
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Theses and Dissertations (ETDs) 

5-24-2011 

Simulation Of The Undiseased Human Cardiac Ventricular Action Simulation Of The Undiseased Human Cardiac Ventricular Action 

Potential: Model Formulation, Experimental Validation And Potential: Model Formulation, Experimental Validation And 

Application Application 

Thomas O'Hara 
Washington University in St. Louis 

Follow this and additional works at: https://openscholarship.wustl.edu/etd 

Recommended Citation Recommended Citation 
O'Hara, Thomas, "Simulation Of The Undiseased Human Cardiac Ventricular Action Potential: Model 
Formulation, Experimental Validation And Application" (2011). All Theses and Dissertations (ETDs). 873. 
https://openscholarship.wustl.edu/etd/873 

This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has 
been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington 
University Open Scholarship. For more information, please contact digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/etd
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F873&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd/873?utm_source=openscholarship.wustl.edu%2Fetd%2F873&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


WASHINGTON UNIVERSITY IN ST. LOUIS 

School of Engineering and Applied Sciences 

Department of Biomedical Engineering 

 

Dissertation Examination Committee: 

Yoram Rudy, Chair 

Jianmin Cui 

Igor Efimov 

Colin Nichols 

Dan Ory 

Rick Schuessler 

 

Simulation of the Undiseased Human Cardiac Ventricular Action Potential: Model Formulation, 
Experimental Validation and Application 

 

by 

Thomas James O’Hara IV 

 

 

 

 

 

A dissertation presented to the 

Graduate School of Engineering 

of Washington University in 

partial fulfillment of the 

requirements for the degree 

of Doctor of Philosophy 

 

August 2011 

Saint Louis, Missouri 



ii 
 

Abstract 

 

Creation of an accurate model for the undiseased human ventricular action potential (AP) which 

reproduces a broad range of physiological behaviors requires extensive experimental data, of 

which essential elements have been unavailable.  We developed and validated such a model 

using new experimental data from endocardium of 140 undiseased human hearts.  78 were from 

male (56%). Average age was 41 with standard deviation of 12 years.  New experiments include: 

Ca2+ versus voltage dependent inactivation of L-type Ca2+ current; kinetics for the transient 

outward, rapid delayed rectifier, Na+/Ca2+ exchange, and inward rectifier currents; AP recordings 

at all physiological cycle lengths; steady state rate dependence and restitution of AP duration.  

The model was used to investigate the “silent” Long-QT mutation Q357R in KCNQ1. 
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Chapter 1: Background and Introduction 

 

Since 1921, cardiovascular disease (CVD) has been the leading cause of death in the 

United States(Keenan and Shaw 2011).  In recent years, it was the cause of one third of all U.S. 

deaths(Roger, Go et al. 2011).  The most common deadly form of CVD is sudden cardiac death, 

SCD(Zheng, Croft et al. 2001).  Typically, ventricular arrhythmia is the first clinical symptom of 

SCD.  With sudden appearance and high lethality, preventative measures are the most effective 

treatment for SCD.  However, prevention requires hard-won mechanistic understanding of the 

underlying principles of arrhythmia formation.  Basic investigations into human cardiac 

electrophysiology can fill gaps in our understanding of such mechanisms.  This is the key to 

prevention(Myerburg 2002). 

In recent decades, computers have revolutionized medicine and basic scientific research 

of all kinds.  In biology, and electrophysiology in particular, computers have allowed scientists to 

assemble mathematical descriptions of discrete and relatively simple processes into larger, much 

more complex interacting systems.  A famous early example of these methods(Hodgkin and 

Huxley 1952) revealed remarkable new insights into the basic functioning of the neuronal action 

potential (AP); insights that could not have been discovered by experimental methods alone.  

Hodgkin and Huxley manually cranked a Brunsviga mechanical calculator for months(Noble 

2007) in order to solve the coupled differential equations comprising their axon model.  Their 

effort was motivated by an understanding that mathematical models are extraordinarily powerful 

tools.  The squid giant axon model won them the 1963 Nobel Prize in Physiology or Medicine, 

and was the dawn of “systems biology”, where integration methods replace reductionist methods 

(i.e. investigating the whole based on its parts rather than the parts abstracted from the whole).  

To study mechanisms, and test hypotheses to explain emergent phenomena, integrative methods 

are crucial. 

Regarding SCD, where mechanistic understanding is essential for prevention, computer 

modeling and systems approaches have been widely employed(Winslow, Cortassa et al. 2010).  
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For the clinically relevant case of undiseased or nonfailing human electrocardiology, due to 

limited access to tissue and myocytes, these methods are especially useful(Rudy, Ackerman et 

al. 2008).  With this as motivation, we worked to create a computer model that is faithful to the 

detailed processes underlying the ventricular AP in human.  The model was constructed as none 

before; it was based exclusively on undiseased and nonfailing human ventricular whole cell 

measurements.  We assumed as little similarity to other mammalian species as possible and 

reformulated all major processes responsible for the generation of the AP, making the model 

human ventricle specific.  The human ventricle specific model revealed explanations for basic 

mechanisms particular to human rhythmic and arrhythmic behavior.  It was with an interest in 

understanding, predicting, and preventing the development of SCD arrhythmia in the human 

heart, that this project was designed. 

 

Species Differences 

 

 Studies of basic cardiac electrophysiology, arrhythmia and SCD are usually performed 

with experiments in non-human hearts (dog or small rodents) or isolated cells.  However, ion 

channel currents which determine the ventricular AP are species dependent(Zicha, Moss et al. 

2003; Akar, Wu et al. 2004; Blechschmidt, Haufe et al. 2008).  Moreover, so too are arrhythmia 

mechanisms (e.g.(Wang, Pelletier et al. 1990)).  The fact that species differences exist seems 

trivial.  However, the consequences of these differences with respect to arrhythmia mechanisms 

are not trivial, and because of the complex interrelatedness of bio-electrical processes(Rudy and 

Silva 2006), it is impossible to predict how findings from dog, or guinea pig should apply to 

human.  Broadly, it is important to ask: how does ion channel function differ across species, and 

how do these differences affect the AP in response to dynamic pacing and/or drugs?  Species-

specific mathematical models, based on extensive and quantitative validation, can provide a 

platform from which to investigate these questions. 

It is instructive to compare human cellular electrophysiology mechanisms and AP 

properties with other species.  A species comparison was conducted using previously developed 
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and validated mathematical models for dog(Decker, Heijman et al. 2009) and guinea pig(Faber, 

Silva et al. 2007) ventricular myocytes.  For the human case, we used the new human model, 

described in detail and extensively validated in Chapter 2 (all epicardial cell types).  Response to 

delayed rectifier current block and underlying mechanisms of AP duration (APD) rate dependent 

adaptation were species dependent.  The differences between species highlighted the fact that 

great caution should be used when extrapolating results from non-human experiments to human 

cellular electrophysiology, arrhythmic behaviors, response to drugs and strategies for SCD 

prevention.  These issues emphasize the importance of an accurate human model. 

 

Species Dependence of AP Changes Due to Block of Delayed Rectifier K+ Currents 

 

Species dependence of pharmacological responses was illustrated using delayed rectifier 

K+ current block (rapid and slow, IKr and IKs, respectively).  This simulates effects of certain 

mutations in the arrhythmic long QT syndrome.  The hERG protein, forming IKr -subunits, has 

extraordinary affinity for many channel blocking drugs(Sanguinetti and Tristani-Firouzi 2006).  

Recent FDA rejected examples include clinically useful non-cardiac drugs such as anti-

histamines (e.g. terfenadine, fexofenadine), antipsychotics (e.g. risperidone, sertindole), 

antibiotics (e.g. erythromycin) and prokinetics (e.g. cisapride)(Brown 2004).  Drug-induced IKr 

block or mutations associated with IKr reduction cause QT prolongation (long QT syndrome, 

acquired or inherited), leading to torsade de pointes arrhythmias(Roden 2004).  IKs reduction 

mutations have similar consequences (Schwartz, Priori et al. 2001).  There is an interplay 

between these currents: IKr loss indirectly affects IKs (via Vm), while IKs can prevent excessive AP 

prolongation(Jost, Virag et al. 2005) in the face of reduced IKr (e.g.(Roden and Yang 2005), and 

simulations in Chapter 3).  For these reasons, it is important to know how IKr and IKs block affect 

human AP in particular, and how the effects differ from those in experimental animals. 

Figure1.01 shows simulations and corresponding experiments(Jost, Virag et al. 2004) for 

the species dependence of delayed rectifier K+ current block.  For IKr block (panel A), simulated 

APD was substantially prolonged in human (80%, 172 ms prolongation).  Block consequence was 
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comparatively small for dog (30%, 65 ms APD prolongation) and guinea pig (20%, 35 ms APD 

prolongation).  In panel B, IKs block (90% block) was essentially of no consequence for both 

human (4%, 10 ms APD prolongation) and dog (2%, 3 ms APD prolongation).  By contrast, it 

substantially prolonged APD in guinea pig (26%, 43 ms APD prolongation, using only 50% block).  

Simulation results agree with experiments(Jost, Virag et al. 2004), shown at the top of each 

panel. 

 

APD Rate Dependence 

 

 APD was longest for human.  As shown in Figure 1.02A, at cycle length (CL) = 1000 ms, 

APD was 226 ms for human, 191 ms for dog, and 166 ms for guinea pig.  Human AP 

repolarization rate was the most gradual.  At CL = 1000 ms, the time difference between APD at 

30% and APD at 90% completion (APD90 – APD30) was 49 ms for human, 43 ms for dog, and 

24 ms for guinea pig.  The range of APD90 over CLs from 300 to 2000 ms was 54 ms for human, 

45 ms for dog, and 60 ms for guinea pig. 

 

Role of [Na+] Accumulation in AP Rate Dependence 

 

We clamped Na+ concentrations in myoplasmic and subspace compartments of the 

models ([Na+]i and [Na+]ss, respectively) to 5 mM during the final paced beat at CL = 300 ms and 

CL = 2000 ms.  In absence of [Na+] clamp, [Na+]i is 10.0 mM, 10.0 mM, and 14.5 mM at CL = 300 

ms and 6.6 mM, 7.4 mM, and 9.7 mM at CL = 2000 ms in human, dog, and guinea pig, 

respectively.  Figure 1.02B shows the AP, the difference between slow and fast rate APs (Vm), 

and Na+/K+-ATPase current (INaK) for these simulations.  When [Na+] was clamped to 5 mM, APD 

increased relative to control in all species, at both CL = 300 and 2000 ms.  The percent increase 

in APD was always larger at CL = 300 than at 2000 ms.  With [Na+] clamp, APD90 was 40%, 

59%, and 24% longer for human, dog, and guinea pig, respectively at CL = 300 ms.  At CL = 
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2000 ms, APD90 was only 8%, 25%, and 11% longer for human, dog, and guinea pig, 

respectively.  For human and dog, Vm was greatly reduced by [Na+] clamp, indicating that rate 

dependent [Na+] changes play an important role in rate dependent AP changes.  In other words, 

when [Na+] is clamped, slow and fast rate APs are similar.  However, for guinea pig, Vm 

remained large despite [Na+] clamp, indicating a minor role for [Na+] in AP rate dependence. 

Change in INaK is greatest for guinea pig.  However, its effect on AP is the smallest 

because it occurs on the background of a large slow delayed rectifier K+ current, IKs(Faber and 

Rudy 2000).  IKs is much larger in guinea pig than in the other species (see Figure 1.01).  It is the 

net change in the balance of currents that alters the AP. 

 

The Case for a New Human Specific Model 

 

As just described with experiments and simulations, species differences lead to different 

effects of drugs and explanations for rate dependent phenomena.  Thus, experiments from 

human are needed.  Accordingly, more and more, data describing the electrophysiology of the 

undiseased or nonfailing human ventricular cell are becoming available.  However, previously 

published data have been insufficient to generate a model of the normal human ventricular AP 

that can be experimentally validated to the same extent as the current paradigm: the Luo-Rudy 

dynamic guinea pig type AP model (LRd)(Luo and Rudy 1994; Zeng, Laurita et al. 1995; 

Viswanathan, Shaw et al. 1999; Faber and Rudy 2000).  Nevertheless, several research groups 

have published human ventricular AP models. 

Excluding our own efforts, there are four major publications presenting models of the 

human ventricular AP.  The first to be published was developed by Priebe and 

Beuckelmann(Priebe and Beuckelmann 1998) in 1998 (PB model).  The second model, published 

in 2004, is by ten Tusscher et al.(ten Tusscher, Noble et al. 2004); the TP model.  ten Tusscher 

published a revised version of their model in 2006(Ten Tusscher and Panfilov 2006).  Third, Iyer 

et al.(Iyer, Mazhari et al. 2004) contributed by publishing a model in 2004.  Finally, Grandi et al. 
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published a model in 2010(Grandi, Pasqualini et al. 2010).  However, these models were all 

lacking critical human ventricle specific validation.  Details follow in Chapter 2. 

 

Unique Access to Undiseased Human Ventricular Measurements 

 

It is exceedingly rare to have regular access to undiseased or nonfailing human 

ventricular tissue for use in studies such as we present here.  Throughout our work on this 

project, we have been in close contact with such a laboratory: that of András Varró and 

colleagues at the University of Szeged, Hungary.  The previously unpublished measurements 

shown for human model validation were measured by A. Varró’s group in the undiseased human 

ventricle at 37˚ C.  Varró’s extensive, high quality, experimental dataset was a major source of 

novelty for the new model. 

 

Thesis Objectives 

 

(1) To design a detailed mathematical model describing the ionic currents which make up the AP 

in the human ventricle.  We emphasized undiseased human ventricle specificity in our model and 

appropriately choose data from which the model was constructed and validated in order to 

maximize fidelity. 

(2) To study pacing rate dependent phenomena in the human ventricle.  The phenomena of 

interest include steady state rate dependence of A) AP morphology, B) AP duration (APD), C) 

intracellular Ca2+ concentration, and D) intracellular Na+ concentration.  The model should 

reproduce the induction of Ca2+ and APD alternans seen at very rapid pacing rates in human.  In 

addition, the model should reproduce S1S2 restitution of the APD for different diastolic intervals.  

We aim to investigate the underlying ionic mechanisms involved in these behaviors. 

(3) To study transmural dispersion of AP repolarization in the human ventricle by designing and 

using human ventricular cell models of the different transmural cell types.  These models can be 
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used to explain both the basis and arrhythmogenic consequences of transmural AP differences in 

the human ventricle. 

(4) To apply the human model in a clinically interesting investigation: subclinical or “silent” 

channelopathy in human.  We choose as an example the long QT syndrome missense mutation 

Q357R in KCNQ1.  Challenges to the repolarization reserve, including -adrenergic stimulation, 

transmural cell type, pacing rate, and simulated drug block were tested. 

 

Designation of Contribution 

 

All mathematical model development, model validation and computer simulations were performed 

by Thomas O’Hara under the guidance of Yoram Rudy.  András Varró and colleagues at the 

Department of Pharmacology and Pharmacotherapy at the University of Szeged performed all 

previously unpublished undiseased human heart experiments.  New measurements of 

undiseased human ventricular L-type Ca2+ current were performed by László Virág at the 

University of Szeged Department of Pharmacology and Pharmacotherapy.  L-type Ca2+ current 

protocols used by László Virág were designed and tested by Thomas O’Hara.  The use of “we” in 

what follows refers to these individuals as a collective, according to the roles designated here. 
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Figure 1.01  Species dependence of delayed rectifier K+ current block.  A) IKr block.  B) IKs block.  

Results from human, dog, and guinea pig are shown from left to right.  Shown are steady state 

APs at CL = 1000 ms for control and K+ current block.  Experiments from Jost et al.(Jost, Virag et 

al. 2004) are shown above simulations. 
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Figure 1.02  Simulation of interspecies comparison of steady state APD rate dependence.  

Human, dog, and guinea pig results are left, middle, and right, respectively.  A) Top) APs at 

different rates.  CL changes are indicated by the arrows.  Bottom) APD rate dependence.  

APD30-90 are indicated the arrows.  B) Effect of intracellular [Na+] Clamp to 5 mM during the final 

paced beat.  The AP, the difference between slow and fast rate APs (Vm), and Na+/K+ pump 

current (INaK) are shown on the top, middle and bottom rows, respectively.  Solid black – CL = 300 

ms, no [Na+] clamp;  Dashed black – CL = 2000 ms, no [Na+] clamp;  Solid gray – CL = 300 ms, 

[Na+] clamp;  Dashed gray – CL = 2000 ms, [Na+] clamp. 
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Chapter 2: Simulation of the Undiseased Human Cardiac Ventricular Action Potential: 

Model Formulation and Experimental Validation 

 

Introduction 

 

 The first step toward preventing sudden cardiac death is understanding the basic 

mechanisms of ventricular arrhythmias at the level of ion channel currents and the single myocyte 

action potential (AP), using both experiments(Myerburg 2002) and theoretical models(Winslow, 

Cortassa et al.).  Obtaining ventricular myocytes from human hearts for the study of arrhythmia 

mechanisms is both rare and technically challenging.  Consequently, these mechanisms are 

usually studied with human channels expressed in non myocytes, or with non human (rodent or 

other mammalian) myocytes.  However, these approaches have limitations, because functionally 

important accessory subunits and anchoring proteins native to ventricular myocytes(Ackerman 

and Mohler 2010) are absent in expression systems, and even among mammalian ventricular 

myocytes, ion channel kinetics(Zicha, Moss et al. 2003; Akar, Wu et al. 2004; Blechschmidt, 

Haufe et al. 2008) and consequently arrhythmia mechanisms are strongly species dependent. 

 These issues limit the applicability of results from animal studies to human cardiac 

electrophysiology and clinical arrhythmia(Rudy, Ackerman et al. 2008).  Measurements from 

undiseased human ventricular myocytes are a requisite for understanding human cell 

electrophysiology.  Here, we present data from over 100 undiseased human hearts for steady 

state rate dependence, and restitution of the ventricular AP.  Importantly, we also obtained 

essential new measurements for the L-type Ca2+ current, K+ currents, and Na+/Ca2+ exchange 

current from undiseased human ventricle.  These previously unavailable data are critically 

important for correct formulation of mathematical models for simulation of electrophysiology and 

cellular arrhythmia mechanisms(Rudy and Silva 2006).  Using the new data together with 

previously published experiments, a detailed mathematical model of undiseased human 

ventricular myocyte electrophysiology and Ca2+ cycling was developed and thoroughly validated 

over the entire range of physiological frequencies.  This model is referred to as the ORd (O’Hara-
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Rudy dynamic) model throughout the text.  Model comparisons are conducted with the ten 

Tusscher-Panfilov (TP) model(Ten Tusscher and Panfilov 2006), and the Grandi-Bers (GB) 

model(Grandi, Pasqualini et al. 2010). 

 The ORd model was used to describe cellular electrophysiology mechanisms specific to 

human ventricular myocytes.  Underlying mechanisms of AP duration (APD) rate dependence 

and APD restitution were investigated.  The effects of Ca2+/calmodulin-dependent protein kinase 

II (CaMK) on known ionic current and Ca2+ cycling targets were incorporated and studied.  Early 

afterdepolarizations (EADs) and alternans were reproduced by the model.  These are important 

arrhythmogenic phenomena that must be reproduced in order to study the mechanisms of cardiac 

arrhythmias in human and simulate clinical interventions such as drugs. 

 

Results 

 

Throughout Chapter 2, new undiseased human ventricle experimental data are 

represented by white circles or white squares for isolated myocyte or small tissue preparation 

measurements, respectively.  Previously published nonfailing human ventricle experimental data 

are shown with black symbols.  Other data classification schemes are provided case by case in 

figure legends. 

 

Results Subsection 1: Formulation, Validation and Properties of Simulated Currents 

 

L-type Ca2+ Current (ICaL) 

 

Data for ICaL in the undiseased human ventricle are from Magyar et al.(Magyar, Iost et al. 

2000) and Fulop et al.(Fulop, Banyasz et al. 2004) (both at 37 °C, model validation in Figure 

2.01C).  Magyar et al. measured steady state activation, steady state inactivation, and the current 

voltage (I-V) curve.  Fulop et al. measured recovery from inactivation.  However, neither study 
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separated Ca2+ dependent inactivation (CDI) from voltage dependent inactivation (VDI).  In fact, 

no published data are available which separate CDI and VDI in the undiseased or nonfailing 

human ventricle.  For this measurement, we made new recordings in undiseased human 

ventricular myocytes at 37 °C (Figure 2.01, current traces and white circles). 

Measurements were carried out with Ca2+ as charge carrier, allowing both CDI and VDI, 

or with Ba2+ as charge carrier, allowing only VDI.  Results for Sr2+ were similar to those for Ba2+.  

From holding potential of -60 mV, 75 ms steps were to potentials ranging from -40 to +50 mV (10 

mV increments, 3 second interpulse interval, Figure 2.01A).  75 ms was sufficient for comparison 

of CDI and VDI, since it is in the early phase of decay in which CDI effects are most 

prominent(Aggarwal and Boyden 1995).  Simulated current traces for CDI+VDI and for VDI–

alone, were similar to the experiments. 

Fractional remaining current (FRC, at time t and voltage Vm, FRC(t,Vm)=I(t,Vm)/Ipeak(Vm)) 

quantified the voltage and time dependence of inactivation for comparison between charge 

carriers.  Figure 2.01B compares FRC for Ba2+ (experiments top left, simulations right), and Ca2+ 

(experiments bottom left, simulations right).  With Ba2+ as the charge carrier, FRC monotonically 

decreased with increasing voltage at all times after peak current.  This finding is consistent with 

dependence of inactivation on voltage alone.  In contrast, for Ca2+ currents, FRC did not 

decrease monotonically with increasing voltage.  Rather, Ca2+ current FRC curves appear to be 

effectively voltage independent.  FRC for CDI+VDI was statistically different from FRC for VDI-

alone at the more hyperpolarized potentials (-20 to 0 mV, unpaired two-tailed t-test, p<0.01).  

Ca2+ ions caused additional inactivation at these voltages, where VDI-alone was relatively weak.  

Since the only difference between Ca2+ and Ba2+ cases was the charge carrier, it follows that Ca2+ 

ions themselves are the source of the additional inactivation.  This is evidence that currents 

carried by Ba2+ inactivate due to VDI only, while Ca2+ currents inactivate due to both VDI and 

CDI(Findlay 2002).  There is evidence that Ba2+ can cause ion dependent inactivation(Grandi, 

Morotti et al. 2010).  However, Ba2+-dependent inactivation was estimated to be 100-fold weaker 

than CDI(Ferreira, Yi et al. 1997), and its effects were not appreciable in FRC experiments. 
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To modulate VDI versus CDI in the model, the n gate was introduced, the value of which 

represents the fraction of channels operating in CDI mode.  Under physiological conditions, ICaL 

inactivation is caused by a combination of both CDI and VDI.  That is, n is between 0 (all VDI) 

and 1 (all CDI).  This model was based on experiments by Kim et al.(Kim, Ghosh et al. 2004), 

where CDI was observed to function as a faster VDI, activated by elevated Ca2+.  Thus, both CDI 

and VDI are voltage dependent.  The rate of decay in CDI mode is faster than that in VDI mode.  

The Mahajan et al.(Mahajan, Shiferaw et al. 2008) and Decker et al.(Decker, Heijman et al. 2009) 

ICaL models work similarly. 

The n gate is diagrammed in Figure 2.01E.  Rates k1 and k-1 represent binding/unbinding 

of Ca2+ to channel bound calmodulin (CaM)(Peterson, DeMaria et al. 1999).  There are four 

identical binding sites.  Rates k2 and k-2 represent activation/deactivation of CDI mode (black 

circle, asterisk), which occurs when all Ca2+ binding sites are occupied.  We considered that the 

four Ca2+ binding transitions are in rapid equilibrium and solved the reversible two state reaction 

of Ca2+/CaM binding and CDI mode activation to obtain the differential equation describing the n 

gate (Chapter 2 Supplement). 

In both CDI and VDI modes, there are two weighted time constants for inactivation (time 

constant weighting described in Methods).  We determined time constants for CDI and n gate 

kinetics in an attempt to represent the shape and magnitude of the FRC measurements (i.e. CDI 

reduced FRC, particularly at negative potentials).  Time constants for VDI gates were determined 

by inactivation of Ba2+ currents (Figure 2.01C).  AP clamp simulations using the formulated ICaL 

model were similar to AP clamp experiments, where ICaL was defined as the 1 M nisoldipine 

sensitive current (Figure 2.01D).  Specifically, currents showed spike and dome morphology.  In 

experiments, peak current was -3.0 A/F.  It was -2.7  A/F in simulations.  Fast inactivation 

was 2.5 fold faster when phosphorylated by CaMK, similar to the Decker et al. dog ICaL 

model(Decker, Heijman et al. 2009) and as measured experimentally(Dzhura, Wu et al. 2000). 

 

Transient Outward K+ Current (Ito) 
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The model for Ito was formulated based on newly measured experimental data.  The 

measurements were from isolated undiseased human ventricular myocytes at 37 °C (Figure 

2.02A, white circles), and were carried out with the addition of 1 M nisoldipine to the standard 

bath solution (see Methods) to block ICaL.  The holding potential was -90 mV.  Currents were 

activated by a 300 ms step to various potentials.  Inactivation time constants were determined 

from exponential fits to decay of these traces.  To measure steady state inactivation, 500 ms 

steps from -90 mV to various potentials were followed by test pulses to 50 mV.  Recovery from 

inactivation was determined at -90 mV, using P1/P2 pulses of 200 ms to 50 mV at varying 

interpulse intervals in a double pulse protocol. 

The time constant for activation was determined by fitting time to peak from a digitized 

current trace ((Amos, Wettwer et al. 1996), their Figure 12C, in undiseased human ventricle at 37 

°C; a = 2.645 ms at Vm = +40 mV).  Greenstein et al.(Greenstein, Wu et al. 2000) showed time to 

peak for hKv4.3 expressed in mouse fibroblast cells.  The model provides a qualitative match to 

these data (considering temperature and expression system differences).  That is, the model 

activation time constant decreases from a peak value of 6.5 to 1.5 ms in near linear fashion with 

increasing voltage from -20 to 60 mV. 

The inactivation gate has two time constants, each with voltage dependent weighting.  

Inactivation kinetics and the I-V curve are accurate to the experimental data.  A small divergence 

between simulations and experiments was observed at hyperpolarized potentials along the I-V 

curve (simulated current was less than in experiments).  This may be due to the fact that 

experimentally measured currents were small and difficult to measure at these potentials.  In fact, 

current was not measureable in 21, 11, 5, and 1 out of 23 cells at Vm = -40, -30, -20, and -10 mV, 

respectively.  Currents with zero values were not included in the experimental I-V averages.  

However, these currents were included in averages for obtaining steady state activation and 

steady state inactivation curves in the model.  This prevented over representation of the window 

current (small, appearing late during phase-3 of the AP, shown later).  The conductance of the Ito 

model was set so that phase-1 behavior of the simulated AP would be similar to undiseased 

human endocardium experiments (small in endocardium; maximum value ~1 A/F).  Measured 
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endocardial APs showed rapid phase-1 repolarization, but did not show positive time derivatives 

during phase-1 (true notching was generally not observed).  Thus, model Ito conductance was set 

to the maximum level which did not violate these observations (~1 A/F peak current at CL = 

1000 ms). 

CaMK effects on Ito were incorporated based on measurements by Tessier et al.(Tessier, 

Karczewski et al. 1999) and Wagner et al.(Wagner, Hacker et al. 2009).  As in Tessier et al., 

CaMK shifted the voltage dependence of steady state activation 10 mV in the depolarization 

direction, and the time constant for development of inactivation was increased (multiplicative 

factor fit to match the voltage dependent increase).  Wagner et al. showed that the time constant 

for recovery from inactivation was affected by CaMK (~2 fold faster). 

 

Na+/Ca2+ Exchange Current (INaCa) 

 

 The INaCa model was formulated using measurements from undiseased human ventricular 

myocytes at 37 °C (Figure 2.02B, white circles).  The model was based on the framework 

established by Kang and Hilgemann(Kang and Hilgemann 2004), which allows for unlikely 

occurrence of inward Na+ leak, without Ca2+ exchange.  The Hilgemann model shows Na+:Ca2+ 

exchange stoichiometry slightly greater than 3.0, as has been observed by others(Fujioka, 

Komeda et al. 2000; Dong, Dunn et al. 2002).  Though the Hilgemann model is mechanistically 

novel in this way, it can still reproduce all Na+, Ca2+ and voltage dependent properties observed 

by Weber et al.(Weber, Piacentino et al. 2003) in the nonfailing human ventricle.  Compare 

Hilgemann and Weber data to our simulated reproductions in Chapter 2 Supplement Figures 

2.S01-2.S03.  As in the Faber-Rudy(Faber, Silva et al. 2007) and Hund-Decker-Rudy 

models(Hund and Rudy 2004; Decker, Heijman et al. 2009), we included 20% of the exchanger in 

the Ca2+ diffusion subspace(Frank, Mottino et al. 1992; Kieval, Bloch et al. 1992).  The choice to 

include 20% in the subspace in human is validated based on its effect on the rate dependence of 

peak [Ca2+]i (results in Chapter 2 Supplement Figure 2.S17).  Values above or below 20% disrupt 
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the demonstrated correspondence of peak [Ca2+]i rate dependence with experiments (see section 

on Na+ and Ca2+ rate dependence). 

 

Inward Rectifier K+ Current (IK1) 

 

 The model for IK1 was constructed based primarily on new experimental data, measured 

at 37 °C in undiseased isolated human ventricular myocytes as the 0.5 mM BaCl2 sensitive 

current (Figure 2.02C, white circles).  Current was elicited with steps from -90 mV to various 

potentials for 300 ms.  The current that remained at the end of the steps was recorded as IK1. 

 Two gates were used in the model: RK1, the instantaneous rectification gate, and xK1, the 

time dependent inactivation gate.  Importantly, previous models(Priebe and Beuckelmann 1998; 

Iyer, Mazhari et al. 2004; Ten Tusscher and Panfilov 2006; Grandi, Pasqualini et al. 2010) have 

ignored both inactivation gating, and detailed [K+]o-dependence of IK1 (exception, IK1 equations by 

Fink et al.(Fink, Noble et al. 2008)).  There are nonfailing human ventricular measurements which 

we utilized to include these effects(Konarzewska, Peeters et al. 1995; Bailly, Mouchoniere et al. 

1998). 

 Steady state rectification was determined by dividing current by driving force, then 

normalizing.  Rectification was shown to be [K+]o-dependent in the nonfailing human ventricle by 

Bailly et al.(Bailly, Mouchoniere et al. 1998).  A linear shift in V1/2 for rectification toward more 

depolarized potentials with elevated [K+]o was incorporated, as was shown experimentally 

(compare to Bailly et al., their Figure 4B).  Bailly also showed the voltage and [K+]o-dependence 

of inactivation.  We introduced the time dependent xK1 gate, based on these data.  As was shown 

experimentally, both V1/2 and the slope factor for inactivation depend linearly on [K+]o.  The time 

constant for inactivation was based on measurements in nonfailing human ventricular myocytes 

by Konarzewska et al.(Konarzewska, Peeters et al. 1995) (their Figure 1C).  Conductance was 

observed to be in proportion to the square root of [K+]o in the human ventricle(Bailly, Mouchoniere 

et al. 1998).  When assembled, the IK1 model demonstrated correspondence with the measured 

amplitude and rectification profile, and with Bailly data for [K+]o-dependence.  As in Jost et 
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al.(Jost, Acsai et al. 2009), IK1 was voltage dependent, but not pacing rate dependent (Chapter 2 

Supplement Figure 2.S04) 

 

Rapid Delayed Rectifier K+ Current (IKr) 

 

The model for IKr was constructed using experimental data measured in isolated 

undiseased human ventricular myocytes at 37 °C (Figure 2.03A, white circles).  Measurements 

were carried out with/without addition of 1 M E-4031 to the standard bath solution in order to 

obtain the difference current.  Tail currents were elicited by stepping from -40 mV to various 

potentials for 1000 ms, and then stepping back down to -40 mV.  The deactivation time constant 

was determined by fitting the tail current decay.  The time constant for activation was found by 

stepping from -40 mV to various potentials for various durations preceding a step back to -40 mV.  

The rate with which the envelope of tail currents developed at different voltages was measured 

with an exponential fit to obtain the time constant for activation.  Since this process was well fit by 

a single exponential, we made the fast and slow time constants in the model converge on the 

activation limb, at depolarized potentials.  The steady state activation curve was determined from 

the I-V curve, after dividing by the driving force, assuming maximal activation at the time of peak 

tail current.  Slow deactivation of IKr (experiments and simulations, Figure 2.03B), suggests its 

participation in AP shortening during steady state pacing at fast rate and at short diastolic 

intervals during restitution; this hypothesis will be explored in a later section.  The fast inactivation 

(rectification, instantaneous in the model) RKr gate was determined so that current profile 

matched experiments using a human AP voltage clamp (Figure 2.03C).  Important features of the 

experimental AP clamp trace that the model reproduced include 1) the early recovery phase, 

where approximately half maximal current appeared by the beginning of the AP plateau, followed 

by 2) quasi-linear current increase until peak current was reached during late phase-3 of the AP. 

Since enzymes used to disaggregate myocytes can significantly degrade IKr(Rajamani, 

Anderson et al. 2006), conductance was scaled to provide correct APD90 in control and with IKr 

block, measured in small tissue preparations.  Indeed, APD90 was a function of IKr conductance 
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(parameter sensitivity, Chapter 2 Supplement Figure 2.S15).  As in undiseased human ventricle 

experiments(Jost, Acsai et al. 2009), IKr was voltage dependent, but not pacing rate dependent 

(Chapter 2 Supplement Figure 2.S05). 

 

Slow Delayed Rectifier K+ Current (IKs) 

 

Data from Virág et al.(Virag, Iost et al. 2001), measured in isolated undiseased human 

ventricular myocytes at 37 °C, were used to construct the model for IKs (Figure 2.03D).  The 

model has two gates, xs1 and xs2.  The xs1 gate is responsible for activation.  Deactivation was 

controlled by xs2.  Activation/deactivation separation was based on the fact that activation was 

much slower than deactivation.  Setting x1 >> x2 at hyperpolarized potentials, where deactivation 

dominated, and x2 << x1 at depolarized potentials, where activation dominated, allowed for 

separation of these processes as two gates.  As in the case of IKr, it is understood that IKs is 

damaged (reduced) by enzymatic disaggregation of myocytes(Li, Feng et al. 1996).  Therefore, 

we used IKs specific drug block (1 M HMR-1556) effects on APD90, measured in small tissue 

preparations, to determine the correct conductance.  Ca2+ dependence of IKs was 

incorporated(Tohse 1990).  The effect of this dependence was negligible under physiological 

Ca2+ concentration conditions. 

 

Fast Na+ Current 

 

Fast INa was formulated using nonfailing human ventricular data from Sakakibara et 

al.(Sakakibara, Furukawa et al. 1993) (Figure 2.04A).  Since the Sakakibara experiments were 

performed at 17° C, a temperature adjustment was used to obtain the final model equations, 

representing behavior at 37° C.  The effect of temperature on steady state gating was shown by 

Nagatomo et al.(Nagatomo, Fan et al. 1998).  For activation, V1/2 shift with temperature change 

from 23 to 33° C was +4.3 mV.  For inactivation, the shift was +4.7 mV.  We shifted V1/2 by twice 
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these amounts, assuming linearity (adjust to 37° C from data taken at 17° C, a change of 20° C; 

Nagatomo showed a change of 10° C).  Time constants were adjusted to 37° C using Q10.  We 

set Q10 = 2 since Q10 was given as “about two” by Nagatomo. 

Hanck and Sheets(Hanck and Sheets 1992) documented a shift in V1/2 with the passage 

of time after patch clamp commencement.  For activation, the shift was -0.47 mV/min.  It was -

0.41 mV/min for inactivation.  Sakakibara reported the time elapsed between patching and 

measurement for steady state activation and inactivation as between 10 and 20 min, ~15 min for 

both.  Thus, we reversed the time dependent shifts in V1/2. 

CaMK effects on INa were based on available data(Wagner, Dybkova et al. 2006).  We 

took into account the measured -6.2 mV V1/2 shift in steady state inactivation, the roughly 3-fold 

slowing of current decay, and the 1.46-fold slowing of recovery from inactivation. 

The non-temperature adjusted model I-V curve matches Sakakibara data at 17° C.  We 

determined appropriate channel conductance at 37° C based on conduction velocity, and 

maximum dVm/dt.  Conduction velocity in a one dimensional fiber simulation was 45 cm/s during 

pacing at CL = 1000 ms, consistent with available (dog) experiments(Spach, Heidlage et al. 

2000).  It was 70 cm/s when stimulated from quiescence, consistent with in vivo measurements in 

nonfailing human hearts(Taggart, Sutton et al. 2000).  Maximum dVm/dt was 254 mV/ms in single 

cells at 1 Hz pacing, consistent with measurements from nonfailing human ventricular myocytes 

at 37° C (234±28 V/second)(Drouin, Charpentier et al. 1995). 

 

Late Na+ Current 

 

Data used in the formulation of late INa were from Maltsev et al.(Maltsev, Sabbah et al. 

1998), measured in the nonfailing human ventricle (Figure 2.04B), functionally defined in 

experiments and simulations as the Na+ current remaining after 200 ms from the onset of 

depolarization.  Steady state activation was derived from the I-V curve (current divided by driving 

force, then normalized).  The time constant for activation of late INa was identical to that for fast 

INa.  It is not possible to measure the time to peak for late INa because of the interfering effects of 
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the much larger INa.  However, in the model scheme, the measurement is irrelevant for the same 

reason. 

The hL gate is responsible for both development of and recovery from inactivation.  The 

time constant for development was adjusted using Q10 = 2.2, as measured by Maltsev et 

al.(Maltsev and Undrovinas 2006) (hNav1.5 channels expressed heterologously).  The time 

constant was voltage independent(Maltsev, Sabbah et al. 1998).  Maltsev et al.(Maltsev, Sabbah 

et al. 1998) reported a maximum late INa of -0.356 pA/pF in nonfailing human ventricular 

myocytes (average current between 200 and 220 ms during step to -30 mV from -120 mV, their 

Table 2, donor heart average).  We scaled the Maltsev I-V curve to the donor value and used it to 

determine the model conductance. 

We do not consider fast and late Na+ currents to be separate channels.  Rather, they 

have long been understood to represent different gating modes (experiments(Maltsev and 

Undrovinas 2006), and simulations by our group(Clancy and Rudy 1999)), separated functionally 

in time.  In experiments, and in simulated reproductions of experiments, late INa was functionally 

defined as the INa current persisting 200 ms after onset of depolarization.  CaMK dependence 

was implemented (-6.2 mV V1/2 shift in steady state inactivation, and 3-fold slowing of inactivation 

time constant, as measured(Wagner, Dybkova et al. 2006)). 

 

Na+/K+ Pump Current (INaK) 

 

 The model for INaK was reformulated based on the work of Smith and Crampin(Smith and 

Crampin 2004).  The Smith and Crampin model includes more detail than standard formulations 

employed by other ventricular AP models(Priebe and Beuckelmann 1998; Iyer, Mazhari et al. 

2004; Ten Tusscher and Panfilov 2006; Grandi, Pasqualini et al. 2010).  Importantly, the Smith 

and Crampin framework includes [K+]i dependence and inputs for ATP and pH sensitivity.  Here, 

we set ATP and pH values to normal physiological levels (pH was dynamic when stated).  

Dynamically changing [K+]i is a known and meaningful pump regulator that is a functioning part of 
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this model.  High [K+]i (combined with low ATP) can make the pump reverse, bringing Na+ in, as 

has been observed in isolated hearts(Jansen, Shen et al. 2003). 

 The Smith and Crampin model (schematized in Chapter 2 Supplement Figure 2.S06) was 

adjusted to reproduce the basic findings of Nakao and Gadsby(Nakao and Gadsby 1989), 

demonstrating [Na+]o dependence, [Na+]i dependence with high and low [Na+]o, and [K+]o 

dependence with high and low [Na+]o (Chapter 2 Supplement Figure 2.S07).  To determine 

human ventricle appropriate conductance for INaK, we used [Na+]i-frequency data presented by 

Pieske et al.(Pieske, Maier et al. 2002) as a target (nonfailing human left ventricular myocytes at 

37°C). 

 The INaK formulation is based on known biophysical properties(Smith and Crampin 2004); 

its behavior reproduces available experimental observations(Nakao and Gadsby 1989) (Chapter 

2 Supplement Figure 2.S07).  However, no direct measurement of INaK has been made in the 

nonfailing or undiseased human ventricle.  To endow human ventricle specificity to INaK, our 

strategy was indirect; reproducing the rate dependence of intracellular Na+ concentration, [Na+]i, 

measured in the nonfailing human ventricle was the target.  This choice assumes that the major 

role for INaK is maintenance of physiological [Na+]i.  In the model, [Na+]i and its relative changes 

with pacing rate are controlled by INaK conductance (~0.5 mM change per 20% change in INaK 

conductance, Chapter 2 Supplement Figure 2.S18).  In the absence of direct human ventricle INaK 

measurements, validation of the INaK formulation employs this relationship. 

 

Results Subsection 2: Human AP Characteristics and APD 

 

 Figure 2.05 shows a schematic diagram of the human ventricular AP model.  The 

scheme was largely unchanged from the recent dog ventricular model by Decker et al.(Decker, 

Heijman et al. 2009).  However, additional targets for CaMK were included, as described above, 

based on new findings.  Currents were reformulated based on new undiseased or published 

nonfailing human experiments.  These are colored gray in Figure 2.05.  Currents and fluxes 

colored white in the figure were based on human specific measurements of rate dependence of 
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intracellular Na+ and Ca2+ concentrations ([Na+]i and [Ca2+]i, respectively), which these 

currents/fluxes affect.  Equations for currents and fluxes were not adopted from other human or 

animal models without substantive modification; all equations were reformulated with the 

exceptions of Ca2+ buffers, CaMK kinetics, and background currents, for which we used Decker 

et al.(Decker, Heijman et al. 2009) formulations and adjusted conductances.  Model equations for 

all major currents were completely reformulated (i.e. fast INa, late INa, Ito, ICaL, IKr, IKs, IK1, INaCa, and 

INaK).  Relevant details precede equations in the Chapter 2 Supplement. 

Microelectrode AP recordings from undiseased human ventricular endocardium at 37 °C 

were used to validate basic human model AP characteristics.  Figure 2.06A shows simulated APs 

and experimentally measured example APs for comparison during steady state pacing at the 

cycle lengths (CLs) indicated.  We also compared simulated values for resting voltage, maximum 

voltage, and the maximum upstroke velocity, dVm/dt, with experiments (Figure 2.06B).  These 

comparisons were made for a single beat, stimulated from the quiescent state. 

For steady state rate dependence, we compared APD30-90 after pacing at different CLs 

(Figure 2.07A).  For restitution, we compared APD30-90 after steady state S1 pacing at CL = 

1000 ms, followed by a single S2 extrasystolic stimulus delivered at various diastolic intervals 

(DIs, measured relative to APD90, Figure 2.07B).  Model AP repolarization from 30 to 90% 

quantitatively reproduced this extensive dataset (simulation results were within experimental error 

bars).  Generally, electrotonic effects of tissue coupling were minor (see Discussion and Chapter 

2 Supplement Figure 2.S08). 

The rate of repolarization in the model was gradual, as in experiments (APD30-90 were 

well separated in time, Figure 2.07C).  Other models repolarized more rapidly and late compared 

to these experiments (simulations were all endocardial cell types). 

Koller et al.(Koller, Maier et al. 2005) measured dynamic restitution in the nonfailing 

human ventricle with monophasic AP electrodes.  Following the Koller protocol (explained in 

Methods), the human model matched Koller results (Figure 2.07D).  Simulations predict a 

bifurcation (alternans) at shortest DIs (< 90 ms), which is also observed in the experiments. 
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Steady state rate dependence and restitution of the undiseased human ventricular APD 

were also measured in the presence of channel-specific blockers (Figure 2.08, white squares, 

see Methods for further details).  In Figure 2.08, drugs and applied doses are provided for each 

experiment.  Simulated block was based on experimental dose-response measurements (E-

4031(Sanguinetti and Jurkiewicz 1990), HMR-1556(Gogelein, Bruggemann et al. 2000), 

nisoldipine(Walsh, Zhang et al. 2007), BaCl2(Warren, Guha et al. 2003), ryanodine(Nanasi, 

Sarkozi et al. 2000), and mexiletine(Wang, Yazawa et al. 1997), for block of IKr, IKs, ICaL, IK1, Jrel, 

and late INa, respectively).  Simulations matched these experiments; that is, simulation results 

were within experimental error bars. 

As pacing CL was decreased from 2000 to 300 ms, currents in the human ventricular AP 

model changed accordingly (Figure 2.09).  Due to increased refractoriness at faster rates, 

maximum fast INa, late INa, and Ito were reduced.  By contrast, peak ICaL increased, due in part to 

CaMK-phosphorylation induced facilitation(Yuan and Bers 1994).  IKr and IK1 were largely rate 

independent.  Mild IKs accumulation(Silva and Rudy 2005) caused rate dependent increase in 

current.  INaK became larger due to intracellular Na+ accumulation at fast pacing (details below).  

INaCa,i, and INaCa,ss became more inward, in order to remove increasing Ca2+. 

 

Transmural Heterogeneity 

 

Changes in mRNA and protein expression across the transmural wall using undiseased 

human ventricles were measured(Szabo, Szentandrassy et al. 2005; Gaborit, Le Bouter et al. 

2007; Soltysinska, Olesen et al. 2009).  Functional data for transmural changes in Ito were 

measured in nonfailing human ventricular myocytes(Nabauer, Beuckelmann et al. 1996).  These 

results were compiled to create a complete dataset for transmural differences between 

endocardial (endo), mid-myocardial (M), and epicardial (epi) cell types.  We considered 

transmural differences in Nav1.5, Cav1.2, HERG1, KvLQT1, Kir2.1, NCX1, Na/KATPase, Kv1.5, 

RyR2, SERCA2, and CALM3 to be represented in the model by late INa, ICaL, IKr, IKs, IK1, INaCa, INaK, 

IKb, Jrel, Jup, and CMDN, respectively.  Whenever an expression ratio was not available, we chose 
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unity.  Using this analysis, models for M and epi cells were derived from the thoroughly validated 

endo model (Figure 2.10A-2.10D; equations in the Chapter 2 Supplement). 

In Figure 2.10E1, our experimental measurements for endo APD90 were scaled by 

M/endo and epi/endo APD90 ratios measured by Drouin et al.(Drouin, Charpentier et al. 1995) 

and compared to simulations.  Drouin experiments did not show results for CL < 1000 ms.  Epi 

simulations seem to deviate from Drouin experiments at faster pacing rates.  However, epi 

simulations were consistent with nonfailing human epi experimental measurements at fast pacing 

rates (CL < 1000 ms) recorded using optical mapping by Glukhov et al.(Glukhov, Fedorov et al. 

2010) (panel E2).  The rate dependence of simulated AP morphology in the different cell types 

(Figure 2.10F) was similar to Drouin recordings(Drouin, Charpentier et al. 1995).  Relative shape 

and duration of simulated transmural APs were also consistent with those recorded by Glukhov et 

al.(Glukhov, Fedorov et al. 2010) from the heart of a 20 year old healthy human male (Chapter 2 

Supplement Figure 2.S09).  The transmural repolarization gradient direction was such that the 

pseudo-ECG T-wave was upright and rate dependent(Shimizu and Antzelevitch 1998) as 

expected (Figure 2.10G). 

 

Early Afterdepolarization (EAD) 

 

 Experiments from Guo et al.(Guo, Liu et al. 2011) in isolated nonfailing human ventricular 

endocardial myocytes showed EADs when paced very slowly (CL = 4000 ms) in the presence of 

the IKr blocker dofetilide (0.1 M dose, ~85% IKr block(Thomsen, Volders et al. 2003)).  In Figure 

2.11A, we display Guo experimental results and simulation results of the same protocol using the 

ORd model, and the GB and TP models (all for endo cells at steady state).  As in the experiment, 

the ORd model produced an EAD when paced at slow rate (CL = 4000 ms) with block of IKr 

(85%).  Experiments and simulations both show a single, large EAD deflection.  The GB and TP 

models failed to produce an EAD following the same protocol (CL = 4000 ms), even with 

complete block of IKr (100%). 
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EADs in the ORd model were caused by IKr block induced prolongation of the time at 

plateau voltages, allowing ICaL reactivation.  When ICaL recovery was prevented, the EAD was 

eliminated (inactivation gate clamping protocol, Figure 2.11B).  This mechanism is the same as 

shown previously in other species(Zeng and Rudy 1995). 

 

Na+ and Ca2+ Rate Dependence 

 

 Using data from nonfailing human ventricle, we validated rate dependent changes in 

concentrations of intracellular Na+ and Ca2+.  For [Na+]i changes with pacing rate, we used data 

from Pieske et al.(Pieske, Maier et al. 2002), measured in the nonfailing human ventricle, 

normalized to 0.25 Hz pacing rate (Figure 2.12A).  Reproduction of this curve implied that INaK 

magnitude was accurate (INaK conductance controls intracellular Na+, thus rate dependence of 

relative accumulation, Chapter 2 Supplement Figure 2.S18).  For Ca2+, we used data from 

Schmidt et al.(Schmidt, Hajjar et al. 1998), normalized to the value at 0.5 Hz pacing rate.  A 

personal correspondence with senior author J. Gwathmey revealed that pacing in the 

experiments was for about 100 beats (long enough to reach apparent steady state).  Following 

this protocol, we showed the reduction in peak Ca2+ observed at the fastest pacing rates (Figure 

2.12B).  However, at true steady state, peak Ca2+ increased monotonically with pacing rate 

(shown in Figure 2.13). 

 Using Fura-2-AM fluorescence data measured in an undiseased isolated human 

ventricular myocyte at 37 °C, we determined that the human ventricular cell model showed 

accurate intracellular Ca2+ decay (Figure 2.12C and 2.12D).  Time constant fits were a single 

exponential decay from time of peak Ca2+.  The decrease in decay time constant observed with 

increase in pacing rate is a measure of frequency dependent acceleration of relaxation, an 

important validation of Ca2+ cycling. 
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Ca2+ Cycling and CaMK 

 

As pacing rate increased, so did the CaMK active fraction (CaMKactive, Figure 2.13A, 

validated previously (Hund and Rudy 2004; Livshitz and Rudy 2007)).  CaMK was important for 

controlling rate dependence of Ca2+ cycling in the model.  In the absence of CaMK: Ca2+ transient 

amplitude was reduced, diastolic Ca2+ was elevated, JSR Ca2+ content and evacuation were rate 

independent, and Ca2+ reuptake (Jup) and release (Jrel) were severely blunted (Figure 2.13B). 

 

Alternans 

 

 Koller et al.(Koller, Maier et al. 2005) showed that in the nonfailing human ventricle (in 

vivo, monophasic AP recordings), APD alternans appeared at CLs < 300 ms (> 200 bpm).  The 

amplitude of APD alternans was ~10 ms.  These findings were reproduced by the human model 

(APD alternans of 11 ms at CL = 250 ms, Figure 2.14).  Pacing at rates faster than 230 ms in the 

model caused 2 to 1 block (i.e. failed APs every other beat), because APD began to encroach 

upon the pacing cycle length, leading to enhanced refractoriness of Na+ current due to incomplete 

repolarization. 

Since Koller measurements were performed in intact hearts, electrotonic coupling effects 

would have played a role.  Therefore, simulations in a strand of 100 coupled endo cells were 

conducted to test whether alternans occurred in coupled tissue as well.  Indeed, during CL = 280 

ms steady state pacing, alternans developed in the multicellular fiber; Chapter 2 Supplement 

Figure 2.S10. 

As in Livshitz et al.(Livshitz and Rudy 2007), beat to beat alternans in the Ca2+ 

subsystem were the cause of the APD alternans in the model.  Longer APs coincided with larger 

Ca2+ transients.  For steady state pacing at 250 ms pacing cycle length (shown in Figure 2.14A), 

we found that clamping the subspace Ca2+ concentration to either the odd or even beat 

waveforms eliminated alternans, but clamping of the voltage, myoplasmic Ca2+, ICaL, or INaCa did 

not eliminate alternans (odd or even beat clamp, not shown). 
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 Cutler et al.(Cutler, Wan et al. 2009) demonstrated that 30% SERCa upregulation 

eliminated alternans.  Similarly, in our human model, a 20% increase in Jup magnitude eliminated 

alternans (shown in Chapter 2 Supplement Figure 2.S11).  CaMK suppression also eliminated 

alternans in the model (Figure 2.14A and 2.14B, gray traces).  At slower pacing rates, APD was 

minimally affected by CaMK suppression.  However, the peak Ca2+ concentration was markedly 

reduced, especially at faster rates (Figure 2.14C). 

 

Currents Participating in Steady State APD Rate Dependence and APD Restitution. 

 

 In order to describe the mechanisms underlying steady state rate dependence and 

restitution of the APD in the model, it is instructive to first systematically determine which currents 

participate in these phenomena.  In Figure 2.15, currents were plotted versus Vm during steady 

state and S1S2 restitution pacing for a variety of CLs and DIs, respectively.  If I-V curves are CL 

or DI independent (i.e. curves overlap), then that current did not participate in steady state rate 

dependence or restitution, respectively.  Conversely, if I-V curves depended greatly on CL or DI, 

then that current played at least some role in these phenomena. 

 As CL or DI decreased, fast INa, responsible for the maximum AP upstroke velocity and 

maximum Vm, was reduced (see Figure 2.09, and principles detailed in Luo and Rudy(Luo and 

Rudy 1991)).  This is because shortened time at resting potential between beats prevents 

complete recovery from inactivation.  Thus, at fast pacing rates, and short DIs, maximum Vm and 

upstroke velocity were reduced, explaining some of what follows. 

During steady state pacing, IKs was strongly rate dependent (Figure 2.15A).  The I-V 

curves were dramatically different at different pacing CLs.  However, IKs was a relatively small 

contributor to the rate dependence of APD because IKs density in human ventricle is small under 

basal conditions (no -adrenergic stimulation), and changes relative to slow rate values produced 

minimal additional outward current at fast rates. 

Late INa, ICaL, INaCa and INaK also showed CL dependent changes during steady state 

pacing (Figure 2.15A).  INaK became more outward at fast rates.  The changes in INaK were 



28 
 

dramatic, and the current density was relatively large.  Thus, INaK was an important contributor to 

APD shortening at fast pacing rates.  Late INa became dramatically less inward at fast rates, 

making it a secondary contributor to APD shortening at fast rates.  Changes in ICaL and INaCa 

opposed APD shortening at fast rates; these currents became more inward at short CLs.  INaCa 

increased to match the increased Ca2+ extrusion burden.  Importantly, ICaL increased despite 

reduced channel availability.  ICaL inactivation gates recovered less between beats as pacing rate 

increased (~20% less at CL = 300 ms compared to CL = 2000 ms).  The same mechanism 

caused reduced late INa at fast rates (availability at CL = 300 ms was ~1/3 that at CL = 2000 ms).  

However, influences of increased CaMK facilitation combined with increased driving force 

(reduced maximum Vm) actually caused ICaL to become larger at fast rates. 

If Na+ is clamped to small values associated with slow pacing ([Na+]i and [Na+]ss = 6.2 mM 

at CL = 2000 ms), preventing its accumulation at fast rates, INaK remains small and CL 

independent (this mechanism is described later in detail), causing plateau voltages to become 

relatively CL independent.  Thus, with Na+ clamp, ICaL changes with pacing rate are different than 

under control conditions.  CL independent plateau voltages confer CL independence to the 

driving force for plateau ICaL.  Na+ clamping reduced Ca2+ (via INaCa) which reduced activated 

CaMK and thus ICaL facilitation.  An interesting consequence is that with Na+ clamp, ICaL changes 

with CL help to cause APD shortening at fast rates, whereas in control (i.e. no Na+ clamp), ICaL 

changes with CL oppose APD shortening. 

During restitution, late INa, Ito, ICaL, IKs and INaCa showed DI dependent changes (Figure 

2.15B).  Dramatically less inward late INa at short DIs helped shorten the APD.  The mechanism 

was reduced availability due to residual inactivation at the start of the S2 beat.  ICaL was reduced 

for the same reason.  This was evident during the plateau.  CaMK facilitation did not depend on 

DI because Ca2+ accumulation (necessary for CaMK activation) is slow, occurring only after long 

term pacing to steady state.  Similarly, Na+ did not accumulate at short DIs, which kept INaK 

constant.  Therefore, plateau potentials and ICaL driving force during the plateau were relatively DI 

independent.  Just as in the case of Na+ clamp, these properties combined to allow reduced 

availability of ICaL at short DI to dominate the behavior.  However, reduced maximum Vm 
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increased the driving force during the time of peak ICaL, which caused peak current to generally 

increase at short DIs.  At extreme DI of 5 ms, the slow AP upstroke (i.e. reduced dVm/dt) caused 

mild ICaL inactivation coincident with activation, so the peak current was reduced compared to DI 

= 10 ms. 

Changes in other currents (Ito, IKs and INaCa), though nonzero, were relatively minor due to 

timing.  DI dependent changes that increased or reduced current during phase-1 of the AP had 

little effect on final repolarization time.  The exception is IKr.  IKr is large enough that early spiking 

helped shorten APD at very short DIs (detailed simulations follow). 

 

Ionic Basis for APD Rate Dependence and Restitution 

 

Steady state rate dependence of the APD was largely caused by accumulation of 

intracellular Na+ at fast rates.  This is illustrated in Figure 2.16A.  When [Na+]i and [Na+]ss were 

clamped to values from steady state pacing at CL = 2000 ms, APD lost much of its sensitivity to 

pacing rate and remained relatively long.  Conversely, when the clamp was to [Na+]i and [Na+]ss 

from steady state pacing at CL = 300 ms, the APD remained relatively short at all rates.  Pacing 

rate dependent [Na+]i and [Na+]ss changes are linked to the AP via INaK, which responds to [Na+]i 

levels.  INaK increased with [Na+]i at fast rate.  However it did not increase, regardless of the 

pacing rate, when [Na+]i and [Na+]ss were kept low (Na+ at CL = 2000 ms; Figure 2.16C, right).  

Moreover, APD remained long at all CLs when INaK was clamped to its slow rate waveform (not 

shown). 

Steady state APD rate dependence was not completely eliminated by Na+ clamp alone.  

That is, clamping [Na+]i and [Na+]ss to slow rate values did not cause APD curves to become 

absolutely flat with respect to CL, especially at fast pacing rates (Figure 2.16A, shaded box CL = 

300 to 700 ms, solid gray line).  This signifies that other mechanisms are involved.  When in 

addition to clamping [Na+]i and [Na+]ss to their slow rate values, we also reset the inactivation 

gates for late INa, and especially for both late INa and ICaL to their CL = 2000 ms values at the start 

of each beat, the APD curve flattened further at fast rates (Figure 2.16A, dashed gray and 
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dashed-dot-dot gray lines, respectively).  Importantly, resetting these inactivation gates alone, 

without also clamping Na+, had little effect on APD rate dependence (Figure 2.16B). 

As described previously, without Na+ clamp, fast pacing caused late INa reduction and ICaL 

increase; the former helped while the latter opposed APD shortening.  However, with Na+ clamp, 

both currents became less inward with fast pacing.  Thus, resetting ICaL inactivation gates to slow 

rate values had different effects with, versus without Na+ clamping.  Na+ clamp prolonged the 

APD.  The prolongation and changed ICaL behavior after Na+ clamp rendered late INa and ICaL gate 

resetting more potent effectors of further AP prolongation; especially at fast rates where residual 

inactivation between beats was substantial. 

Rate dependent Na+ changes only occurred with the steady state pacing protocol due to 

slow ion accumulation after lengthy pacing regimes.  For APD restitution, clamping [Na+]i and 

[Na+]ss to values from S1 pacing during the S2 beat did not affect APD (Figure 2.16E).  However, 

restitution was dramatically affected by resetting inactivation gates for late INa and/or ICaL to their 

S1 starting values at the start of the S2 beat (Figure 2.16D).  APD remained long for all DIs.  

Conversely, when late INa and/or ICaL inactivation gates were reset to S2 starting values for DI = 5 

ms, APD remained short for all DIs.  Again, resetting these inactivation gates to their slow rate 

values had only minor effects on steady state APD rate dependence (Figure 2.16B). 

 At very short DIs, IKr played an important role in APD restitution.  In Figure 2.17A, the fast 

and slow time dependent deactivation gates (xrfast and xrslow, respectively) were reset to their 

value at DI = S1 = 1000 ms (dashed gray line, compare to control solid black line).  Deactivation 

of IKr is slow (Figure 2.03B).  For DI = S1, deactivation was complete between beats.  At short 

DIs, it was incomplete at the start of the S2 beat, enhancing IKr availability (early IKr spiking, 

Figure 2.17B, bottom) and outward current that contributes to APD shortening.  The enhanced 

availability only mattered at very short DIs, because at these DIs APD was short enough that 

increased outward current during phase-1 of the AP affected final repolarization time.  Changes 

to currents during later AP phases 2 and 3 (during the plateau and early repolarization, e.g. late 

INa and ICaL), generally have greater impact on the APD.  Early IKr spiking reduced maximum Vm, 

which affected all other currents, including late INa and ICaL. 
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Results Subsection 3: Comparison with Other Human Ventricular AP Models 

 

Several important differences exist between the ORd model presented here and other 

human models (e.g. TP(Ten Tusscher and Panfilov 2006) and GB(Grandi, Pasqualini et al. 2010) 

models).  Notably, model differences in the rate of repolarization and EAD formation were 

examined in direct comparison with experiments (Figures 2.07C, and Figure 2.11A, respectively).  

Readers wishing to simulate the human ventricular AP have a choice of models.  To help further 

differentiate the models, additional comparisons are shown in Figure 2.18. 

Undiseased human ventricular measurements of steady state rate dependence of 

APD90, 70, 50 and 30 were accurately reproduced by the ORd model (Figure 2.18A, same data 

as in Figure 2.07A).  Rate dependence of APD90 is fairly accurate in the TP model.  However, 

rate dependence of APD70, 50 and especially APD30 are not accurate.  The GB model 

repolarization rate is more accurate, but divergence from the measurements is large for APD30.  

At fast pacing rates, GB model APD90 is accurate.  Slow pacing APD90 is long compared with 

experiments (at CL = 2000 ms, APD90 is ~40 ms longer than in experiments).  In addition, APD 

rate dependence does not plateau at CL = 2000 ms. 

 In Figure 2.18B, the AP, major currents, and [Na+]i and [Ca2+]i were compared between 

models.  Simulations were in single endo cells paced to steady state at CL = 1000 ms.  Of note, 

the TP and GB models do not include late INa.  The width of the ICaL peak and the morphology 

were model dependent.  It was “cigar shaped” in the TP model.  In the GB model, the ICaL peak 

was broad and poorly defined.  The ORd model ICaL peak was sharp, as seen in undiseased 

human ventricle experiments (AP clamp, Figure 2.01D).  IKr was relatively small in the GB model, 

but shared a similar morphology with the ORd model.  The TP IKr morphology is characterized by 

an early spike and a wider late spike.  The IKs density in the TP model was much larger than in 

the other models (~10 fold larger).  Density and morphology of INaCa was model dependent.  INaCa 

was smallest in the ORd model (based on undiseased human measurements, Figure 2.02B).  INaK 

was roughly 1.5 and 2 fold greater in GB and TP models, respectively, compared with ORd.  The 
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Ca2+ transient peak was much larger in the TP model than in the other models, which were 

similar to each other.  The decay rate of [Ca2+]i was somewhat slower in the ORd model (accurate 

to undiseased human measurements; Figure 2.12 panels C and D).  Model [Na+]i was 7.2, 8.2, 

and 9.7 mM in ORd, GB, and TP models, respectively. 

 

Discussion 

 

Though the available undiseased human ventricle dataset has been missing essential 

elements, several human ventricle AP models have been developed and published.  The Priebe 

and Beuckelmann model(Priebe and Beuckelmann 1998) lacks human specific data for 

reformulation of major currents, and so was based in large part on its guinea pig predecessor(Luo 

and Rudy 1994).  The TP model(ten Tusscher, Noble et al. 2004) and updated version(Ten 

Tusscher and Panfilov 2006) is easy to use, includes many reformulated currents, and simulates 

physiological restitution and alternans.  However, both the TP and GB(Grandi, Pasqualini et al. 

2010) models lack sufficient ICaL data for validation, and cannot produce EADs.  The GB model 

includes K+ current reformulations using undiseased human data for validation, but does not 

produce AP or Ca2+ transient alternans.  EADs and alternans are both important mechanisms of 

arrhythmogenesis and should be reproduced in simulation studies of human arrhythmias.  The 

Iyer et al. model(Iyer, Mazhari et al. 2004) is based almost entirely on data from human channels 

expressed in non myocytes.  Though the expressed channels are human, native myocyte ion 

channels in the ventricle are composed of a variety of protein isoform combinations, auxiliary 

subunits, cytoskeletal elements, and membrane lipid composition, all of which may influence 

channel behavior.  Anchoring and other regulatory proteins present in native cells also define the 

local environment for ICaL in particular(Kobayashi, Yamada et al. 2007), but are not present in 

expression systems. 

 Fink et al. modified the TP model(Fink, Noble et al. 2008) to include updated IKr and IK1 

(with [K+]o dependence) formulations, based on undiseased human ventricular measurements.  

The rate of AP repolarization in this modified scheme is more accurate compared with the original 
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TP model.  For these advantages, the model sacrifices runtime speed (Markov formulation is 

used for IKr).  Other core issues of the TP model carry over to this modified version (incorrect ICaL, 

non-physiologically large IKs, and no EAD generation under appropriate conditions). 

We believe that the new undiseased human data presented here are essential, and 

substantially increase human specific model accuracy.  Due to extensive validation using these 

new data, our model reproduces all of the following important physiological behaviors: 1) CDI 

versus VDI inactivation of ICaL; 2) reformulated, detailed and accurate kinetics (using weighted 

time constants) for Ito, INaCa, IK1, IKr, IKs, fast INa, and late INa; 3) AP repolarization rate from 30% to 

90% repolarization; 4) APD at all physiological pacing rates with/without block of major currents, 

5) APD restitution with/without block of delayed rectifier currents; 6) transmural heterogeneity 

causing upright pseudo-ECG T-wave; 7) early afterdepolarizations (EADs); 8) effects of CaMK; 

and 9) AP and Ca2+ transient alternans. 

 

EADs and Repolarization Rate 

 

 One of the most important aspects of the model is its close correspondence to 

experimental measurements of not only APD90, but also to APD30, 50 and 70 at all 

physiologically relevant pacing rates and for S1S2 restitution.  This large pool of data has 

previously been unavailable.  Accurate repolarization rate (i.e. time between APD30 and 90) for 

the restitution protocol is crucial for simulating any phenomenon related to reentrant arrhythmia, 

where head-tail interactions determine refractoriness and vulnerability(Hund, Otani et al. 2000).  

Use of new undiseased data for currents that are active during the plateau and phase-3 of the AP 

(ICaL, INaCa, IKr and IKs) contributed to the correct repolarization rate. 

 The rate of repolarization and its effects on ICaL control EAD formation in this model, as in 

canonical EAD explanations (Zeng and Rudy 1995; Weiss, Garfinkel et al. 2010).  Failure of the 

TP and GB models to reproduce EADs may be due in part to their accelerated repolarization 

rates (Figure 2.07C).  It may also be caused by inaccurate formulation of ICaL inactivation, 

developed in absence of the essential undiseased human data presented here. 
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Steady State APD Rate Dependence 

 

Due to the small amplitude and rapid deactivation kinetics of IKs in the human ventricle in 

absence of -adrenergic stimulation, it does not play a major role in determining APD, APD rate 

dependence, or APD restitution under basal conditions(Jost, Virag et al. 2005) (Figure 2.08).  

This is in contrast to guinea pig ventricle, where slower deactivation and larger amplitude IKs 

make it the most important current for steady state APD rate dependence (simulations(Faber and 

Rudy 2000) and experiments (Rocchetti, Besana et al. 2001)).  Phosphorylation by PKA in the 

case of -adrenergic stimulation greatly enhances both the activation rate and amplitude of 

IKs(Volders, Stengl et al. 2003).  With -adrenergic stimulation, IKs plays an important role in 

steady state APD rate dependence(Heijman, Volders et al. 2011).  Clearly, IKs is important under 

various circumstances – the AP repolarizes in human ventricle experiments even when IKr is 

blocked(Jost, Virag et al. 2005), and clinical long QT syndrome type 1 is caused by IKs loss of 

function(Roden 2008).  Typically, isolated myocyte patch clamp experiments underestimate IKs 

due to enzymatic degradation(Li, Feng et al. 1996).  In ORd, the role of IKs was validated using 

small tissue preparations, where selective IKs block prolonged APD, but only very modestly under 

basal (no -adrenergic stimulation) conditions (<15 milliseconds in experiments and simulations 

at CL = 1000 ms, Figure 2.08). 

Block of IKr caused the most severe changes to the human AP (rate dependence and 

restitution, Figure 2.08).  However, Chapter 2 Supplement Figure 2.S05, and Figure 2.15A show 

that IKr is rate independent, as in experiments(Jost, Acsai et al. 2009) and therefore was not 

responsible for causing APD changes with pacing rate.  Rather, our simulations identified rate 

dependent changes in INaK secondary to [Na+]i accumulation as a primary cause of APD rate 

dependence (Figure 2.16A, 2.16C).  This finding is not new.  Simulations in dog ventricle(Decker, 

Heijman et al. 2009), human atrium(Koivumaki, Korhonen et al. 2011), and in the GB human 

ventricle(Grandi, Pasqualini et al. 2010) models all led to this conclusion.  However, findings from 
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the Iyer human model(Iyer, Mazhari et al. 2004) differ, at least in part, regarding this mechanism.  

In the Iyer model, [Na+]i affected APD rate dependence via INaCa, which is primarily outward at fast 

rates.  Rate dependence in the TP model(Ten Tusscher and Panfilov 2006) is less [Na+]i 

dependent because, as Grandi discussed(Grandi, Pasqualini et al. 2010), IKs is exaggerated.  

Experiments by Pieske et al.(Pieske, Maier et al. 2002) investigated [Na+]i in heart failure, versus 

nonfailing human ventricular myocytes.  Pieske experiments demonstrate that rate dependent 

[Na+]i accumulation is an important phenomenon in health and disease.  However, additional 

experiments are needed to determine whether and how [Na+]i affects INaK and APD in human 

ventricle. 

In addition to INaK and INaCa (both included in the ORd model), intracellular Na+ is also 

mediated by fluxes related to H+, CO2, and HCO3
- homeostasis.  Exchangers and cotransporters 

move Na+ ions down the electrochemical gradient in order to offset the cost of H+ and CO2 and 

HCO3
- pumping.  Na+ rate dependent handling and consequently INaK should be affected by these 

processes, which were not explicitly included in the ORd model.  In the absence of H+, CO2, and 

HCO3
- fluxes, it is possible that the role of INaK might have been over estimated.  It is important to 

address this because INaK and its response to Na+ accumulation was a major cause of APD rate 

dependence in the model.  Thus, we performed simulations where H+, CO2, and HCO3
- effects on 

Na+ were explicitly included, using Crampin and Smith equations(Crampin and Smith 2006) 

(Chapter 2 Supplement Figure 2.S12). 

Quantitative details of Na+ handling, INaK and APD rate dependence were affected when 

we included H+, CO2, and HCO3
- handling processes.  However, the qualitative outcomes were 

not affected.  INaK increase with fast pacing, secondary to Na+ accumulation, was still the primary 

determinant of APD rate dependence during steady state pacing. 

Removal of the effects of Na+ accumulation on steady state APD rate dependence by 

clamping [Na+]i and [Na+]ss did not completely eliminate APD rate dependence.  Especially at fast 

rates (Figure 2.16A, shaded box CL = 300 to 700 ms, solid gray line), APD was not absolutely flat 

with respect to CL.  APD rate dependence was largely unaffected by resetting inactivation gates 

for late INa, and/or ICaL to their slow rate values at the start of each beat (Figure 2.16B).  
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Interestingly, if these gates were reset while also clamping Na+ to slow rate values, the APD-CL 

curve became almost completely flat, even at fast rates (Figure 2.16A, dashed gray and dashed-

dot-dot gray lines, respectively).  Thus, accumulation of Na+ and consequent effects on INaK is a 

major cause of APD rate dependence, however, not the only cause.  Other currents also 

participate at fast pacing rates.  Though the GB model(Grandi, Pasqualini et al. 2010) 

demonstrated the Na+/INaK/APD rate dependence mechanism, it did not show the additional 

effects of late INa and ICaL.  The GB model cannot show these multi-factorial causes of APD rate 

dependence because it does not include late Na+ current (Figure 2.18), and because ICaL kinetics 

are inaccurate due to lack of experimental data. 

Due to charge conservation, accumulation of [Na+]i is associated with an equal reduction 

in [K+]i and a volume converted [K+]o increase in tissue clefts and interstitial spaces(Livshitz and 

Rudy 2009).  This can affect behavior by increasing IK1 (its [K+]o sensitivity is included in this 

model), which depolarizes resting voltage and reduces excitability.  However, our simulations 

represent experiments in an isolated myocyte in a large bath, where [K+]o is constant.  Even in 

vivo, [K+]o is tightly controlled via regulation by the lymphatic system and kidneys. 

 

APD Restitution 

 

We showed that in contrast to steady state rate dependence, [Na+]i  had no effect on APD 

restitution.  Rather, restitution was primarily caused by the time course of recovery from 

inactivation of late INa and ICaL; processes which had little effect on steady state-rate dependence 

of APD (absent Na+ clamp).  At very short DIs, slow deactivation of IKr caused increased 

availability and spiking, which helped shorten the APD.  APD rate dependence was caused 

primarily by concentration changes, while APD restitution was caused by gating kinetics.  

Previous studies have not made this important distinction between steady state rate dependence 

and restitution mechanisms in human.  The role of ICaL and its inactivation kinetics in APD 

restitution reiterates the primacy of ICaL in determining basic physiological behaviors, highlighting 
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the importance of the new ICaL experimental data, presented here, to model development and 

validation. 

 A role for late INa in restitution could not have been hypothesized using TP or GB models, 

which have no late INa.  The density of late INa was constrained in the ORd model by experiments 

from nonfailing human ventricular myocyte measurements by Maltsev et al.(Maltsev, Sabbah et 

al. 1998), where the late current was measured 200 ms after the start of the voltage clamp step 

(~0.35 A/F I-V curve maximum).  The maximum late INa during the free running AP model was 

much smaller (~0.15 A/F, about half the I-V curve maximum) even at slow pacing rates, where 

late INa was largest.  Late current is difficult to measure directly, and it is possible that the current 

density was overestimated due to selection bias.  That is, late INa is small, and not all cells 

produced measureable late current (2 of 3 myocytes (Maltsev, Sabbah et al. 1998)).  However, 

we consider the model density of late INa to be accurate based on model reproduction of 

experiments which consistently showed substantial APD90 shortening following application of 10 

M mexiletine in undiseased human myocardium (90% late INa block in simulations, Figure 

2.08A). 

 

Ca2+ Cycling, CaMK and Alternans 

 

 Previously published human ventricle AP models have not incorporated the CaMK 

signaling pathway.  Our human simulations show, as in dog simulations (Hund and Rudy 2004; 

Livshitz and Rudy 2007), that CaMK plays an important role in determining frequency 

dependence of Ca2+ cycling (Figure 2.13).  The model also shows that the integrated 

electrophysiological consequence of CaMK effects on target channels is minimal.  That is, CaMK 

suppression had only minor effects on APD rate dependence and AP morphology.  At very fast 

pacing (CLs < 300 ms), the Ca2+ cycling consequences of CaMK phosphorylation were central to 

alternans formation.  Suppression of CaMK eliminated alternans.  CaMK related findings are in 

agreement with simulations using other models developed by our group(Livshitz and Rudy 2007), 

models from other groups (Iribe, Kohl et al. 2006), and experiments(Ji, Zhao et al. 2006).  
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However, experiments showing the effects of pharmacological suppression of CaMK on rate 

dependent behaviors (e.g. by Wehrens et al. (Wehrens, Lehnart et al. 2004) with KN-93 in rabbit) 

should be performed in human ventricular myocytes to validate model predictions. 

 

Transmural Heterogeneity 

 

 The method used for implementation of the transmural cell types (M and epi cell), based 

on the thoroughly validated endo cell framework, was simplistic.  That is, we considered that 

channel conductance was proportional to transmural gradients in mRNA or protein expression for 

alpha subunits of ion channels.  Only in the case of Ito were functional current measurement data 

available(Nabauer, Beuckelmann et al. 1996).  Staying within error bars for mRNA or protein 

data(Szabo, Szentandrassy et al. 2005; Gaborit, Le Bouter et al. 2007; Soltysinska, Olesen et al. 

2009), channel conductances were modulated so that the simulated transmural AP differences 

were consistent with experiments(Drouin, Charpentier et al. 1995; Glukhov, Fedorov et al. 2010). 

 The effect of transmural heterogeneity of accessory -subunits was not considered in the 

transmural cell type definitions.  However, in the case of IKs, the KCNE1 -subunit is transmurally 

heterogeneous.  KCNE1 protein was about two times greater in M-cells compared to epi 

cells(Szabo, Szentandrassy et al. 2005).  The presence of KCNE1 carries two important 

functional consequences 1) ~5 fold slower activation and 2) ~5 fold larger 

conductance(Sanguinetti, Curran et al. 1996).  Therefore, theoretically, twice as much KCNE1 in 

M-cells may increase the variable stoichiometry ratio of KCNE1 to alpha subunit KCNQ1(Nakajo, 

Ulbrich et al. 2010), slowing activation and increasing conductance.  We conducted simulations to 

evaluate the influence of KCNE1 heterogeneity on IKs and the AP (Chapter 2 Supplement Figure 

2.S13 and related text).  Due to the small amplitude of human IKs in the absence of -adrenergic 

stimulation, implementation of KCNE1 heterogeneity did not appreciably affect the AP (Chapter 2 

Supplement Figures 2.S13 and 2.S19, where transmural APDs are shown to be relatively 

insensitive to changes in IKs conductance).  Interestingly, the simulated effects of KCNE1 on 

activation rate and conductance offset one another.  That is, slowed activation and larger 
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conductance in M-cells yielded IKs current that was remarkably close to the control case.  Similar 

results were found for epi cell simulations: the effects of faster activation and reduced 

conductance were offsetting such that their combined effect was minimal. 

 

APD Accommodation 

 

Steady state rate dependence of APD and APD restitution were the focus of the 

simulations and experiments in this study.  However, the time course of APD response to abrupt 

changes in pacing rate has been shown in human by Franz et al.(Franz, Swerdlow et al. 1988), 

and simulated in the TP model by Pueyo et al.(Pueyo, Husti et al. 2010) as a marker for 

arrhythmia risk.  Simulations of APD accommodation in our model compare favorably to Franz 

experiments (same pacing protocols used in experiments were used in the simulations, Chapter 2 

Supplement Figure 2.S14).  Single exponential curves were fit to the time dependence of APD 

changes.  For abrupt CL reduction from 750 to 480 ms, the time constant was 250 and 284 

seconds in experiments and simulations, respectively.  Time constants were 300 and 299 

seconds in experiments and simulations, respectively, when CL was abruptly returned to 750 ms.  

When the CL reduction was more severe, from CL = 750 to 410 ms, the time constants were 252 

and 165 seconds, in experiments and simulations, respectively.  For return to CL = 750 ms, the 

time constants were 350 and 289 seconds, respectively.  Pueyo used time to 90% 

accommodation to compare model with experiments demonstrating similar accuracy.  Both 

simulation studies also show initial overshoot, or “notching”, as observed and described by Franz. 

 

Parameter Sensitivity 

 

As in Romero et al.(Romero, Pueyo et al. 2009), we performed a sensitivity analysis to 

determine factors participating in important model outputs, including 1) steady state APD90 rate 

dependence (Chapter 2 Supplement Figure 2.S15), 2) S1S2 APD90 restitution (Chapter 2 
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Supplement Figure 2.S16), 3) rate dependence of maximum (systolic) intracellular Ca2+ 

concentration (Chapter 2 Supplement Figure 2.S17), 4) rate dependence of intracellular Na+ 

concentration (Chapter 2 Supplement Figure 2.S18), and 5) transmural cell type APD90 at steady 

state (Chapter 2 Supplement Figure 2.S19). 

 The findings from our analysis were similar to those shown by Romero et al. using the TP 

human AP model(Romero, Pueyo et al. 2009).  That is, in ORd and TP models, IKr and ICaL affect 

APD90 while ICaL, INaCa, and INaK affect peak [Ca2+]i.  One important difference is the role for IKs.  A 

much larger role was played by IKs in the TP model (~10 fold larger density than in other human 

models, Figure 2.18B).  In the TP model, IKs is responsible for steady state rate dependence of 

the APD (shown by Grandi et al.(Grandi, Pasqualini et al. 2010)). 

IKr conductance changes affect APD90 substantially in our model.  This was expected, 

since IKr is the largest outward current (also in experiments, Figure 2.08, and in Romero’s 

analysis using the TP model).  Though IKr affects APD, it is not responsible for its rate 

dependence.  Conductance changes in INaK did not substantially affect APD90 because INaK is a 

relatively small current.  Yet, rate dependent changes in INaK (secondary to Na+ accumulation at 

fast rate) were the primary determinant of APD rate dependence.  [Na+]i at different pacing rates, 

and thus its relative changes with rate, was by far most sensitive to INaK conductance (Chapter 2 

Supplement Figure 2.S18).  This supports our strategy for setting INaK conductance to reproduce 

rate dependence of [Na+]i in nonfailing human myocytes(Pieske, Maier et al. 2002). 

 

Computational Tractability and Model Stability 

 

 To keep the ORd model computationally efficient and parameters well constrained, the 

Hodgkin-Huxley formalism was used in formulating current equations.  This choice was made as 

a design principal with the thought that interested users can modularly replace any current or flux 

with more detailed Markov formulations of mutation or drug effects as desired (e.g.(Clancy and 

Rudy 1999; Silva and Rudy 2005)).  Similarly, intracellular Ca2+ handling can be modified (e.g. 

more spatial detail, Markov ryanodine receptor implementation), or various signaling pathways 
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and related effects on ion channels can be added (e.g.(Hund and Rudy 2004; Saucerman, Healy 

et al. 2004; Heijman, Volders et al. 2011)).  The basic ORd model has 41 state variables.  In the 

absence of CaMK and its effects on target currents and fluxes, the number of state variables is 

31. 

Exclusion of Markov models increases parameter constraint.  It also prevents the system 

of differential-algebraic equations from being overly stiff.  This promotes model stability and 

computational tractability.  Using the rapid integration technique described in the Chapter 2 

Supplement (Computational Methodology section), the model arrives at true and accurate steady 

state in under one minute of runtime (~1000 beats are needed, depending on the CL, Visual C++ 

running on a desktop PC; more details in Chapter 2 Supplement).  ORd equations are all 

smoothly varying functions, free of singularities and “if” conditionals.  Thus, the model can readily 

be implemented in any of a variety of automated numerical integrators, such as Matlab (The 

MathWorks Inc.), CellML (http://www.cellml.org/), CHASTE(Bernabeu, Bordas et al. 2009), or 

CARP (CardioSolv LLC.). 

 

Limitations 

 

Direct measurement of INaK in the undiseased or nonfailing human ventricular myocyte is 

lacking.  Therefore, INaK was validated by reproduction of important biophysical properties 

(Chapter 2 Supplement Figure 2.S07), and by reproduction of [Na+]i rate dependence measured 

in nonfailing human ventricular myocytes ((Pieske, Maier et al. 2002), Figure 2.12A).  However, 

independent and direct experimental measurement of INaK in undiseased or nonfailing human 

ventricular myocytes would provide additional support for the mechanistic conclusion that INaK 

changes secondary to Na+ accumulation at fast pacing rates is a major determinant of steady 

state APD rate dependence.  This conclusion is consistent with several other modeling studies 

which proposed the same mechanism (dog ventricle(Decker, Heijman et al. 2009), human 

atrium(Koivumaki, Korhonen et al. 2011), and human ventricle(Grandi, Pasqualini et al. 2010)).  

The relationship between [Na+]i, INaK and steady state APD rate dependence was robust.  It was 
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not disrupted by including the effects of Na+/H+ and Na+/HCO3
- exchange fluxes on Na+ handling 

(Crampin and Smith equations(Crampin and Smith 2006), Chapter 2 Supplement Figure 2.S12).  

Na+ accumulation and INaK response were not the only cause of APD rate dependence in the ORd 

model.  At fast pacing rates (CL = 300 to 700 ms), late INa and ICaL were also involved (Figure 

2.16A, and related discussion). 

Measurements of undiseased human endocardial APs were performed in small tissue 

preparations (1-3 gram pieces).  This was to avoid possible enzymatic degradation of K+ channel 

proteins(Li, Feng et al. 1996; Rajamani, Anderson et al. 2006), affecting currents and the AP.  

However, electrical loading in tissue subtly affects behavior(Decker, Heijman et al. 2009).  We 

performed simulations using a multicellular fiber model to include loading effects, which had only 

minor consequences (Figure 2.S08). 

APD was ~275 ms in our human endo preparations at CL = 1000 ms, well matched by 

the model (273 ms).  In vivo noninvasive electrocardiographic imaging of the activation-recovery 

interval, an indicator of the cellular epi APD, was ~260 ms in healthy adults(Ramanathan, Jia et 

al. 2006).  Human monophasic AP measurements are also in this range(Koller, Maier et al. 2005).  

Measurements from Drouin et al. showed longer APDs (~350 ms in endo cells on the cut 

transmural face at CL = 1000 ms).  Having validated the endo model based on more than 100 of 

our own endo AP measurements, we thought it reasonable to use Drouin transmural APD ratios, 

rather than the uniformly longer APDs themselves, for validation of the transmural cell type 

models. 

 The presence of M cell APs in the nonfailing human heart was observed by Drouin et 

al.(Drouin, Charpentier et al. 1995), and more recently by Glukhov et al.(Glukhov, Fedorov et al. 

2010).  However, there is controversy regarding the M cell definition and its role in human.  Our M 

cell model was based on data where the M cell was defined by its transmural location.  The 

resulting simulated M cell AP corresponded with the “max cell” observed by Glukhov. 

 Recently, Sarkar and Sobie developed a method for quantitative analysis of parameter 

constraint and relationships between parameters and target outputs in AP models(Sarkar and 

Sobie 2010).  We did not apply this analysis during model development.  However, the extensive 
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validation of channel kinetics and the emergent response of the AP to a variety of dynamic pacing 

protocols, used in development and validation of the model, ensures sufficient parameter 

constraint.  The parameter sensitivity tests we performed were instructive, though relatively 

limited (conductance changes only).  Application of the Sarkar and Sobie’s analysis to our model 

is beyond the scope of this paper, but should provide worthwhile insights regarding inter-

relatedness of processes in the human ventricle, in addition to formally testing parameter 

constraint. 

 

Materials and Methods 

 

Characteristics of Human Tissue 

 

During the last 15 years, undiseased hearts were donated for research in compliance 

with the Declaration of Helsinki and were approved by the Scientific and Research Ethical 

Committee of the Medical Scientific Board of the Hungarian Ministry of Health (ETT-TUKEB), 

under ethical approval No 4991-0/2010-1018EKU (339/PI/010).  Data from 140 hearts were used 

in this study.  Of these, 78 were from male donors (56%).  The average donor age was 41 years 

old with standard deviation of 12 years. 

 

Tissue Preparation 

 

 Tissue transport and ventricular endocardial preparations were performed as previously 

described(Jost, Virag et al. 2005).  Tissue was carefully pinned and placed in a modified Tyrodes 

superfusate (in mM: NaCl 115, KCl 4, CaCl2 1.8, MgCl2 1, NaHCO3 20, and glucose 11, pH 7.35, 

37˚ C), and point stimulation was via bipolar platinum electrodes.  Drug solutions were made 

fresh on the day of use.  Drugs included in this study were, in M: E-4031 1, HMR-1556 1, 

nisoldipine 1, BaCl2 100, ryanodine 5, mexiletine 10.  Simulated application of these drugs was 
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70% IKr(Sanguinetti and Jurkiewicz 1990), and 90% IKs(Gogelein, Bruggemann et al. 2000), 

ICaL(Walsh, Zhang et al. 2007), IK1(Warren, Guha et al. 2003), RyR(Nanasi, Sarkozi et al. 2000), 

and late INa(Wang, Yazawa et al. 1997) block, respectively. 

 

Myocyte Isolation 

 

Tissue transport and myocyte isolation for the undiseased donor hearts were as 

previously described(Jost, Virag et al. 2005).  Myocyte isolation commenced immediately upon 

arrival in the laboratory, using the perfusion disaggregation procedure, previously described(Jost, 

Virag et al. 2005). 

 

Electrophysiology 

 

 Data were obtained using conventional whole cell patch-clamp techniques.  Micropipette 

fabrication and data acquisition were as described previously for undiseased donor heart(Jost, 

Virag et al. 2005).  Axopatch 200 amplifiers, Digidata 1200 converters, and pClamp software 

were used (Axon Instruments/Molecular Devices).  Experiments were performed at 37˚ C. 

The standard bath solution contained, in mM: NaCl 144, NaH2PO4 0.33, KCl 4.0, CaCl2 

1.8, MgCl2 0.53, Glucose 5.5, and HEPES 5.0 at pH of 7.4, and pipette solutions contained K-

aspartate 100, KCl 25, K2ATP 5, MgCl2 1, EGTA 10 and HEPES 5. The pH was adjusted to 7.2 

by KOH (+15-20 mM K+). 

For L-type Ca2+ current measurement, the bath solution contained in mM: 

tetraethylammonium chloride (TEA-Cl) 157, MgCl2 0.5, HEPES 10, and 1 mM CaCl2, or BaCl2, or 

SrCl2 (pH 7.4 with CsOH).  The pipette solution contained (in mM) CsCl 125, TEA-Cl 20, MgATP 

5, creatine phosphate 3.6, EGTA 10, and HEPES 10 (pH 7.2 with CsOH).   

For Na+/Ca2+ exchange current measurement, the bath solution contained, (in mM): NaCl 

135, CsCl 10, CaCl2 1, MgCl2 1, BaCl2 0.2, NaH2PO4 0.33, TEACl 10, HEPES 10, glucose 10 
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and (in M) ouabain 20, nisoldipine 1, lidocaine 50, pH 7.4.  The pipette solution contained (in 

mM): CsOH 140, aspartic acid 75, TEACl 20, MgATP 5, HEPES 10, NaCl 20, EGTA 20, CaCl2 

10 (pH 7.2 with CsOH). 

 

Ca2+ Transient Florescence 

 

Isolated myocytes from the undiseased donor hearts were used to measure the Ca2+ 

transient during point stimulation via bipolar platinum electrodes, indicated by Fura-2-AM, as was 

described previously(Acsai, Kun et al. 2007).  Bath temperature was 37˚ C. 

 

Pacing Protocols 

 

 For both experiments and simulations, we determined APD at 30, 50, 70 and 90% of 

complete repolarization (APD30-90, in ms).  The start of the AP was the time of maximum dVm/dt.  

The time of APDX occurred once membrane voltage was X% of the resting value.  Resting 

voltage was measured immediately prior to each paced beat.  For APD rate dependence, pacing 

was to steady state.  For APD restitution (S1S2, or static restitution), S1 pacing was at cycle 

length (CL) = 1000 ms.  The S2 beat was delivered at variable diastolic intervals (DIs), measured 

relative to APD90. 

 The dynamic restitution protocol was simulated as in experiments by Koller et al.(Koller, 

Maier et al. 2005).  Pacing was at a variety of rates (30 seconds at CLs from 230 to 1000 ms, no 

S2 beats).  APD95 was plotted against DI (where DI = CL – APD95).  Unlike static S1S2 

restitution, the dynamic restitution protocol allows for more than one APD to be associated with a 

given DI.  This is significant because bifurcation in the dynamic restitution curve is believed to be 

arrhythmogenic(Watanabe, Otani et al. 1995). 
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Population Based CaMK effects 

 

 For all channels affected by CaMK, we created separate models for the fully CaMK 

phosphorylated channels, and the totally non phosphorylated channels.  Then, based on the 

degree of CaMK activation (CaMKactive), we determined the proportion of channels affected by 

CaMK.  To calculate the CaMK affected current (or flux), we added the weighted sum of fully 

affected and totally unaffected channels, using the proportionality.  The model employed for 

CaMK activity was validated previously(Hund and Rudy 2004; Livshitz and Rudy 2007). 

 

Relative Weights in a Two Time Constant Scheme 

 

 When measurements called for a gating process to be represented by both a fast and a 

slow process, we included separate fast and slow gates.  However, we did not simply multiply fast 

and slow gates to modulate conductance as others have done previously.  To do so allows the 

fast process alone to completely control deactivation/inactivation, and the slow process alone to 

completely control activation/recovery.  Rather, since measurements of bi-exponential behaviors 

provide the relative weight of fast/slow processes, we modeled the measurements literally, and 

used the weighted sum of fast and slow processes. 

 

Transmural Wedge Simulation 

 

We computed the pseudo-ECG using a 1-dimensional model of the transmural wedge 

preparation(Yan and Antzelevitch 1996; Gima and Rudy 2002).  In brief, the spatially weighted 

sum of the voltage gradient was determined at a point 2 cm from the epi end of a heterogeneous 

multicellular fiber, along the fiber axis.  Cells 1-60 were endo, 61-105 were M, and 106-165 were 

epi.  The stimulus was delivered to cell 1.  Cells 15 from both ends of the fiber were excluded 
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from the gradient measurement due to confounding edge effects.  Pacing was for 100 beats using 

steady state initial conditions from paced single cells. 

 

Equations, Computers, and Software 

 

All model equations, hardware and software used, and rapid integration methods are 

provided in the Chapter 2 Supplement.  Model code can be downloaded from the research 

section of our website: http://rudylab.wustl.edu. 
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Figures 

 



49 
 

Figure 2.01.  Undiseased human ICaL experiments and model validation.  A) Experiments: ICaL 

traces for currents carried by Ca2+ (top), Ba2+ (middle), and Sr2+ (bottom).  The voltage protocol is 

below the Ca2+ traces.  Ca2+ current decay was visibly more rapid than decay for Ba2+ or Sr2+ 

currents.  Simulations: ICaL in response to the same voltage protocol with CDI (CDI+VDI, top), and 

without CDI (VDI-only, bottom).  B) Experimental data are on the left (white circles, N=5, from 3 

hearts).  Simulation results are on the right (solid lines).  FRC is fractional remaining current.  

Times after peak current shown are from 5 to 55 ms, in 5 ms steps (indicated by arrow).  Top left) 

Experiments showing the voltage and time dependence of FRC with Ba2+ as charge carrier (VDI 

only).  Top right) Simulations of FRC, with n-gate=0 (representing VDI only; see text and panel 

E).  Bottom left) Experiments showing FRC with Ca2+ as charge carrier (CDI and VDI are 

concurrent).  FRC for CDI+VDI was significantly smaller at more hyperpolarized potentials (Vm = -

20 to 0 mV, dashed box) than FRC for VDI-alone.  Bottom right) Simulations of FRC with free 

running n-gate, allowing both CDI and VDI to occur.  C) Data are from Magyar et al.(Magyar, Iost 

et al. 2000) (black squares), Fulop et al.(Fulop, Banyasz et al. 2004) (black diamonds), and 

previously unpublished (white circles, N=5, from 3 hearts).  Simulation results are solid lines.  

From left to right, top to bottom: steady state activation, steady state inactivation, fast time 

constant for VDI, slow time constant for VDI, relative weight of the fast component for VDI, I-V 

curve, experiments showing recovery from inactivation, and corresponding simulations.  D) 

Human AP clamp waveform, used to elicit 1 M nisoldipine sensitive current (ICaL, experiments, 

left) and comparison to simulations using the same AP clamp (right).  E) Schematic diagram for 

the n-gate, representing the fraction of L-type channels undergoing CDI.  Calmodulin (CaM) is 

constitutively attached to the L-type channel.  Ca2+ ions bind to CaM (on-rate k1 and off-rate k-1).  

With Ca2+ ions bound, the Ca2+/CaM/channel complex may activate CDI mode (asterisk and black 

color indicate CDI activation, on-rate k2 and off-rate k-2). 
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Figure 2.02.  Undiseased human Ito, INaCa, and IK1 experiments and model validation.  A) Ito.  

Experimental data are white circles (N=8 from 5 hearts for inactivation time constants, N=10 from 

5 hearts for recovery time constants, N=9 from 6 hearts for steady state inactivation, and N=23 

from 8 hearts for the I-V curve).  Simulation results are solid lines.  From left to right, top to 

bottom: steady state activation, steady state inactivation, fast time constant for inactivation, slow 

time constant for inactivation (insets show fast and slow recovery from inactivation), relative 

weight of the fast component for inactivation and the I-V curve (normalized).  B) INaCa.  

Experimental data are digitally averaged time traces (N=3 from 2 hearts, white circles, gray is 

standard error of the mean).  Simulation results are the solid line.  Top) Voltage clamp protocol.  

Bottom) INaCa in response to the clamp.  C) IK1.  Experimental data are previously unpublished 

(white circles, N=21 from 12 hearts), from Bailly et al.(Bailly, Mouchoniere et al. 1998) (black 

squares) and Konarzewska et al.(Konarzewska, Peeters et al. 1995) (black triangles).  Simulation 

results are solid lines (black, gray and dashed black for [K+]o= 4, 8 and 20 mM).  Top left) Voltage 

and [K+]o dependence of steady state rectification.  Top right) Voltage and [K+]o dependence of 

steady state inactivation.  Bottom left) Time constant for inactivation.  Bottom right)  I-V curve, 

and its [K+]o dependence. 
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Figure 2.03.  Undiseased human IKr and IKs experiments and model validation.  A) IKr.  

Experimental data are white circles (N=10 from 7 hearts for steady state activation, N=7 from 3 

hearts for activation and from 2 hearts for deactivation time constants and weights, and N=10 

from 7 hearts for tail currents).  Simulation results are lines.  From left to right, top to bottom: 

steady state activation, time constant for activation (fast (solid) and slow (dashed) time constants 

converge), fast time constant for deactivation, slow time constant for deactivation, relative weight 

of the fast component for deactivation, and the I-V curve for normalized tail currents.  B) 

Activation/deactivation profiles in response to the voltage steps shown (-40 mV holding potential 

to +30 mV steps of various duration, followed by a return to -40 mV, top right inset).  Experiments 

are above.  Simulations are below.  Activation is rapid, occurring within tens of milliseconds.  

Deactivation is slow, occurring after several seconds.  C) Human AP clamp waveform (top), used 

to elicit 1 M E-4031 sensitive current (IKr, bottom); experiments are on the left, and comparison 

to simulations using the same AP clamp is on the right.  D) IKs.  Data are from Virág et al.(Virag, 
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Iost et al. 2001) (black circles).  Simulation results are solid lines.  From left to right: steady state 

activation, time constant for activation (much slower than deactivation at depolarized potentials), 

time constant for deactivation (much faster than activation at hyperpolarized potentials), and the I-

V curve, showing normalized tail currents. 
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Figure 2.04.  Nonfailing human fast INa and late INa experiments and model validation.  A) Fast INa.  

Experiments are from Sakakibara et al.(Sakakibara, Furukawa et al. 1993) (black squares) and 

Nagatomo et al.(Nagatomo, Fan et al. 1998) (black triangles).  Simulation results are solid lines.  

From left to right, top to bottom: steady state activation, time to peak (experiment) and activation 

time constant (simulation), steady state inactivation, fast time constant for development of 

inactivation, slow time constant for development of inactivation, relative weight of the fast 

component for development of inactivation, time constant for recovery from inactivation, and the I-

V curve (solid line simulation and data at 17° C, dashed line simulation at 37° C).  In other panels, 

simulations and data were adjusted to 37° C.  Time to peak was fit at 33° C.  B) Late INa.  

Experiments are from Maltsev et al.(Maltsev, Sabbah et al. 1998) (black squares).  Simulation 

results are solid lines.  Top) Steady state activation.  Middle) Steady state inactivation.  Bottom) I-

V curve. 
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Figure 2.05.  Schematic diagram of human ventricular myocyte model.  Formulations for all 

currents and fluxes were based either directly (gray) or indirectly (white) on undiseased or 

nonfailing human experimental data.  Model includes four compartments:  1) bulk myoplasm 

(myo), 2) junctional sarcoplasmic reticulum (JSR), 3) network sarcoplasmic reticulum (NSR), and 

4) subspace (SS), representing the space near the T-tubules.  Currents into the myoplasm: Na+ 

current (INa; representing both fast and late components), transient outward K+ current (Ito), rapid 

delayed rectifier K+ current (IKr), slow delayed rectifier K+ current (IKs), inward rectifier K+ current 

(IK1), 80% of Na+/Ca2+ exchange current (INaCa,i), Na+/K+ pump current (INaK), background currents 

(INab, ICab, and IKb), and sarcolemmal Ca2+ pump current (IpCa).  Currents into subspace: L-type 

Ca2+ current (ICaL, with Na+ and K+ components ICaNa, ICaK), and 20% of Na+/Ca2+ exchange 

current (INaCa,ss).  Ionic fluxes: Ca2+ through ryanodine receptor (Jrel), NSR to JSR Ca2+ 

translocation (Jtr), Ca2+ uptake into NSR via SERCA2a/PLB (Jup; PLB - phospholamban), diffusion 

fluxes from subspace to myoplasm (Jdiff,Na, Jdiff,Ca, and Jdiff,K).  Ca2+ Buffers: calmodulin (CMDN), 

troponin (TRPN), calsequestrin (CSQN), anionic SR binding sites for Ca2+ (BSR), anionic 

sarcolemmal binding sites for Ca2+ (BSL).  Ca2+/calmodulin-dependent protein kinase II (CaMK) 

and its targets are labeled. 
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Figure 2.06.  Undiseased human endocardial AP traces from experiments (small tissue 

preparations) and model simulations.  Simulated APs for a range of pacing frequencies (top) and 

corresponding examples of experimentally recorded APs at 37°C (below).  Arrows indicate cycle 

length (CL) changes.  B) Comparison of simulation (black) and experimentally measured (gray, 

small tissue preparations) basic AP parameters for a single paced beat from quiescence (37°C, 

N=32 from 32 hearts).  Shown, from top to bottom, are the resting membrane potential (Vm rest), 

maximum upstroke potential (Vm max), and maximum upstroke velocity (dVm/dt max). 
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Figure 2.07.  Undiseased human endocardial AP response to pacing protocols from experiments 

(small tissue preparations) and model simulations.  A) Steady state APD rate dependence.  B) 

S1S2 APD restitution (DI – diastolic interval).  APD30-90 are labeled at right.  Solid lines are 

simulation results; white squares are experiments at 37°C (N=140 hearts in panel A, N=50 hearts 

in panel B).  C) Repolarization rate at CL = 1000 ms.  Trajectory of APD30 to APD90 is accurate 

in the ORd model (circles are experimental data); less so in other models.  D) Dynamic restitution 

protocol (see Methods).  Experiments are from Koller et al.(Koller, Maier et al. 2005), measured in 

nonfailing human hearts with monophasic AP electrodes (black squares).  Simulated results are 

the black line.  At very short diastolic intervals (DI < 90 ms), the model shows APD bifurcation 

(alternans). 
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Figure 2.08.  Pacing protocols with block of various currents.  Experimental data (small tissue 

preparations) are white squares.  A) Steady state APD90 rate dependence.  From left to right, top 

to bottom: N=140, 5, 5, 5, 5, 4, and 4 hearts.  Shown are control, IKr, IKs, ICaL, IK1, RyR, and late INa 

block.  B) APD90 restitution (S1 = 1000 ms).  From left to right: N=50, 3, and 4 hearts.  Shown 

are control, IKr, and IKs block. 
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Figure 2.09.  Rate dependence of currents at steady state.  Black arrows indicate CL decrease 

(rate increase).  Top Row) Simulated APs, repeated in each column for timing purposes.  Lower 

Rows (left to right, top to bottom): INa, peak INa detailed time course, late INa, Ito, ICaL, ICaL 

increasing peaks with increasing pacing rate, IKr, IKs, IK1, INaCa,i, INaCa,ss, and INaK.  Insets show 

greater detail of late small Ito window current, and early IKr spiking at fast rates. 
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Figure 2.10.  Transmural heterogeneity and validation of transmural cell type models.  A-C) 

Expression ratio in the model (black bars) compared to experimental data from undiseased 

human hearts (grayscale bars, labeled).  Data are from Gaborit et al.(Gaborit, Le Bouter et al. 

2007), Soltysinska et al.(Soltysinska, Olesen et al. 2009), Szabo et al.(Szabo, Szentandrassy et 

al. 2005), and Nabaeur et al. (for Ito, panel D, (Nabauer, Beuckelmann et al. 1996)).  D) 

Transmural heterogeneity of Ito; simulations are lines, experiments are squares.  Results for endo 

are gray; those for epi are black.  E1) Rate dependence of APD90 in endo, M, and epi cell types.  

Epi and M data were obtained by scaling endo data (white squares) by epi/endo and M/endo 



62 
 

APD90 ratios from Drouin et al.(Drouin, Charpentier et al. 1995) (black squares).  Simulations are 

black lines.  E2) Same format as panel E1, showing epi APD90 at faster pacing rates.  Data are 

from Glukhov et al.(Glukhov, Fedorov et al. 2010), (epi/endo scaling, black triangles).  F) Top to 

bottom: Rate-dependence of endo, M, and epi APs.  G) Pseudo-ECG, using a simulated 

transmural wedge.  CL changes are indicated by arrows. 
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Figure 2.11.  Early afterdepolarizations (EADs).  A) Top left) Experiments in isolated nonfailing 

human endo myocytes from Guo et al.(Guo, Liu et al. 2011) showed EADs with slow pacing (CL 

= 4000 ms) in the presence of IKr block (0.1 M dofetilide, ~85% IKr block(Thomsen, Volders et al. 

2003), reproduce with permission).  Top right) Following the experimental protocol of Guo et al. 

(CL = 4000 ms, 85% IKr block) the ORd model accurately showed a single large EAD.  Bottom) 

GB (left) and TP (right) models failed to generate EADs (CL = 4000 ms, even with 100% IKr 

block).  B) EAD mechanism.  APs are on top.  ICaL (black) and ICaL recovery gate (gray) are below.  

Slow pacing alone (CL = 4000 ms) did not cause an EAD (left).  Slow pacing plus IKr block (85%) 

caused an EAD (solid lines, right).  The EAD was depolarized by ICaL reactivation during the 

slowly repolarizing AP plateau (solid lines, solid arrows).  When ICaL recovery was prevented, the 

EAD was eliminated (dashed lines and dashed arrow). 
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Figure 2.12.  Rate dependence of intracellular ion concentrations.  Simulation results are solid 

lines.  A) [Na+]i versus pacing frequency (normalized to 0.25 Hz).  Experiments are from 

nonfailing myocytes (Pieske et al.(Pieske, Maier et al. 2002), black squares).  B) Peak Ca2+ 

transient (normalized to 0.5 Hz).  Experiments are from nonfailing myocytes (Schmidt et 

al.(Schmidt, Hajjar et al. 1998), black squares).  C)  Ca2+ transients from experiments (Fura-2-

AM) and simulations.  Results are normalized to illustrate the time course of decay.  The arrow 

indicates pacing CL changes.  D) Frequency dependent acceleration of relaxation.  Undiseased 

human experimental data are white circles.  Simulations are the black line. 
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Figure 2.13.  CaMK and Ca2+ cycling.  A) Rate dependence of CaMK active fraction.  B) Ca2+ 

cycling under control conditions (left) and without CaMK (right).  CL changes are indicated by 

arrows.  Top) [Ca2+]i and diastolic values (inset).  Middle) [Ca2+]JSR.  Bottom) Jup and Jrel (inset, 

expanded time scale). 
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Figure 2.14.  AP and Ca2+ alternans at fast pacing.  Black lines are control.  Gray lines are 

without CaMK.  The two consecutive beats are labeled 1 and 2.  A) Pacing at CL = 250 ms.  From 

left to right, top to bottom: AP, expanded time scale showing AP repolarization, Jrel (inset is 

expanded time scale), [Ca2+]i, [Ca2+]JSR, and Jup.  B) Rate dependence of APD (top) and peak 

[Ca2+]i (bottom) at fast rates (alternans bifurcations disappear without CaMK).  C) Same as panel 

B, but at slower rates (no bifurcations). 
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Figure 2.15.  I-V curves during steady state rate dependent pacing at various CLs (panel A), and 

S1S2 restitution at various DIs (panel B).  Arrows indicate decreasing CL or DI.  From left to right, 

top to bottom, results for late INa, Ito, ICaL, IKr, IKs, zoom of plateau ICaL (dashed box section), IK1, 

INaCa, and INaK are shown. 
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Figure 2.16.  Major causes of steady state APD rate dependence and S1S2 APD restitution.  A) 

APD rate dependence in control (solid black), and with [Na+]i and [Na+]ss clamped to slow rate 

(solid gray) or fast rate (dashed black) values.  When late INa (dashed gray) or both late INa and 

ICaL inactivation gates were reset to their slow rate values (dash-dot-dot gray) in addition to [Na+]i 

and [Na+]ss slow rate clamp, APD lost almost all rate dependence.  Note that slow rate [Na+]i and 

[Na+]ss clamp alone left residual APD rate dependence, especially at fast rates (CL = 300 to 700 

ms, shaded box).  B) APD rate dependence (control, solid black) was largely unaffected by 

resetting inactivation gates for late INa (dashed gray), ICaL (dash-dot-dot gray), or late INa and ICaL 

(solid gray) to their slow rate values (no [Na+]i and [Na+]ss clamping to slow rate values).  C) [Na+]i 

and INaK increase with pacing rate under control conditions (left).  When [Na+]i and [Na+]ss are 

clamped to slow rate values, INaK is small and rate independent (right).  D) APD restitution in 

control (solid black), and when inactivation gates were reset to S1 values upon S2 delivery (late 

INa reset – dashed gray, ICaL reset – dash-dot-dot gray, late INa and ICaL reset – solid gray).  Shown 
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in dashed black is resetting late INa and ICaL inactivation to the DI = 5 ms value.  E) [Na+]i and 

[Na+]ss clamp to S1 values (dashed gray) did not affect APD restitution (control, solid black). 
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Figure 2.17.  IKr deactivation is important for APD restitution at very short DIs.  A) APD restitution 

in control (solid black), and when the fast and slow deactivation gates (xrfast and xrslow) were reset 

to the DI = S1 = 1000 ms value at the start of the S2 beat (dashed gray).  Bottom) Zoom in to 

more clearly show the consequence of deactivation resetting at short DIs (section outlined by 

dashed box above).  B) Traces for the AP (top) and IKr (bottom) during the S2 beat at different DIs 

(indicated by arrows).  Spiking in IKr occurred early during the AP at short DI.  Spiking was caused 

by slow deactivation, increasing availability of IKr. 
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Figure 2.18.  Comparison with other human ventricular AP models.  Single endo cell simulations 

from ORd, TP, and GB models are solid black, gray, and dashed black lines, respectively.  

Experimental results (small tissue preparations) are white squares.  A) APD rate dependence.  

Results for APD90, 70, 50 and 30 are shown top left, top right, bottom left, and bottom right, 

respectively.  B) The AP, major currents, and intracellular Na+ and Ca2+ concentrations at steady 

state for CL = 1000 ms.  From left to right, top to bottom: AP (with Vm rest inset at far right), INa 

(inset shows peaks), late INa (not present in TP or GB models), Ito (inset to show decay rate), ICaL 

(arrow shows ORd peak magnitude; inset shows normalized peaks, which are wide in TP and 

GB), IKr (arrow shows ORd early spike peak magnitude), IKs, IK1, INaCa, INaK, intracellular Ca2+ 

concentration [Ca2+]i, [Ca2+]i decay rate, and intracellular Na+ concentration, [Na+]i. 
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Chapter 2 Supplementary Material 

 

ORd Human Model Basic Parameters 

 

Stimulus 

amplitude ൌ െ80.0 
µA
µF

,    duration ൌ 0.5 ms 

For charge conservation sake, stimulus has K+ identity as described by Hund et al.(Hund, Kucera 

et al. 2001). 

 

External Concentrations 

ሾNaାሿ୭ ൌ 140 mM 

ሾCaଶାሿ୭ ൌ 1.8 mM 

ሾKାሿ୭ ൌ 5.4 mM 

 

ORd Model Initial Conditions 

Single endocardial cell, at 1 Hz steady state, in diastole.  There are 41 state variables. 

V ൌ െ87.84 mV 

ሾNaାሿ୧ ൌ 7.23 mM 

ሾNaାሿୱୱ ൌ 7.23 mM 

ሾKାሿ୧ ൌ 143.79 mM 

ሾKାሿୱୱ ൌ 143.79 mM 

ሾCaଶାሿ୧ ൌ 8.54 · 10ିହ mM 

ሾCaଶାሿୱୱ ൌ 8.43 · 10ିହ mM 

ሾCaଶାሿ୬ୱ୰ ൌ 1.61 mM 

ሾCaଶାሿ୨ୱ୰ ൌ 1.56 mM 

m = 0.0074621 
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hfast = 0.692591 

hslow = 0.692574 

j = 0.692477 

hCaMK,slow = 0.448501 

jCaMK = 0.692413 

mL = 0.000194015 

hL = 0.496116 

hL,CaMK = 0.265885 

a = 0.00101185 

ifast = 0.999542 

islow = 0.589579 

aCaMK = 0.000515567 

iCaMK,fast = 0.999542 

iCaMK,slow = 0.641861 

d = 2.43015· 10ିଽ 

ffast = 1.0 

fslow = 0.910671 

fCa,fast = 1.0 

fCa,slow = 0.99982 

jCa = 0.999977 

n = 0.00267171 

fCaMK,fast = 1.0 

fCa,CaMK,fast = 1.0 

xr,fast = 8.26608· 10ି଺ 

xr,slow = 0.453268 

xs1 = 0.270492 

xs2 = 0.0001963 

xK1 = 0.996801 
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Jrel,NP = 2.53943· 10ିହ mM/ms 

Jrel,CaMK = 3.17262· 10ି଻ mM/ms 

CaMKtrap = 0.0124065 

 

Reversal Potentials 

ENୟ ൌ
RT
F
· ln ቆ

ሾNaାሿ୭
ሾNaାሿ୧

ቇ 

EK ൌ
RT
F
· ln ቆ

ሾKାሿ୭
ሾKାሿ୧

ቇ 

PRNୟ,K ൌ 0.01833,    EKୱ ൌ
RT
F
· ln ቆ

ሾKାሿ୭ ൅ PRNୟ,K · ሾNaାሿ୭
ሾKାሿ୧ ൅ PRNୟ,K · ሾNaାሿ୧

ቇ 

 

Cell Geometry 

Cell geometry was approximated by a cylinder.  Cell length (L) was about ten times longer than 

the radius(Forbes and Sperelakis 1989). 

L ൌ 0.01 cm, r ൌ 0.0011 cm 

vୡୣ୪୪ ൌ π · rଶ · L ൌ 38 · 10ି଺ µL 

A୥ୣ୭ ൌ 2π · rଶ ൅ 2π · r · L ൌ 0.767 · 10ିସ cmଶ 

Aୡୟ୮ ൌ RCG · A୥ୣ୭ ൌ 2 · A୥ୣ୭ ൌ 1.534 · 10ିସ cmଶ 

v୫୷୭ ൌ 0.68 · vୡୣ୪୪ ൌ 25.84 · 10ି଺ µL 

v୬ୱ୰ ൌ 0.0552 · vୡୣ୪୪ ൌ 2.098 · 10ି଺ µL 

v୨ୱ୰ ൌ 0.0048 · vୡୣ୪୪ ൌ 0.182 · 10ି଺ µL 

vୱୱ ൌ 0.02 · vୡୣ୪୪ ൌ 0.76 · 10ି଺ µL 

 

ORd Human Model Currents 
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Sodium Current (INa) 

m∞ ൌ
1

1 ൅ exp ൬
െሺV ൅ 39.57ሻ

9.871 ൰
 

τ୫ ൌ
1

6.765 · exp ቀ
V ൅ 11.64
34.77 ቁ ൅ 8.552 · exp ൬

െሺV ൅ 77.42ሻ
5.955 ൰

 

dm
dt

ൌ
m∞ െm
τ୫

 

h∞ ൌ
1

1 ൅ exp ቀ
V ൅ 82.9
6.086 ቁ

 

τ୦,୤ୟୱ୲ ൌ
1

1.432 · 10ିହ   · exp ൬
െሺV ൅ 1.196ሻ

6.285 ൰ ൅ 6.149 · exp ቀ
V ൅ 0.5096
20.27 ቁ

 

τ୦,ୱ୪୭୵ ൌ
1

0.009764 · exp ൬
െሺV ൅ 17.95ሻ

28.05 ൰ ൅ 0.3343 · exp ቀ
V ൅ 5.730
56.66 ቁ

 

A୦,୤ୟୱ୲ ൌ 0.99, A୦,ୱ୪୭୵ ൌ 0.01 

dh୤ୟୱ୲
dt

ൌ
h∞ െ h୤ୟୱ୲
τ୦,୤ୟୱ୲

 

dhୱ୪୭୵
dt

ൌ
h∞ െ hୱ୪୭୵
τ୦,ୱ୪୭୵

 

h ൌ A୦,୤ୟୱ୲ · h୤ୟୱ୲ ൅ A୦,ୱ୪୭୵ · hୱ୪୭୵ 

j∞ ൌ h∞ 

τ୨ ൌ 2.038 ൅
1

0.02136 · exp ൬
െሺV ൅ 100.6ሻ

8.281 ൰ ൅ 0.3052 · exp ቀ
V ൅ 0.9941
38.45 ቁ

 

dj
dt
ൌ
j∞ െ j
τ୨

 

hCୟMK,∞ ൌ
1

1 ൅ exp ቀ
V ൅ 89.1
6.086 ቁ

 

τ୦,CୟMK,ୱ୪୭୵ ൌ 3.0 · τ୦,ୱ୪୭୵ 

A୦,CୟMK,୤ୟୱ୲ ൌ A୦,୤ୟୱ୲, A୦,CୟMK,ୱ୪୭୵ ൌ A୦,ୱ୪୭୵ 

hCୟMK,୤ୟୱ୲ ൌ h୤ୟୱ୲ 
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dhCୟMK,ୱ୪୭୵
dt

ൌ
hCୟMK,∞ െ hCୟMK,ୱ୪୭୵

τ୦,CୟMK,ୱ୪୭୵
 

hCୟMK ൌ A୦,CୟMK,୤ୟୱ୲ · hCୟMK,୤ୟୱ୲ ൅ A୦,CୟMK,ୱ୪୭୵ · hCୟMK,ୱ୪୭୵ 

jCୟMK,∞ ൌ j∞ 

τ୨,CୟMK ൌ 1.46 · τ୨ 

djCୟMK
dt

ൌ
jCୟMK,∞ െ jCୟMK

τ୨,CୟMK
 

K୫,CୟMK ൌ INୟ,CୟMK׎    ,0.15 ൌ
1

1 ൅
K୫,CୟMK
CaMKୟୡ୲୧୴ୣ

 

GNୟ,୤ୟୱ୲തതതതതതതതത ൌ 75 mS/µF 

INୟ,୤ୟୱ୲ ൌ GNୟ,୤ୟୱ୲തതതതതതതതത · ሺV െ ENୟሻ · mଷ · ቀ൫1 െ INୟ,CୟMK൯׎ · h · j ൅ INୟ,CୟMK׎ · hCୟMK · jCୟMKቁ 

 

mL,∞ ൌ
1

1 ൅ exp ൬
െሺV ൅ 42.85ሻ

5.264 ൰
 

τ୫,L ൌ τ୫ 

dmL

dt
ൌ
mL,∞ െmL

τ୫,L
 

hL,∞ ൌ
1

1 ൅ exp ቀ
V ൅ 87.61
7.488 ቁ

 

τ୦,L ൌ 200 ms 

dhL
dt

ൌ
hL,∞ െ hL
τ୦,L

 

hL,CୟMK,∞ ൌ
1

1 ൅ exp ቀ
V ൅ 93.81
7.488 ቁ

 

τ୦,LCୟMK ൌ 3 · τ୦,L 

dhL,CୟMK
dt

ൌ
hL,CୟMK,∞ െ hL,CୟMK

τ୦,L,CୟMK
 

K୫,CୟMK ൌ INୟL,CୟMK׎    ,0.15 ൌ
1

1 ൅
K୫,CୟMK
CaMKୟୡ୲୧୴ୣ
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GNୟ,୪ୟ୲ୣതതതതതതതതത ൌ 0.0075 mS/µF 

INୟ,୪ୟ୲ୣ ൌ GNୟ,୪ୟ୲ୣതതതതതതതതത · ሺV െ ENୟሻ · mL · ቀ൫1 െ INୟL,CୟMK൯׎ · hL ൅ INୟL,CୟMK׎ · hL,CୟMKቁ 

INୟ ൌ INୟ,୤ୟୱ୲ ൅ INୟ,୪ୟ୲ୣ 

 

Transient Outward Potassium Current (Ito) 

a∞ ൌ
1

1 ൅ exp ൬
െሺV െ 14.34ሻ

14.82 ൰
 

τୟ ൌ
1.0515

1

1.2089 · ቆ1 ൅ exp ൬
െሺV െ 18.41ሻ

29.38 ൰ቇ
൅

3.5

1 ൅ exp ቀ
V ൅ 100
29.38 ቁ

 

da
dt
ൌ
a∞ െ a
τୟ

 

i∞ ൌ
1

1 ൅ exp ቀ
V ൅ 43.94
5.711 ቁ

 

τ୧,୤ୟୱ୲ ൌ 4.562 ൅
1

0.3933 · exp ൬
െሺV ൅ 100ሻ

100 ൰ ൅ 0.08004 · exp ቀ
V ൅ 50
16.59 ቁ

 

τ୧,ୱ୪୭୵ ൌ 23.62 ൅
1

0.001416 · exp ൬
െሺV ൅ 96.52ሻ

59.05 ൰ ൅ 1.7808 · 10ି଼ · exp ቀ
V ൅ 114.1
8.079 ቁ

 

A୧,୤ୟୱ୲ ൌ
1

1 ൅ exp ቀ
V െ 213.6
151.2 ቁ

, A୧,ୱ୪୭୵ ൌ 1 െ A୧,୤ୟୱ୲ 

di୤ୟୱ୲
dt

ൌ
i∞ െ i୤ୟୱ୲
τ୧,୤ୟୱ୲

 

diୱ୪୭୵
dt

ൌ
i∞ െ iୱ୪୭୵
τ୧,ୱ୪୭୵

 

i ൌ A୧,୤ୟୱ୲ · i୤ୟୱ୲ ൅ A୧,ୱ୪୭୵ · iୱ୪୭୵ 

aCୟMK,∞ ൌ
1

1 ൅ exp ൬
െሺV െ 24.34ሻ

14.82 ൰
 

τୟ,CୟMK ൌ τୟ 
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daCୟMK
dt

ൌ
aCୟMK,∞ െ aCୟMK

τୟ,CୟMK
 

iCୟMK,∞ ൌ i∞ 

δCୟMK,ୢୣ୴ୣ୪୭୮ ൌ 1.354 ൅
10ିସ

exp ቀ
V െ 167.4
15.89 ቁ ൅ exp ൬

െሺV െ 12.23ሻ
0.2154 ൰

 

δCୟMK,୰ୣୡ୭୴ୣ୰ ൌ 1 െ
0.5

1 ൅ exp ቀ
V ൅ 70
20 ቁ

 

τ୧,CୟMK,୤ୟୱ୲ ൌ τ୧,୤ୟୱ୲ · δCୟMK,ୢୣ୴ୣ୪୭୮ · δCୟMK,୰ୣୡ୭୴ୣ୰ 

τ୧,CୟMK,ୱ୪୭୵ ൌ τ୧,ୱ୪୭୵ · δCୟMK,ୢୣ୴ୣ୪୭୮ · δCୟMK,୰ୣୡ୭୴ୣ୰ 

A୧,CୟMK,୤ୟୱ୲ ൌ A୧,୤ୟୱ୲, A୧,CୟMK,ୱ୪୭୵ ൌ A୧,ୱ୪୭୵ 

diCୟMK,୤ୟୱ୲
dt

ൌ
iCୟMK,∞ െ iCୟMK,୤ୟୱ୲

τ୧,CୟMK,୤ୟୱ୲
 

diCୟMK,ୱ୪୭୵
dt

ൌ
iCୟMK,∞ െ iCୟMK,ୱ୪୭୵

τ୧,CୟMKୱ୪୭୵
 

iCୟMK ൌ A୧,CୟMK,୤ୟୱ୲ · iCୟMK,୤ୟୱ୲ ൅ A୧,CୟMK,ୱ୪୭୵ · iCୟMK,ୱ୪୭୵ 

K୫,CୟMK ൌ I୲୭,CୟMK׎    ,0.15 ൌ
1

1 ൅
K୫,CୟMK
CaMKୟୡ୲୧୴ୣ

 

G୲୭തതതത ൌ  0.02 mS/µF 

I୲୭ ൌ G୲୭തതതത · ሺV െ EKሻ · ቀ൫1 െ I୲୭,CୟMK൯׎ · a · i ൅ I୲୭,CୟMK׎ · aCୟMK · iCୟMKቁ 

 

L-type Calcium Current (ICaL) 

d∞ ൌ
1

1 ൅ exp ൬
െሺV ൅ 3.940ሻ

4.230 ൰
 

τୢ ൌ 0.6 ൅
1

exp൫െ0.05 · ሺV ൅ 6.0ሻ൯ ൅ exp൫0.09 · ሺV ൅ 14.0ሻ൯
 

dd
dt

ൌ
d∞ െ d
τୢ

 

f∞ ൌ
1

1 ൅ exp ቀ
V ൅ 19.58
3.696 ቁ
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τ୤,୤ୟୱ୲ ൌ 7.0 ൅
1

0.0045 · exp ൬
െሺV ൅ 20.0ሻ

10.0 ൰ ൅ 0.0045 · exp ቀ
V ൅ 20.0
10.0 ቁ

 

τ୤,ୱ୪୭୵ ൌ 1000 ൅
1

0.000035 · exp ቀെ
V ൅ 5.0
4.0 ቁ ൅ 0.000035 · exp ቀ

V ൅ 5.0
6.0 ቁ

 

A୤,୤ୟୱ୲ ൌ 0.6,    A୤,ୱ୪୭୵ ൌ 1 െ A୤,୤ୟୱ୲ 

df୤ୟୱ୲
dt

ൌ
f∞ െ f୤ୟୱ୲
τ୤,୤ୟୱ୲

 

dfୱ୪୭୵
dt

ൌ
f∞ െ fୱ୪୭୵
τ୤,ୱ୪୭୵

 

f ൌ A୤,୤ୟୱ୲ · f୤ୟୱ୲ ൅ A୤,ୱ୪୭୵ · fୱ୪୭୵ 

fCୟ,∞ ൌ f∞ 

τ୤,Cୟ,୤ୟୱ୲ ൌ 7.0 ൅
1

0.04 · exp ቀെ
V െ 4.0
7.0 ቁ ൅ 0.04 · exp ቀ

V െ 4.0
7.0 ቁ

 

τ୤,Cୟ,ୱ୪୭୵ ൌ 100 ൅
1

0.00012 · exp ቀ
െV
3.0ቁ ൅ 0.00012 · exp ቀ

V
7.0ቁ

 

A୤,Cୟ,୤ୟୱ୲ ൌ 0.3 ൅
0.6

1.0 ൅ exp ቀ
V െ 10.0
10.0 ቁ

,    A୤,Cୟ,ୱ୪୭୵ ൌ 1 െ A୤,Cୟ,୤ୟୱ୲ 

dfCୟ,୤ୟୱ୲
dt

ൌ
fCୟ,∞ െ fCୟ,୤ୟୱ୲
τ୤,Cୟ,୤ୟୱ୲

 

dfCୟ,ୱ୪୭୵
dt

ൌ
fCୟ,∞ െ fCୟ,ୱ୪୭୵
τ୤,Cୟ,ୱ୪୭୵

 

fCୟ ൌ A୤,Cୟ,୤ୟୱ୲ · fCୟ,୤ୟୱ୲ ൅ A୤,Cୟ,ୱ୪୭୵ · fCୟ,ୱ୪୭୵ 

jCୟ,∞ ൌ fCୟ,∞ 

τ୨,Cୟ ൌ 75.0 

djCୟ
dt

ൌ
jCୟ,∞ െ jCୟ
τ୨,Cୟ

 

fCୟMK,∞ ൌ f∞ 

τ୤,CୟMK,୤ୟୱ୲ ൌ 2.5 · τ୤,୤ୟୱ୲ 

A୤,CୟMK,୤ୟୱ୲ ൌ A୤,୤ୟୱ୲,    A୤,CୟMK,ୱ୪୭୵ ൌ A୤,ୱ୪୭୵ 
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dfCୟMK,୤ୟୱ୲
dt

ൌ
fCୟMK,∞ െ fCୟMK,୤ୟୱ୲

τ୤,CୟMK,୤ୟୱ୲
 

fCୟMK,ୱ୪୭୵ ൌ fୱ୪୭୵ 

fCୟMK ൌ A୤,CୟMK,୤ୟୱ୲ · fCୟMK,୤ୟୱ୲ ൅ A୤,CୟMK,ୱ୪୭୵ · fCୟMK,ୱ୪୭୵ 

fCୟ,CୟMK,∞ ൌ f∞ 

τ୤,Cୟ,CୟMK,୤ୟୱ୲ ൌ 2.5 · τ୤,Cୟ,୤ୟୱ୲ 

A୤,Cୟ,CୟMK,୤ୟୱ୲ ൌ A୤,Cୟ,୤ୟୱ୲,    A୤,Cୟ,CୟMK,ୱ୪୭୵ ൌ A୤,Cୟ,ୱ୪୭୵ 

dfCୟ,CୟMK,୤ୟୱ୲
dt

ൌ
fCୟ,CୟMK,∞ െ fCୟ,CୟMK,୤ୟୱ୲

τ୤,Cୟ,CୟMK,୤ୟୱ୲
 

fCୟ,CୟMK,ୱ୪୭୵ ൌ fCୟ,ୱ୪୭୵ 

fCୟ,CୟMK ൌ A୤,Cୟ,CୟMK,୤ୟୱ୲ · fCୟ,CୟMK,୤ୟୱ୲ ൅ A୤,CୟMK,ୱ୪୭୵ · fCୟMK,ୱ୪୭୵ 

K୫,୬ ൌ 0.002,    kାଶ,୬ ൌ 1000.0,    kିଶ,୬ ൌ jCୟ · 1.0 

α୬ ൌ
1.0

kାଶ,୬
kିଶ,୬

൅ ൬1 ൅
K୫,୬

ሾCaଶାሿୱୱ
൰
ସ.଴ 

dn
dt

ൌ α୬ · kାଶ,୬ െ n · kିଶ,୬ 

PCୟ ൌ 0.0001
cm
s
   

 γCୟ୧ ൌ 1.0,    γCୟ୭ ൌ 0.341,     zCୟ ൌ 2 

ΨCୟ ൌ zCୟଶ ·
VFଶ

RT
·
γCୟ୧ · ሾCaଶାሿୱୱ · exp ቀ

zCୟVF
RT ቁ െ γCୟ୭ · ሾCaଶାሿ୭

exp ቀ
zCୟVF
RT ቁ െ 1.0

 

ICୟL ൌ PCୟ · ΨCୟ 

PCୟNୟ ൌ 0.00125 · PCୟ,    γNୟ୧ ൌ 0.75,    γNୟ୭ ൌ 0.75,     zNୟ ൌ 1 

ΨCୟNୟ ൌ zNୟଶ ·
VFଶ

RT
·
γNୟ୧ · ሾNaାሿୱୱ · exp ቀ

zNୟVF
RT ቁ െ γNୟ୭ · ሾNaାሿ୭

exp ቀ
zNୟVF
RT ቁ െ 1.0

 

ICୟNୟ ൌ PCୟNୟ · ΨCୟNୟ 

PCୟK ൌ 3.574 · 10ିସ · PCୟ,,    γK୧ ൌ 0.75,    γK୭ ൌ 0.75,     zK ൌ 1 
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ΨCୟK ൌ zKଶ ·
VFଶ

RT
·
γK୧ · ሾKାሿୱୱ · exp ቀ

zKVF
RT ቁ െ γK୭ · ሾKାሿ୭

exp ቀ
zKVF
RT ቁ െ 1.0

 

ICୟK ൌ PCୟK · ΨCୟK 

PCୟ,CୟMK ൌ 1.1 · PCୟ   

ICୟL,CୟMK ൌ PCୟ,CୟMK · ΨCୟ 

PCୟNୟ,CୟMK ൌ 0.00125 · PCୟ,CୟMK 

ICୟNୟ,CୟMK ൌ PCୟNୟ,CୟMK · ΨCୟNୟ 

PCୟK,CୟMK ൌ 3.574 · 10ିସ · PCୟ,CୟMK 

ICୟK,CୟMK ൌ PCୟK,CୟMK · ΨCୟK 

K୫,CୟMK ൌ ICୟL,CୟMK׎    ,0.15 ൌ
1

1 ൅
K୫,CୟMK
CaMKୟୡ୲୧୴ୣ

 

ICୟL ൌ ICୟL · d · ൫1 െ ICୟL,CୟMK൯׎ · ሺf · ሺ1 െ nሻ ൅ fCୟ · n · jCୟሻ ൅ ICୟL,CୟMK · d · ICୟL,CୟMK׎

· ൫fCୟMK · ሺ1 െ nሻ ൅ fCୟ,CୟMK · n · jCୟ൯ 

ICୟNୟ ൌ ICୟNୟ · d · ൫1 െ ICୟL,CୟMK൯׎ · ሺf · ሺ1 െ nሻ ൅ fCୟ · n · jCୟሻ ൅ ICୟNୟ,CୟMK · d · ICୟL,CୟMK׎

· ൫fCୟMK · ሺ1 െ nሻ ൅ fCୟ,CୟMK · n · jCୟ൯ 

ICୟK ൌ ICୟK · d · ൫1 െ ICୟL,CୟMK൯׎ · ሺf · ሺ1 െ nሻ ൅ fCୟ · n · jCୟሻ ൅ ICୟK,CୟMK · d · ICୟL,CୟMK׎

· ൫fCୟMK · ሺ1 െ nሻ ൅ fCୟ,CୟMK · n · jCୟ൯ 

 

Rapid Delayed Rectifier Potassium Current (IKr) 

x୰,∞ ൌ
1

1 ൅ exp ൬
െሺV ൅ 8.337ሻ

6.789 ൰
 

τ୶୰,୤ୟୱ୲ ൌ 12.98 ൅
1

0.3652 · exp ቀ
V െ 31.66
3.869 ቁ ൅ 4.123 · 10ିହ · exp ൬

െሺV െ 47.78ሻ
20.38 ൰

 

τ୶୰,ୱ୪୭୵ ൌ 1.865 ൅
1

0.06629 · exp ቀ
V െ 34.70
7.355 ቁ ൅ 1.128 · 10ିହ · exp ൬

െሺV െ 29.74ሻ
25.94 ൰
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A୶୰,୤ୟୱ୲ ൌ
1

1 ൅ exp ቀ
V ൅ 54.81
38.21 ቁ

, A୶,୰,ୱ୪୭୵ ൌ 1 െ A୶୰,୤ୟୱ୲ 

dx୰,୤ୟୱ୲
dt

ൌ
x୰,∞ െ x୰,୤ୟୱ୲
τ୶,୰,୤ୟୱ୲

 

dx୰,ୱ୪୭୵
dt

ൌ
x୰,∞ െ x୰,ୱ୪୭୵
τ୶,୰,ୱ୪୭୵

 

x୰ ൌ A୶,୰,୤ୟୱ୲ · x୰,୤ୟୱ୲ ൅ A୶,୰,ୱ୪୭୵ · x୰,ୱ୪୭୵ 

RK୰ ൌ
1

ቆ1 ൅ exp ቀ
V ൅ 55
75 ቁቇ · ቆ1 ൅ exp ቀ

V െ 10
30 ቁቇ

 

GK୰തതതതത ൌ 0.046 mS/µF 

IK୰ ൌ GK୰തതതതത · ඨ
ሾKାሿ୭
5.4

· x୰ · RK୰ · ሺV െ EKሻ 

 

Slow Delayed Rectifier Potassium Current (IKs) 

xୱଵ,∞ ൌ
1

1 ൅ exp ൬
െሺV ൅ 11.60ሻ

8.932 ൰
 

τ୶,ୱଵ ൌ 817.3 ൅
1

2.326 · 10ିସ · exp ቀ
V ൅ 48.28
17.80 ቁ ൅ 0.001292 · exp ൬

െሺV ൅ 210.0ሻ
230.0 ൰

 

dxୱଵ
dt

ൌ
xୱଵ,∞ െ xୱଵ

τ୶,ୱଵ
 

xୱଶ,∞ ൌ xୱଵ,∞ 

τ୶,ୱଶ ൌ
1

0.01 · exp ቀ
V െ 50
20 ቁ ൅ 0.0193 · exp ൬

െሺV ൅ 66.54ሻ
31 ൰

 

dxୱଶ
dt

ൌ
xୱଶ,∞ െ xୱଶ

τ୶,ୱଶ
 

GKୱതതതതത ൌ 0.0034 mS/µF 

IKୱ ൌ GKୱതതതതത ·

ۉ

ۈ
ۇ
1 ൅

0.6

1 ൅ ൬
3.8 · 10ିହ
ሾCaଶାሿ୧

൰
ଵ.ସ

ی

ۋ
ۊ
· xୱଵ · xୱଶ · ሺV െ EKୱሻ 
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Inward Rectifier Potassium Current (IK1) 

xKଵ,∞ ൌ
1

1 ൅ exp ൬െ
V ൅ 2.5538 · ሾKାሿ୭ ൅ 144.59
1.5692 · ሾKାሿ୭ ൅ 3.8115 ൰

 

τ୶,Kଵ ൌ
122.2

exp ൬
െሺV ൅ 127.2ሻ

20.36 ൰ ൅ exp ቀ
V ൅ 236.8
69.33 ቁ

 

dxKଵ
dt

ൌ
xKଵ,∞ െ xKଵ

τ୶,Kଵ
 

RKଵ ൌ
1

1 ൅ exp ൬
V ൅ 105.8 െ 2.6 · ሾKାሿ୭

9.493 ൰
 

GKଵതതതതത ൌ 0.1908 mS/µF 

IKଵ ൌ GKଵതതതതത · ඥሾKାሿ୭ · xKଵ · RKଵ · ሺV െ EKሻ 

 

Sodium-Calcium Exchange Current (INaCa) 

For, Y Ԗ ሼi, ssሽ 

kNୟଵ ൌ 15 mM,    kNୟଶ ൌ 5 mM,    kNୟଷ ൌ 88.12 mM,    kୟୱ୷୫୫ ൌ 12.5 

ωNୟ ൌ 6 · 10ସ Hz,    ωCୟ ൌ 6 · 10ସ Hz,    ωNୟCୟ ൌ 5 · 10ଷ Hz 

kCୟ,୭୬ ൌ 1.5 · 10଺
mM
ms

,    kCୟ,୭୤୤ ൌ 5 · 10ଷ Hz 

qNୟ ൌ 0.5224,    qCୟ ൌ 0.1670 

hCୟ ൌ exp ൬
qCୟVF
RT

൰,    hNୟ ൌ exp ൬
qNୟVF
RT

൰ 

hଵ ൌ 1 ൅
ሾNaାሿY
kNୟଷ

ሺ1 ൅ hNୟሻ 

hଶ ൌ
ሾNaାሿY · hNୟ
kNୟଷ · hଵ

 

hଷ ൌ
1
hଵ

 

hସ ൌ 1 ൅
ሾNaାሿY
kNୟଵ

ቆ1 ൅
ሾNaାሿY
kNୟଶ

ቇ 
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hହ ൌ
ሾNaାሿY

ଶ

hସ · kNୟଵ · kNୟଶ
 

h଺ ൌ
1
hସ

 

h଻ ൌ 1 ൅
ሾNaାሿ୭
kNୟଷ

൬1 ൅
1
hNୟ

൰ 

h଼ ൌ
ሾNaାሿ୭

kNୟଷ · hNୟ · h଻
 

hଽ ൌ
1
h଻

 

hଵ଴ ൌ kୟୱ୷୫୫ ൅ 1 ൅
ሾNaାሿ୭
kNୟଵ

ቆ1 ൅
ሾNaାሿ୭
kNୟଶ

ቇ 

hଵଵ ൌ
ሾNaାሿ୭

ଶ

hଵ଴ · kNୟଵ · kNୟଶ
 

hଵଶ ൌ
1
hଵ଴

 

kଵ ൌ hଵଶ · ሾCaଶାሿ୭ · kCୟ,୭୬ 

kଶ ൌ kCୟ,୭୤୤ 

kଷ
ᇱ ൌ hଽ · ωCୟ 

kଷ
ᇱᇱ ൌ h଼ · ωNୟCୟ 

kଷ ൌ kଷ
ᇱ ൅ kଷ

ᇱᇱ 

kସᇱ ൌ
hଷ · ωCୟ

hCୟ
 

kସᇱᇱ ൌ hଶ · ωNୟCୟ 

kସ ൌ kସᇱ ൅ kସᇱᇱ 

kହ ൌ kCୟ,୭୤୤ 

k଺ ൌ h଺ · ሾCaଶାሿY · kCୟ,୭୬ 

k଻ ൌ hହ · hଶ · ωNୟ 

k଼ ൌ h଼ · hଵଵ · ωNୟ 

xଵ ൌ kଶ · kସ · ሺk଻ ൅ k଺ሻ ൅ kହ · k଻ · ሺkଶ ൅ kଷሻ 

xଶ ൌ kଵ · k଻ · ሺkସ ൅ kହሻ ൅ kସ · k଺ · ሺkଵ ൅ k଼ሻ 
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xଷ ൌ kଵ · kଷ · ሺk଻ ൅ k଺ሻ ൅ k଼ · k଺ · ሺkଶ ൅ kଷሻ 

xସ ൌ kଶ · k଼ · ሺkସ ൅ kହሻ ൅ kଷ · kହ · ሺkଵ ൅ k଼ሻ 

Eଵ ൌ
xଵ

xଵ ൅ xଶ ൅ xଷ ൅ xସ
 

Eଶ ൌ
xଶ

xଵ ൅ xଶ ൅ xଷ ൅ xସ
 

Eଷ ൌ
xଷ

xଵ ൅ xଶ ൅ xଷ ൅ xସ
 

Eସ ൌ
xସ

xଵ ൅ xଶ ൅ xଷ ൅ xସ
 

K୫CୟAୡ୲ ൌ 150 · 10ି଺ mM 

alloY ൌ
1

1 ൅ ൬
K୫CୟAୡ୲
ሾCaଶାሿY

൰
ଶ 

JNୟCୟ,Nୟ,Y ൌ 3 · ሺEସ · k଻ െ Eଵ · k଼ሻ ൅ Eଷ · kସᇱᇱ െ Eଶ · kଷ
ᇱᇱ 

JNୟCୟ,Cୟ,Y ൌ Eଶ · kଶ െ Eଵ · kଵ 

zNୟ ൌ 1,    zCୟ ൌ 2 

GNୟCୟതതതതതതത ൌ 0.0008 µA/µF 

INୟCୟ,୧ ൌ GNୟCୟതതതതതതത · 0.8 · allo୧ · ൫ zNୟ · JNୟCୟ,Nୟ,୧ ൅ zCୟ · JNୟCୟ,Cୟ,୧൯ 

INୟCୟ,ୱୱ ൌ GNୟCୟതതതതതതത · 0.2 · alloୱୱ · ൫ zNୟ · JNୟCୟ,Nୟ,ୱୱ ൅ zCୟ · JNୟCୟ,Cୟ,ୱୱ൯ 

INୟCୟ ൌ INୟCୟ,୧ ൅ INୟCୟ,ୱୱ 

 

Sodium-Potassium Pump Current (INaK) 

kଵ
ା ൌ 949.5 Hz,    kଵି ൌ 182.4 mMିଵ,    kଶ

ା ൌ 687.2 Hz,    kଶ
ି ൌ 39.4 Hz 

kଷ
ା ൌ 1899 Hz,    kଷ

ି ൌ 79300 Hz · mMିଶ,    kସ
ା ൌ 639.0 Hz,    kସି ൌ 40 Hz 

KNୟ୧
୭ ൌ 9.073 mM,    KNୟ୭

୭ ൌ 27.78 mM 

∆ൌ െ0.1550 

KNୟ୧ ൌ KNୟ୧
୭ · exp ൬

∆ · V · F
3 · R · T

൰,    KNୟ୭ ൌ KNୟ୭
୭ · exp ቆ

ሺ1 െ ∆ሻ · V · F
3 · R · T

ቇ 

KK୧ ൌ 0.5 mM,    KK୭ ൌ 0.3582 mM 
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ሾMgADPሿ ൌ 0.05,    ሾMgATPሿ ൌ 9.8 

KM୥ATP ൌ 1.698 · 10ି଻ mM 

ሾHାሿ ൌ 10ି଻ mM 

ሾΣPሿ ൌ 4.2 mM 

KH,P ൌ 1.698 · 10ି଻ mM,    KNୟ,P ൌ 224 mM,    KK,P ൌ 292 mM 

ሾPሿ ൌ ሾΣPሿ ቆ1 ൅
ሾHାሿ

KH,P
൅
ሾNaାሿ୧
KNୟ,P

൅
ሾKାሿ୧
KK,P

ቇൗ  

αଵ ൌ
kଵ
ା ൬
ሾNaାሿ୧
KNୟ୧

൰
ଷ

൬1 ൅
ሾNaାሿ୧
KNୟ୧

൰
ଷ

൅ ൬1 ൅
ሾKାሿ୧
KK୧

൰
ଶ

െ 1
 

βଵ ൌ kଵି · ሾMgADPሿ 

αଶ ൌ kଶ
ା 

βଶ ൌ
kଶ
ି ൬
ሾNaାሿ୭
KNୟ୭

൰
ଷ

൬1 ൅
ሾNaାሿ୭
KNୟ୭

൰
ଷ

൅ ൬1 ൅
ሾKାሿ୭
KK୭

൰
ଶ

െ 1
 

αଷ ൌ
kଷ
ା ൬
ሾKାሿ୭
KK୭

൰
ଶ

൬1 ൅
ሾNaାሿ୭
KNୟ୭

൰
ଷ

൅ ൬1 ൅
ሾKାሿ୭
KK୭

൰
ଶ

െ 1
 

βଷ ൌ
kଷ
ି · ሾPሿ · ሾHାሿ

1 ൅
ሾMgATPሿ
KM୥ATP

 

αସ ൌ
kସ
ା ·

ሾMgATPሿ
KM୥ATP

1 ൅
ሾMgATPሿ
KM୥ATP

 

βସ ൌ
kସି ൬

ሾKାሿ୧
KK୧

൰
ଶ

൬1 ൅
ሾNaାሿ୧
KNୟ୧

൰
ଷ

൅ ൬1 ൅
ሾKାሿ୧
KK୧

൰
ଶ

െ 1
 

xଵ ൌ αସ · αଵ · αଶ ൅ βଶ · βସ · βଷ ൅ αଶ · βସ · βଷ ൅ βଷ · αଵ · αଶ 

xଶ ൌ βଶ · βଵ · βସ ൅ αଵ · αଶ · αଷ ൅ αଷ · βଵ · βସ ൅ αଶ · αଷ · βସ 

xଷ ൌ αଶ · αଷ · αସ ൅ βଷ · βଶ · βଵ ൅ βଶ · βଵ · αସ ൅ αଷ · αସ · βଵ 

xସ ൌ βସ · βଷ · βଶ ൅ αଷ · αସ · αଵ ൅ βଶ · αସ · αଵ ൅ βଷ · βଶ · αଵ 
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Eଵ ൌ
xଵ

xଵ ൅ xଶ ൅ xଷ ൅ xସ
 

Eଶ ൌ
xଶ

xଵ ൅ xଶ ൅ xଷ ൅ xସ
 

Eଷ ൌ
xଷ

xଵ ൅ xଶ ൅ xଷ ൅ xସ
 

Eସ ൌ
xସ

xଵ ൅ xଶ ൅ xଷ ൅ xସ
 

zNୟ ൌ 1,    zK ൌ 1 

JNୟK,Nୟ ൌ 3 · ሺEଵ · αଷ െ Eଶ · βଷሻ 

JNୟK,K ൌ 2 · ሺEସ · βଵ െ Eଷ · αଵሻ 

INୟK ൌ 30 · ൫ zNୟ · JNୟK,Nୟ ൅ zK · JNୟK,K൯ 

 

Background Currents (INab, ICab, IKb) and Sarcolemmal Calcium Pump Current (IpCa) 

 The formulations for INab, ICab, IKb, and IpCa were taken from the Hund-Decker-Rudy 

model(Hund and Rudy 2004; Decker, Heijman et al. 2009).  IKb represents small amplitude, 

rapidly activating K+ current observed in the ventricle (IKp-like(Yue and Marban 1988) or IKur-

like(Sridhar, da Cunha et al. 2007) current).  The amplitudes of these currents were reduced 

compared to values used by Decker et al.(Decker, Heijman et al. 2009).  These choices were 

made consistent with the following: 1) so that resting [Na+]i would be similar to values shown in 

nonfailing human ventricle at 37 °C by Pieske et al.(Pieske, Maier et al. 2002) at very slow pacing 

rates (0.25 Hz), 2) so that the resting [Ca2+]i would be similar to values shown in nonfailing human 

ventricle at 37 °C by Schmidt et al.(Schmidt, Hajjar et al. 1998), and 3) so that the generally lower 

major current conductances used to match human data in construction of this model would be 

properly balanced. 

PNୟୠ ൌ 3.75 · 10ିଵ଴ cm/s,    zNୟ ൌ 1 

INୟୠ ൌ PNୟୠ · zNୟଶ ·
VFଶ

RT
·
ሾNaାሿ୧ · exp ቀ

zNୟVF
RT ቁ െ ሾNaାሿ୭

exp ቀ
zNୟVF
RT ቁ െ 1.0

 

PCୟୠ ൌ 2.5 · 10ି଼ cm/s,    γCୟ୧ ൌ 1.0,    γCୟ୭ ൌ 0.341,     zCୟ ൌ 2 
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ICୟୠ ൌ PCୟୠ · zCୟଶ ·
VFଶ

RT
·
γCୟ୧ · ሾCaଶାሿ୧ · exp ቀ

zCୟVF
RT ቁ െ γCୟ୭ · ሾCaଶାሿ୭

exp ቀ
zCୟVF
RT ቁ െ 1.0

 

xKୠ ൌ
1

1 ൅ exp ൬
െሺV െ 14.48ሻ

18.34 ൰
 

GKୠതതതതത ൌ 0.003 mS/µF 

IKୠ ൌ GKୠതതതതത · xKୠ · ሺV െ EKሻ 

G୮Cୟതതതതതത ൌ 0.0005 mS/µF 

I୮Cୟ ൌ G୮Cୟതതതതതത ·
ሾCaଶାሿ୧

0.0005 ൅ ሾCaଶାሿ୧
 

 

Voltage 

C୫ ൌ 1.0 µF 

dV୫
dt

ൌ െ
1
C୫

· ൫INୟ ൅ I୲୭ ൅ ICୟL ൅ ICୟNୟ ൅ ICୟK ൅ IK୰ ൅ IKୱ ൅ IKଵ ൅ INୟCୟ ൅ INୟK ൅ INୟୠ ൅ ICୟୠ ൅ IKୠ

൅ I୮Cୟ ൅ Iୱ୲୧୫ሻ 

 

Calcium/Calmodulin-Dependent Protein Kinase (CaMK) 

 The CaMK model is equivalent to that used in the Hund-Decker-Rudy dog model(Hund 

and Rudy 2004; Decker, Heijman et al. 2009).  We assumed that CaMK kinetics are similar in 

human and dog, in the absence of human ventricle specific measurements. 

αCୟMK ൌ 0.05 msିଵ,    βCୟMK ൌ 0.00068 msିଵ 

CaMK଴ ൌ 0.05,    K୫CୟM ൌ 0.0015 mM 

CaMKୠ୭୳୬ୢ ൌ CaMK଴ ·
1 െ CaMK୲୰ୟ୮

1 ൅
K୫CୟM
ሾCaଶାሿୱୱ

 

CaMKୟୡ୲୧୴ୣ ൌ CaMKୠ୭୳୬ୢ ൅ CaMK୲୰ୟ୮ 

dCaMK୲୰ୟ୮
dt

ൌ αCୟMK · CaMKୠ୭୳୬ୢ · ൫CaMKୠ୭୳୬ୢ ൅ CaMK୲୰ୟ୮൯ െ βCୟMK · CaMK୲୰ୟ୮ 
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ORd Human Model Fluxes 

 

Diffusion Fluxes (Jdiff,Na, Jdiff,Ca, Jdiff,K) 

τୢ୧୤୤,Nୟ ൌ τୢ୧୤୤,K ൌ 2.0 ms,    τୢ୧୤୤,Cୟ ൌ 0.2 ms 

Jୢ୧୤୤,Nୟ ൌ
ሾNaାሿୱୱ െ ሾNaାሿ୧

τୢ୧୤୤,Nୟ
 

Jୢ୧୤୤,Cୟ ൌ
ሾCaଶାሿୱୱ െ ሾCaଶାሿ୧

τୢ୧୤୤,Cୟ
 

Jୢ୧୤୤,K ൌ
ሾKାሿୱୱ െ ሾKାሿ୧

τୢ୧୤୤,K
 

The time constant for Na+ and K+ diffusion fluxes are larger than the time constant for 

Ca2+ diffusion flux.  Physiologically, this amounts to reduced diffusivity for Na+ and K+ as they exit 

the subspace. 

 

SR Calcium Release Flux, via Ryanodine Receptor (Jrel) 

 Ca2+ release channels (ryanodine receptors, RyRs, formulation similar to that in Livshitz 

et al.(Livshitz and Rudy 2007)) have been split into two separate populations in this model 

according to CaMK phosphorylation state, based on observations in dog ventricle(Witcher, 

Kovacs et al. 1991).  There is a non-phosphorylated release (Jrel,NP) and a CaMK phosphorylated 

release (Jrel,CaMK).  When RyR channels are phosphorylated by CaMK, release amplitude is 1.25 

times larger, and the decay time constant is 1.25 times longer.  The proportion of the RyR 

population that behaves in the phosphorylated state is regulated by active CaMK. 

βத ൌ 4.75 ms 

α୰ୣ୪ ൌ 0.5 · βத 

J୰ୣ୪,NP,∞ ൌ
α୰ୣ୪ · ሺെICୟLሻ

1 ൅ ቆ
1.5

ሾCaଶାሿ୨ୱ୰
ቇ
଼ 

τ୰ୣ୪,NP ൌ
βத

1 ൅ ቆ
0.0123
ሾCaଶାሿ୨ୱ୰

ቇ
, τ୰ୣ୪,NP ൒ 0.001 
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dJ୰ୣ୪,NP
dt

ൌ
J୰ୣ୪,NP,∞ െ J୰ୣ୪,NP

τ୰ୣ୪,NP
 

βத,CୟMK ൌ 1.25 · βத 

α୰ୣ୪,CୟMK ൌ 0.5 · βத,CୟMK 

J୰ୣ୪,CୟMK,∞ ൌ
α୰ୣ୪,CୟMK · ሺെICୟLሻ

1 ൅ ቆ
1.5

ሾCaଶାሿ୨ୱ୰
ቇ
଼  

τ୰ୣ୪,CୟMK ൌ
βத,CୟMK

1 ൅ ቆ
0.0123
ሾCaଶାሿ୨ୱ୰

ቇ
, τ୰ୣ୪,CୟMK ൒ 0.001 

dJ୰ୣ୪,CୟMK
dt

ൌ
J୰ୣ୪,CୟMK,∞ െ J୰ୣ୪,CୟMK

τ୰ୣ୪,CୟMK
 

K୫,CୟMK ൌ ୰ୣ୪,CୟMK׎    ,0.15 ൌ
1

1 ൅
K୫,CୟMK
CaMKୟୡ୲୧୴ୣ

 

J୰ୣ୪ ൌ ൫1 െ ୰ୣ୪,CୟMK൯׎ · J୰ୣ୪,NP ൅ ୰ୣ୪,CୟMK׎ · J୰ୣ୪,CୟMK 

 

Calcium Uptake via SERCA Pump (Jup) 

 Ca2+ uptake channels (SERCA pumps) are phosphorylated by CaMK(Hawkins, Xu et al. 

1994; Toyofuku, Curotto Kurzydlowski et al. 1994).  Here, we used two separate Ca2+ uptake 

populations: those not-phosphorylated (Jup,NP) and those phosphorylated by CaMK (Jup,CaMK).  

Ca2+ leakage from the NSR was identical to the formulation used in the Hund-Decker-Rudy 

model.  However, leak magnitude was reduced by ~10%. 

J୳୮,NP ൌ
0.004375 · ሾCaଶାሿ୧
0.00092 ൅ ሾCaଶାሿ୧

 

∆K୫,PLB ൌ 0.00017 mM 

∆J୳୮,CୟMK ൌ 1.75 

J୳୮,CୟMK ൌ ൫1 ൅ ∆J୳୮,CୟMK൯ ·
0.004375 · ሾCaଶାሿ୧

0.00092 െ ∆K୫,PLB ൅ ሾCaଶାሿ୧
 

K୫,CୟMK ൌ ୳୮,CୟMK׎    ,0.15 ൌ
1

1 ൅
K୫,CୟMK
CaMKୟୡ୲୧୴ୣ
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J୪ୣୟ୩ ൌ
0.0039375 · ሾCaଶାሿ୬ୱ୰

15.0
 

J୳୮ ൌ ൫1 െ ୳୮,CୟMK൯׎ · J୳୮,NP ൅ ୳୮,CୟMK׎ · J୳୮,CୟMK െ J୪ୣୟ୩ 

 

Calcium Translocation from NSR to JSR (Jtr) 

 Sobie et al.(Sobie, Song et al. 2005) showed that Ca2+ spark recovery required 91 ms.  

This measurement informed our choice of 100 ms for translocation time constant (tr). 

τ୲୰ ൌ 100 ms 

J୲୰ ൌ
ሾCaଶାሿ୬ୱ୰ െ ሾCaଶାሿ୨ୱ୰

τ୲୰
 

 

ORd Human Model Concentrations and Buffers 

 In the absence of human ventricle specific measurements, we take Ca2+ buffering 

equations and kinetics from the Hund-Decker-Rudy model. 

ሾCMDNሿ ൌ 0.05 mM, K୫,CMDN ൌ 0.00238 mM 

ሾTRPNሿ ൌ 0.07 mM, K୫,TRPN ൌ 0.0005 mM 

ሾBSRሿ ൌ 0.047 mM, K୫,BSR ൌ 0.00087 mM 

ሾBSLሿ ൌ 1.124 mM, K୫,BSL ൌ 0.0087 mM 

ሾCSQNሿ ൌ 10.0 mM, K୫,CSQN ൌ 0.8 mM 

dሾNaାሿ୧
dt

ൌ െ൫INୟ ൅ INୟL ൅ 3 · INୟCୟ,୧ ൅ 3 · INୟK ൅ INୟୠ൯ ·
Aୡୟ୮

F · v୫୷୭
൅ Jୢ୧୤୤,Nୟ ·

vୱୱ
v୫୷୭

 

dሾNaାሿୱୱ
dt

ൌ െ൫ICୟNୟ ൅ 3 · INୟCୟ,ୱୱ൯ ·
Aୡୟ୮
F · vୱୱ

െ Jୢ୧୤୤,Nୟ 

dሾKାሿ୧
dt

ൌ െሺI୲୭ ൅ IK୰ ൅ IKୱ ൅ IKଵ ൅ IK୳୰ ൅ Iୱ୲୧୫ െ 2 · INୟKሻ ·
Aୡୟ୮

F · v୫୷୭
൅ Jୢ୧୤୤,K ·

vୱୱ
v୫୷୭

 

dሾKାሿୱୱ
dt

ൌ െICୟK ·
Aୡୟ୮
F · vୱୱ

െ Jୢ୧୤୤,K 
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βCୟ୧ ൌ
1

1 ൅
ሾCMDNሿ · K୫,CMDN

൫K୫,CMDN ൅ ሾCaଶାሿ୧൯
ଶ ൅

ሾTRPNሿ · K୫,TRPN
൫K୫,TRPN ൅ ሾCaଶାሿ୧൯

ଶ

 

dሾCaଶାሿ୧
dt

ൌ βCୟ୧ · ቆെ൫I୮Cୟ ൅ ICୟୠ െ 2 · INୟCୟ,୧൯ ·
Aୡୟ୮

2 · F · v୫୷୭
െJ୳୮ ·

v୬ୱ୰
v୫୷୭

൅ Jୢ୧୤୤,Cୟ ·
vୱୱ
v୫୷୭

ቇ 

βCୟୱୱ ൌ
1

1 ൅
ሾBSRሿ · K୫,BSR

൫K୫,BSR ൅ ሾCaଶାሿୱୱ൯
ଶ ൅

ሾBSLሿ · K୫,BSL
൫K୫,BSL ൅ ሾCaଶାሿୱୱ൯

ଶ

 

dሾCaଶାሿୱୱ
dt

ൌ βCୟୱୱ · ൬െ൫ICୟL െ 2 · INୟCୟ,ୱୱ൯ ·
Aୡୟ୮

2 · F · vୱୱ
൅ J୰ୣ୪ ·

v୨ୱ୰
vୱୱ

െ Jୢ୧୤୤,Cୟ൰ 

dሾCaଶାሿ୬ୱ୰
dt

ൌ J୳୮ െ J୲୰ ·
v୨ୱ୰
v୬ୱ୰

 

βCୟ୨ୱ୰ ൌ
1

1 ൅
ሾCSQNሿ · K୫,CSQN

൫K୫,CSQN ൅ ሾCaଶାሿ୨ୱ୰൯
ଶ

 

dሾCaଶାሿ୨ୱ୰
dt

ൌ βCୟ୨ୱ୰ · ሺJ୲୰ െ J୰ୣ୪ሻ 
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ORd Human Model Transmural Heterogeneity 

 epi/endo M/endo 

GNaL 0.6 1

Gto 4.0 4.0

PCa, PCaNa, PCaK 1.2 2.5

GKr 1.3 0.8

GKs 1.4 1

GK1 1.2 1.3

GNaCa,i, GNaCa,ss 1.1 1.4

GNaK 0.9 0.7

GKb 0.6 1

,∞,۾ۼ,ܔ܍ܚ۸ 1 ∞,۹ۻ܉۱,ܔ܍ܚ۸ 1.7

,۾ۼ,ܘܝ۸  1.3 ۹ۻ܉۱,ܘܝ۸ 1

ሾ۱ۼ۲ۻሿ 1.3  1

Scaling Factors for Model Implementation of Transmural Heterogeneity 

Formulation changes to account for epi Ito differences are: 

δୣ୮୧ ൌ 1.0 െ
0.95

1.0 ൅ exp ቀ
V ൅ 70.0
5.0 ቁ

 

τ୧,ୣ୮୧,୤ୟୱ୲ ൌ τ୧,୤ୟୱ୲ · δୣ୮୧ 

τ୧,ୣ୮୧,ୱ୪୭୵ ൌ τ୧,ୱ୪୭୵ · δୣ୮୧ 

 

Computational Methodology 

 

Hardware and Software 

For simulation of the basic human model, we used custom code developed and run using 

Microsoft Visual C++ 2008 Express Edition on a Windows Vista Dell desktop PC, with an Intel 
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Core 2 Quad processor.  Integration was performed as described below (Rapid Integration).  We 

also used custom C++ code run on an array of Dell cluster nodes with 64-bit Intel Xeon 

processors, running Linux and Sun Microsystems Grid Engine.  Execution scripts were written in 

Python.  A fixed time step of 0.01 ms was applied, and the Rush-Larsen Method(Rush and 

Larsen 1978) was used.  All simulations were paced to true steady state(Livshitz and Rudy 2009), 

unless otherwise noted. 

 Validation and fitting of individual model components (i.e. time constants, steady state 

curves) was performed using custom code written in Matlab 2009a running on a Windows Vista 

Dell desktop PC, with an Intel Core 2 Quad processor.  Integration of currents was performed as 

described below (Rapid Integration).  Automated parameter estimation used a sum of least 

squares objective function, minimized by Matlab functions “fmincon”, “ga”, and “lsqcurvefit” 

(interior reflexive Newton’s Method for “fmincon” and “lsqcurvefit”, genetic algorithm for “ga”).  

See Matlab documentation for details and references.  We used the parallel implementation of 

“fmincon” and “ga” by opening a matlabpool (size 4).  Manual parameter estimation was also 

used, where minimization was by simple guess and check. 

 

Rapid Integration 

The Rush-Larsen Method(Rush and Larsen 1978), applied by Victorri et al.(Victorri, Vinet 

et al. 1985), relies on the assumption that during sufficiently small time intervals, a system of 

differential algebraic equations becomes effectively uncoupled.  One can then readily solve 

uncoupled differential equations one-by-one to obtain expressions for time evolution of state 

variables. 

Here, identification of sufficiently small time intervals (dt) was determined by comparison 

to gold standard simulations with fixed dt = 0.005 ms.  We match the gold standard when we 

apply the following rules: 

1) dt = 0.005 ms from the start of the stimulus until 25 ms thereafter 

2) maximum allowed dt = 1.0 ms 
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3) dt was adjusted dynamically with changes in membrane voltage, as described in LR1(Luo 

and Rudy 1991): 

a. if ∆V ൑ 0.2 mV, dt ൌ 0.8 ·
ୢV

ୢ୲
 

b. if ∆V ൒ 0.8 mV, dt ൌ 0.2 ·
ୢV

ୢ୲
 

i. while ∆V ൒ 0.8 mV, dt is reduced tenfold until the condition, ∆V ൏

0.8 mV, is met (minimum dt = 0.005 ms) 

Equations for updating gates (e.g. generic gate, s) 

s ൌ s∞ െ ሺs∞ െ sሻ · exp ൬
െdt
τୱ

൰ 

Equations for updating the n gate, Jrel,NP, and Jrel,CaMK 

n ൌ α୬ ·
kାଶ,୬
kିଶ,୬

െ ቆα୬ ·
kାଶ,୬
kିଶ,୬

െ nቇ · exp൫െkିଶ,୬ · dt൯ 

J୰ୣ୪,NP ൌ J୰ୣ୪,NP,∞ െ ൫J୰ୣ୪,NP,∞ െ J୰ୣ୪,NP൯ · exp ቆ
െdt
τ୰ୣ୪,NP

ቇ 

J୰ୣ୪,CୟMK ൌ J୰ୣ୪,CୟMK,∞ െ ൫J୰ୣ୪,CୟMK,∞ െ J୰ୣ୪,CୟMK൯ · exp ቆ
െdt

τ୰ୣ୪,CୟMK
ቇ 

The Forward Euler Method was applied to update membrane voltage, concentrations, 

and CaMKtrap at each time step. 

Using the above method, it took less than one minute of runtime to pace the model to 

true and accurate steady state at 1 Hz (Microsoft Visual C++ 2008 Express Edition on a Windows 

Vista Dell desktop PC, with a 2.83 GHz Intel Core 2 Quad processor). 
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Chapter 2 Supplementary Figures 

 

Additional Details for Currents 
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Figure 2.S01.  Human INaCa model faithfully reproduces Kang and Hilgemann(Kang and 

Hilgemann 2004) observations.  Compare Figures 3C, 4A, 4C from Kang and Hilgemann(Kang 

and Hilgemann 2004) with the simulations from our human INaCa model, presented here (same 

protocols were used).  A) Charge flux reversal potential is more depolarized than Ca2+ flux, a 

feature of this model which includes the observed Na+ leak mode.  B) Charge flux (solid lines) 

and Ca2+ flux (dashed lines) versus voltage, for a variety of substrates (in mM, condition 1: 

[Na+]o=0 , [Na+]i=40, [Ca2+]o=4, [Ca2+]i=0; condition 2: [Na+]o=120, [Na+]i=40, [Ca2+]o=4, [Ca2+]i=0; 

condition 3: [Na+]o=120, [Na+]i=40, [Ca2+]o=0, [Ca2+]i=0.1; condition 4: [Na+]o=120, [Na+]i=4, 

[Ca2+]o=0, [Ca2+]i=0.1).  C) Reversal potential is sensitive to ionic substrate (in mM, [Na+]o=100, 

[Ca2+]o=1.2, [Ca2+]i=0.0005, condition 1: [Na+]i=0; condition 2: [Na+]i=5; condition 3: [Na+]i=10; 

condition 4: [Na+]i=20; condition 5: [Na+]i=20, [Ca2+]i=0). 
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Figure 2.S02.  Human INaCa model faithfully reproduces observations of Weber et al.(Weber, 

Piacentino et al. 2003).  Compare Weber et al.(Weber, Piacentino et al. 2003), their Figure 2, with 

simulations from our human INaCa model, shown here (same protocols were used).  A) Voltage 

dependence of INaCa under different intracellular Na+ clamp conditions.  B) Intracellular Na+ 

dependence of INaCa under different voltage clamp conditions.  C) Intracellular Ca2+ dependence 

of INaCa under different voltage clamp conditions.  The model incorporates Weber’s “allosteric 

activation”, seen at depolarized voltages. 
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Figure 2.S03.  Human INaCa model faithfully reproduces Weber et al.(Weber, Piacentino et al. 

2003) intracellular Na+ dependence under AP and Ca2+ clamp conditions.  Compare Weber et 

al.(Weber, Piacentino et al. 2003) Figure 6A with simulations from our INaCa model, shown here 

(same protocols were used).  A) Clamped Ca2+ transient (similar to Weber et al.(Weber, 

Piacentino et al. 2003), increasing instantaneously from 0.01 to 0.1 M, and decaying over 500 

ms), and action potential waveform measured in undiseased human ventricular myocytes 

(microelectrode recording, see Experimental Methods section of this supplement for more 

details).  B) Due to depolarization, exchange current was outward, briefly, until [Ca2+]i rose.  

When [Na+]i was relatively low, maximal inward exchange current increased, as Weber showed. 
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Figure 2.S04.  IK1 shows voltage dependence, but not rate dependence.  Top panel: Simulated 

action potentials, paced at different cycle lengths.  Bottom panel: IK1 in the model, at the different 

pacing rates.  Note that the peak current reached was largely rate independent, as was shown by 

Jost et al.(Jost, Acsai et al. 2009) in undiseased human ventricle experiments. 
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Figure 2.S05.  IKr shows voltage dependence, but not rate dependence.  Top panel: Simulated 

action potentials, paced at different cycle lengths.  Bottom panel: IKr in the model, at the different 

pacing rates.  Note that the peak current reached was rate independent, as was shown by Jost et 

al.(Jost, Acsai et al. 2009) in undiseased human ventricle experiments. 
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Figure 2.S06.  Schematic diagram of the human INaK model, modified from Smith and 

Crampin(Smith and Crampin 2004).  There are four distinct enzymatic states, with lumped 

substates where non-rate limiting transitions were assumed to be in rapid equilibrium.  Forward 

pump function is clockwise cycling.  From this diagram, we formulated equations for the current 

using the King-Altmann method(King and Altman 1956). 
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Figure 2.S07.  Human INaK model faithfully reproduces major observations of Nakao and 

Gadsby(Nakao and Gadsby 1989).  Data (squares) are from Nakao and Gadsby(Nakao and 

Gadsby 1989), their Figures 2A, 4C, 7A, 9B, 10B.  INaK model simulations are solid lines (same 

protocols used).  The model is not a perfect match to these data, measured in guinea pig 

ventricle, but the basic voltage and concentration dependencies are duplicated, demonstrating 

that the model is dynamically and mechanistically correct.  A) Voltage dependence of INaK under 

different extracellular Na+ clamp conditions.  B) Voltage dependence of INaK under different 

intracellular Na+ clamp conditions, and [Na+]o=150 mM.  C) Voltage dependence of INaK under 

different intracellular Na+ clamp conditions, and [Na+]o=0 mM.  D) Voltage dependence of INaK 

under different extracellular K+ clamp conditions, and [Na+]o=150 mM.  E) Voltage dependence of 

INaK under different extracellular K+ clamp conditions, and [Na+]o=0 mM. 
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APD Rate Dependence in Homogeneous Multicellular Fiber 

We used microelectrode action potentials, measured in the undiseased human ventricle 

at 37 °C, for model validation.  Since these data were measured in a multicellular preparation, the 

experimental protocol was simulated in a 1-dimensional multicellular fiber(Decker, Heijman et al. 

2009).  In Decker et al.(Decker, Heijman et al. 2009), the subtle but complex differences in APD 

adaptation between single cell and a multicellular fiber were investigated.  We used the 

conduction equations as in Decker et al. (-200 A/F, 1 ms stimulus delivered to fiber end, zero 

flux boundary conditions), and measured the model APD at the 50th cell in a 100-cell 

homogeneous subendocardial strand.  Fiber results were similar to single cell results, as in 

Decker et al, and match the experimental data.  Conduction velocity was 45 cm/sec at 1 Hz 

pacing, consistent with available (canine) experiments(Spach, Heidlage et al. 2000). 

 

Figure 2.S08.  Multicellular strand simulations compared to measurements.  APD30, APD50, 

APD70, and APD90 shown in red, green, blue, and black, respectively.  Squares are 

experimentally measured human subendocardial action potentials, at 37°C, N=140.  Solid lines 

are simulation results from the 50th cell in a 100-cell strand (zero flux boundary). 
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Transmural AP Simulations Compared with Nonfailing Human Optical Mapping 

Experiments 

 

Figure 2.S09.  Experiments (top) are from an undiseased human heart (heart #5, male, age 20, 

death from Tylenol overdose), measured by Glukhov et al.(Glukhov, Fedorov et al. 2010), 

reproduced with permission.  Simulations are below.  Cell types are color coded and labeled.  CL 

= 1000 ms. 
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Alternans Simulation in Coupled Tissue 

 

Figure 2.S10.  A strand composed of 100 endo cells was paced at CL = 280 ms until steady state 

was reached.  Beat to beat APD alternans were evident at the central cell (#50, isolated from 

edge effects). 
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Alternans were Eliminated by SERCA2a Upregulation 

 

Figure 2.S11.  Alternans were eliminated by upregulation of SERCA2a (Jup in the model), as in 

experiments by Cutler et al.(Cutler, Wan et al. 2009).  APD90 is on the left axes in black.  Peak 

intracellular Ca2+ concentration ([Ca2+]i Max) is on the right axes in red.  From top to bottom, Jup 

was increased from control by 10, and 20 %.  For 10% increase in Jup, the alternans bifurcation 

shifted to faster rates.  For 20% increase, the bifurcation was eliminated. 
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Effects of H+, CO2 and HCO3
- on Na+ Handling, INaK and APD Rate Dependence 

We kept Cl- concentration constant, since the ORd model does not systematically include 

Cl- handling (20 mM intracellular and 100 mM extracellular, as in Decker et al.(Decker, Heijman et 

al. 2009)).  Otherwise, all Crampin and Smith equations were included exactly as 

described(Crampin and Smith 2006).  The INaK formulation we used, based on Smith and 

Crampin(Smith and Crampin 2004), includes pH dependence.  The simulations below allow INaK 

to respond dynamically to pH. 
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Figure 2.S12.  H+, CO2 and HCO3
- fluxes did not change the relationship between Na+ 

accumulation, INaK and APD rate dependence.  Top) APD90 rate dependence with incorporation 

of the Crampin and Smith equations(Crampin and Smith 2006) (black line).  When intracellular 

Na+ concentration ([Na+]i) was artificially kept low, at the CL = 2000 ms value, the ability of the 

APD to shorten at fast rates was substantially reduced (gray line).  Bottom) Left) As pacing rate 

increased (indicated by arrows) INaK increased due to [Na+]i accumulation.  Right) However, when 

[Na+]i was clamped at the low CL = 2000 ms value, INaK became rate independent.  This 

hampered APD shortening at fast pacing rates. 
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Effect of KCNE1 Heterogeneity on Transmural IKs and AP Simulations 

 Protein forming the -subunit of IKs, KCNE1 was measured to be transmurally 

heterogeneous in the undiseased human ventricle(Szabo, Szentandrassy et al. 2005).  Western 

blots showed about two-fold greater intensity for KCNE1 in M-cells compared to epi cells.  

Considering that KCNE1:KCNQ1 stoichiometry is variable(Nakajo, Ulbrich et al. 2010), and that 

the presence of KCNE1 slows IKs activation by about five fold and increases IKs conductance by 

about five fold, we simulated the effect of KCNE1 transmural heterogeneity on IKs and the AP.  

Thus, for heterogeneous KCNE1 simulations in M-cells, IKs activation was five times slower and 

conductance was five times greater than in the control M-cell.  For epi cells, activation was five 

times faster, and conductance was five times smaller than in the control epi cell.  These 

conditions are exaggerated (five fold changes compared KNCE1 overabundance to total KCNE1 

absence(Sanguinetti, Curran et al. 1996)), showing possible KCNE1 transmural heterogeneity 

effects in the extreme.  As shown, even for the extreme case there was little effect on IKs or 

especially on the AP. 
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Figure 2.S13.  Transmural heterogeneity of KCNE1 -subunit had minimal effect on transmural 

heterogeneity of IKs and the AP.  Results for control conditions are solid lines (black is endo, blue 

is M-cell, red is epi).  Dashed lines show the effect of the KCNE1 heterogeneity.  Top) AP. 

Bottom) IKs. 
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APD Accommodation 

 

Figure 2.S14.  APD90 Accommodation.  At time = 0 seconds, pacing CL was abruptly reduced.  

At time = 180 seconds, the pacing CL was abruptly increased to its original value.  CL change 

from 750 to 480 ms is shown with white circles.  Black circles show CL change from 750 to 410 

ms.  Experiments (top) are from in vivo nonfailing human hearts, measured by Franz et al.(Franz, 

Swerdlow et al. 1988).  Simulations are below. 
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Parameter Sensitivity Analysis 

 

Figure 2.S15.  Sensitivity of steady state APD90 rate dependence to variations in current 

conductances and to the fraction of INaCa in the myoplasm (80% in the control case).  The control 

case is shown with the thick black line.  Parameter reductions are in blue (20% dashed blue, 10% 

solid blue).  Parameter increases are shown in red (10% solid red, 20% dashed red). 
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Figure 2.S16.  Sensitivity of S1S2 restitution of APD90 to variations in current conductances and 

to the fraction of INaCa in the myoplasm (80% in the control case).  The control case is shown with 

the thick black line.  Parameter reductions are in blue (20% dashed blue, 10% solid blue).  

Parameter increases are shown in red (10% solid red, 20% dashed red). 

  



117 
 

 

Figure 2.S17.  Sensitivity of rate dependence of maximum (systolic) intracellular Ca2+ 

concentration (peak [Ca2+]i) to variations in current conductances and to the fraction of INaCa in the 

myoplasm (80% in the control case).  The control case is shown with the thick black line.  

Parameter reductions are in blue (20% dashed blue, 10% solid blue).  Parameter increases are 

shown in red (10% solid red, 20% dashed red). 
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Figure 2.S18.  Sensitivity of rate dependence of intracellular Na+ concentration ([Na+]i) to 

variations in current conductances and to the fraction of INaCa in the myoplasm (80% in the control 

case).  The control case is shown with the thick black line.  Parameter reductions are in blue 

(20% dashed blue, 10% solid blue).  Parameter increases are shown in red (10% solid red, 20% 

dashed red). 

  



119 
 

 

Figure 2.S19.  Sensitivity of steady state rate dependence of APD90 in the different transmural 

cell types to changes in current conductances.  The control case is shown with the thick black 

line.  Parameter reductions are in blue (20% dashed blue, 10% solid blue).  Parameter increases 

are shown in red (10% solid red, 20% dashed red). 
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Chapter 3:  Multiple Hits Evince Arrhythmic Phenotype in Subclinical Long QT Syndrome: 

Simulation Studies of the Silent KCNQ1 Mutation Q357R 

 

Introduction 

 

 Long QT syndrome (LQTS) causes sudden death due to cardiac arrhythmia in the 

absence of structural heart disease in otherwise healthy people(Roden 2008).  LQTS prevalence 

is estimated to be quite high, affecting as many as 1 in 2000 among caucasians(Schwartz, 

Stramba-Badiale et al. 2009).  The most common form of LQTS is type-1 (LQT1)(Priori, Schwartz 

et al. 2003) with KCNQ1 as the locus of mutations.  This gene transcribes the Kv7.1 protein, 

forming the -subunit of the ventricular repolarizing slow delayed rectifier K+ current, 

IKs(Sanguinetti, Curran et al. 1996). 

Though LQT1 is less deadly than other forms of LQTS, its lethality increases 

considerably under conditions of emotional/physical stress or exercise(Schwartz, Priori et al. 

2001).  These conditions accelerate pacing rate and activate the -adrenergic response, which 

increases L-type Ca2+ current (ICaL)(Nagykaldi, Kem et al. 1999; Antoons, Volders et al. 2007).  IKs 

is also increased with pacing rate and -adrenergic stimulation(Volders, Stengl et al. 2003).  The 

additional outward current provided by IKs is required for proper repolarization in opposition to 

enhanced inward ICaL.  Conditions other than -adrenergic stimulation which increase demand on 

IKs for proper repolarization include reduction in other repolarizing currents, especially the rapid 

delayed rectifier K+ current, IKr.  The inner pore lining of the hERG protein, forming IKr -subunits, 

has uncommon affinity for a variety of clinically used pharmacological agents causing IKr 

block(Sanguinetti and Tristani-Firouzi 2006).  Thus, the presence of -adrenergic stimulation and 

drug-induced (acquired) LQTS compounds risk for LQT1 patients(Roden 2004) by challenging 

their genetically compromised repolarization reserve(Roden and Yang 2005). 

-adrenergic stimulation, consequent fast pacing, and/or drug block of IKr act as 

additional hits on top of congenital LQT1.  As stated recently by Wilde, a double hit hurts more 
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(Wilde 2010).  Multiple hits, each individually innocuous, may combine synergistically to create 

arrhythmia substrates. 

An interesting case of silent LQT1(Varro and Papp 2006) has been observed; missense 

mutation Q357R near the S6/C-terminal junction of Kv7.1(Boulet, Raes et al. 2006).  Q357R was 

discovered in a 40 year old female proband with a history of syncope.  However, her measured 

QTc interval was within the normal range (0.43 seconds)(Chen, Zhang et al. 2003).  The 

phenotype associated with silent mutations alone cannot always account for clinical outcomes.  

Arrhythmia is caused by multiple hits in silent LQTS.  Motivated to explain this phenomenon, we 

investigated Q357R as an instructive example, using quantitative computational models in 

computer simulations. 

 

Methods 

 

Markov IKs and Human Ventricular Myocyte Models 

 

 Using experimental data from Boulet et al.(Boulet, Raes et al. 2006), human IKs models 

for wild-type (WT) and KCNQ1 mutant Q357R were developed.  Action potential (AP) simulations 

were conducted using the O’Hara-Rudy dynamic (ORd) model for the human ventricular myocyte 

(described in detail in Chapter 2).  Simulations were performed in two transmural cell types: 

epicardial (epi) and mid-myocardial (M).  Simulations were also performed in a heterogeneous 

transmural wedge model from which we computed the pseudo-ECG as previously(Gima and 

Rudy 2002) mimicking experiments(Yan and Antzelevitch 1996).  Further details are in the 

Chapter 3 Supplement. 

 

-Adrenergic Stimulation by Isoproterenol (ISO) 
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 In order to determine -adrenergic stimulation effects on IKs and changes to its role in the 

AP, we adapted the recent model by Heijman et al.(Heijman, Volders et al. 2011), including 

signaling cascade details from isoproterenol (ISO) application to compartmentalized PKA 

concentration and fractional phosphorylation of targets.  Targets are: 1) IKs(Volders, Stengl et al. 

2003), 2) fast Na+ current(Baba, Dun et al. 2004) (fast INa), 3) ICaL(Nagykaldi, Kem et al. 1999; 

Antoons, Volders et al. 2007), 4) Na+/K+ ATPase(Despa, Bossuyt et al. 2005) (INaK), 5) ultra-rapid 

K+ current(Sridhar, da Cunha et al. 2007) (IKur, represented by K+ background current, IKb in ORd), 

6) ryanodine receptor(Ginsburg and Bers 2004) (RyR, Jrel), 7) SERCa pump(Odermatt, Taschner 

et al. 1996) (Jup), and 8) troponin(Robertson, Johnson et al. 1982) (trpn).  Equations and details 

are in the Chapter 3 Supplement. 

 

Results 

 

Silent Mutant Q357R Kinetics and Behavior 

 

 Boulet et al.(Boulet, Raes et al. 2006) observed the following regarding Q357R compared 

to WT IKs channels: 1) steady state activation was shifted to more depolarized potentials, 2) 

activation was slowed, 3) deactivation was unchanged, 4) current was reduced, and 5) channel 

expression at the membrane was reduced (confocal image data; not quantified).  We developed 

and tested mechanistic explanations for these observations using Markov models for IKs. 

WT IKs was represented by a Markov model shown in Figure 3.01A, left(Silva and Rudy 

2005).  WT channels activate after relatively slow transitions from left to right (zone 2 closed 

states), followed by relatively rapid transitions from top to bottom (zone 1 closed states).  Rapid 

activation from zone 1 states which are near to the open states provides an available 

reserve(Silva and Rudy 2005).  By contrast, we hypothesized that Q357R mutant channels do not 

have available reserve.  That is, Q357R channels activate with two identical relatively slow zone 

2-like transitions.  To implement this in the Markov model, we replaced top to bottom transition 
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rates (“g” and “d” in WT) with the left to right transition rates (“a” and “b” in WT, slightly modified to 

“A” and “B” in Q357R).  In addition, compared to WT, the Q357R model includes depolarization 

directed shifts in the voltage dependence of transition rates.  Conductance was reduced by 50% 

to represent the observed lower expression at the membrane.  We tested whether these changes 

account for the differences in Q357R channel kinetics compared to WT, as observed by Boulet et 

al.(Boulet, Raes et al. 2006). 

 

Heterotetramer Assembly and Function 

 

 In addition to the homozygous Q357R case, Boulet created the heterozygous case by 

injecting CHO-K1 cells with equal amount of Q357R and WT cDNA.  Thus, when subunits come 

together to form the main components of IKs, the resulting channel could be heteromeric.  There 

are six permutations of WT and Q357R subunit pairings that can form a channel tetramer (Figure 

3.01B).  We tested whether dominant negative mutant behavior could account for heterozygous 

(het) results.  That is, the model assumes 1) WT and Q356R tetramer assembly is random, 2) 

presence of ≥1 Q357R subunit(s) slows gating for the entire channel, and 3) presence of ≥1 

Q357R subunit(s) attenuates membrane expression.  These assumptions (schematized in Figure 

3.01B) allowed us to develop and test a putative model for the het case.  Accordingly, het current 

calculation was the weighted average of computed Q357R and WT currents, added together in a 

5:1 mixture. 

 

Validation of WT, Q357R, and het models 

 

 Using the assumptions and corresponding models described, we were able to reproduce 

the kinetics of the Q357R and het currents compared to WT.  Simulations are compared to 

experiments in Figure 3.02.  Specifically, as determined by Boulet et al., for mutant current 

simulation compared to WT, 1) steady state activation was shifted to more depolarized potentials, 
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2) activation rate was slowed, 3) deactivation rate was unaffected, and 4) tail current was 

reduced.  The correspondence between simulations and experiments (Figure 3.02) supports the 

hypothesis that Q357R kinetic changes can be considered as loss of available reserve and that 

Q357R has dominant negative consequences. 

 

-Adrenergic Stimulation 

 

As in previous simulations(Heijman, Volders et al. 2011) and experiments(Volders, Stengl 

et al. 2003), human IKs was augmented by PKA in part due to accelerated activation.  In brief, 

PKA phosphorylation was represented by the following changes to ORd: ICaL) conductance was 

larger and steady state activation, as well as inactivation, were shifted toward more 

hyperpolarized potentials; IKs) activation transition rates were accelerated, and the conductance 

increased; IKb) larger conductance; fast INa) larger conductance and hyperpolarization directed 

shifts in steady state inactivation; Jrel) larger amplitude and faster decay; Jup) increase in Ca2+ 

affinity; troponin) decrease in Ca2+ affinity; INaK) increase in Na+ affinity.  The changes were 

validated using available experiments (Figure 3.03A, details in the caption).  With these changes, 

simulated AP duration (APD) with ISO (30 nM) relative to control was within the experimentally 

observed range for nonfailing human ventricular myocytes, measured using monophasic AP 

recordings at pacing cycle length CL = 500 ms (Shimizu et al.(Shimizu, Ohe et al. 1991)).  The 

slope of APD restitution (S1 pacing CL = 400 ms, diastolic interval, DI, was relative to APD90) 

was more steep with ISO than without, as observed by Taggart et al. using monophasic AP 

recordings in nonfailing human hearts(Taggart, Sutton et al. 2003). 

 Figure 3.03B shows the simulated effects of 1 M ISO on the AP and PKA targets.  As in 

nonfailing human ventricle experiments(Shimizu, Ohe et al. 1991), the AP upstroke and plateau 

were elevated and APD was slightly reduced with ISO (4 ms reduction, top row of Figure 3.03B).  

Increased INa caused the elevated upstroke.  The plateau potential was elevated by ICaL increase.  

AP duration shortening was caused by increase in IKs (and also INaK, IKb).  Changes to Ca2+ fluxes 

and buffers led to an increase in the Ca2+ transient amplitude. 
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Phenotype is Silent under Basal Conditions 

 

 We tested the effect of replacing WT with Q357R or het IKs in different cell types at 

normal heart rate under basal conditions (CL = 1000 ms, no ISO, Figure 3.04).  In epi cells, 

Q357R and het had very little effect on the APD.  Prolongation was 14 and 12 ms, respectively.  

For M-cells, Q357R and het increased APD by 30 and 23 ms, respectively.  These are relatively 

small increases (≤8.5% increase), though larger than for epi cells (≤6.0% increase).  Minor AP 

prolongation under basal conditions duplicates the silent phenotype. 

 Occupancy in rapidly activating zone 1 closed states, near the open states, was lower for 

Q357R compared to WT in both epi and M cells.  In M cells, zone 2 occupancy actually exceeded 

zone 1 occupancy (note crossover).  These results indicate that mutant current reduction was due 

in part to altered channel kinetics, not expression differences alone.  For simplicity, the 

intermediate zone occupancy for the weighted sum het case was not shown. 

 

Multiple Hits Cause AP Prolongation and Early Afterdepolarizations (EADs) 

 

 In Figure 3.05, hits to the repolarization reserve were sequentially added in epi cell 

simulations.  Layered hits were: 1) fast pacing (CL = 300 ms, second column), 2) -adrenergic 

stimulation (1 M ISO dose, third column), and 3) partial IKr block (30% block, far right column).  

With fast pacing, Q357R and het prolonged the AP by only negligible amounts (8 and 7 ms, 

respectively).  Note that the prolongation was less than observed at the slower resting heart rate 

(CL = 1000 ms, far left column, 14 and 12 ms prolongation for Q357R and het, respectively).  

This is accurate to the typical LQT1 clinical phenotype, where prolongation is more severe at 

slower rates, though arrhythmic events are associated with fast pacing(Schwartz, Priori et al. 

2001; Roden 2008).  When ISO was added at fast pacing, APD was increased by 27 and 21 ms 

for Q357R and het respectively, relative to WT.  The increase due to ISO was 15 ms (Q357R) 
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and 10 ms (het) compared to without ISO.  This was due to an increase in inward ICaL, which was 

not countered sufficiently by the increase in compromised outward IKs.  By contrast, ISO slightly 

decreased WT APD (4 ms, shown in Figure 3.03B). 

Adding partial IKr block (30%) to ISO at fast rate caused WT APD to increase by 31 ms.  

For Q357R and het, APD was severely prolonged under these conditions; extended time at 

depolarized plateau voltages allowed ICaL reactivation, triggering EADs (mechanism shown in 

Chapter 2).  The Q357R and het APs following the EAD were shortened due to incompletely 

deactivated IKs during the short diastolic interval. 

With fast pacing alone, the Q357R and het IKs changes had a strong effect in the M-cell 

(Chapter 3 Supplement Figure 3.S01).  The first hit alone – fast pacing – caused substantial 

changes to the M-cell AP with the silent LQT mutation. 

 

Silent Mutant IKs Gating Kinetics in Presence of Multiple Hits 

 

At CL = 1000 ms, zone 1 occupancy was greater than zone 2 occupancy for both WT 

and Q357R cases (Figure 3.05, bottom row).  Interestingly, after the first hit (fast pacing), zones 1 

and 2 occupancy showed crossover for WT.  For Q357R, there was no crossover.  Instead, zone 

2 occupancy always remained larger.  Thus, mutant loss of IKs was due in part to kinetics 

differences (relative reduction in zone 1 available reserve(Silva and Rudy 2005)), not just reduced 

conductance.  Occupancy of zone 1 available reserve states was always larger for WT than for 

Q357R.  However, conductance loss was the more important consequence of the Q357R 

mutation.  This was determined from simulations shown in Chapter 3 Supplement Figure 3.S02.  

We created two component mutants: one with altered conductance alone (mutant type A); 

another with altered gating kinetics alone (mutant type B). 

 Qualitative results for mutant types A and B were the same as for Q357R and het.  That 

is, under basal conditions at normal heart rate, mutant AP prolongation was mild.  When pacing 

rate was increased, the AP differences were reduced.  Adding ISO and then ISO plus partial IKr 

block caused AP prolongation to become more dramatic for mutants A and B.  As expected, 
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mutant type B (altered kinetics alone) showed reduced zone 1 occupancy compared to WT, while 

mutant type A (reduced conductance alone) showed zone occupancy similar to WT (not shown). 

Reduced conductance alone caused EADs with ISO plus IKr block.  However, altered 

kinetics alone (mutant type B) did not produce an EAD.  These results signify that although the 

kinetics changes, which reduce the available reserve for Q357R, are important, the more severe 

consequence of Q357R is reduced channel expression at the membrane. 

 

Mechanisms 

 

 In Figure 3.06, we investigated the mechanisms underlying previous results.  Essentially, 

the function of human IKs is to be “augmentable” in proportion to need and prevent excessive AP 

prolongation(Roden 2004; Jost, Virag et al. 2005).  This “repolarization reserve” function was 

quantified as the cumulative charge delivered by IKs.  We also quantified cumulative charge 

delivered by IKr and other relevant ISO-dependent currents during the AP. 

 As the AP progresses, ISO-dependent depolarizing currents, fast INa and ICaL, deliver 

inward current, resulting in a negative charge contribution (QNa+QCaL) with a rapid phase (INa) 

followed by a slower phase (ICaL).  Outward repolarizing currents counteract negative QNa+QCaL.  

Other than IKs, the ISO-dependent outward currents are INaK and IKb.  Adding positive QNaK+QKb to 

QNa+QCaL reduces the overall net negative charge.  So does QKr, and finally, also QKs. 

Under basal conditions at normal pacing rate, by the end of the AP, QNaK+QKb played a 

minor role in countering QNa+QCaL.  Large outward QKr provided the majority of positive charge, 

causing cumulative charge to cross the zero line.  Additional effects of QKs were negligibly small.  

QKs became slightly larger with the hit of fast pacing, but was still small.  Results for WT, Q357R, 

and het were indistinguishable under these conditions. 

 When ISO was applied in addition to fast pacing, QKs contribution became pronounced.  

The cumulative charge from QNaK+QKb was also larger.  However, negative QNa+QCaL also 

increased.  Even adding QKr to QNaK+QKb was not enough to fully overcome cumulative QNa+QCaL, 

and cause a zero line crossing.  Only with addition of QKs, enhanced by ISO, was the zero line 
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crossed ensuring proper repolarization.  With ISO, proper repolarization required much larger QKs 

contribution than without ISO to counteract larger QNa+QCaL.  For WT, ISO caused a remarkable 

8-fold increase in QKs.  The increase was only ~5-fold for Q357R and het. 

 When partial IKr block was added to fast pacing and ISO application, the need for QKs to 

help counteract QNa+QCaL became even more critical.  Only in the WT case did the contributions 

of outward QNaK+QKb + (reduced) QKr + QKs fully counteract inward QNa+QCaL to cause a zero line 

crossing.  Zero line crossings did not occur for the silent mutant cases. 

Under normal and slow pacing conditions alone (no ISO, no IKr block), there were no 

important differences between WT and silent mutant types.  It was loss of augmentability of silent 

mutant IKs, necessary in the presence of multiple hits, which caused AP prolongation and EADs. 

 The bar charts in Figure 3.06B show QKs delivered at t = 250 ms when hits were layered 

for WT, Q357R, and het cases.  Multiple hits increased QKs; for silent mutant cases, QKs increase 

was smaller than for WT, illustrating reduced augmentability.  For silent mutant cases, IKs 

augmentation was insufficient to prevent AP prolongation and EADs with ISO and with ISO plus 

IKr block, respectively. 

 

Heterogeneous Transmural Wedge 

 

To determine how the Q357R mutation affects repolarization in the more realistic context 

of heterogeneous tissue, we performed transmural wedge (pseudo-ECG) simulations (Figure 

3.07).  Under basal conditions, the silent mutation barely affected the QT interval (15 and 13 ms 

longer for Q357R and het, respectively, compared to WT).  With ISO application, QT interval 

lengthening increased.  Prolongation was 24 and 23 ms for Q357R and het relative to WT, and T-

wave amplitude increased.  When the second hit of partial IKr block was added, the degree of 

prolongation relative to WT became severe for Q357R and het (>80 ms).  ISO plus IKr block-

induced prolongation for Q357R and het was nearly twice (1.8 fold) that for WT.  Dispersion of 

repolarization, measured as T-peak to T-end duration, was 2-fold larger for the mutant cases. 
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Onset of Emotional/Physical Stress or Exercise 

 

 Fatal arrhythmias in LQT1 typically occur at the transition to a state of emotional/physical 

stress (e.g. exercise onset(Schwartz, Priori et al. 2001) or diving into a pool(Roden 2008)).  To 

simulate this arrhythmic scenario, we accelerated the pacing rate and applied a bolus of ISO 

(using the more mutation-sensitive M-cell, Figure 3.08).  The pacing rate was doubled, from CL = 

1000 to 500 ms, in a graded fashion over ~7 seconds, as observed in human subjects during 

exercise onset(Nobrega and Araujo 1993) (caused by rapid removal of vagal heart rate 

suppression(Robinson, Epstein et al. 1966)).  For ICaL, the fraction of channels phosphorylated by 

PKA increased more rapidly than for IKs (validation by Heijman et al.(Heijman, Volders et al. 

2011)).  Eventually, the resulting imbalance between inward and outward current ISO responses 

led to pronounced EADs in the silent mutant cases. 

 

Discussion 

 

 Under basal conditions, as seen clinically(Chen, Zhang et al. 2003), simulated silent LQT 

current resulted in silent phenotype in human epi and M-cells and in the pseudo-ECG.  As shown 

by Jost et al.(Jost, Virag et al. 2005), otherwise small human IKs is augmentable, helping to 

terminate the AP when repolarization reserve is compromised(Roden 2004).  Also, Silva and 

Rudy simulations showed that IKs augmentation can overcome an EAD due to IKr block and 

restore normal repolarization(Silva and Rudy 2005).  However, with silent mutant IKs, the 

combined presence of acceleration/fast pacing-adrenergic stimulation and IKr reduction caused 

LQTS phenotype to be revealed.  Indeed, multiple hits hurt more(Wilde 2010). 

 In guinea pig simulations(Faber, Silva et al. 2007), arrhythmic Q357R and het 

phenotypes were revealed under basal conditions alone, without additional hits (EADs, Chapter 3 

Supplement Figure 3.S03).  The very different genotype-phenotype relationship in guinea pig 

versus human, caused by different ionic profile of their ventricular myocytes(Jost, Virag et al. 
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2004), highlights the fact that caution must be taken when extrapolating results and conclusions 

from animal experiments to human disease and its clinical manifestation. 

 

Clinical Attributes Determine Protocols 

 

 Exercise and emotional/physical stress are arrhythmia triggers for LQT1(Schwartz, Priori 

et al. 2001).  The hit of -adrenergic stimulation is clinically important for discovery of silent LQT1 

pathology(Vyas, Hejlik et al. 2006).  Thus, we applied continuous pacing protocols (normal, fast 

and acceleration to fast rates; not pause protocols, appropriate for LQTS type-2(Tan, Bardai et al. 

2006)) and applied -adrenergic stimulation in the human myocyte model.  Simulation results 

agreed with clinical observations.  That is, fast or accelerating pacing with -adrenergic 

stimulation caused robust AP shortening for WT, but not for the silent LQTS mutation Q357R.  In 

the silent LQTS case, the additional repolarization hit of mild IKr block evinced EADs (not 

observed for WT).  The additional hits differentiated mutant phenotypes from WT.  In Figure 3.07, 

we showed that the reduced IKs augmentability determined silent mutant pathology.  An important 

distinction is that reduced augmentability of IKs, not its mere reduction, causes substantial AP 

prolongation and EADs, revealing the LQT phenotype. 

 

Dominant Negative Loss of Available Reserve 

 

 Missense mutation Q357R is an exchange of neutral glutamine for positively charged 

arginine at the junction between S6 and the C-terminus.  Boulet experiments showed that due to 

the influence of the positive arginine, voltage dependent gating was affected(Boulet, Raes et al. 

2006).  We speculate that placement of the mutant arginine adjacent to the positive-negative 

charge interactions between S4 and S2 segments(Wu, Delaloye et al. 2010) could disrupt IKs 

gating.  However, in the absence of further experimental analysis based on structural detail, it 

remains unclear exactly how this might amount to the observed slowing of activation. 
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 Boulet et al.(Boulet, Raes et al. 2006) were not able to determine whether the dominant 

negative behavior of Q357R was due to trafficking or assembly abnormalities.  Relying on the 

assumption of no assembly abnormalities (i.e. WT and Q356R tetramer assembly is random), 

simulations tested whether current reductions in the het case could be due to the same trafficking 

defect observed for homotetrameric Q357R.  The reduction of expression at the 

membrane(Boulet, Raes et al. 2006) was represented by halved macroscopic conductance for 

Q357R and het IKs.  That is, heterotetrameric channels were assumed identical to homotetrameric 

Q357R channels with respect to both kinetics and trafficking properties.  With this dominant 

negative het model, we were able to accurately reproduce experimentally measured het 

behaviors (Figure 3.02).  Thus, our theoretical analysis suggests that the dominant negative 

behavior for Q357R may be due to impaired trafficking alone, because simulations were accurate 

without including assembly abnormality.  Additional experiments are needed to determine the 

basic mechanisms underlying trafficking defects (i.e. whether Q357R introduces a retainer motif). 

 

Cell Type and Pacing Rate 

 

 Transmural cell types for the ORd human ventricular AP model were developed 

previously (see Chapter 2).  Human data showed that IKs was 1.4 times larger in epi than in M-

cells.  However, as shown in Figure 3.04, M-cell IKs peak magnitude is actually larger than in epi 

cells.  This is explained by the fact that the longer M-cell plateau allows additional time for smaller 

conductance IKs to become more fully activated.  The longer M-cell AP is therefore more reliant 

on IKs than the epi cell to bring about complete repolarization.  Thus, IKs loss of function in Q357R 

has greater consequence in M-cells.  The fractional difference in IKs peak magnitude between cell 

types during fast pacing was even greater than at slower rates, indicating increased importance 

of IKs for successful M-cell repolarization at accelerated rates. 
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Limitations 

 

The effects of -adrenergic stimulation were validated on a target-by-target basis using 

the ORd human ventricular AP model.  The overall result of -adrenergic stimulation on the AP 

and APD restitution are in agreement with nonfailing human ventricular measurements by 

Shimizu et al.(Shimizu, Ohe et al. 1991) and Taggart et al(Taggart, Sutton et al. 2003).  However, 

the experimental dataset available for -adrenergic effects on target proteins is nearly all from 

experiments performed in non-human mammals (dog)(Heijman, Volders et al. 2011); adapted 

here for human simulations. 

 The ORd model is essentially gender-neutral; validated based on more than 100 

undiseased human hearts, of which 56% were male (see Chapter 2).  Recent data showed K+ 

current reduction in females compared to males(Gaborit, Varro et al. 2010).  Female gender may 

be an additional risk factor for LQTS patients.  The IKr block simulations presented relate to, but 

do not specifically account for, gender differences. 
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Figures 

 

Figure 3.01.  Markov models for IKs.  A) Schematic diagrams and transition rate equations.  The 

wild type (WT) model is on the left.  The Q357R mutant model is on the right.  Equations for each 

are below the diagrams (differences from WT are large bold gray text).  The WT model activation, 

as proposed by Silva and Rudy(Silva and Rudy 2005), represents two voltage sensor transitions. 

First transitions from left to right (large black arrow), and second transitions are vertical from top 

to bottom (large gray arrow).  Channel kinetic states are divided into two zones.  Different from 

WT where zone 1 (gray circles) transitions are relatively rapid, for Q357R these transitions are 

the same as the slower zone 2 (black circles) transitions.  B) WT (white) and Q357R (black) 

subunits combine to form six distinct tetramer permutations in the heterozygous (het) case (gray).  

In the model, we considered that the mutation was dominant negative.  Thus, the behavior of the 

average het channel was determined by averaging the behavior of the permutations: het = 

(1*WT+5*Q357R)/6. 
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Figure 3.02.  Validation for WT, Q357R, and het IKs.  Experiments are from Boulet et al.(Boulet, 

Raes et al. 2006) (squares: WT is black, Q357R is white, and het is gray).  Simulations are shown 

with lines (WT is black, Q357R is dashed black, and het is gray).  A) Steady state activation of tail 

currents.  B) Time constant for step current activation.  C) Time constant for deactivation.  D) 

Relative current after 5 second steps to potentials shown.  Simulated protocols were the same as 

those used in Boulet experiments.  exp - experiments; sims - simulations. 
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Figure 3.03.  Validation of the effects of ISO on target channels and processes in human.  A) Bar 

charts showing experimental data from various sources (black bars).  Simulations using the ORd 

human myocyte model (details in Chapter 2)  with the WT IKs Markov model are shown with gray 

bars.  ISO effects were as follows.  ICaL) Maximum of the current-voltage curve (max IV) was 

increased, the voltage of the IV curve peak (peak IV) and the voltage of half maximum (V1/2 inact) 

steady state inactivation were shifted toward more hyperpolarized potentials(Nagykaldi, Kem et 

al. 1999; Antoons, Volders et al. 2007).  IKs) Step current at +60 mV was increased at both short 

(300 ms) and long (3000 ms) time points(Volders, Stengl et al. 2003).  IKur) Current (step: +50 

mV) was increased(Sridhar, da Cunha et al. 2007).  INa) Maximum of the IV curve (max IV) was 

increased, and V1/2 for steady state inactivation (V1/2 inact) was shifted toward more 

hyperpolarized potentials(Baba, Dun et al. 2004).  RyR) The maximum release flux (Jrel, max 

release) and the integral of release after 300 ms were increased(Ginsburg and Bers 2004).  

Other) Ca2+ affinity for SERCa flux (Jup) was increased(Odermatt, Taschner et al. 1996).  It was 

decreased for trpn(Robertson, Johnson et al. 1982).  Na+ affinity for INaK was increased(Despa, 

Bossuyt et al. 2005).  APD90) At CL = 500 ms, APD90 was decreased(Shimizu, Ohe et al. 1991).  

APD Restitution) The slope was increased(Taggart, Sutton et al. 2003).  B) Simulated effects of 

ISO (1 M) on the human AP and targets are shown (gray lines) in comparison to control (no 
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ISO, black lines).  From left to right, top to bottom: AP (repeated for timing purposes), myoplasmic 

Ca2+ concentration ([Ca2+]i), fast INa, ICaL, IKs, INaK, and IKb.  Epi cell paced at CL = 300 ms. 
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Figure 3.04.  Transmural cell type dependence of the Q357R mutation at normal pacing rate (CL 

= 1000 ms).  Results for WT, Q357R, and het are black, dashed black, and gray lines, 

respectively.  Epi (left) versus M-cell (right) under basal conditions (no ISO).  The top row shows 

APs.  IKs is the middle row.  Closed state zone occupancy is below. 
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Figure 3.05.  Effect of pacing, ISO and partial IKr block on the AP in epi cells.  WT, Q357R, and 

het are black, dashed black, and gray lines, respectively.  Descending rows show the AP, ICaL, IKs, 

and closed state zone occupancy.  Columns, from left to right, show the cases for normal pacing 

under basal conditions, fast pacing under basal conditions, fast pacing with application of ISO, 

and 30% IKr block in addition to fast pacing and ISO.  EADs in the rightmost column (top row, 

arrows) were caused by ICaL reactivation (second row, arrows) due to prolongation of AP plateau 

(deficient IKs, third row).  The AP following the EAD is short, because of residual activation of IKs 

(incomplete deactivation, arrows). 

  



139 
 

 

Figure 3.06.  Mechanism by which layered hits reveal pathology.  WT, Q357R, and het are black, 

dashed black, and gray lines, respectively.  A) The top row shows APs.  Bottom rows show 

cumulative charge delivered for ISO dependent currents and IKr: namely, QNa+QCaL, QNaK+QKb, 

QKr, and QKs (order indicated by the arrow and labels).  B) Charge contributed by IKs (QKs) as hits 

were layered (left to right) for WT, Q357R and het. 
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Figure 3.07.  Effects of ISO and IKr reduction on the transmural wedge pseudo-ECG.  Results for 

WT, Q357R, and het are black, dashed black, and gray lines, respectively.  The simulated 

pseudo-ECG is plotted using a shared, normative scale.  On the left, middle, and right the cases 

of control, ISO, and 30% IKr block plus ISO are shown. 
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Figure 3.08.  Emotional/physical stress or exercise onset.  Simulations in M-cells with WT, 

Q357R, and het are black, dashed black, and gray lines, respectively.  Shown from top to bottom: 

APs, IKs, ICaL and fraction of ICaL (fICaL, gray) and IKs (fIKs, black) channels phosphorylated by PKA.  

Bars along the top show the accelerating stimulus delivery.  An ISO bolus of 1 M was applied at 

t = 1000 ms (arrow in bottom panel).  Time axis is broken (dots), skipping an uneventful 

midsection.  The box on the far right shows the final paced beats on expanded time scale.  

Arrows show EADs caused by ICaL reactivation. 
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Chapter 3 Supplementary Material 

 

Markov IKs Models 

 

Using experimental data from Boulet et al.(Boulet, Raes et al. 2006), human IKs models 

for wild-type (WT) and KCNQ1 mutation Q357R were developed.  Experiments conducted with 

the -subunit KCNE1 included best represent IKs (Sanguinetti, Curran et al. 1996) and therefore 

were used for model development and validation.  Boulet experiments were conducted at room 

temperature (20-23 °C).  Accordingly, model validation was at room temperature (Figure 3.02).  

To create models representing behavior at body temperature (37 °C), we used Q10 = 3.5, as 

determined for IKs by Seebohm et al.(Seebohm, Lerche et al. 2001).  Other simulations and the 

equations are at body temperature.  The IKs Markov model paradigm was based on the work of 

Silva and Rudy(Silva and Rudy 2005). 

 

Simulations Using the O’Hara-Rudy dynamic (ORd) Human Ventricular Model 

 

 AP simulations were conducted using the ORd model for the human ventricular myocyte 

(see Chapter 2).  The Hodgkin-Huxley IKs formulation was replaced by Markov models for WT or 

mutant IKs.  Simulations were performed in two transmural cell types: epicardial (epi) and mid-

myocardial (M). 

 To measure the AP duration (APD), we used APD90, defined as the time between the 

maximum AP upstroke velocity and 90% repolarization.  The duration of the pseudo-ECG (QT 

interval) was from the start of the stimulus to the time when the computed pseudo-ECG was less 

than 0.1% of its maximal value. 

The simulated pseudo-ECG, though it carries a remarkable resemblance to the clinical 

ECG and simulates many of its properties, is not intended to represent the same physical entity.  

The choice to use the simulated transmural wedge was for its incorporation of coupled transmural 
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heterogeneity into the study, and its extensive use in experimental studies by Antzelevitch and 

others. 

 

Equations for PKA Phosphorylation 

 

As in Heijman et al.(Heijman, Volders et al. 2011), we used the population based 

approach to adjust currents and fluxes for PKA phosphorylation.  That is, using the fraction of 

phosphorylated channels computed by the Heijman model of the -adrenergic signaling pathway, 

we add the weighted sum of basal and phosphorylated currents or fluxes to obtain the total 

current or flux.  As in experiments, pacing was to quasi-steady state (100 beats, using ORd 1Hz 

steady state initial conditions) in single cell simulations, and 10 beats in multicellular fiber 

simulations. 

For guinea pig simulations, IKs conductance (GKs), was set so that WT IKs would give 

APDs that were the same as in the original model(Faber, Silva et al. 2007). 

Below are equations for the parameters affected by PKA phosphorylation.  Changes to 

ORd equations are highlighted using bold type. 

 

L-type Ca2+ Current: ICaL 

d∞,PKA ൌ
1

1 ൅ exp ൬
െሺV ൅ 3.940 ൅ ૚૟. ૙ሻ

4.230 ൰
 

f∞,PKA ൌ
1

1 ൅ exp ቀ
V ൅ 19.58 ൅ ૛. ૡ

3.696 ቁ
 

PCୟ,PKA ൌ ૛. ૞ · PCୟ   

ΨCୟ,PKA ൌ zCୟଶ ·
VFଶ

RT
·
γCୟ୧ · ሾCa

ଶାሿୱୱ · exp ቀ
zCୟVF
RT ቁ െ γCୟ୭ · ሾCa

ଶାሿ୭

exp ቀ
zCୟVF
RT ቁ െ 1.0

 

Where [Ca2+]ss is given a 0.03 mM ceiling, representing flux saturation, to prevent non-

physiological outward current during the peak of the [Ca2+]ss spike. 
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Slow Delayed Rectifier K+ Current: IKs 

aPKA ൌ ૚. ૛ · a 

gPKA ൌ ૚. ૛ · g 

GKsPKA ൌ ૜. ૛ · GKs 

 

Background K+ Current: IKb 

GKbPKA ൌ ૛. ૞ · GKb 

 

Fast Na+ Current: INa 

h∞,PKA ൌ
1

1 ൅ exp ቀ
V ൅ 82.9 ൅ ૞. ૙

6.086 ቁ
 

hCୟMK,∞,PKA ൌ
1

1 ൅ exp ቀ
V ൅ 89.1 ൅ ૞. ૙

6.086 ቁ
 

GNaPKA ൌ ૛. ૠ · GNa 

 

SR Ca2+ Release Flux, via Ryanodine Receptor: Jrel 

α୰ୣ୪,PKA ൌ ૚. ૠ૞ · α୰ୣ୪ 

τ୰ୣ୪,NP,PKA ൌ ૙. ૞ · τ୰ୣ୪,NP 

α୰ୣ୪,CୟMK,PKA ൌ ૚. ૠ૞ · α୰ୣ୪,CୟMK 

τ୰ୣ୪,CୟMK,PKA ൌ ૙. ૞ · τ୰ୣ୪,CୟMK 

 

Calcium Uptake via SERCa Pump: Jup 

J୳୮,NP,PKA ൌ
0.004375 · ሾCaଶାሿ୧

૙. ૞૝ · 0.00092 ൅ ሾCaଶାሿ୧
 



145 
 

J୳୮,CୟMK,PKA ൌ ൫1 ൅ ∆J୳୮,CୟMK൯ ·
0.004375 · ሾCaଶାሿ୧

૙. ૞૝ · ൫0.00092 െ ∆K୫,PLB൯ ൅ ሾCaଶାሿ୧
 

 

Troponin 

K୫,TRPN,PKA ൌ ૚. ૟ · K୫,TRPN 

 

Na+/K+ ATPase Current: INaK 

KNୟ୧,PKA ൌ ૙. ૠ · KNୟ୧ 

  



146 
 

Chapter 3 Supplementary Figures 

 

Figure 3.S01.  M -cell dependence of the Q357R mutation at fast pacing rate (CL = 300 ms).  

Results for WT, Q357R and het are black, dashed black, and gray lines, respectively.  The top 

row shows APs.  IKs is below.  For Q357R and het, the M-cell AP failed to repolarize before the 

next pacing stimulus (stimuli are indicated by black bars above the APs).  Over the course of two 

consecutive beats, the AP eventually returned to rest.  The first AP was severely prolonged, 

leaving the membrane voltage elevated at the start of the following beat.  This left IKs slightly 

activated since deactivation requires time at resting potentials; consequently, repolarization was 

completed on the second beat.  Thus, the first hit alone - fast pacing - proved challenging to the 

M-cell with silent LQTS mutation. 
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Figure 3.S02.  Effect of reduced conductance versus kinetics changes in the silent mutation.  The 

layout is the same as Figure 3.05.  WT, WT with Q357R conductance (mutant type A), and 

Q357R with WT conductance (mutant type B) are black, dashed black, and gray lines, 

respectively.  Descending rows show the AP, ICaL, and IKs.  The four columns, from left to right, 

show the cases for normal pacing under basal conditions, fast pacing under basal conditions, fast 

pacing with application of ISO, and 30% IKr block in addition to fast pacing and ISO.  Hit of fast 

pacing with ISO caused AP prolongation relative to WT.  With addition of IKr reduction, kinetics 

changes alone did not cause EAD formation, but reduced conductance alone did (arrows, 

rightmost column). 
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Figure 3.S03.  In guinea pig simulations(Faber, Silva et al. 2007), Q357R mutation is not silent.  

WT, Q357R, and het are black, dashed black and gray lines, respectively.  When Q357R and het 

channels were used for IKs in the guinea pig epi cell simulations, there was marked AP 

prolongation compared to WT and development of EADs, even at normal pacing (CL = 1000 ms), 

and without -adrenergic stimulation or IKr-reduction.  At fast pacing rate (CL = 300 ms, not 

shown), AP prolongation was also severe (not silent, but without EADs).  Q357R APD was 41 ms 

or 35% longer than WT, and het APD was 30 ms or 25% longer than WT. 
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Chapter 4: Insights and Conclusions 

 

 The ORd model, validated and characterized in Chapter 2, and applied to investigate 

subclinical or “silent” LQT1 in Chapter 3, is a novel tool for testing hypotheses related to electrical 

phenomena in the human ventricular AP.  In Chapter 2, the ORd model was compared with other 

human models.  The ability of the ORd model to reproduce both EADs and beat to beat alternans 

under the appropriate physiological conditions is not matched by other models.  When applied to 

subclinical LQT1, the appearance of EADs after multiple hits to the repolarization reserve was the 

mark of arrhythmogenic behavior. 

 Modeling studies which investigate arrhythmia mechanisms require that normal 

physiology be accurately represented.  Extensive validation, using data from over 100 

undiseased human hearts, confers accuracy to ORd and lends veracity to model predictions of 

mechanism.  Moreover, in order to study the effects of specific channelopathy and/or application 

of drugs on arrhythmia, a model must first be capable of demonstrating relevant, dynamic 

arrhythmia markers at the single cell level, i.e. EADs or alternans.  Thus, well designed ORd 

simulation studies may be capable of offering relatively plausible explanations regarding how a 

mutation can cause arrhythmia in human patients, and how drugs may ameliorate or exacerbate 

electro-pathology. 

 

APD with Dynamic Pacing in Human 

 

 Previous simulation studies have addressed the topic of APD steady state rate 

dependence and restitution mechanisms in the human ventricle(Iyer, Mazhari et al. 2004; ten 

Tusscher, Noble et al. 2004; Ten Tusscher and Panfilov 2006; Grandi, Pasqualini et al. 2010).  

However, disagreement between models and lack of undiseased or nonfailing human data for 

model validation left opportunity for further investigation using the more realistic ORd model. 

Similar to the Iyer-Winslow(Iyer, Mazhari et al. 2004) and GB models, Na+ accumulation 

at fast pacing rate was a major cause of APD rate dependence at steady state in ORd.  Unlike 
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the Iyer-Winslow model, Na+ accumulation affected INaK in GB and ORd.  In Iyer-Winslow 

simulations, the major consequence of Na+ accumulation was to reverse INaCa, producing 

additional repolarizing current at fast rates.  All models showed that at fast pacing rates, IKs 

deactivation was incomplete, providing more repolarizing current.  However, this mechanism only 

played a significant role in the TP model (under basal conditions) because IKs density was 

extremely large.  In the other models, IKs was essentially inconsequentially small under basal 

conditions. 

 Unlike in the other models, ORd includes late INa and accurate ICaL.  We hypothesized 

that these currents were secondary contributors to steady state rate dependence of the APD.  A 

complex and subtle aspect of this finding was that roles for late INa and ICaL were substantial only 

with Na+ clamping, but not without.  Na+ clamping alone, and affects on INaK, failed to completely 

eliminate APD rate dependence, especially at faster pacing rates within the tachycardia range 

(CL = 300 to 700 ms).  The hypothesized role for late INa and ICaL could not have been determined 

using models other than ORd, which have no late INa and which include ICaL inaccuracies due to 

lack of experimental validation.  Although roles for Na+ clamping, late INa and have ICaL are 

interesting and plausible, these findings are model predictions.  Experiments in human ventricular 

myocytes are needed to test whether the proposed mechanisms are indeed true. 

 Mechanisms responsible for causing APD restitution are not the same as those 

responsible for causing steady state rate dependence.  Using ORd, we made the observation that 

ion accumulation had no effect on the former, while it played an important role in determining the 

latter.  Other human ventricular simulation studies did not make this distinction.  Again, ORd 

displayed nuanced mechanisms: late INa and ICaL inactivation gating was the primary determinant 

of APD restitution, but not the only mechanism.  At very short DIs, incomplete deactivation of IKr 

caused early spiking which helped to shorten the APD.  Neither IKr spiking nor late INa and ICaL 

effects were proposed as restitution mechanisms in other modeling studies.  Other models, 

lacking late INa and proper IKr and ICaL validation, could not have reached these conclusions.  

Experiments are needed to determine whether these ORd predictions are observed in reality. 
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As in any theoretical study, knowledge is gained whether predictions are shown to be 

correct or incorrect.  Hopefully, our simulation findings will inspire and direct new experimental 

research for mechanisms of human ventricular APD dynamics.  As described in Chapter 1, 

understanding such basic issues is a prerequisite for SCD therapy.  Computer modeling tools and 

carefully designed simulation studies can contribute to this understanding. 

 

Role of IKs in Human 

 

 As mentioned just previously, and in Chapter 3, the role of IKs in the human ventricle was 

found to be minimal under basal conditions(Jost, Virag et al. 2005).  However, IKs is needed in the 

presence of -adrenergic stimulation to help counter -enhanced inward ICaL.  This idea was the 

basis for explaining potential arrhythmia susceptibility in subclinical, or “silent” LQT1. 

With fast pacing and -adrenergic stimulation, IKs increase was substantial for normal, 

WT current.  The Q357R mutation in KCNQ1 reduced IKs.  However, the reduction was 

inconsequential with respect to the AP unless fast pacing and -adrenergic stimulation were 

applied.  With the addition of partial IKr block, EADs appeared in mutant simulations but not for 

WT simulations, and the pathology of the otherwise silent phenotype was revealed. 

Multiple hits to the repolarization reserve were required to evince arrhythmia for 

subclinical LQT1.  In human, IKs is augmentable.  It is a failsafe against extreme AP prolongation.  

Without a fully functioning augmentable safety, AP behavior remains normal only under basal 

conditions.  However, after insults, the safety afforded by IKs became crucial to prevent 

arrhythmogenic AP prolongation leading to EADs.  These results were presented as a clinically 

interesting and human ventricle specific example of ORd model application. 

 

Transmural Heterogeneity 
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As shown by Yan, Antzelevitch and colleagues(Yan and Antzelevitch 1996; Yan and 

Antzelevitch 1998; Yan, Shimizu et al. 1998), transmural dispersion of repolarization in the 

heterogeneous wedge offers a rich substrate for the investigation and explanation of a variety of 

electrical phenotypes relevant to SCD arrhythmia.  With these results in mind, transmural cell 

type models were made.  We and others are interested in studying arrhythmia in cell types other 

than the endo cell (thoroughly validated in ORd using data from over 100 undiseased human 

hearts).  To make the transmural models, we used available undiseased and nonfailing human 

experimental data(Drouin, Charpentier et al. 1995; Nabauer, Beuckelmann et al. 1996; Szabo, 

Szentandrassy et al. 2005; Gaborit, Le Bouter et al. 2007; Soltysinska, Olesen et al. 2009; 

Glukhov, Fedorov et al. 2010).  Limitations of these methods were elaborated in Chapter 2.  As 

shown in human ventricle experiments(Drouin, Charpentier et al. 1995; Glukhov, Fedorov et al. 

2010), due to substantially longer APD of the M-cell, transmural types are important to consider.  

Simulations showed that in subclinical LQT1, the M-cell was more sensitive to channelopathy. 

Development and validation of ventricular apex and base ORd models would be useful 

for whole heart simulation studies (e.g. (Bayer, Narayan et al.)).  Some data are available for 

apico-basal gradients in mRNA from undiseased human ventricles(Szentadrassy, Banyasz et al. 

2005).  However, this dataset is less extensive than the transmural heterogeneity dataset, so we 

did not make use of it here. 

 

Species Differences and the Need for an Accurate Human Specific Model 

 

 In Chapter 1, we showed AP rate dependence and its ionic mechanisms in human, dog, 

and guinea pig.  We also compared the AP consequences of block of delayed rectifier K+ 

currents, IKr and IKs, in these three species.  The fact that ion channel currents in the human 

ventricular myocyte are different than those in dog or guinea pig is well established 

experimentally.  However, the consequences of these species dependent differences in ion-

channel profile in terms of whole cell electrophysiology are difficult to predict.  The difficulty stems 

from the nonlinear and complex interrelatedness of the processes that determine whole-cell AP 
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behaviors.  Thus, a quantitatively accurate computer model of the human case is needed.  This 

reasoning motivated us to develop and use the ORd tool. 

 

Species Differences in the Role of Delayed Rectifier K+ Currents 

 

 IKr and IKs are critical for AP repolarization in the ventricle.  Mutations which reduce these 

currents cause the majority of cases of inherited long QT syndrome(Schwartz, Stramba-Badiale 

et al. 2009), leading to lethal arrhythmia (SCD).  Acquired long QT syndrome, caused by block of 

IKr by any of a variety of pharmacological agents (including clinically useful non-cardiac drugs 

terfenadine, fexofenadine, risperidone, sertindole, erythromycin, and cisapride(Brown 2004)), can 

also lead to fatal arrhythmias(Roden 2004).  Dangers of pro-arrhythmic effect and promiscuity of 

IKr block are so great that the FDA requires IKr block testing to prove drug safety.  However, these 

safety experiments are generally not performed in human myocytes. 

When IKr is blocked, IKs is indirectly affected(Jost, Virag et al. 2005) leading to loss of 

repolarization reserve(Roden and Yang 2005).  The interplay elevates the importance of these 

currents in the ventricle.  IKs is tightly regulated by the -adrenergic pathway and plays a critical 

role in proper repolarization during exercise and emotional stress (e.g. Chapter 3 “silent” LQT1 

mutation, and Volders et al.(Volders, Stengl et al. 2003)).  At fast pacing rate, IKs participates in 

rate dependent adaptation by building available reserve(Silva and Rudy 2005).  Inherited IKs loss 

is the single most common cause of long QT syndrome(Schwartz, Stramba-Badiale et al. 2009). 

Delayed rectifier K+ current differences between species exist.  Moreover, the role played 

by IKr and IKs is species dependent.  It is in this context that these issues should be addressed 

quantitatively using accurate mathematical models.  Jost et al.(Jost, Virag et al. 2004) showed 

comparative AP recordings from human, dog, and guinea pig ventricular myocytes in control and 

with specific drug block of IKr and IKs (by 1 mM E-4031 and 100 nM L-735,821, respectively), after 

long-term pacing at CL = 1000 ms.  Important features of these experiments were reproduced by 

model simulations (Figure 1.01).  The small amplitude of human and dog IKs is in sharp contrast 

to guinea pig ventricle, where IKs is the major repolarizing current.  For human and dog(Decker, 



154 
 

Heijman et al. 2009), IKr is the most important repolarizing current.  However, it is not the 

underlying mechanism of APD rate dependence (see below). 

 

Species Differences in APD Steady State Rate Dependence  

 

We found that APD shortening at fast rates was caused primarily by INaK increase 

secondary to intracellular [Na+] accumulation in human and in dog, but not guinea pig.  Similar 

findings have been reported previously for human(Grandi, Pasqualini et al. 2010), dog(Decker, 

Heijman et al. 2009), and guinea pig(Faber and Rudy 2000) using other protocols.  However, the 

direct and quantitative comparison between species presented yields novel insights.  After phase-

1 of the AP, the guinea pig AP can be approximated as a two current ICaL-IKs model, while human 

and dog APs are more complicated.  Human and dog repolarization is due mainly to IKr, which is 

not rate dependent (models and experiments(Jost, Acsai et al. 2009)).  In these species, rate 

dependent IKs is small under basal conditions (no -adrenergic stimulation) but builds an available 

repolarization reserve at fast rate(Silva and Rudy 2005).  INaK is the major rate sensitive current in 

both human and dog.  Outward INaK increases (secondary to [Na+] accumulation) at fast rate, 

shortening the APD.  Compared to the human, the dog epi cell AP is further complicated by 

effects of large magnitude Ito1 and Ito2, as described previously(Hund and Rudy 2004; Decker, 

Heijman et al. 2009). 

The AP morphology and its rate dependence are determined by a time-dependent 

balance between inward and outward currents.  For guinea pig, rate dependent changes in INaK 

secondary to [Na+] changes were large; indeed larger than for human or dog.  However, as Faber 

and Rudy showed, there are even larger rate dependent changes in guinea pig IKs.  In contrast to 

dog and human, this makes INaK only a minor participant in rate dependence of the guinea pig 

AP(Faber and Rudy 2000). 
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