Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-79-2

1980-01-01

A VLSI Perspective of Real-Time Hidden Surface Elimination

Gruia-Catalin Roman and Takayuki D. Kimura

VLSI technology provides and demands new ways of solving large scale computational
problems. In light of this fact, a piplelined version of a real-time hidden surface elimination
algorithm is proposed. The approach is tuned to the requirements of the VLSI technology: it is
simple and regular, employs only local communciation, and attains a high degree of parallelism.
The feasibility of the technique is demonstated for a computer graphics system where objects
are defined in terms of planar triangular surface elements. A case is made in terms of the early
1980's technology.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Roman, Gruia-Catalin and Kimura, Takayuki D., "A VLSI Perspective of Real-Time Hidden Surface
Elimination" Report Number: WUCS-79-2 (1980). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/871

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F871&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F871&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F871&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F871&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F871&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/871?utm_source=openscholarship.wustl.edu%2Fcse_research%2F871&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

A VLSI PERSPECTIVE OF REAL-TIME
HIDDEN SURFACE ELIMINATION

Gruia-Catalin Roman
Takayuki Kimura

WUCS-79-2

January 1980

Department of Computer Science
Washington University
St. Louis, Missouri 63130

As appeared in CAD 13, No. 2, March 1981, pp. 99-107.

ABSTRACT

VLSI technology provides and demands new ways of solving large scale
computational problems. In light of this fact, a pipelined version of a
real-time hidden surface elimination algorithm is proposed. The approach
is tuned to the requirements of the VLSI technology: it is simple and
regular, employs only local communication, and attains a high degree of
parallelism, The feasibility of the technique is demonstrated for a
computer graphics system where objects are defined in terms of planar

triangular surface elements. A case is made in terms of early 1980's

technology.

Keywords: computer graphics, real-time display, hidden surface
elimination, VLSI, parallel processing.

CR: 3.8, 6.2, 8.2.

1. INTRODUCTION

Spontaneous transformations (tramslation, scaling, and rotation) of
graphic representations of three-dimensional objects require the ability to
perform hidden surface elimination under real-time constraints, a highly
nontrivial task. The difficulty resides in the fact that, although compu-
tationally very costly, hidden surface elimination must be accomplished in
less than one thirtieth of a second, the refresh rate of a typical raster
scan device (TV). In other words, for a screen consisting of 512 x 512
pixels (image elements), the average computation time per pixel must be less
than 128 ns.

Despite this very severe time constraint, there are many known algorithms
for solving the hidden éurface elimination problem. In [11] , Sutherland
et al list and compare ten of them. Every algorithm described in [11]
involves a sorting process in one fomor another and takes advantage of
coherence properties in order to keep small the number of elements to be
sorted. The particular implementation strategies selected by various
designers have undoubtedly been biased by the technological limitations of
the time, and it is recasonable to expect that, today, one ought to re-
evaluate the algorithms proposed in the sixties and seventies from the
perspective of the eighties--from the viewpoint of a VLSI implementation.

VLS8I, while offering the potential for high performance through dis-
tributing the computation to the largest possible degree, requires an
entirely different algorithm design philosophy, one which (1) avoids the
traditional memory-processor dichotomy, (2) maximizes the homogeneity and
regularity among system components and their interconnections, and

(3) minimizes the communication complexity of data and control flow, rather

than the arithmetic complexity as the traditional theory of algorithm
design advocates. Mass production of VLSI logic/arithmetic capabilities
makes the number of operations involved in a computation a less significant
factor than the complexity of making the result of an operation available
to another operation.

While our ultimate goal is to establish the impact of VLSI technology
in the area of computer graphics algorithms and device architectures, the
scope of this paper is considerably narrower and does not purport to
represent anything but a small step toward accomplishing the larger task.
As such, our contribution is limited to the identification of a class of
hidden surface elimination algorithms that appear to be well suited to a
VLSI implementation, proposal of an appropriate general architecture for a
device that might use the chosen algorithm, and demonstration of the near
term feasibility of building the device based on the current perception of
the early 1980's solid state technology. Similar efforts have been under
way for several years in the area of special purpose high power systems
such as linear time matrix processing systems [3,4],and it is the authors'
hope that this paper might contribute to promoting related research in
computer graphics.

A formal description of the problem we have attacked is presented in
Section 2 along with our solution, a pipelined version of a familiar
z-buffer type hidden surface elimination algorithm. Its fundamental capa-
bilities and limitations are also reviewed. Sections.B and 4 are meant to
convince the reader of the near future practical feasibility of the approach.
Section 3 describes a particular computer graphics system designed around the

proposed architecture. It assumes objects to be defined as arbitrary

collections of planar triangular surface elements each having a uniform
color (no shading of individual triangles). Section 4, by considering the
technology projected for the early 1980's, demonstrates the technical

feasibility of implementing the proposed system.

2. A VLSI MOTIVATED APPROACH TO HIDDEN SURFACE ELIMINATION

Before formally stating the problem we have attempted to solve, it is
necessary to review very briefly the underlying world model. It is
conceived as a set of objects which can individually be manipulated within
the confinement of a finite space, a cube of dimensions e3 . This space

is called the display environment, The objects present at any one time

within the display environment form a scene. While object removal is
instantaneous, the addition of new-obfects is accomplished through a
loading process which, for a few very complex objects, may require a
detectable time span, i.e., an interval longer than the refresh rate of
the display screen. Objects within a scene are identified by a unique
name, id, and are composed of arbitrary disjoint collections of entities

called rendering elements. Examples of rendering elements may be the

surface patches, polygons, or convex polyhedra.

Each rendering element has a set of display attributes, such as color
and depth, associated with each point on its surface. The rendering
elements are assumed to be given and determined by the needs of the in-
tended application. The total number of rendering elements involved in

a particular scene is defined as the scene complexity. This measure is

justified by the fact that the complexity of the hidden surface elimina-
tion algorithm proposed in this paper is measured by the number of

rendering elements involved.

Given: (1) a display screen consisting of p x q pixels;
(2) n rendering elements Ri (1 £1i<n);

3) ¢t |, the depth of R, at pixel P_ (1< x<p,l<y<
(‘)xy e depth o pixe xy("—x""p 2y<q

i

(i.e., the minimum distance between the viewpoint and Ri
when measured along the line passing through the point of
coordinates (x,y) on the screen);

(4) Siy » the display attributes of Ri at pixel ny (it

includes the depth diy)3

the problem of real-time hidden surface elimination may be formulated as

follows:

"Find an algorithm which
(i) 30 times a second and for an indefinite period of time, computes
the sequence

k11 k21 kpl P9

11 Szl nooS o.oS

S LI
pl Pq

where K7 s for 1 <x<p and 1 <y<gq, is given by
Xy
clk = min di
¥ 1<ixn
(i1) and, in addition, is amenable to a VLSI implementation, a

constraint which has been outlined in the preceding section.™

Our search for such an algorithm brought us to consider various schemes
such as
- assigning one processor per scan line,

- assigning one processor per pixel, and

- assigning one processor to each rendering element and using a
comparator network.
They all proved to be technologically and economically unfeasible. The
solution that was finally selected involves the assignment of rendering
elements, one per processor, along a pipeline which implements a version
of a z-buffer type hidden surface elmination algorithm.

The z-buffer was first used by Newell et al [6], who noticed that if
one writes in a picture buffer the images of various polygons, in the proper
order, the final result is a correct hidden surface view of some given frame,
The scheme was later implemented by Schumacker at G.E. by using an entire
frame buffer memory. Besides its simplicity, the approach allows for a
clean separation between the method used for rendering of three-dimensional
objects and the hidden surface elimination process. For this particular
reason, versions of the z-buffer approach have been employed in quite
distinct contexts by Catmull [1], Myers [5], and by Fuchs and Johmson [2].

Our own usage of the same technique is detailed below.

The algorithm being proposed here assumes the existence of n processes,
Qi (1 <1i<n), one for each rendering element, forming a wunidirectional
pipeline, Messages flowing along the pipe (from Qi to Qi+l) contain

i i

five~tuples of the type (x,v, ny, ny,

-

Ip*) where x and vy
Xy

i
}{y’
and ID;y denote the depth, color, and object name (a typical set of display

identify a pixel ny on a screen of dimensions p x q, while Diy’ c

attributes) associated with that pixel, so far. For each pixel ny, Qi
checks the line segment starting from the viewpoint and passing through the

point (x,y) on the screen for intersection against the rendering element

controlled by Qi . Whenever one or more intersections are detected, the

depth and color (di and ci
Xy xy

) of the intersection closest to the viewer
are computed. In all other cases, the constant = 1is assigned as the depth
of the point of intersection. While Qi computes the depth and color of

the i'th rendering element relative to pixel ny s, 1its left neighbor,

Qi—l’ is already considering the (i-1l)'th element against the pixel
. i i i
following P__ . After tin d d d ith
g xy computing Xy an cxy’ Qi compares Xy wi
Di-l, which represents min{dk }, and generates pl = min{dk 3. Ci
XY k<i Xy Xy k<i Xy

and IDi are adjusted accordingly. During the next message exchange Qi

i i
asses »¥,D. ,C
P (x,y <y Cxy

,IDiy) to Qi+1' Thus, at the end of the pipe, each
pixel's minimum depth, corresponding color, and object affiliation arrive at
regular intervals and are placed in the buffer of some display processor.
Consequently, the algorithm described above executes n minimization
operations on n rendering elements in n time intervals, or equivalently,
one minimization operation on n elements in one time interval., A formal
description of the algorithm appears in Figure 1.

As stated earlier, the algorithm has been selected with the intent of
being implemented on a VLSI based architecture and not on conventional
machines. As such, the emphasis is on regularity, uniformity, extensive
distribution of concurrent computational activities, and local communication.
The algorithm is also very promising in terms of its growth characteristics
regarding both changes in size and technology. Starting from the basie
premise that each process Qi is implementable on a single chip, the

capacity of the system could be increased by simply adding new chips at the

end of the pipe. Therefore, after the initial investment, the cost becomes

a linear function of the system complexity. Such a property would make the
system very attractive to a large class of users who cannot afford this
type of graphics capability today.

The proposed approach also adapts well to technological changes. First
of all, the number of pins per chip stays constant with respect to the
number of processes Qi implemented on a single chip. Furthermore, since
the rendering algorithm is irrelevant for the hidden surface elimination,
growth may also occur through increases in the complexity of the rendering
algorithm. If in the early 1980's,as shown later, it will be possible to
assign a single triangle per chip, in the 1990's, complex surface generators
may replace the triangle as the basic rendering element. Moreover, the
modularity of the system allows future enhancement to take place also via
specialization of the various processes Qi . Features that might be
considered vector display capabilities, character manipulation,
etc.

Postponing the feasibility question for Sections 3 and 4, the remaining part
of this section identifies several important issues and fundamental limita-
tions regarding the implementation of the algorithm. (A process per chip
distribution is assumed from now on.) The discussion is separated into
three parts: issues regarding time constraints, features which ought to be
incorporated into the system, and fault tolerance.

Assuming a 512 x 512 screen size and a refresh rate of 30 frames per
second, the average pixel generation time is 128 ns. This represents the
maximum time interval allowable for each process Qi to conclude the

five-tuple generation and the message exchange. However, a 128 ns constraint

over the process Qi implies the existence of a frame buffer in the display
processor. Reductions in the buffer size further limit this time interval,
When using a single line buffer, for instance, the time constraint becomes
111 ns,

The time intervals given above apply only to the hidden surface elim-
ination. However, the processes Qi ought alsc to allow for the manipulation
(rotation, translation, scaling, change in viewpoint, etc.) of the rendering
elements they control. 8Single object transformation commands could be
issued by some host computer, and all affected processes would recognize
the object id included in each command. Thus, all the elements associated
with the given object would be subjected to the same transformation. The
transformation would become effective two frames later, thus
always allowing at least 30 ms for the processing of each command. Because
the different Qi's affected may be working on different frames, the commands
cannot be broadcasted; they need to be passed along the pipe in sync with
the pixel processing.

While deleting an object from a scene may be done in real time, loading
a new object poses special problems; depending on the object complexity, the
loading may require a noticeable time delay and may result in frames which
contain only partially loaded objects. To avoid such situations, one may
inhibit the display of loaded elements until the receipt of an 'on' command
which the host could issue when loading is completed. Another fundamental
limitation of the system is related to the delay along the pipe (e.g.,

n = 781250 generates a 0.1s delay). Most applications envisioned today,
however, could be accommodated by using less than 64k processed i.e., less

than 8 ms delay.

Several issues that have not yet been resolved are shadow generation,
effective anti-aliasing, and the representation of transparent surfaces.
Regarding transparency, thought has been given to simulating it by forcing
processes controlling transparent elements to inhibit their output periodi-
cally. Transparent surfaces would thus be rendered as random discrete dots
whose density is inversely proportional to the level of transparency of the
surface. (The impressionists already used this technique very successfully
in their paintings.)} In conjunction with anti-aliasing features built into
the display processor, the technique may prove to be adequate.

Finally, there is the issue of fault tolerance. Given the anticipated
large number of chips, reliability becomes an important factor. Redundant
circuitry could be used to detect chip malfunctions. If enough redundancy is
included, a voting scheme could be employed thus decreasing the probability
of chip failure. The simplest approach to dealing with chip failures is to
stop the display, set in the malfunctioning chip a failure bit designed to
change the functionality of the chip to that of a simple delay along the pipe,
and reload the entire scene. The faster reconfiguration of the system
through reloading only the affected object is possible if the current state
of the object is known. Depending upon the nature of the failure, it is
also conceivable for the failing chip to issue a load command,thus transferring
the element description to a chip which happens to be unassigned. In general,

the strategy will depend upon technological and application constraints.

PROCESS Qo'/* originator of control signals */

begin initizlly =x=0, y=0.
loop
x+(x mod p)+l.
if =1 then y«(y mod q)+1.
D«depth~background(x,vy).
C<color-background (x,y).
IDenil.
send{x,v,D.C,ID) to Ql'
end-loop.
end Qo'

PROCESS Q. /* for l<i<n */

begin
loop
get(x,y,D,C,ID) from Q -1
d«min.depth-element.i(X,¥).
c+color-element.i(x,y,d).
if d<D then D<d,

C+c,
ID«1.
if d=D then C<combine(C,c),
ID+nil.
send (x,vy,D,C,ID) to Qi'
end-loop
end Qi'
T l% *
PROCESS Qn+l. /* display process */
begin
loop
get(x,y,D,C,ID) from Qn'
display(x,y,c).
if identification-request then send(x,y,D,C,ID) to USER.
end-loop.
end-Qn+1.

Figure 1: Formal Description cf the Algorithm.

] P

3. CASE STUDY DESCRIPTION

This section presents an instantiation of the architecture proposed
above. The assumed application is computer aided design, and the system will
be referred to by the name ARTEMIS. The application itself is really only
a pretext. The actual intent is to describe a particular implementation of
the algorithm and to later demonstrate its feasibility in Section 4.

ARTEMIS is designed to support real-time manipulation of color graphic
representations of three-dimensional objects. Objects are represented as
arbitrary collections of planar triangles, We chose, as a rendering element,

a planar triangle because (1) the planarity reduces the incremental computation
of diy to di—l,y+ Ki, i.e., a simple addition, and (2) the storage
requirement for each rendering element is uniformly identical. Each triangle
is defined by three points in the object coordinate system and by its color,
which is uniform over the entire surface of the triangle, on both faces.
(Note: shading of individual triangles is not available.) Within a scene,
individual objects can be rotated, translated, scaled, made completely
transparent, identified through the use of a lightpen, or destroyed; all
these operations as well as changes in the viewpoint-screen distance are
performed in real time. All changes in the size, position, or orientation of
a particular object must be accomplished strictly within the boundaries of
the display enviroonment. However, they may occur without regard to the
presence of other objects within the display environment since object
penetration is permitted. (Note: The hidden surface algorithm implemented

by ARTEMIS is not affected by the presence or absence of object penetration.)

Because transformations act solely upon objects and result in changes

-12-

applied uniformly to all the triangles making up the particular object,
individual triangles cannot be identified or modified by the system.
However, this is only an apparent limitation because in the absence of any
restrictions regarding the allowable number of triangles per object, it is
conceivable for the user to specify single triangles as separate objects.
Since the complexity of an object is measured by the number of rendering
elements that make it up and the complexity of a scene is defined as the
sum of the complexities of the component objects, the complexity of a scene
is not affected by the way the triangles are distributed among objects.

The video image generated on the screen of the raster scan device
corresponds to the view seen by an observer at distance 1/v from the display
environment and looking through a viewing window or screen of size p x q
located at the center of some face of the display environment cube., (See
Figure 2a.) The viewpoint is restricted to the normal to the center of the
viewing window, but the distance 1/v may change in real time. The ortho-
normal view is obtainable by specifying v =0 .

An additional real-time feature supported by ARTEMIS is the so-called
"transparency pyramid." This pyramid is defined by the viewpoint, a window
(called "cutting window") of size w <P by w& < q , and a depth W, .
The transparency pyramid, whose function is illustrated in Figure 2b, provides
a mechanism for examining surfaces normally hidden from the observer by
making invisible any surface which intersects the transparency pyramid at a

depth less than the value LA

i B

The design of ARTEMIS assumes the following principal system parameters:

. . 16
maximum scene complexity n=2""-1
(generates 8 ms delay)
maximum number of objects within a scene 216-1 (i.e., 0<id<216)
(each triangle may be a separate object)
size of the display environment cube e= 216
(however, all computations are done using 32 bits)
size of the viewing window PXqg-= 5122
(same as the screen size)
number of bits used to specify the color 3x8=24
(red, blue, green)
range of allowable depth values E—215,215—1]

(note: (215—1) is used to represent <),

Figure 3 depicts schematically the overall architecture of the proposed
system: a host computer with assorted input/output and storage devices, a
digitized image processor (DIP) storing a background scenery, the real-time
unit (RT) which performs the hidden surface elimination,a display processor
(bP), and a controller which acts as an intermediary between the host and
the DP and also as a diagnostic analyzer for the RT. All system activities
are controlled by the host which issues specific commands to all other
components. A sample repertoire is given in Table 1.

A typical ARTEMIS work session is envisioned as starting by clearing
the system. WNext, the application program issues a series of load commands
defining a scene to be manipulated. Once an object is loaded, it continues

to be part of the scene unless it is explicitly deleted. A background

]

scenery is also built in the form of a digitized image stored in the DIP,
For each pixel, the color and depth of that background point are specified.
The display process is activated by the START command, but changes in the
background and loading of new objects may resume at any point. During
the display process, the application program may request object trans-—
formations, redefinition of the transparency pyramid, and perspective
alterations by directing the proper commands to the RT unit. All changes
become effective two frames after the one during which they are received
by RT. Furthermore, the application program has access to the coordinates
of any pixel to which the lightpen points,and they can be used to request
from DP the object id, depth value, and color pertinent to that particular
pixel. The current state of a given object is made available to the
application program when a STORE command is issued. It results in passing
the current cbject description to the host via the controller.

The ability to implement the RT unit of this particular system is
argued in the following section in terms of gate requirements and achievable

execution speed relative to current projections for early 1980's technology.

|~ s]

|
:
!

-—o-—hx

— e

transparency
pyramid

(v)

Figure 2: World Model.

|
!

*2IN30337Yday w2yshg !:f 9andfl

STOIJUOD TEUTWIa) ASTP
I TIOULNOD - 7 7 = T
u ¥ T-F T
>— o — - - — - b -—— b —— = o -——
puBURIOD
”M \A LSOH
(aa) -— g - = .~ e - - - _
BTeudys
Toxjuod
q08SHAD0Ad
1d PT % Jo70d (a1a)
Vs - AR - il <t+———| ¥0SSHD0UA
u3dap HOVHI
J3Z2111914

|

L4D uadyy3yy

(19) IINN FRII~TVEA
_

TABLE 1

INTERFACE LANGUAGE DESCRIPTION

A. Object oriented commands

CLEAR
LOAD
OFF
ON
KILL
STORE

TRANS
ROT
XROT
VIEW
cuT

B. Display processor commands

id, triangle

14
id

id

1d

id, AT

id, AM
id, AM, AT
v

Vs Wy, W,

CLEAR
START
LIGHT
GET
ZMOD
HTIP
MHP

- clear the entire system

- load ome triangle as part of the object 'id'
- stop displaying the object

- start displaying the object again

= destroy the object

~ pass to the host computer the current

description of the specified object
= translate by AT (3 item vector)
- rotate/scale by AM (3 by 3 matrix)

- rotate with respect to translated axes

- set the perspective parameter
~ define the transparency pyramid

-~ same as above

- start the display process

- get lightpen coordinates

-~ get all information pertinment to pixel (x,y)
- set depth modulation index

- set degree of horizontal interpolation

- define uniform color transformation rules

C. Digitized image processor commands

SET
READ
CLR

Xy ¥y 2, ¢

X ¥
[

- set the depth and the color of pixel (x,y)
- read the depth and the color of pixel (x,y)
- clear the processor and attach to each pixel

the color ¢ and maximum depth :

S 5=

4, FEASIBILITY

The RT unit introduced in Section 3 represents an instantiation of
the advocated hidden surface elminination algorithm. Within RT, the
processes Qi materialize as a pipeline of 64k identical Q units, each
representing a VLSI chip. The economical and technical feasibility of
the RT unit depen&s on the ability of each @ unit to compute diy in
less then 128 ns. This section evaluates the computational complexity of
the Q unit employed by ARTEMIS and demonstrates that a 20,000 gate chip
using less that 64 pins suffices under the following technological

assumptions about solid state circuitry in the early 1980's [8]:

- Intra-chip gate delay time can be made less than 3 ns.

~ Inter-chip transmission delay can be made less than 20 ns.
In addition, it is also assumed that:

- There exist fast algorithms for addition and comparison such
that for a 32-bit word size, an adder requires 400 gates and 15
gate delays and a comparator 200 gates and 5 gate delays [9] .

- A frame buffer is present in the display processor, thus imposing
an average response time of 128 ns per pixel.

- Fault detection occurs visually. (No redundancy is included in
the chip. The reader may easily estimate the impact of potential
redundancy on the number of gates required.)

" = Fault location is determined by running appropriate diagnostic
software on the host.

- Fault correction requires chip substitution.

In order to process pixels at the rate of 128 ns each, the Q unit

itself is pipelined as indicated in Figure 4. The command subunit C

-16-

handles the command traffic, the loading and unloading of triangles, the
recognition of pertinent commands, and the passage of appropriate infor-
mation to all other subunits. When a series of load commands containing
triangle descriptions are sent to the Q units, the C component of the
first empty Q unit loads the triangle and removes the command from the
pipe by replacing it with an acknowledgment message which is returned to
the host via the controller. All other commands are simply passed from
one C subunit to the next along the pipeline. Within each Q unit, the
triangle is actually maintained by the transformation subunit T .
Rotations, translation, scaling, and perspective transformation are carried
out in T . The triangle, after transformation, is made available to the
constants generator K . The subunits C, T, and K represent the slow
half of the Q unit since the output from K 1is needed only at the
beginning of each new frame, i.e., every 30 ms.

The fast half of the Q wunit operates at the 128 ns rate, and the

functionality of its componments is given below:

(Note: Assume that Qi controls some triangle t in the plane s

and whose sides are El’ £2, and 23 . Since t is considered after

the perspective transformation, the line segment ny corresponding
to pixel ny is parallel to the Z-axis).

- D computes z;y as the depth of the intersection between the
plane s and ny; if the plane happens to be parallel to the
Z-axis, z;y is set to = ,

- Lk(k = 1,2,3) checks on which side of £k ny intersects the

triangle's plane. This information, aiy taking the values

] F

-1, 0, or +1 , 1is passed to B for use in determining if the

intersection with the triangle'g plane is inside or outside the

triangle. L falls inside the triangle if al = a2 = a3 .
Xy Xy %y Xy
Lk also computes zzy ags the depth of the intersection of lk
and L whenever L moves from one side of £ to the other.
Xy xy k
In all other cases, zgy = o , The value ziy is needed in order

to handle the special case when the triangle's plane is parallel
to the Z-axis.

- B determines if ny intersects s inside the triangle t by
comparing the signs of azy(k=l,2,3); if this is not the case,the
output z;y is set to « , otherwise ziy is passed on to M .

- M selects the closest distance, z = min('z9 ,zl ,22 z3

xy Xy© Xy Xy, Xy
the triangle and the screen (along the direction ny) .

) , between

~ I inhibits (sets to «) the depth value if the particular point of
intersection (x,y,zxy) falls within the transparency pyramid, i.e.,
x| <w_, |y] <w., and z_ <w_.
- x -y Xy = 'z
- S performs the comparison with the depth furnished by the unit Qi—l

and passes on to Qi+1 the smallest depth detected so far along with

the id and color associated with the corresponding triangle.

The remainder of this section outlines the evaluation of the Q-unit
complexity. The analysis is presented in two parts: a short discussion of
the slow half (subunits C, T,and K) and a detailed look at the fast half
(subunits S, L1, L2, L3, B, M, I,and S). The slow half of the Q unit can
easily be implemented on a typical microprocessor {(e.g., Z8000 or M68000)

augmented by a fast 32 bit multiplier, occupying half of the chip

2§

(about 10,000 gates) and requiring only 16 pins (8 inputs, 8 outputs) for
the command traffic. Its response time constraint is 30 ms, and its memory
is limited to storing the endpoints of the triangle before the perspective
transformation, id, color, transformation matrix to be multiplied with the
current coordinates, several parameters, flags, and constants to be passed
to the fast half of the Q wunit. Furthermore, the functions performed by
the slow half inclpde only command decoding, parameter and flag setting,
one generalized 3D transformation, one perspective transformation, and
constants generation. Actually, the generation of the constants by the K
subunit is the most involved computation carried by the slow half. The
mathematical details are given below before discussing the fast half whose

performance is determined by the availability of the right constants.

Mathematical Preliminaries

P N5
Let P2 = 1%, 2, be the coordinates of the triangle ¢t
F3 | X3 V3 23

after perspective transformation, and let (xo,yo) be the coordinates of

the left upper corner of the screen, the coordinates of the first pixel of

the first scan line on the screen. Let

A= |t gl 1
X232 22
3 Y3 %3
X, v, 1 y x, 1z
A% = xi y; 1 2= 1yl 2t A= |xt1al
b4 1 1 2 z2 x2 1 z2
3793 Y3 Z3 3° %3

and

-19-

A.j = the cofactor of the ij-th element of Ad, where d € {x,y,z}, and

l1<i, j<3.

For example: -

b X x _

A1 = |¥2 % A== 1z Ar3 1y,
y3 23 1 23 1 Y3

v _ vy _ y

Ay i) =P X2 %2 A3 %2 i

23 3 %3 3

z _ z _ z

Ay = |72 1 419 X, 1 A3 % ¥,
Y, 1 x, 1 Xy ¥q

Let:

x X x X
Fe(3:2) = &g + ALY+ A, 2,
y _ L, y L,
f2) = Ay x4+ A, Az,

EGuY) = Ay x+ A, v+ AL

where 1 <k <3,
Then, the following facts are relevant for the K svhunit:

(1) A%x + A y + A%z = A is the equation of the plane s on which the triangle
t exists. (Figure 4.)

(2) fz(y,z) = fi(x,z) = fﬁ(x,y) =0, 1<k<3, is the equation of the

line on which the line segment 2k exists.

d
k

on the d-plane of the line on which ﬁk exists.

(3) £, =0, 1 <k <3,dé€{x,y,z} , 1is the equation of the projection

(4) fd(u,v} have the same sign for all 1 < k < 3 if the point (u,v) is
k —_ —

inside the projection of the triangle t on the d-plane, where d €{x,y,z},

-20-

(5) (u,v,w) is on the triangle surface t if AXu + Av + A%w = A and

for all d € {x,vy,z} fi, fg, and fg have the same sign.

The K subunit.

Using the above determinants, A, Ad, Agj, d € {x,y,2} , 1 <4i, j <3,

the K subunit generates constants for D, L1, L2, and L3 subunits.

(1) Constants for D: (zo, Ax’ A)

y
If A=0 then 2 =A =4 =
s b y

else z, = (A - Axxo - Ayyo)/Az (the depth of plane s at pixel
P
70
Ax = -Ax/Az (depth change for unit increment
in x)
A = AY /A% (depth change for unit increment
4 in y)

Rationale: For a plane s which is not parallel to the Z-axis (i.e.,
A® # 0), the D-unit will be able to compute the depth corresponding to any
pixel on the screen given the depth at pixel (xo, yo) and the partial

derivatives of the depth with respect to x and y, Ax and Ay:

z(x,y) = z, + Ax(x - xo) - Ay(y - yo).

Furthermore, since during the generation of any image on the screemn x and
y are subject to unit changes, the D subunit will need to perform only
additions, an important factor in achieving the required performance, i.e.,

real-time constraint.

L.

(2) Constants for Lk where 1 < k < 3: (5x’6;’6y’6;’ao’ax’a WB_sB sz ,A)

vy x’"y’ 0
Gx =X =X 6; =X - X, where X, Ex
8 = Yk#1 T Yo 89 = T2 = Y, Yy F N
%, =%
o + A;lxo + Aﬁzyo + A;3 (line equation evaluated for (xo,yo))
e = A;l (change in e for unit increment in x)

{change in o, for unit decrement in y)

e
“
"
]
vt
3]

= 0 then 1 else 0 (Bx=1 indicates that the line £k is
parallel to y = 0 plane)

“mm—
Lo~
“
il
e
H
pr
W
|

T——
™
g
"
%N
Hh
i
W
]

0 then 1 else © (B_ =1 indicates that the line % is
J parallel to x = 0 plane)

I

0 then z = nmin {z is parallel to Z-axis)

X _ Ly
If Mg = A4

X X X X X ,.X , .
If Akaiéo then (zo —(Akl + Akzyo)/ARS’ A= AkZ/AkB) (line L, is ::tXE:;ii§EI

}. (line &

k+1? k2 k

y = —(aY y y = &Y 7A¥Y
If Ak3740 then (zo (Aklxo + A kZ)/Ak3’ A AkllAkB) (line zk is not
parallel to Y-axis)
Rationale: The constants above help the Lk subunits determine the traversal
of the 1ine &, and the depth of the crossover by employing only additions

k

and comparisoms. The sign of the line equation for a given pixel is given by

a(x,y) = a + (&x=-x)a -y - YO)GY

which may be evaluated incrementally by Lk through the use of addition

only. Similarly, the depths of the consecutive crossover points will also

-22-

be determined by single additions per unit increment in x or unit decrement

in vy, depending upon the orientation of the line zk 5

Next, let us consider the complexity of the fast half in terms of the
number of registers (most of them 32 bits long) and the number of gate delays
involved in one pixel computation. Denote by U and V the pixel
synchronization signals moving the pixel from (x,y) to (x+l,y) and to

(xo,y-l), respectively.

D subunit
The D subunit computes the depth of the surface s corresponding to
the pixel ny . D consists of one adder and four registers: Tys Tys Tyy Ty

The initial contents of the registers are given by the K subunit:

- - _x _Y z
T, =z (A - A X, A yo)/A \
r2=20 "

S if A% 40
r, = A = ~AS/A%
3 b3
V,.Z

= A = -A"/A

s T %y /)

For each U signal, r, =15 + ry

For each V signal, r, =71, + r,s rl = r2 .

Note that the contents of Ty and T, remain unchanged.

After (yo ~ y) V signals followed by (x - xo) U signals, the contents of

registers Ty and r, will be

”
]

r, - a*/4%) (x - x) = (- A% - ATy) /A

A - &% - Ay)/8% + WA -) = (A - A% - ATy)/A"

H
13

-23-

must be the depth of the plane s defined

Because Axx + Ayy + A%r A, r

1 1

by t at the pixel ny; i.e,, r, =z

Lk subunit.

The role of the Lk subunit is to determine when the scanning crosses

the line Ek and at what depth. Lk consists of 7 registers Ty to T,s

4 counters Tg to Tiys 2 adders, and 5 zero-testers. The registers contain

initially:

- _ 2Z z z
Ty = Ty vy = AgX F ALYt AL,

H
w

[l

Q
b

(]
of

X p.4 X X
=A% AT i A # 0
y Y\ .Y e LY
—(Apgx, A /AL, A A # 0

X .o Y. x
Aoltyy I A #0

r7 = A= v - ¥

Moty 1 A, #0
fg = 6x = ¥o T B4l g = 6; = xo - xk+2
*10 = 8 = Vw1 T Yo T11 7 85 = Yke2 = Yo

The contents of these registers will be modified upon receiving either a
U or V signal, as follows:

(1) For each U signal:

—2f—

r8 = r8 + 1

r9 = rg + 1

(2) For each V signal:

Tg = Tg t 1Ty if 8 =1
X

1:5 '=r6 if By=1

rlO = r10 + 1

rl1 = rll + 1

Note that the contents of the other registers remain unchanged.
By a similar argument to the one used above for D, one can show that
after (yo -~ y) V signals followed by (x - xo) U signals, the contents of

the registers become:
Z Z Z
1T AaX F AT A
(g~ MgV /A i A5 F O,

)
I

r =
5

(A% - AY/AL A AL # O,
Tg = ¥~ Xy
T9 T X~ Ko

Ti0 = Y+ — Y

11 5 Vw2 © Y

Therefore, rg gives the depth ziy of the line zk at the pixel (x,y),

.

when T, = 0 or changed sign while rg and Ty and also 0 and i1 have
opposite signs, respectively. azy equals sign(rl), and it is sent to the

B subunit.

Subunits B,M,I, and 8.

The B subunit involves only gating and no computation, for it compares

three signs: al . az and a3 . The minimization subunit M requires

Xy xy
3 comparators, The I subunit consists of 4 registers, &4 zero-testers, and

1 comparator. The S subunit has one comparator.

A summary of register requirement in the fast half is given in Table 2 below.

Registers Adders Comparators {Zero-testers)

D 4 1 0
B 0 0 0
Ll 11 2 5
L2 11 2 5
L3 11 2 5
M 0 0 3
I 4 0 4
5 2 0 1

43 7 23

TABLE 2

Register Requirements

Since the computations in D, L1, L2, and L3 are carried out in parallel,
their delay is one addition plus one comparison time, assuming the same delay
time for the zero-tester as for the comparator. The minimization of 4 elements
incurs a two-comparison delay time. S8 and I require a one-comparison delay
time each. Altogether, the response time for the fast half equals, at most,
one addition plus five comparisons, or in terms of the number of gate delays,

40 gate delays (counting 15 for the addition and 5 for each comparison).

-26=

This corresponds to 120 ns, assuming 3 ns for one gate delay.

Finally, note that the output of S consists of the depth (16 bits),
color (24 bits), and id (16 bits), i.e., a total of 56 bits, and is generated
every 128 ns. For a 20 ns inter-chip delay time, transmission of 64 bits
takes 4 x 20 = 80 ns with 4 transmissions of 16 bits each overlapping the
120 ns computation time. Consequently, the number of pins for the entire Q

unit, excluding power and synchronization signals, is 48,

: . ! 1 |
ad = min {dk } c3, 147 ad = min {dk } cd, 149
Xy k4 U Xy N I Xy kSi ’ S
Xy
I
= min § 2t 1 2 3 }
I “xy VP Zxy Pxy Zxy
M
t
Zxy j 4 4
B i
s 1 2 3
r Zxy “xy Zxy %xy
D Ll L2 L3
control control
— - ———
1 1 signals
s s info. £, info. £2 info. £, info. e
1 3
K
T £
3/ 1
plane s 1
command c commgnd
— S, .
4+ reset UNIT Q4.

Figure 4: Q Unit Structure,

., b 8

5. CONCLUSION

The new VLSI technology provides and demands a new way of solving large
scale computational problems. A system design based on the VLSI technology
requires a quite different set of design criteria and a different perspective
on the problem at hand. For example, design and analysis of algorithms for
VLSI architecture must evaluate more of the communication complexity than
the arithmetic complexity, and must exploit as much parallelism as possible.

The problem of real-time hidden surface elimination has traditionally been
a very difficult problem because of its large computational complexity and severe
real-time constraint. How hard is it with the VLSI technology? We have
tried to answer this question by studying various possibilities of VLSI
architectures for the problem, and in this paper we described the most

reasonable and the simplest one. Some of the other schemes we considered

are as follows:

(1) assigning one processor to each scan line,
(2) assigning one processor to each pixel point,
(3) assigning one processor to each rendering element, and using
a comparator network for computing the minimum distance.
In all these cases, the switching complexity, i.e., data-flow control, is

too much to be overcome with the current VLSI technology, economically or

technologically.

As a by-product of our study, the algorithm and the architecture described
in this paper may serve as a prototype VLSI architecture for the hidden

surface elimination problem, to be implemented and tested. One very

-28-

important issue in actual implementation is that of fault tolerance.
However, this issue is not unique to the hidden surface elimination problem,
but universal to any VLSI architecture design. Therefore, we propose to

study the issue in a wider context separately.

Bibliographical List

[1]

(2]

[31

(4]

[5]

(6l

[7]

{8l

[9]
[10]

[11]

Catmull, E., "Computer Display of Curved Surfaces." Ph.D. thesis,
University of Utah, 1974.

Fuchs, H. and Johnson, B. W., "A Multiprocessor Architecture for Video
Graphics," Proceedings of the International Symposium on Computer
Architecture, Philadelphia, PA, 1979.

Kant, M. and Kimura, T., '"Decentralized Parallel Algorithms for
Matrix Computation.” Proceédings of the Fifth Annual Symposium on
Computer Architecture, Palo Alto, California, April 1978, pp. 96-100.

Kung, H. T. and Leiserson, C. E., "Algorithms for VLSI Processor
Arrays." section 8.3 of Introduction to VLSI Systems, by Mead, C.
and Conway, L., Addison-Wesley Pub. Co., 1980.

Myers, A. J., "An Efficient Visible Surface Algorithm.'" Report to
N.S.F., Computer Graphics Research Group, Ohio State University, 1975.

Newell, M. E., Newell, R. G. and Sancha, T. L., "A New Approach to the
Shaded Picture Problem." Proceedings of the A.C.M. National Conference.

1972.

Newman, W. M. and Sproull, R. F. Principles of Interactive Computer
Graphics, McGraw-Hill, 1973.

Noyce, R, N., '"Microelectronics." Scientific American, No. 3,
September 1971,

Savage, J. E., The Complexity of Computing, John Wiley, 1976.

Sutherland, I. E. and Hodgman, G. W., "Reentrant Polygon Clipping.”
CACM 17, No. 1, January 1974.

Sutherland, I. E., Sproull, R. F. and Schumacker, R. F., "A
Characterization of Ten Hidden-Surface Algorithms." Computing Surveys
6, No. 1, January 1974,

	A VLSI Perspective of Real-Time Hidden Surface Elimination
	Recommended Citation

	tmp.1465589165.pdf.W_d20

