4: Nested Shape Simplification
4.1 Introduction

Figure 4.1: Two examples (left and right) of a pair of nested shapes containing topological
features (top), and after topological simplification that violates (middle) or preserves (bot-
tom) nesting. The outline of the first shape in each pair is overlayed on the second.

As seen in the first part of this dissertation, topological simplification is the problem of re-

ducing unwanted topological features from 3D shapes. These features include islands (i.e.,

connected components), cavities (i.e., voids inside the shape), and handles (i.e., loops).

These artifacts are typically resulted from reconstructing the shape from noisy or incom-

plete raw inputs, such as images or point clouds. Without simplification, spurious topolog-

ical features may present significant challenges for many geometry processing tasks such as

mesh simplification, surface parameterization, shape matching, and physical simulations.

Many methods have been proposed to simplify the topology of a single 3D shape. How-
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ever, for shapes that exist in a collection, the processing of individual shapes may be sub-

ject to additional constraints among the shapes. In this work, we consider a sequence of

nested shapes, such that each shape is completely contained in the next shape in the se-

quence. One example of nested shapes is the layers of a composite material, such as coat-

ings, deposits, and biological tissues (e.g., skin, fat, muscle), where inner layers are nested

within the outer layers. Another example is the time-series of an expanding structure, such

as the growing roots of a plant. For such shape sequences, maintaining the nesting rela-

tions between successive shapes is important for downstream analysis, whether it is physi-

cal simulation on a layered material or computing the time function of an expanding struc-

ture.

Performing topological simplification independently on each shape in a nesting sequence

could result in shapes that are no longer nested. For example, a handle may be cut in

different locations in two consecutive shapes (Figure 4.1(b)), whereas two islands may be

bridged in one shape but one of them is removed in the next shape (Figure 4.1 (e)). Such

violations of nesting are often found on real-world data, as shown in Figure 4.2 (middle

row) which applies a recent single-shape topology simplification method [57] to a time-

series of growing pennycress roots.
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Figure 4.2: Simplifying the topology of a nested sequence of 4 shapes capturing a growing
pennycress root (top row) by applying the simplification method [57] to each shape inde-
pendently (middle row) and by our proposed method (bottom row). While both methods
fully simplify the topology of each shape, the results of [57] are no longer nested (e.g., re-
gions highlighted in red and blue circles) whereas ours are.

In this work, we propose a novel topological simplification method designed for nested

shapes. Our method simplifies all three types of topological features (islands, handles, cav-

ities) on each shape while maintaining their nesting relation. Our method builds upon an

existing single-shape simplification method [57], which adopts a global optimization ap-

proach to maximally simplify topology while minimizing geometric changes. We make two

main technical contributions:

• We formulate nested simplification as a combinatorial optimization problem (Section

4.4). Similar to [57], our formulation makes use of a set of pre-computed, candidate

modifications to each shape, known as cuts (deletions from the shape) and fills (ad-

ditions to the shape). Our formulation extends the one in [57] by imposing nesting

constraints between shapes and computing nesting-aware cuts and fills that locally

respect those constraints.
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• We propose several strategies for solving the optimization problem (Section 4.5), in-

cluding a greedy heuristic that propagates solutions from one shape to the next, a

state-space search algorithm that is provably optimal, and a beam-search variant

that trades off optimality for efficiency.

We tested our method on both synthetic and real-world shape sequences. We found that

all optimization strategies are effective in reducing topological complexity of individual

shapes while maintaining nesting. On complex data, we found that, among the three op-

timization strategies, the beam-search algorithm strikes the best balance between solution

quality and performance.

4.2 Related Work

4.2.1 Topological simplification of shapes

Topological simplification of 3D shapes has been extensively studied in the past. While the

general problem of maximal simplification within an error bound is known to be NP-hard

[75], many practical heuristics have been proposed. Some methods only remove topologi-

cal handles, for which a common approach is computing the Minimum Spanning Tree on

a graph [38, 37, 76, 40]. Methods to remove all three types of topological features (islands,

handles, and cavities) include morphological opening and closing [41], inflation or deflation

from a topologically simple seed [43, 42, 50], or tools from persistent homology [45]. How-

ever, these above methods either only add to, or only delete from, the shape to remove its

topological features. This may lead to excessive geometric changes, since some topological

features are either to be cut (e.g., a thin loop) whereas others are easier to be filled (e.g., a

narrow tunnel).

Methods that allow both addition and deletion often apply some local heuristics to de-

cide where to add or delete [43, 46, 77, 48]. However, these heuristics do not consider the
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global optimality of the changes. The recent work of Zeng et al. [57] tackles topologi-

cal simplification as a global optimization problem. After computing a set of candidate

cuts and fills, this method formulates a graph labelling problem on these candidates that

aims at maximally simplifying the topology while minimizing the amount of geometric

changes. The problem is then solved by a transformation to the Node-Weighted Steiner

Tree (NWST) problem.

While these methods can simplify individual shapes in a collection, they do not respect

any notion of consistency (e.g., nesting) among the shapes. In this regard, our method

makes a first step towards consistency-constrained topological simplification of a shape

collection. Our method is an extension of [57] in two ways: (1) we extend its candidate-

based formulation to multiple shapes under the nesting constraint, and (2) we use its label

optimization algorithm as a building-block in our own optimization.

4.2.2 Topological simplification of scalar fields

Topological abstractions, such as the Morse-Smale complex and persistence diagram, are

useful for analyzing scalar fields in Topological Data Analysis (TDA) [78]. Since practi-

cal data is often noise-ridden, such noise needs to be removed from a scalar field prior to

analysis. Numerical methods [79, 80, 81, 82] simplify a scalar field by maximally removing

its local extrema (minima and maxima) except for those in a given constraint set. Combi-

natorial methods [83, 84, 85, 86] remove those extrema whose importance, given by some

measure such as persistence [87], is below a threshold while maintaining an error bound.

A major limitation of scalar field simplification methods is that they are generally not ef-

fective in removing saddle points in a 3D scalar field. Since saddles are responsible for

topological handles on the level sets, these methods have limited utility in solving our

nesting-constrained simplification problem by representing the shape sequence as level sets

(see Figure 4.12).
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4.3 Background

Our algorithm represents and analyzes shapes represented by cells within a cell complex,

just like our work in the first part of the dissertation. We briefly review key concepts in

cell complex topology relevant to the discussion of our method. Readers are referred to

standard literature such as [49] for in-depth discussions on the subject.

A k-dimensional cell, or k-cell, is an open set homeomorphic to an open k-dimensional

ball. A set of disjoint cells is called a cell complex if, for each cell in the complex, its bound-

ary is completely covered by other lower-dimensional cells in the complex. For example,

a cell complex may consist of a cube (a 3-cell), its six bounding squares (2-cells), twelve

edges (1-cells), and eight vertices (0-cells). A cell x is said to be a face of another cell y if

x lies in the boundary of y.

Given a cell complex C covering a d-dimensional space, we denote the set of all d-cells of

C as Cd and call them the top-dimensional cells. For example, if C is a cubical or tetrahe-

dral decomposition of space, Cd are the cubes or tetrahedra (excluding their low-dimensional

faces). Our algorithm represents a shape as a subset of Cd. Strictly speaking, the top-

dimensional cells are open sets and disjoint from each other. For the purpose of analyzing

topology, we need to define a connected shape from them. See a 2D illustration in Figure

2.
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Figure 4.3: Two ways of defining a shape (shaded cells) from three 2-cells O in a 2D cell
complex C. C2 is the set of all 2-cells in C.

Adapting the approach of the work in the first part of the dissertation, a topological fea-

ture (e.g., connected component, handle or cavity) can be created or removed using one

of the two types of topological surgeries, namely cutting (i.e., removing contents from the

shape) and filling (i.e., adding contents to the shape).. For example, a component can be

removed by either deleting the entire component (i.e., cutting) or connecting it with an-

other component via a bridge (i.e., filling). A handle can be removed by either breaking

the handle ring (i.e. cutting) or filling the handle hole. A cavity can be removed by either

connecting it with the exterior by a tunnel (i.e. cutting) or filling the entire cavity. These

surgeries are illustrated in 3D in Figure 3.
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Figure 4.4: Removing islands (top), handles (middle), and cavities (bottom) by cutting or
filling. Adapted from Figure 2 of [57] and courtesy of the authors.

4.4 Problem formulation

Given a nesting sequence of 2D or 3D shapes, our goal is to modify each shape in the se-

quence such that (1) the modified shape’s topology is as simple as possible, (2) the mod-

ified shape differs from the original shape as little as possible, and (3) the modified shape

sequence remains nesting.

We first present a general formulation of the problem (Section 4.4.1). To make the opti-

mization task more trackable, and inspired by the formulation in [57], we next introduce

a simplified formulation that considers only a pre-computed set of candidate cuts and fills

(Section 4.4.2). Finally, we characterize candidates that are compatible with the nesting

constraint (which we call nesting-aware candidates), develop an algorithm for finding such

candidates, and further tailor the problem formulation to such candidates (Section 4.4.3).
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4.4.1 General formulation

The main input to our method is a shape sequence {T1, . . . , Tn} defined on a common cell

complex C in d-dimensional space for d = 2, 3. Each Ti is a subset of the top-dimensional

cells (d-cells) of C, that is, Ti ⊆ Cd. The sequence is nesting in the sense that Ti ⊆ Ti+1

for all i = 1, . . . , n − 1. Our method, in theory, can be applied to any type of cell com-

plexes (e.g., cubical, tetrahedral, mixed-element, etc.) and either one of the two ways of

shape definition from top-dimensional cells (see Figure 4.3). Our current implementation

is specialized to quadrilateral (in 2D) or cubical (in 3D) cell complexes, and it uses the

definition such that the connected shape represented by Ti is C \ Ω(Cd \ Ti) (Figure 4.3

(b)). This is equivalent to using 4-connectivity (in 2D) and 8-connectivity (in 3D) in dig-

ital topology. For simplicity, henceforward we shall use Ti to denote both the composing

d-cells and the connected shape represented by them.

To suit different application scenarios, our method can take in two additional and optional

inputs from the user. First, the user may define a per-cell geometric cost gi(c) for each

d-cell c ∈ Cd and each i = 1, . . . , n. This cost measures the geometric change when c

is added to or deleted from Ti. By default, gi(c) is set to be the area (in 2D) or volume

(in 3D) of c, but it can be customized. For example, it can be weighted by an additional

scalar field (e.g., confidence map or SDF) that may come with each shape. For notational

simplicity, we write the sum of costs over a set of d-cells C as gi(C).

Secondly, the user may provide two additional sets of d-cells, a kernel K and a neighbor-

hood N , such that K ⊆ T1 and Tn ⊆ N . These two sets define an “envelope” within which

the modified shape sequence will be constrained. Note that, if both K, N have non-trivial

topology, the modified shapes will preserve those topological features that persist from K

to N . If not provided by the user, K is set to be a single d-cell inside T1 and N = Cd.

Since K has a simple topology (a single connected component without handles or cavities),

our method will attempt to remove all topological features in the shape sequence.
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Given the shape sequence {T1, . . . , Tn}, the geometric cost functions gi, the kernel K and

neighborhood N , we seek a modified sequence of shapes {T ′
1, . . . , T ′

n} that minimizes, lexi-

cographically, the following vector energy that measures (firstly) the total number of topo-

logical features and (secondly) the total geometric change,

E({T ′
1, . . . , T ′

n}) = {
n∑

i=1

d∑
k=0

βk(T ′
i ),

n∑
i=1

gi(T ′
i ⊖ Ti)}, (4.1)

where βk is the k-th Betti number and ⊖ is the symmetric difference operator, subject to

the constraint that the modified sequence is nesting and sandwiched within K, N :

K ⊆ T ′
i ⊆ . . . ⊆ T ′

n ⊆ N (4.2)

4.4.2 Candidate-based formulation

The problem formulated above is NP-hard even when n = 1 and without considering

the geometric cost [75]. In the case of n = 1, an alternative and more computationally

friendly formulation was proposed in [57], which restricts the shape modifications to a pre-

computed set of candidate cuts and fills. A candidate cut (resp. fill) is a group of d-cells in

the original shape (resp. its complement) whose simultaneous deletion (resp. addition) re-

moves one or more topological features of the shape. For example, a cut could be all cells

that make up a connected component of the shape, whereas a fill could be a group of cells

that form a bridge connecting two components. The energy E (Equation 4.1) can then be

expressed as a function of a binary labelling on these candidates, where a label of 0 (resp.

1) means a candidate is included in (resp. excluded from) the shape.

We extend the candidate-based formulation of [57] to n > 1 with the nesting constraint.

We assume that there exists a set of candidate cuts and fills for each shape Ti, denoted

as Xi (their computation will be discussed shortly). Given a 0/1 labelling L of the candi-
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dates, the modified shape, denoted by T L
i , can be written as:

T L
i = (Ti \XL,0

i ) ∪XL,1
i (4.3)

where XL,0
i and XL,1

i are the unions of candidates of Xi that are labelled by L respectively

as 0 and 1. If we replace the modified shapes T ′
i in the general formulation (Equations

4.1,4.2) by T L
i , the problem becomes seeking a labelling L that minimizes the energy

E(L) = E({T L
1 , . . . , T L

n }), (4.4)

where the righthand side is defined in Equation 4.1, while satisfying the constraint that

K ⊆ T L
i ⊆ . . . ⊆ T L

n ⊆ N. (4.5)

4.4.3 Nesting-aware candidates

The formulation above simplifies the problem by limiting the shape modifications to the

use of the pre-computed candidates. The choice of the candidate cuts and fills therefore

plays an important role in how well the solution of the simplified problem minimizes the

original energy (Equation 4.1).

Naturally, we would like to have candidates that can maximally simplify each shape while

having low geometric costs. Such candidates can be obtained, for each shape in the se-

quence, using the inflation/deflation approach in [57]. To compute the candidate cuts

on a shape T (restricted to the envelop within a kernel K and a neighborhood N), their

method expands K towards T by iteratively adding cells of T while preserving the topol-

ogy of K. When no more cells can be added without incurring a topological change, each

connected component of the difference between T and the expanded kernel becomes a

cut1. The candidate fills are constructed in a symmetric fashion by maximally shrinking
1The connected components are based on the so-called R-connectivity defined in [57] to ensure consis-
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the neighborhood N towards T while preserving the topology of N and taking the con-

nected components of the difference between the shrunken neighborhood and T . By con-

struction, such cuts and fills are sufficient to fully simplify the topology of T (except for

those topological features shared by both K and N). Furthermore, the order of cells be-

ing added or deleted is chosen so that the cuts and fills tend to consist of cells with low

per-cell geometric costs.

However, candidates constructed independently for each shape may not be useful towards

satisfying the nesting constraint (Equation 4.5). Let Xi be the union of all candidates in

Xi, and define the per-shape kernel as Ki = Ti \Xi and the per-shape neighborhood as Ni =

Ti ∪ Xi. Observe that, regardless of the labelling L, the modified shape T L
i is sandwiched

between Ki and Ni. Now, consider a candidate cut in the next shape Ti+1 which shares

some common cells with Ki (e.g., the cut c3 in Figure 4.5 (a)). Deleting that cut from Ti+1

will result in a shape that does not completely contain Ki and hence fails to contain T L
i

for any L. Symmetrically, if a candidate fill in the previous shape Ti−1 contains some cells

that are not in Ni (e.g., the fill f1 in Figure 4.5 (b)), then adding the fill to Ti−1 will result

in a shape that is not completely contained within Ni and in turn fails to nest inside T L
i

for any L. In both cases, the cut or fill is ”useless” in the sense that it cannot be applied

without violating the nesting constraint.

tency with their graph formulation.
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Figure 4.5: Two examples (a,b) of pairs of consecutive shapes with candidate cuts (red)
and fills (blue). In (a), the cut c2 is nesting-aware because it is disjoint from the previous
per-shape kernel Ki (shown in outline), but c3 is not. In (b), the fill f2 is nesting-aware
because it is contained within the next per-shape neighborhood Ni (shown in outline), but
f1 is not.

The discussion above shows that a candidate x ∈ Xi is useful towards satisfying nesting

only if it is disjoint from the previous per-shape kernel (i.e., x ∩ Ki−1 = ∅) and nested

within the next per-shape neighborhood (i.e., x ⊆ Ni+1)2. We call such candidates nesting-

aware. For example, in Figure 4.5, the cut c2 and fill f2 are both nesting-aware, whereas

the cut c3 and fill f1 are not.

To compute nesting-aware candidates, we first give an alternative characterization using

per-shape kernels Ki and neighborhoods Ni:

Proposition 2. All candidates in {X1, . . . , Xn} are nesting-aware if and only if

K ⊆ K1 ⊆ . . . ⊆ Kn (4.6)

and

N1 ⊆ . . . ⊆ Nn ⊆ N (4.7)

where Ki = Ti \Xi and Ni = Ti ∪Xi.

Proof. We first show sufficiency. Let K0 = K and Nn+1 = N . Since Ki−1 ⊆ Ki and Xi ∩
2We assume K0 = K and Nn+1 = N

75



Ki = ∅ for i = 1, . . . , n, x ∩Ki−1 = ∅ for any x ∈ Xi. Similarly, Since Ni ⊆ Ni+1 and Xi ⊆

Ni for i = 1, . . . , n, x ⊆ Ni+1 for any x ∈ Xi. To show necessity, suppose on the contrary

that all candidates are nesting-aware but Ki−1 ⊈ Ki for some i ∈ [1, n]. Hence there exists

some d-cell c ∈ Ki−1 but c /∈ Ki. Since Ki−1 ⊆ Ti−1 ⊆ Ti, c ∈ Ti, and hence c must

belong to some cut x ∈ Xi. However, x overlaps with Ki−1 at c, which contradicts that x

is nesting-aware. A similar contradiction can be reached if all candidates are nesting-aware

but Ni ⊈ Ni+1 for some i ∈ [1, n].

The characterization leads to a variation of the inflation/deflation approach of [57] to com-

pute nesting-aware candidates that are also sufficient for simplifying topology and low in

geometric costs. To compute the candidate cuts, instead of expanding the same kernel K

to every shape Ti, we expand the previous per-shape kernel Ki−1 towards Ti while preserv-

ing the topology of Ki−1 and guided by the geometric cost gi. The result of maximal ex-

pansion becomes the current per-shape kernel Ki, and the connected components of Ti \Ki

become the candidate cuts in Xi. Our algorithm starts from T1 and iteratively creates a

expanding sequence of per-shape kernels {K1, . . . , Kn} satisfying Equation 4.6. The can-

didate fills are created in a symmetric fashion, this time working backwards from Tn. For

each shape Ti, we shrink the next per-shape neighborhood Ni+1 towards Ti to produce the

current per-shape neighborhood Ni, and the connected components of Ni \ Ti become the

candidate fills in Xi. The process results in a sequence of shrinking per-shape neighbor-

hoods {Nn, . . . , N1} satisfying Equation 4.7. The inflation and deflation processes are illus-

trated in 2D in Figure 4.6.
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Figure 4.6: Computing nesting-aware candidates. Middle row: An input sequence consist-
ing of two shapes T1, T2, the kernel K, and neighborhood N . Top: Inflating K0 = K to-
wards successive shapes in the sequence, while preserving topology, results in per-shape
kernels K1, K2. Bottom row: Deflating N3 = N towards successive shapes in the reverse
order, while preserving topology, results in per-shape neighborhoods N2, N1. Components
of Ti \Ki and Ni \ Ti become the candidate cuts (red) and fills (blue) in the middle row.

Finally, we show that the use of nesting-aware candidates further simplifies the problem

formulation. In particular, the inclusion constraint of Equation 4.5 can be transformed

into labelling constraints on pairs of overlapping candidates:

Proposition 3. If all candidates {X1, . . . , Xn} are nesting-aware, then Equation 4.5 holds

if and only if the following holds: for any i = 1, . . . , n − 1 and any two candidates x ∈ Xi

and y ∈ Xi+1 such that x ∩ y ̸= ∅, either L(x) = 0 or L(y) = 1.
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Proof. We first note that

T L
i = Ki ∪XL,1

i = Ni \XL,0
i .

Hence T L
i ⊆ T L

i+1 is equivalent to

Ki ∪XL,1
i ⊆ Ni+1 \XL,0

i+1.

Since all candidates are nesting-aware, and by Proposition 2, Ki ⊆ Ni ⊆ Ni+1. Hence the

inequality above holds if and only if XL,1
i ∩ XL,0

i+1 = ∅. The latter, in turn, is equivalent to

asking that, for any two candidates x ∈ Xi and y ∈ Xi+1 such that x ∩ y ̸= ∅, {L(x), L(y)}

cannot be {1, 0}.

Note that a pair of overlapping candidates x ∈ Xi and y ∈ Xi+1 can be both cuts (e.g.,

c1 and c2 in Figure 4.5 (a)), both fills (e.g., f2 and f3 in Figure 4.5 (b)), or a fill and a cut

(e.g., f1 and c2 in Figure 4.6 middle row). We call the simultaneous assignment of label 1

to x and 0 to y a conflict. Assuming that all candidates are nesting-aware, our optimiza-

tion problem can now be stated simply as finding a conflict-free labelling L that minimizes

E(L) defined in Equation 4.4.

4.5 Optimization

We explore several strategies to solve the conflict-free labelling problem formulated above.

We start with a heuristic approach that sequentially optimizes the labels in successive

shapes while avoiding conflicts with previous shapes (Section 4.5.1). We then introduce

a state-space search algorithm and prove that it always returns the optimal labelling, al-

though with possibly exponential complexity (Section 4.5.2). Finally, we discuss a beam-

search variant of the optimal algorithm that trades off optimality for efficiency (Section

4.5.3).

In all these strategies, we use the method of [57] as a black-box solver to optimize labels
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on individual shapes without considering conflicts. For convenience of discussion, we in-

troduce two notations. Given two subsets F0, F1 of candidates Xi, we use Li(F0, F1) to

denote the labels of Xi computed by [57] to minimize E({T L
i }) (Equation 4.1) under the

constraints that F0 are all labelled 0 and F1 are all labelled 1. Given subsets F0, F1 of all

candidates on all shapes, we denote by L(F0, F1) the labelling of the entire sequence made

up of per-shape labels Li(F0 ∩Xi, F1 ∩Xi) for i = 1, . . . , n.

4.5.1 Propagation

One idea is to “propagate” the labels from one shape to the remaining shapes in a sequen-

tial manner. During propagation, the labels of candidates Xi, denoted as Li, are obtained

by minimizing the labelling energy of Li while constraining some labels to avoid conflicts

with previously propagated labels in either Li−1 or Li+1.

Specifically, starting from some j ∈ [1, n], we first obtain the labels Lj of Xj as Lj(∅, ∅)

(i.e., without constraining any labels). The labels are then propagated forward and back-

ward to adjacent shapes. In the forward direction, for each i = j + 1, . . . , n, we define the

constraint set Fi,1 as all candidates of Xi that overlap with some 1-labelled candidates in

Xi−1:

Fi,1 = {x ∈ Xi|x ∩ y ̸= ∅, ∃y ∈ Xi−1, Li−1(y) = 1}

Candidates in this set must be labelled 1 to avoid conflicts with Li−1. Hence we obtain

Li = Li(∅, Fi,1). Similarly, in the backward direction, for each i = j − 1, . . . , 1, we define

the constraint set Fi,0 as all candidates of Xi that overlap with some 0-labelled candidates

in Xi+1:

Fi,0 = {x ∈ Xi|x ∩ y ̸= ∅,∃y ∈ Xi+1, Li+1(y) = 0}

Since candidates in this set must be labelled 0 to avoid conflicts with Li+1, we obtain Li =

Li(Fi,0, ∅). The forward and backward processes are illustrated in Figure 4.7 top and bot-

tom.
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Figure 4.7: Forward (top) and backward (bottom) propagation of labels. Candidates are
shown as circles with their labels (gray circles have unknown labels) and overlapping can-
didates are connected by edges. Top: to get labels of candidates Xi from Xi−1, the subset
Fi,1 ⊆ Xi that overlaps with 1-labelled candidates of Xi−1 (thick outlines) is labelled 1,
and the remaining labels are computed by energy minimization. Bottom: to get labels of
candidates Xi from Xi+1, the subset Fi,0 ⊆ Xi that overlaps with 0-labelled candidates of
Xi+1 (thick outlines) is labelled 0, and the remaining labels are computed by energy mini-
mization.

Let Lj be the labelling over the entire sequence composed of the per-shape labels {L1, . . . , Ln}

propagated from Lj. We perform propagation once from each starting index j = 1, . . . , n,

which results in n labellings {L1, . . . , Ln}, and output the one with the least energy.

4.5.2 Optimal search

While the propagation method creates a conflict-free labelling, it is not guaranteed to be

optimal in terms of its energy. We next describe an optimal algorithm based on state-

space exploration. Here, a state is a triple {F0, F1, L} where F0 are candidates constrained

to have label 0, F1 are candidates constrained to have label 1, and L = L(F0, F1) is the
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energy-minimizing labelling subject to these constraints. The algorithm starts with a sin-

gle state {∅, ∅, L(∅, ∅)}, whose labelling minimizes the energy on each shape without en-

forcing nesting. At each iteration, the algorithm removes the state whose labelling achieves

the least energy among all existing states. Let this state be {F0, F1, L}. If L is free of con-

flicts, the algorithm terminates and L is returned as the output. Otherwise, a conflict of L

is chosen, and new states are created to resolve that conflict by adding more constraints to

either F0 or F1.

The key step in the algorithm is the creation of new states. Consider a labelling L and a

pair of overlapping candidates x ∈ Xi and y ∈ Xi+1 with conflicting labels in L, that

is, L(x) = 1 and L(y) = 0. A simple way to resolve the conflict is to constrain either

x to have label 0 or y to have label 1. However, such constraints alone may lead to new

conflicts with other shapes. For example, labelling x as 0 may conflict with 1-labelled can-

didates in Xi−1 that overlap with x, and labelling y as 1 may conflict with 0-labelled can-

didates in Xi+2 that overlap with y. To avoid such potential conflicts, our algorithm con-

strains not one, but possibly a set of candidates when resolving each conflict.

Specifically, we call two candidates u ∈ Xi and v ∈ Xj where i < j path-connected if

there is a sequence of candidates {wi, . . . , wj} such that wi = u, wj = v, wk ∈ Xk for

k = i, . . . , j, and each pair of consecutive candidates overlap (i.e., wk ∩ wk+1 ̸= ∅ for

k = i, . . . , j − 1). For each candidate x ∈ Xi, we define its 0-set, z(x), as the union of x

and all candidates in Xj for j < i that are path-connected with x, and its 1-set, o(x), as

the union of x and all candidates in Xj for j > i that are path-connected with x. To re-

solve the conflict involving a pair of candidates {x ∈ Xi, y ∈ Xi+1}, we constrain either

all candidates in z(x) to have label 0 or all candidates in o(y) to have label 1. The con-

straints are appended to existing constraints in either F0 or F1, and the remaining labels

are updated using energy minimization. For efficiency, we only update the labels of Xk, for

k = 1, . . . , n, if it has some constrained candidate z whose constraint label is different from

its current label L(z). This process is illustrated in Figure 4.8.
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Figure 4.8: State expansion. Given a state (a) consisting of candidate labels, constrained
candidates (black circles), candidate pairs with conflicting labels (red edges), and a cho-
sen pair {x, y}, two new states are created by expanding the constraints to include either
the 0-set of x (b) or the 1-set of y (d) and updating the remaining labels on the affected
shapes using energy minimization (c,e).
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Algorithm 1 State-space search algorithm
Initialize empty queue Q
Q.push({∅, ∅, L(∅, ∅)})
while Q is not empty do
{F0, F1, L} ←− Q.pop()
if L has no conflict then

return L
else
{x, y} ←− a conflict pair of candidates in L
F ′

0 ←− z(x) ∪ F0
F ′

1 ←− o(y) ∪ F1
Q.push({F ′

0, F1, L(F ′
0, F1)})

Q.push({F0, F ′
1, L(F0, F ′

1)})
end

end

The search algorithm is summarized as pseudo-code in Algorithm 1. The algorithm main-

tains current states in a queue Q sorted by increasing labelling energy. Each iteration of

the algorithm removes the state in Q with the least labelling energy and either returns the

labelling, if it is conflict-free, or adds two new states to Q. We prove in the appendix that

the algorithm always terminates, and that the result is optimal when the solver L is opti-

mal:

Proposition 4. Algorithm 1 terminates and produces a conflict-free labelling L in finite

number of iterations. Furthermore, if E(L(F0, F1)) is minimal among all labellings that

label F0 as 0 and F1 as 1 for any two disjoint sets of candidates F0, F1, then E(L) is mini-

mal among all conflict-free labellings.

We make a final comment on the choice of the conflict candidate pair {x, y} (Line 8 in Al-

gorithm 1). Although the choice does not affect the optimality of the algorithm, it has an

impact on the order of states being explored and therefore the overall running time. We

adopt the following choice in our implementation. For each conflict {x, y} of L, we count

the number of 1-labelled candidates in z(x) and the number of 0-labelled candidates in

o(x). We choose the conflict where the absolute difference between those two numbers is

the smallest (ties are broken arbitrarily). This strategy prioritizes conflicts where one of
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the two ways of resolving it (either constraining z(x) to 0 or o(y) to 1) has a clearer bene-

fit over the other in terms of minimizing the number of label-flippings in L.

4.5.3 Beam search

While being optimal, the search algorithm described above may have a prohibitive running

time. As shown in the appendix, the states explored by the algorithm form a binary tree

whose depth can be as large as the total number of candidates in all shapes. Denoting this

number by m, the algorithm therefore may require O(2m) number of iterations. This can

be impractical for inputs with many candidates, either due to a high level of topological

noise or a large number of shapes in the sequence.

To make the algorithm more practical, at the cost of losing optimality, we can replace the

full search by a beam search with a limited (and controllable) size of memory. Specifically,

the maximum number of states that can be held in the queue Q is restricted to be a user-

provided constant B. When Q is full and a new state needs to be pushed, the state whose

labelling has the highest energy among the B + 1 states is dropped from Q.

In contrast to the full search, the beam search requires only O(Bm) number of iterations.

In practice, we found that even a small B (e.g., 1) can produce near-optimal results but

with significantly improved efficiency over the full search. In the extreme case that B = 1,

Q holds only a single state at any time, and the algorithm simply replaces the current

state at each iteration by one of the two newly created states that has a smaller labelling

energy.

4.6 Results

We present experimental results that evaluate the effectiveness of our method, compare

the different optimization strategies, and compare with alternative simplification methods.

As mentioned earlier, while our method in theory can be applied to any type of cell com-
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plexes, our current implementation assumes that the input shapes are defined on a pixel

(or voxel) grid using 4-connectivity (or 6-connectivity).

Figure 4.9: Left: a grayscale retinal vessel image (a), 6 level sets used as input shapes (b),
shapes simplified using the initial labelling (c) and conflict-free final labelling produced by
our beam search (B = 1) (d). Right: plotting total Betti number of the input sequence
(e), geometric costs of various optimization approaches (f), number of conflicts of the ini-
tial labelling (g), and running time of various optimization approaches (h) over experi-
ments that use increasingly long input sequences.

4.6.1 Level sets

To compare different optimization options, we use the level sets of a grayscale 2D or 3D

image at decreasing (or increasing) levels. Such ”synthetic” sequences are always nested,

and their complexity can be easily adjusted by changing the number of levels. Assuming

the sequence consists of level sets with decreasing levels, we set the kernel K to be one of

the pixels or voxels with the highest intensity (and hence is contained in the first shape)

and the neighborhood N to be the entire image. Following [57], we set the geometric cost

function gi(v) to be the magnitude of the intensity gradient of the image at a pixel or

voxel v, which penalizes strong intensity edges, and prioritize pixels or voxels with higher

(resp. lower) intensities during inflation (resp. deflation) to compute the nesting-aware

candidates.
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2D level sets (Figure 4.9): We first test on level sets extracted from a 2D retinal vessel im-

age shown in (a). We took 6 expanding level sets from the image, as shown in Figure (b)

with colors ranging from red to blue. Observe that these level sets have a large amount of

topological noise including islands and cavities. We set up 5 experiments with increasingly

longer input sequences, so that the i-th experiment uses the last i + 1 level sets as the in-

put. As seen in (e), the topological complexity of the input sequence, measured by the to-

tal Betti numbers (β0 + β1) for all shapes in the sequence, increases as the experiment uses

longer sequences.

In all five experiments, each of the three optimization approaches, namely propagation, op-

timal search, and beam search (we tried B = 1, 2, 3), is able to fully simplify the topology

of the input sequence, meaning that each simplified shape has a single component with-

out cavities. We visually compare the initial labelling in the search algorithm, which is

obtained by [57] without considering nesting, and the labelling returned by beam search

with B = 1 in the last experiment (using all 6 level sets) in (c,d). While the initial la-

belling also results in topologically simple shapes, the simplified shapes could intersect

(e.g., red, cyan and yellow curves in the close-ups of (c)), whereas the final labelling re-

stores the nesting relation while maintaining topological simplicity. Beyond topology, dif-

ferent optimization approaches result in similar geometric costs, as plotted in (f), although

propagation produces slightly higher costs. These costs become increasingly higher than

the costs of the initial labelling, which correlates with the increase in the number of con-

flicts in the initial labelling as shown in (g).

In terms of performance, (h) shows that both optimal search and beam search have sim-

ilar running time, while beam search with smaller B is slightly faster. The propagation

approach is generally faster than both search algorithms, although the advantage decreases

with the length of the input sequence. This is because the propagation approach requires

computing the energy-minimizing labels on all shapes for each starting shape, making its

complexity quadratic to the number of shapes. In contrast, the beam search’s complexity
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depends on a variety of factors such as the number of conflicts and the particular search

path in the state space. Note that the time for computing the nesting-aware candidates is

not included here, because they are common for all optimization approaches.

Figure 4.10: Left: one of the seven level sets of a 3D CT image of a human foot bone that
are used as input shapes (a), the shape simplified by label propagation (b), the initial la-
belling (c) and final conflict-free labelling of beam search (B = 1) (d). Betti numbers of
each shape (β0/β1/β2) are shown. Right: plotting total Betti numbers of the input se-
quence (e), total Betti numbers of the simplified sequence using various optimization ap-
proaches (f), number of conflicts of the initial labelling (g), and running time of various
optimization approaches (h) over experiments that use increasingly long input sequences.

3D level sets (Figure 4.10): Our next test uses 7 level sets from a 3D CT image of a hu-

man foot bone, one of which is shown in (a). Observe that the bone shape has numerous

handles, cavities, and islands in its interior. Similar as above, we set up 6 experiments us-

ing increasingly longer sequences of these level sets. The increase in topological complexity

(as the total Betti number β0 + β1 + β2 over all shapes) in these experiments is plotted

in (e). To make the problem more challenging, we further removed some candidate cuts

and fills so that the shapes cannot be fully simplified. Specifically, for each level set Ti, we

removed all candidates from Xi that contain some voxel whose intensity is more than 40

away from the level of Ti (assuming the entire intensity range is 255).

Observe from (f) that both optimal search and beam search produce shapes with signif-

icantly fewer topological features than label propagation. Also, beam search (even with

B = 1) produces only slightly more complex topology than optimal search. We visually
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compare in (b,c,d) the results of the propagation approach, initial labelling and final la-

belling of beam search for the input shape in (a). Observe that beam search results in

fewer handles than propagation and better retains the appearance of the initial, energy-

minimizing labelling. Performance-wise (h), propagation is notably faster than beam search,

which is in turn significantly faster than optimal search, sometimes by two orders of mag-

nitude. As a result, beam search (with B = 1) appears to offer the best compromise -

it produces simplifications much closer to optimum than propagation but at a fraction of

cost of the optimal search.

4.6.2 Real-world data

We applied our method to several real-world data sets including tissue layers in a brain

scan and time series of growing plant roots. In each input sequence, all shapes are given

as binary masks on a common voxel grid. We set the kernel K as one of the voxels inside

the first shape that are furthest from the shape’s boundary, and the neighborhood N as

the entire grid. The geometric cost gi(v) is set to be constant for each voxel v, and the

inflation and deflation prioritize voxels that are further away from the boundary of the

shape being inflated or deflated towards.

We visually compare our method using the beam search strategy (B = 1) with the single-

shape simplification method of [57] and the scalar-field simplification method of [85] im-

plemented in the Topology Toolkit (TTK) [88]. For the latter, we first constructed a real-

valued grayscale volume that interpolates the input shape sequence at integers equal to

the indices of the shapes, then maximally simplified the extrema of the volume using TTK,

and finally extracted the level sets of the simplified volume at the original integer values.

Brain layers (Figure 4.11): The input sequence (a) consists of 3 layers in a segmented hu-

man brain scan, namely (from inner to outer) the cerebrospinal fluid, white matter, and

grey matter. Numerous topological errors exist in this input, particularly on the two in-

ner layers (as seen in the close-ups), due to the complex anatomical structure. Both our
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method and [57] can remove all topological features on all three shapes, but the nesting

relation between the layers is only preserved in our method. The close-ups in (b,c) visual-

ize the two inner layers simplified by each method. In the result of [57] (b), the inner most

layer (red) can be seen outside the middle layer (gray) indicating a violation of nesting,

while in our result (c) the inner layer is completely hidden inside the middle layer.

Figure 4.11: (a) Three layers of a brain scan and a close-up on a region with complex
topology in the two inner layers. (b) Two inner layers after applying the method of [57];
note the innermost layer extrudes outside the middle layer. (c) Our method keeps the in-
nermost layer nested inside the middle layer.
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Figure 4.12: Simplifying a sequence of 3 time points of a growing rice root system (top
row) using TTK (middle row), which fails to remove most of the handles, and our method
(bottom row) which fully simplifies the topology of each shape while maintaining nesting.

Growing roots (Figures 4.2,4.12): As roots grow in the soil or other media, and due to re-

sistance of their surroundings, their shape become nested over time. Generally, roots are

connected and free of handles or cavities, but the reconstruction of root shapes is prone

to topological errors due to the presence of thin and nearby branches. Figure 4.2 com-

pares our method with that of [57] on a sequence of 4 time points of a growing pennycress
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Table 4.1: Statistics for the four real-world data sets used in this paper (Figures 4.11, 4.12,
4.2, 4.13), showing the Betti numbers of the input sequence, time for computing the can-
didate cuts and fills, and the resulting topological complexity, geometric cost, and running
time of the three optimization strategies.

Brain (3 layers) Rice root (3 times) Pennycress root (4 times) Maize root (41 times)
β0/β1/β2 Geom.

cost
Time
(sec)

β0/β1/β2 Geom.
cost

Time
(sec)

β0/β1/β2 Geom.
cost

Time
(sec)

β0/β1/β2 Geom.
cost

Time
(sec)

Input 1247/863/80 - - 352/133/4 - - 408/254/0 - - 12290/6780/201 - -
Candidates - - 71.2 - - 19.1 - - 64.3 - - 549.0

Propagation 3/0/0 897437.7 30.9 3/0/0 9931.2 1.3 4/0/0 3981.4 7.1 41/0/0 989392.5 26106.8
Opt. search 3/0/0 760882.1 248.6 3/0/0 9844.6 2.8 4/0/0 2765.3 43.1 N/A N/A N/A

Beam
search

3/0/0 760882.1 71.4 3/0/0 9844.6 2.8 4/0/0 2773.3 9.1 41/0/0 709947.5 2664.1

root system. Again, while both methods fully simplify the topology, only our method pre-

serves the nesting between the time points. Figure 4.12 shows another sequence of 3 time

points of a growing rice root system and compares our method with TTK. Observe from

the close-ups that, while the result of TTK remains nested (as they are level sets), TTK

fails to remove the handles on the input shapes. This is a common limitation of field-based

simplification methods (see Section 4.2). In contrast, our method removes all topological

features (handles included) and keeps the shapes nested.

Quality and performance: Table 4.1 reports, for each real-world data set, the topological

complexity of the input, running time for computing the nesting-aware candidates, and the

cost (topology and geometry) and running time of the three optimization strategies (B = 1

for beam search). We additionally include a sequence of 41 time points of a growing maize

root system (four time points are shown in Figure 4.13), which is our most complex data

set. Observe that the optimal search is by far the most expensive of the three optimiza-

tion approaches, and it failed to finish within ten hours for the maize data. Propagation is

faster than beam search for the shorter sequences, but it takes significantly longer on the

maize data due to the much longer sequence. Upon completion, all three strategies fully

simplify the topology of these sequences, while optimal search and beam search have sim-

ilar geometric costs that are lower than propagation. Once again, beam search seems to

strike a better balance between optimality and speed.
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Time 30 Time 40

Time 1 Time 10

Figure 4.13: Four time points of a growing maize root system from a sequence of 41 time
points.

4.7 Conclusions

We present, to the best of our knowledge, the first method for simultaneous topological

simplification of a sequence of nested shapes while preserving nesting. Our method ex-

tends a recent global optimization method [57] to nested shapes by defining and comput-

ing nesting-aware candidate cuts and fills, formulating a constrained labelling problem us-

ing these candidates, and exploring several solution strategies that offer different trade-offs

between optimality and efficiency. The method is shown to be effective on both synthetic

and real-world shape sequences.

While our method produces topologically simple and nested shapes, the topological changes
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made by the algorithm may not be geometrically pleasing (e.g. the long ”scar” on the sur-

face of the white matter in Figure 4.11 (c)) and may destroy the semantics of the shape

(e.g., the branching structure of the roots). The key to improving the quality of the results

is obtaining candidate cuts and fills that better respect the geometry and semantics of the

input shapes. We would also like to improve the efficiency of the current inflation/defla-

tion method for computing the candidates, which currently accounts for a significant por-

tion of the overall runtime, and extend the implementation to handle non-cubical com-

plexes.
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Conclusion
5.1 Summary

The aim of this dissertation was to develop algorithms for topological optimization, us-

ing plant root phenotyping as a primary motivator. An algorithm for topological simplifi-

cation of a single shape represented as a cell complex was developed which uses a global

optimization approach to maximally simplify the number of topological features while

minimizing the change to the geometry. The algorithm laid the foundation for the devel-

opment of TopoRoot, which captures the hierarchy and fine-grained traits of excavated

Maize Roots from 3D imaging, through a computer graphics-based pipeline. The final

part of this dissertation was the development of an algorithm for topological simplifica-

tion of nested shapes which maximally simplifies the number of topological features of ev-

ery shape in the sequence while minimizing the change to the geometry and maintaining

consistency.

5.2 Future Work

There remains significant room for research in each of the topics covered in this disserta-

tion. While the global optimization algorithm developed in the first part of this thesis is

able to improve on prior methods in reducing the number of topological features with min-

imal geometric change, a few topological features remain in the final result for extremely

complex examples such as iso-surfaces of Maize roots extracted from X-ray CT scans (with

thousands of topological features). These noisy topological features remain due to the sub-

optimality of the Node-Weighted Steiner Tree (NWST) solver used in our implementation.

As such, a possible direction to explore would be the use of more optimal solvers for the

NWST problem, or different graph formulations to solve the same problem besides NWST.
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Furthermore, though the cuts and fills simplify the topology, they sometimes are not geo-

metrically pleasing, such as cutting roots along their cross sections. By incorporating geo-

metric smoothness criteria or domain-specific criteria (e.g. root biology), the visual quality

of the cuts and fills can be improved to better reflect the natural semantics of the underly-

ing shape being repaired. Another direction of improvement would be to extend the algo-

rithm to Octrees and non-cubical complexes such as irregular grids.

The TopoRoot pipeline developed in part 2 of this dissertation has diverse areas for im-

provement and exploration, and we envision incorporating these changes into future ver-

sions of the pipeline. Since the cuts and fills from the topological simplification algorithm

of the first part of the dissertation are not generated using criteria specific to root biol-

ogy, the algorithm sometimes performs changes to the root shape which do not reflect its

natural growth patterns. Improvements to those cuts and fills would thus improve the

quality of the output hierarchy. Upon close examination of the hierarchy in our graphi-

cal user interface, there are still misclassifications of the roots at different hierarchy levels

(e.g. portions of nodal roots being mistaken as lateral roots). Most of these mistakes occur

at hierarchy levels greater than 1 (e.g. first-order lateral roots and higher), and are due to

either faulty cycle breaking along the curve skeleton, or errors in the hierarchy labeling al-

gorithm when running on the acyclic skeleton. Two potential directions to explore would

be a global optimization approach to cycle breaking (as opposed to the greedy minimum

spanning tree approach currently used in the pipeline) which utilizes better geometric cri-

teria, as well as a hierarchy labeling algorithm with a different strategy than the current

one (e.g. recursively maximizing the total length of the root as opposed to minimizing

the maximum hierarchy level). The graphical user interface can also be modified to al-

low for edits to the skeleton if the hierarchy labelling is incorrect. A variety of new traits

can also be added to future versions of the pipeline, including whorl locations, inter-whorl

distances, and the location of the soil plane. Whorls could potentially be identified either

before the skeleton is produced in our pipeline, or after it. In the former case, the identi-

95



fied whorls may help to distinguish between ”real roots” which emerge from whorls, and

”fake roots” which do not come from any whorl, and which are actually topological arti-

facts from the imaging. This may help with cycle breaking further down in the pipeline.

Finally, TopoRoot can also be potentially extended to other species such as Sorghum,

Rice, and Pennycress. This would involve a tiller identification algorithm for multi-tiller

species such as Sorghum, and a potential starting point of exploration would be to extend

the algorithm used in [14] to identify multiple thick regions on the skeleton. Species such

as Pennycress are taproot systems (as opposed to fibrous root systems), and will require

identification of the primary root as the base of the hierarchy instead of a stem. To begin,

the primary root can potentially be identified as the longest path within the acyclic skele-

ton produced by TopoRoot, found by extending the current hierarchy labelling algorithm

to start at the base of the hierarchy (e.g. the level below nodal roots).

The final part of this dissertation covered topological simplification of nested shapes. Many

improvements to our algorithm for the topological simplification of a single shape can also

be potentially applied to the nested shape case, including the improvement of the visual

quality of the cuts and fills, the optimality of the per-level solver, and an extension of the

implementation to non-cubical complexes. Finally, the inflation / deflation method which

is used to generate the cuts and fills currently accounts for a significant portion of the

runtime, especially due to the potentially high number of shapes involved. More efficient

methods for generating cuts and fills would allow for application of the algorithm to nested

sequences with a greater number of shapes with higher topological complexities.
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Appendix
A.1 Proof of Proposition 1

We start by associating a set of cells (at all dimensions) to each node and showing some

properties of these sets. Define s as the subset of cells in the closure (Os) that are not

faces of any 3-cell ranking higher than Os. Note that Os ⊆s⊆ (Os) by definition. Recall

that two sets of cells are connected if some cell in one set is the face of a cell in the other

set. We can show that, The following properties hold:

1. For any cell c ∈, there exists a unique node s ∈ V such that c ∈s. That is, s of all

nodes s ∈ V form a disjoint decomposition of .

2. For any node s ∈ V , s is connected.

3. For any two nodes s, t ∈ V , they are connected by an edge if and only if s and t are

connected.

Proof. We prove each property in turn.

1. Consider the set H of highest-ranking 3-cells that c is a face of. If H contains more

than one 3-cell, then all 3-cells in H are R-connected, because c is not a face of any

other higher-ranking 3-cells. Hence all 3-cells in H belong to the same R-connected

component Os for some node s ∈ V .

2. Since Os ⊆s and the remaining cells s \ Os are faces of (and hence connected to)

some 3-cell in Os, we only need to show that any two 3-cells in Os are connected

via a path of cells in s. Since any two 3-cells in Os are connected via a path of R-

connected 3-cells, we only need to show that two R-connected 3-cells u, v ∈ Os share

a common face that is in s. By R-connectivity, u, v share a common face c that is
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not the face of any 3-cell with rank higher than that of u, v. Hence c ∈s, and the

property holds.

3. If s, t are connected, then there exists 3-cells u ∈ Os and v ∈ Ot such that they

share a common face c that is not a face of another 3-cell ranking higher than u or

v. Hence c belongs to either s or t, implying that s and t are connected. Conversely,

if s and t are connected, and without loss of generality, there exists a cell c ∈s that

is a face of a 3-cell v ∈ Ot. Let u be the 3-cell in Os that c is a face of. Since c ∈s,

there is no other 3-cell with rank higher than u that has c as a face. Hence u, v are

R-connected, and hence nodes s, t are connected by a graph edge.

We now prove Proposition 1:

Proof. (Proposition 1) We first show that the following statement is true for any proper

labelling L: if two nodes s, t ∈ V are connected such that s has a higher rank than t, and

if L(t) = 1, then L(s) = 1. Note that s can be either a kernel node or cut node. If s is

a kernel node, then L(s) = 1 regardless of L. If s is a cut node, then t can only be a fill

node, and therefore L(s) = 1 since L is proper.

To prove the Proposition, it suffices to show that the union of s over all 1-labelled nodes s

is the modified shape X, or:

∪L(s)=1 s = (∪L(s)=1Os) (A.1)

for any proper labelling L. If this is true, then the three properties in Lemma A.1 ensure

that the connected components of X, and of its complement \X, have one-to-one corre-

spondence with the connected components of the 1-labelled and 0-labelled subgraphs.

To show that equality A.1 holds, we need to show that for any node s ∈ V such that

L(s) = 1, and any 3-cell u ∈ Os, all faces of u (at all dimensions) must have been included

in the union ∪L(s)=1s. We consider two cases for each face c of u. If c ∈s, then obviously
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c ∈ ∪L(s)=1s. Otherwise, by Lemma A.1, there exists some other node t ∈ V such that c ∈t,

t has higher rank than s, and s, t are connected. As shown at the beginning of this proof,

we conclude that L(t) = 1, and hence c ∈ ∪L(s)=1s.

A.2 Proof of Proposition 4

We start with a few observations on the 0-sets and 1-sets. Recall that, for each candidate

x ∈ Xi, its 0-set (x) (resp. 1-set (x)) is the union of x and all candidates in Xj for j < i

(resp. j > i) that are path-connected with x.

We introduce two more definitions. Given a set of candidates S (possibly across multiple

shapes), we say it is 0-inclusive (resp. 1-inclusive) if (x) ⊆ S (resp. (x) ⊆ S) for any

candidate x ∈ S. We show that: The following statements hold for any candidates x, y

and candidate sets S1, S2:

1. x ∈ (y) if and only if y ∈ (x).

2. (x) is 0-inclusive and (x) is 1-inclusive.

3. If S1, S2 are both 0-inclusive (resp. 1-inclusive), than S1 ∪ S2 is also 0-inclusive (resp.

1-inclusive).

Proof. We prove each statement in turn. We denote by π(x) the index of the shape to

which the candidate x belongs (i.e., x ∈ Xπ(x)).

1. By definition of the 0-set, x ∈ (y) if and only if x and y are path-connected and

π(x) < π(y). These are exactly the conditions for y ∈ (x).

2. To show (x) is 0-inclusive, we need to show that (y) ⊆ (x) for any y ∈ (x). Consider

such a y and any z ∈ (y). Since z is path-connected with y, which is in turn path-

connected with x, z must be path-connected with x. Furthermore, π(z) < π(y) <
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π(x). We conclude that z ∈ (x), and hence (y) ⊆ (x). A symmetric argument shows

that (x) is 1-inclusive.

3. We only need to show the 0-inclusive case; the 1-inclusive case is symmetric. For any

x ∈ S1 ∪ S2, x must either lie in S1 or S2. Suppose the former (the latter case is

identical). Since S1 is 0-inclusive, (x) ⊆ S1 and hence (x) ⊆ S1 ∪ S2, and therefore

S1 ∪ S2 is 0-inclusive as well.

Using these observations, we can show that each state created by the algorithm has two

disjoint constraint sets that are respectively 0-inclusive and 1-inclusive: The following

statements hold for any state {F0, F1, L} pushed into the queue Q in Algorithm 1:

1. F0 ∩ F1 = ∅

2. F0 is 0-inclusive and F1 is 1-inclusive.

Proof. We will prove by induction. Both (1,2) trivially hold for the initial state, where

F0 = F1 = ∅. Consider a state {F0, F1, L} popped by the algorithm. Assuming that (1,2)

hold for F0, F1, we will show that F ′
0 obtained in Line 9 is (i) 0-inclusive and (ii) satisfy-

ing F ′
0 ∩ F1 = ∅. A symmetric argument would then show that F ′

1 obtained in Line 10 is

1-inclusive and satisfies F ′
1 ∩ F0 = ∅.

• (i): Since F0 is 0-inclusive and so is (x) (be Lemma A.2 (2)), their union F ′
0 is also

inclusive (be Lemma A.2 (3)).

• (ii): Since F0 ∩ F1 = ∅, we only need to show that (x) ∩ F1 = ∅. We first show that

x /∈ F1. Suppose, on the contrary, that x ∈ F1. Since y ∈ (x) (because x, y overlap),

and F1 is 1-inclusive, we have y ∈ F1, which contradicts with L(y) = 0. We next

show that (x) ∩ F1 = ∅. Suppose on the contrary that there exists some y ∈ (x) such

that y ∈ F1. By Lemma A.2 (1), x ∈ (y), and hence x ∈ F1, which contradicts to the

earlier statement.
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We are finally ready to prove Proposition 4:

Proof. We first show termination. By Lemma A.2, the two constraint sets in each state are

always disjoint, and hence a labelling under these constraints can always be found. There-

fore the algorithm can always proceed. The states explored by the algorithm can be or-

ganized into a binary tree, where the popped state at each iteration becomes the parent

of the two pushed states. Note that, since F0 ⊂ F ′
0 and F1 ⊂ F ′

1, the union of each child

state’s sets of constrained candidates is strictly larger than that of its parent. Since the to-

tal number of candidates is finite, the depth of the binary tree is finite, and so is the size

of the tree. On the other hand, it is easy to see that the labelling associated with a state

at the very bottom level of the tree, where all candidates are constrained, must be conflict-

free (due inclusiveness of the constraints). Therefore the algorithm must terminate and

return a conflict-free labelling (on Line 6) within finite number of iterations.

Next we show optimality. We call a state {F0, F1, L} compatible with a labelling L′ if L′ la-

bels all candidates in F0 as 0 and all candidates in F1 as 1. Note that, assuming optimality

of , we always have E(L) ≤ E(L′), because L = (F0, F1) has the least energy among all

labellings that satisfy the constraint sets F0, F1, and L′ is one of such labellings.

Let L∗ be a conflict-free labelling with minimal energy. We make a key observation that,

at any time during the algorithm, there is at least one state in the queue Q that is com-

patible with L∗. We prove by induction. At the beginning of the algorithm, Q holds a sin-

gle state where F0 = F1 = ∅, which is compatible with any labelling. As the algorithm

proceeds, we need to show that, after a state {F0, F1, L} compatible with L∗ is popped

from Q, at least one of the two pushed states remains compatible with L∗. To do so, note

that since L∗ is conflict-free, either L∗(x) = 0 or L∗(y) = 1 (both could hold). We first

consider the case that L∗(x) = 0. By definition of the 0-set, L∗ must assign label 0 to all

candidates in (x) to avoid conflicts. Since L∗ already labels all of F0 as 0 (due to compati-

bility), L∗ therefore labels all of F ′
0 = (x) ∪ F0 as 0. This makes one of the pushed states,

110



{F ′
0, F1, (F ′

0, F1)}, compatible with L∗. Similarly, if L∗(y) = 1, the other pushed state,

{F0, F ′
1, (F0, F ′

1)}, is compatible with L∗.

To complete the proof, let L′ be the labelling of the state in Q compatible with L∗ when

the algorithm terminates. Note that L′ could be the same as the labelling L being re-

turned. We have the following relation:

E(L) ≤ E(L′) ≤ E(L∗)

The first inequality is due to the fact that L is the least-energy labelling in Q, and the sec-

ond inequality is due to compatibility. By minimality of E(L∗) and since L is also conflict-

free, the equality must hold in this relation, which implies that L also has the minimal

energy among all conflict-free labellings.
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