Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-79-4

1979-06-01

Concurrency Coordination in a Locally Distributed Database
System

Gruia-Catalin Roman

A pipelined architecture for a locally distributed database system is proposed along with a
simple concurrency coordination mechanism. The approach is based on the idea of serializing
transaction processing throughout the database. The scheme is shown to require few
coordination messages, to be deadlock free, to preserve database consistency, and to support
recovery. Several performance related issues are also discussed.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Roman, Gruia-Catalin, "Concurrency Coordination in a Locally Distributed Database System" Report
Number: WUCS-79-4 (1979). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/873

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/873?utm_source=openscholarship.wustl.edu%2Fcse_research%2F873&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

CONCURRENCY COORDINATION IN A
LOCALLY DISTRIBUTED DATABASE
SYSTEM

Gruia-Catalin Roman

WUCS-79-4

June 1979

Department of Computer Science
Washington University
St. Louis, Missouri 63130

As appeared in Proceedings of the 1980 National Computer Conference, May
1980, pp. 269-273.

ABSTRACT

A pipelined architecture for a locally distributed database system
is proposed along with a simple concurrency coordination mechanism. Ihe
approach is based on the idea of serializing transaction processing
throughout the database. The scheme is shown to require few coordination
messages, to be deadlock free, to preserve database consistency, and to

support recovery. Several performance related issues are also discussed.

Keywords: distributed database, consistency, transaction, schedule

I. INTRODUCTION

This paper is concerned with locally distributed databases. A
pipelined architecture for a multi-processor database system is proposed
along with a concurrency coordination scheme. The architecture can be
modelled as a collection of single~rooted directed acyclic graphs (DAG's).
The root of each DAG is associated with a column of a cross-bar switch; the
rows correspond to separate user groups. Each node of the DAG represents
a processor, and each arc indicates a communication link between processors.

The leaves of the DAG's are called data processors and may contain single

files or larger portioms of the database. The other nodes, called

directory processors are assumed to store, in a distributed fashiom, an

index structure designed to maximize throughput while maintaining a relatively
constant response time. For the sake of simplifying the exposition, changes
to the index structure will not be considered until the end of Section IV.

Transactions are entered serially at the root of each DAG and the
concurrency coordination mechanism enforces their "proper" pipelining
through the networks. Each directory processor performs a routing functiom.
When the leaves are reached, the requested data is read and passed back to
the user who later sends the updates followed by a commit message. Thé
sending of a commit message is fundamental to the approach; the fact that
the user creates the updates is not. An optimized system would have the
data and/or directory processors create the updates. The decision would be
determined by some data transfer volume minimization strategy.

Section II of this.paper is a short review of the terminology. The
formal solution is described in Section III. Some performance issues are

discussed in Section IV , and a short summary is provided in Section V.

IT. DEFINITION OF TERMS

For the definition of the terms "database," "transaction" and "consistency"
the reader is refgrred to [Gl]. Each transaction is assumed to have three
phases:

(1) Data Selection Phase —~ A selection criterion or query is passed
to the root nodes of the networks (DAG's). Each root node distributes
the selection process among its successors by initiating appropriate
subqueries. Later, when the answers to the subqueries return, it
concatenates and sends them to the user along with an end-of-selection
signal. All other nodes repeat the same scenario throughout the network.

(2) Data Modification Phase -- Upon receipt of the required data, the
necessary updating is carried out.

(3) Data Commitment Phase —- The updated data is sent back into the network
to permanently replace the old copies. As soon as all updates are
acknowledged, a final commit message is issued by the user.

For the time being, the single network case is considered. The
extention to multiple networks is made in the conclusion of Section III.
Some notation is introduced next.

- Xz denotes a single node (data or directory processor) in the network.

X0 is used to represent the root node.

-~ Ti represents the transaction i. Each transaction is assumed to have

a unique identifier i (e.g., distinct time stamps). All messages

exchanged by processors in behalf of Ti carry the identifier i,

- Qi denotes any non-null message associated with the transaction Ti
during the data selection phase; it is called a query message.

The notation QiC Tj means i=j.

- i is used to represent a null query message associated with Ti.
- Sk is called a schedule and is defined as an arbitrary sequence of

query messages. Sk is a serial schedule iff no two query messages

in Sk have the same identifier, i.e.,
(sk)/pCTi & (Sk)/qCTj & pfqg => 1#]

where (Sk)/r is the r'th query message in Sk.

III. CONCURRENCY COORDINATION

It is generally known ({El],[Gl]) that concurrent execution of several
transactions can result in viclations of database consistency due to
undesirable interferences among transactions. The network organization
suggested in this paper adds a new level of complexity since each transaction
is implemented using concurrency, thus requiring coordination even when a
single transaction exists in the system. The coordination scheme described
below handles both types of problems. Furthermore, it assumes no centrai—
ization; it is simple; it involves a small synchronization overhead and, in
contrast to other approaches, ([Bl},[R1],[S2]), it 1s architecture specific.

The idea behind the scheme is the following. Given any two data
processors, Xp and Xq, for any two transactions Ti and Tj which access
(read or write) data from both Xp and Xq, the two processors are forced to
see Ti and Tj in the same order. This can be accomplished by requiring the
behavior of every node to be describable by the functions below:

(S is the.set of all possible serial schedules)
MATCH: S" + §

S0 = MATCH (S1,S2,...,Sn)

where
(SO)Y/LC Ti iff (S3)/2CTi for j = 1,2,...,n
(s0)/% =qi iff Jk: (Sk)/2 =Qi

i 4iff (S§)/% =1 for j = 1,2,...,n
TRIM: st x § » gn

(s1',s2',...,8n') = TRIM(S1,52,...5n; SO)

where

s3=83".53' . for 3=1,2,...,n

(S3")/LC TL 4££f (SO)/ACTL for j = 1,2,...,n
n

FORK: 5+ 35

(81,82,...,5n) = FORK(S0)
where
(8§)/2 =0Qi or i if (S0)/RC Ti & (S0)/2 # 1

= i if (50)/2 = i for j=1,2,...,n

For every node Xu, the MATCH function provides the mechanism by which a

new schedule is generated from the messages received by Xu through combining

messages associated with the same transaction. TRIM is used to remove from

the input queues of Xu all messages that have been used by MATCH. The function

FORK is nondeterministic and simulates the process by which Xu decides what

query messages to send to its successors as a consequence of processing a

query message from the schedule generated by MATCH. To assure correct pro-—

pagation of the schedule received by X0, each Xu sends, for every message processed,.

query messages to all its successors; for those not needed in the data selection

process, a null message is sent. Since each node processes and puts out messages

in the same order, the initial total order over the transactions Ti is

maintained throughout the network.

PROPOSITION: Given the fact that the entry node XO is presented with a serial
schedule S0, every node Xu will execute an order equivalent
serial schedule Su:

(Su)/2C Ti iff (S0)/& C Ti.

Proof by induction:

{0) The proposition holds trivially for XO.
MATCH(S0) = 50
TRIM(S0:S0) = @

FORK(S0O) = (S01,502,...,50n) --where SOk represents the schedule
generated by SO for its k'th successor
and is order equivalent to 50.

(N) Let us assume the proposition to be true for nodes at distance N from XO.
Distance is defined as the length (number of links) of the longest path
from X0 to the particular node.

(N+1) Given any node Xu at distance N+1, due to assumption (N) all its input
schedules are order equivalent to SO. By applying again the definitions
of MATCH, TRIM, and FORK, one establishes the propositions to be true
for the level N+1.

Example. For exemplification purposes, 2 database is described and the

sample schedules resulting from processing two transactions, Tl and T2,

are listed,

ENTRY\
#1 #6 #11 #18
ENTRY: (T1 : add 2 mod 6 to one-digit numbers).(T2 : 1ist even numbers) Q1.Q2
QDD: (Tl : nil). (T2 : nil) 1.1
EVEN: (T1 : nil). (T2 : list even numbers) 1.Q2
ONE-DIGIT: (T1 : add 2 mod 6 to one~digit numbers). (T2 : nil) qL.2
TWO-DIGIT: (T1 : nil).(T2 : nil) 1.2

(Tl : nil).(T2 : nil)

#1: (TL : add 2 mod 6}.(T2 : nil) 0Q1.2

(T1 : add 2 mod 6).(T2 : nil)

(T1 : nil). (T2 : list)

(T1 : add 2 mod 6).(T2 : list) Q1.QZ
(TL : add 2 mod 6).(T2 : nil) ‘

#6:

(T1 : nil).(T2 : nil) :
#11: = (Tl : nil).(T2 : nil) 1.2

(T1 : nil). (T2 : nil)

(T1 : nil).(T2 : list)
#18: = (T1 : nil).(T2 ; 1ist) 1.Q2

(T1 : nil).(T2 : nil)

NOTE: In this example, the updates are carried out at the nodes. However, if
node #6 sends the data to the entry point to be updated by the user processor
that initiated the particular transactioms, it will not process the next
message until the result comes back and is committed throughout the metwork.

The extension of this coordination scheme from the one to several
networks requires that all root nodes receive transactions spanning across

nets in the same order. This can be achieved through the use of a hardware

cross-bar switch.

Hardware Switch

A
P T

) — = = ._1!

User : i
Terminals N e — .___....;

P = e = Pntl)

—— s m— ——

Separate Database Networks

When a user terminal issues a transaction which concerns only one of the
database networks, the guery message transmission takes place as soon as
the the vertical path becomes available. However, if the query involves
more than one network, the user must request allocation of all needed paths
before sending query messages to the various networks. This strategy will
guarantee that the separate serial schedules are all consistent with each
other, i.e., any two transactions occur in the same order in any serizal
schedule in which they appear together. Furthermore, if switching paths

are viewed as resources and always allocated in the same order, the

possibility of deadlock is eliminated, At the same time, blocking within
the switch can be minimized by allowing single network users to use paths

which have been allocated to a multiple network user but are not yet in use.

10

IV. PERFORMANCE ISSUES

The architectural solution described in Section II has its justification
in the application domain for which it 1s intended--medical information
systems. Such systems tend to be confined to a single geographical locatiom,
grow relatively fast, require quick response, and exhibit a processing
pattern dominated by data retrieval and creation rather than updates. As
such, modifications of the directories, other than additions of new entries, can
be assumed to be few. Therefore, the user should be willing, in those rare
occassions, to pay an additional waiting penalty for coordinating the concurrent
update of several directories.

The distribution of the index structure over several directory processors
is meant to reduce the searching time through the use of concurrency in a
pipelined-like fashion. The goal is to assure a constant average time through
the addition of new directory and data processors when faced with transaction
volume increases. However, the system's ability to handle the higher throughput
relates not on;y to the number of processors being used but also to the
"appropriateness’ of the data and index distribution. Ideally, all data
processors should be equally utilized. Furthermore, the searching load,
within each net should be equally distributed among directory processors at
equal distance from the root since the coordination scheme forces each
processor to work at the rate of the slowest predecessor.

With respect to transaction recovery and roll-back, a transaction
failure in some node could be signaled by passing a failure message to the
user processor, which, in turn would send a "forget about my updates”
message in place of the commit. Subsequently, the transactions would be
started again with a new identifier. A node failure would have the effect

of cancelling any transaction that requires its use.

11

V. SUMMARY

An architecture for a locally distributed database system was
suggested. A simple solution to the problem of ceordinating concurrent
transactions within the database was presented. The solution requires no

centralized control, is deadlock free, uses no locks, is fair, and involves

little overhead.

[B1]

[c1]

[E1]

[61]

[R1]

[s1]

(s2]

12

REFERENCE LIST

Bernstein, P.A., Rothnie, J.B., Goodman, N., and Papadimitriou, C.A.
"The Concurrency Control Mechanism of SDD-1: A System for Distri-
buted Databases (The Fully Redundant Case)." IEEE Transactions on
Software Engineering SE-4, No.3, pp. 154-167, May 1978.

Chamberlin, D.D., Boyce, R.F., and Traiger, I.L. "A Deadlock-
Free Scheme for Resource Locking in a Data-Base Environment."
Information Processing 74, North-Holland Publishing Company, pP. 340~

343, 1974.

Eswaran, K.P., Gray, J.N., Lorie, R.A., and Traiger, I.L. "The
Notions of Consistency and Predicate Locks in a Database System.”
CACM 19, No. 11, pp. 624-633, November 1976.

Gray, J.N. "Notes on Data Base Operating Systems." Research Report
RJ2188(30001) IBM Research Laboratory, San Jose, Californmia
95193, 1978,

Rosenkrantz, D.J., Sterns, R.E., and Lewis II, P.M. "System Level
Concurrency Control for Distributed Database Systems. "ACM Trans-
actions on Database Systems 3, No. 2, pp. 178-198, June 1978.

Stearns, R.E., Lewis II, P.M., and Reosenkrantz, D.J. "Concurrency
Control for Database Systems.'" Proceedings of the 17th Annual Sym-
posium on Foundations of Computer Science, pp. 19-32, 1976.

Stucki, M.J., Cox, J.R., Roman, G.-C., and Turcu, P.N. "Coordinating
Concurrent Access in a Distributed Database Architecture.” Pro-
ceedings of the Fourth Workshop on Computer Architecture for Non-
Numeric Processing, August 1978.

	Concurrency Coordination in a Locally Distributed Database System
	Recommended Citation

	tmp.1465589165.pdf.3pwzv

