Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-79-10

1979-09-01

Total System Development Framework

Gruia-Catalin Roman

Building on the fundamental assumption that effective methdologies are problem and
environment dependent, a suggestion is made to distinguish between methodologies and the
methodological frameworks they instantiate. TSD (Total System Development) is put forth as a
candidate framework able to assist in the generation and evaluation of specific system
development methodologies, where systems are defined as distributed hardware/software
aggregates.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Roman, Gruia-Catalin, "Total System Development Framework" Report Number: WUCS-79-10 (1979). All
Computer Science and Engineering Research.

https://openscholarship.wustl.edu/cse_research/869

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/869?utm_source=openscholarship.wustl.edu%2Fcse_research%2F869&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

TOTAL SYSTEM DEVELOPMENT
FRAMEWORK

Gruia-Catalin Roman

WUCS-79-10

September 1979

This paper was produced under contract with Rome Air Development Center,
Griffiss AFB, New York 13441, and in collaboration with Defense and Space
Systems Group of TRW, Redondo Beach, California 90278, and Defense Map-
ping Agency, Washington, D.C., 20305.

Department of Computer Science
Washington University
St. Louis, Missouri 63130

As appeared in Proceedings of the 1981 ACM North Central Regional Confer-
ence, September 1981, pp. 135-142

A METHODOLOGICAL FRAMEWORK FOR
THE DESIGN OF DISTRIBUTED SYSTEMS*
Gruia-Catalin Roman
Department of Computer Science

Box 1045
Washington University

St. Louis, Missouri 63130
(314) B89-6190

Abstract.

Building on the fundamental assumption that effective methodologies
are problem and environment dependent, a suggestion is made to distinguish
between methodologies and the methodological frameworks they instantiate.
TSD (Total System Development) is put forth as a candidate framework able
to assist in the generation and evaluation of specific system development
methodologies, where systems are defined as distributed hardware/software

aggregates.

Keywords: methodological framework, methodology, system, hardware, software.

* This work was supported by Rome Air Development Center, Griffiss AFB,
New York 13441 under contract F30602-78-C-0148,

INTRODUCTION

During recent years the computer field has experienced an extreme
proliferation of methodologies, particularly in the system development
areas. The result has been an increased awareness of the important role
played by methodology, an awareness muddled to some extent by a certain
degree of confusion with respect to usage of terms and claims of gener-
ality made by various authors. Therfore, it seems reasonable that one
ought to stop for a moment, look back and try to put together a global
picture of what has been accomplished. However, the rationale behind
this paper goes beyond surveying in an attempt to merge concepts, strate-
gies, and issues under a cohesive framework whose role is to provide
a philosophical and technical foundation supporting research, development,
and evaluation of system development methodologies.

The idea of conceiving the methodological framework as a new investi-
gative tool stems from the firm belief that effective methodologies are
environment and problem dependent and, as such, the ability to extract
the essence of various approaches for purposes of comparison presupposes
some abstraction mechanism which is more or less environment and problem
independent. However, the significance of the methodolegical framework
need not be found only in its analytical valuve, but also in its pragmatics.
While methodology exportation may be limited to problems and environments
similar in nature and several methodoleogies may have to coexist within
the same organization, the framework may be unique and easily transportable,
thus providing a common reference point. Based on the foundation laid by
the framework, different organizations and projects may adopt distinct metho-

dologies by recognizing the specificity of their own environment or problem.

2

The high level of abstraction of the methodological framework mani-
fests itself above all in a less procedural character emphasizing sequences
of intermediate results and not the techniques used to generate them.
Furthermore, the framework assumes an idealized perspective stressing
fundamental relationships between intermediate results and not optimal
ways in which they may be produced. For instance, the fact that some parts
of the same project may have to be at different steps in the development
cycle is of no relevance from the point of view of the framework. Mana-
gerial issues and techniques are expressly disregarded due to their strong
dependence on the organizations's environment. Once the technical issues
are clarified, well-matched management strategies may be selected in order
to maximize the effectiveness of the methodology instead of proceeding in
the opposite order as is commonly done today.

A global view of the methodological framewerk reveals its topology
to be a directed acyclic graph where each vertex denotes a distinct metho-
dological phase and each arc indicates a dependency relation between phases.
In this context, a phase is defined as a set of activities whose overall
effect is the generation of one or more well-defined specifications re-
quired by its immediate successors in the graph. The reason for the acyclic
nature of the graph lies in the fact that interphase feedback has little
significance at the high level of abstraction employed by the framework.
This fact does not preclude specific methodologies from exploiting freely
the use of interphase feedback loops or from considering look-ahead
strategies.

To define a particular phase one has to identify its position in the
framework, its interactions with the neighboring phases, and its functionality,

i.e., the relationship between the specifications received and produced by

3
the particular phase. Furthermore, it is the contention of this paper
that judicious separation into phases ought to reflect fundamental relation-
ships between activities and the body of knowledge required to carry them
out; sequences of activities employing the same know-how should be part
of the same phase.

The complexity of individual phases may require further elaboration
in terms of steps, partitions of the set of activities involved in some
given phase. While the relation between phases is one of dependency, the
relation between steps is of a sequencing nature. It describes the set
of acceptable step sequences and assumes the representation of a directed
graph. The presence of cycles is due to the recognition of feedback loops
within a phase. As a matter of fact, the steps are partitioned into two

classes: synthetic and analytic steps. Synthetic steps represent groups

of activities whose task is that of generating intermediate versions of

some specification and, as such, involve no feedback. Analytic steps are
associated with the process of evaluating some specification in order to
decide if backtracking is necessary. The latter group plays a key role
in quality control and also in assuring compliance with any predefined con-
straints.

As stated in the beginning of this section, the goal of this paper
is to propose a specific methodological framework, not only as an illus-
tration of how such a framework might be conceived but also as an attempt
to make available a new investigative tool for the study of system develop-
ment methodologies. The framework under consideration is called the Total
System Development (TSD) framework and is intended to emphasize particu-
larly issues related to distributed systems and the hardware/software

partitioning problem. By providing a unified treatment of a large c¢lass

4
of system development methodologies, TSD should prove useful both to re-
searchers and policy makers by enabling them to carry out a more judicious
evaluation of existing and new methodologies as well as fruitful comparisons.
The remaining sections are dedicated exclusively to describing the TSD

framework. The next section discusses the separation of the development
cycle into phases and includes a short description of each phase. Some

of the front-end phases are later detailed by focusing on the key issues
faced by each one of them, its outputs, and the availability or lack of

adequate techniques to support its activities.

TOTAL SYSTEM DEVELOPMENT (TSD) FRAMEWORK OVERVIEW

Since 1968, the year when the term "software engineering" was born,
significant progress has been made in understanding and controlling the
software development cycle. A wealth of methodologies has evolved along
with design principles and techniques, specification languages, and so
on. However, the late seventies marked the emergence of two powerful-
trends: distribution and VLSI. As a result, the software/hardware re-
lationship has grown more complex while, at the same time, systems de-
velopment has begun to demand a greater understanding of hardware archi-
tectures and the impact they might have on a system's design and
characteristies. Consequently, a critical point has been reached where
software development and hardware selection and design must be brought
together under the umbrella of a unifying conceptual framework. Total
System Development (TSD) is put forth as a candidate framework particularly
well suited for this task.

TSD is meant to establish the basis for an integrated approach to
computer systems development and to contribute to the development of new
methodologies which treat systems as distributed software/hardware aggre-
gates, thus breaking the barrier between software and harvdware design.
Furthermore, it is the author's hope that TSD might stimulate greater
collaboration between software and hardware engineers by indicating points
of commonality between the two types of activities and the nature of the
hardware/software trade-offs involved in system development.

As suggested earlier, TSD is an abstraction based on the analysis of
current software system methodologies, hardware selection methods, and

hardware design approaches. TSD phases have been slected by grouping

o}
together system development activities related to each other and sharing the
use of a common knowledge base (theory, techniques, skills, etc.), a vari-
ation on the principle of separation of concerns. As a result, some phases
deal with issues of the application domain, others involve computational
structures, etc. Figure 1l contains a diagram depicting the TSD phases
and their fundamental interrelationships. Short descriptions of each phase
are included in the remainder of this section. A phase by phase detailed
presentation follows starting with the next section.

The problem IDENTIFICATION phase is informal in nature and has an
exploratory flavor. It denotes the gathering of information about those
activities of the application domain which need to be supported by some
proposed system. A good understanding of the application domain is essential
for the successful completion of this phase.

During the CONCEPTUALIZATION phase, the information previously gathered
is organized as a formal model called a conceptual model. The entire phase
is application domain dependent and rests on the ability to formalize the
problem domain. The conceptual model becomes the basis for the rest of
the development process and, as such, there are good reasons to propose
it also as a foundation for all contractual agreements.

The system REALIZATION phase moves the development process from the
application domain modeling into the computational domain. For the first
time, a realization of the system is proposed. Performance evaluation
plays an important role during this phase by helping in the selection be-
tween alternate realizations. It ought to be stressed at this point that
the realization phase results in a technology independent solution to the
problem at hand. Considering the rapid technological changes which have
occurred during the last decade and continue to be manifest today, it be-

comes necessary to separate the technology independent aspects of the

IDENTIFICATION
PHASE

]

kS

CONCEPTUALIZATION
PHASE

7

1L

REALIZATION
PHASE

I

L5

BINDING
PHASE

J ; IMPLEMENTATION PHASES 1vl

SOFTWARE BARDWARE
DESIGN DESIGN

MANUFACTURING PHASES

CODING FABRICATION

-
I

&

INTEGRATION
PHASE

3

PRODUCTION

Figure 1; Total System Development (TSD) Framework

8
design from those decisions which are technolgy dependent. The criterion
used in this document naturally separates these phases which in many metho-
dologies today are not yet differentiated.

In contrast with the realization phase, BINDING is a heavily tech-
nology dependent phase. It recognizes the unique characteristics of hard-
ware and software, but also the hardware/software duality. The role of
the binding phase is that of assigning processors to specific hardware
and, during this process, to optimize the system based on hardware/software
trade-offs analysis, This process may take a variety of forms from
vendor selection to choosing custom hardware and software. During the
same phase, the characteristics of the communication medium are alse bound.

IMPLEMENTATION denotes two phases: SOFTWARE DESIGN and HARDWARE
DESIGN. They both deal with the selection of a particular implementation
(composition of functions or building blocks) for custom built components.
At the present time there exist significant differences between hardware
and software design procedures (despite the duality principle), but it is
conceivable that in the future the two phases may resemble each other
more and more as the two knowledge bases converge.

Because of the software/hardware differences MANUFACTURING denotes
two phases corresponding to two technological domains: CODING, which
refers to the process of materializing a particular software implementation
through the use of some programming language, and FARRICATION, which is
the process by which hardware components are built based on solid state
and electronics technologies.

The INTEGRATION phase deals with the assembly of the system from
componeéent parts and the associated testing procedures. Subsequent to

integration the system is installed and put into production.

9
The remainder of the paper considers the first four phases of the
framework and outlines the fundamental steps involved in carrying out the

activities related to these front—-end phases.

10

IDENTIFICATION PHASE

Identification is the first phase of the TSD framework. It encompasses
activities whose goal is that of establishing the groundwork required to
start system development. This phase attempts to identify why a system
should be built, what it is supposed to do, how it relates to the production
environment, and what the constraints to be met by the system are. The
identification phase has a highly informal character (formalization re-
quires first an understanding of the application), is facilitated by a
prior knowledge of the application domain, and requires careful consider-
ations of the human factors invelved in the process of creating a good
communication link between the developer and the customer.

The output of the identification phase is a report detailing, in some
organized but informal way, the results of the developer's explorations
of the customer's world. It corresponds, in some sense, to the experimental
or field data used in diséiplines like physics or anthropology. As such,
the viewpoint tends to be local, the level of abstraction is low, and
the correlations are few. The completeness and accuracy of the data are
the key issues facing the writer of the report.

The fundamental steps involved in the identification phase are listed
below:

{a) Exploration

(b) Report generation

(c) Report evaluation
The exploration step is meant to accomplish two highly interrelated tasks:
to create a communication link between developer and customer and to es-
tablish the role played by the proposed system. The report generation step

must produce a complete and unambiguous description of the issues revealed

11
during the exploration step. The report evaluation is an analytical
step which attempts to determine the successful completion of the identi—
fication phase. Rejection of the report indicates the need to revisit
previous steps.

Typically, the identification phase of most system development metho-
dologies also includes steps which, while technically non-essential, have
great practical significance, They tend to be oriented toward the gener-
ation of preliminary studies regarding anticipated benefits or market value,
cost estimation, development time and needed resources, potential environ-
mental, social and legal implications, etc. Such investigative work is
important in assisting decision making processes both in the developer and
customer organizations. Based on these studies unwise system development
may be stopped before committing too much money and resources, However,
one must emphasize that the informal nature of the identification phase
can hardly support a formal study of complicated issues such as those men—
tioned above. More definitive studies become possible only in the concep-
tualization phase.

An adequate treatment of the identification phase is hard to find in
the current literature. The identification phase is most often neglected
in favor of other pahses which exhibit more formal qualities and have been
studied in some depth. A successful case study by Heminger(l) is recommended
the reader interested in techniques supporting the identification phase.
The approach, as expected, is application domain dependent. The case study
involves an existing working system (flight software for the NAVY's A-7
aircraft) which was subjected to the identification phase. Nevertheless,
the techniques could also be used in the more common situation when a new
system needs to be built. 1In the area of business systems, Taggart and

2
Tharp() survey a number of techniques for "information requirements analvsis"

to

12
which deal with the identification phase. However, most of them go beyond

the pure identification activities into conceptualization and even further.

13

CONCEPTUALIZATION PHASE

The information obtained in the identification phase is formalized
during the conceptualization phase. The result is a conceptual model
which formally defines all aspects of the application domain to be
supported by the system under development. The conceptual model is
intended to play a multitude of roles: it defines the system's functional-
ity, boundaries, and interfaces to the application environment; it forms
the basis for analytical studies of a technical (e.g., feasibility) or
managerial (e.g., cost prediction) type; it establishes a firm foundation
for all contractual agreements; and it helps in understanding the cus-
tomer's problem representing the most important communication link be-
tween developer and customer. Informal models can rarely satisfy all
these needs. The conceptual model ought to be very precisely formulated,
to provide concise means of expression and powerful notation, to be
analyzable by humans and/or machines, and to support a variety of levels
of abstraction. Occasionally more than one conceptual model may be re-
quired for a complete description of the problem.

Jumping directly from identification to realization is an important
factor in the failure of many systems being developed today. Informal
descriptions of the problems tend to be incomplete, self-contradictory,
hard to verify, and ambiguous. Furthermore, many fu;damental problems
are obscured by the verbosity of the reports and the simplicity of the
examples. Such issues can be resolved only by systematic formal modeling
and analyses,

The steps comprising the conceptualization phase are as follows:

(a) Formalism selection

(b) Formalism validation

(c) Conceptual model construction

(d) Conceptual model verification

14

(e) System boundaries selection
The conceptualization phase starts with the selection of a2 formalism able
to represent the problem. The formalism may be newly developed or already
available from some source. In either case the selection needs to be vali-
dated theoretically or experimentally as being suitable for the task before
too much effort is invested in using it. Subsequent to validation, a con-
ceptual model of the problem is built and later made subject to systematic
verification by both developer and customer. The verification ought to
consider issues such as: proper use of the formalism, lack of contradic-
tions, completeness, and consistency with the identification report.
Finally, the conceptual model may be used to select, in agreement with the
customer, the boundaries of the system to be developed.

The ability to develop and communicate the conceptual model presupposes
the availability of an adequate formalism. It may be selected from among
existing formalisms or it may be the result of abstracting from the appli-
cation domain the key fundamental concepts required to understand and des-
cribe the information gathered during the identification phase. Formalisms
used for problem conceptualization tend to fall into distinet groups.

Some formalisms are application domain specific. Many of them are
powerful enough to reach the status of problem oriented languages such as

(3) (4)

BIOSSIM which is used in biological research or BDL which is intended
for business applications. Other formalisms are only partially processable
by machines but have been proven to be valuable tools in the development

of conceptual models. A second group is represented by languages such as
HOS(5) which, while unrelated to any particular application domain, allow

for user defined entities which can later be invoked during the development

of the conceptual model. Finally, there are formalisms which are the re-

15

sult of abstracting over large classes of applications systems common
features which help one in better understanding the type of processes in-
volved and fundamental limitations or trade-offs. Examples of such for-

. . . 6,7
malisms are formal language and automata based models of communlcatlon,(7

(8) (9)

relational algebra, and database abstractions. These formalisms play
a crucial role in the development of appropriate conceptual models for
multi-purpose computer systems as well as for systems supporting specific
applications whose conceptual models depend heavily on communication, data-
base, etc. For instance, the development of a distributed medical informa-
tion system may require a conceptual model which includes concepts from
medical record keeping but also from communication and database areas.
Despite its importance, many system development methodologies do not
even recognize the conceptualization phase and, as such, are guilty of a
very serious omission. Furthermore, conceptualization is most often con-
fused with one or another design activity and dealt with as a computational
problem instead of being treated as a business, military, or medical problem.
Consequently, many formalisms have little to do with the application domain.
They are design specification languages misused for a purpose outside their
range. More recognition needs to be given to the fact that problem speci-

fication languages used as conceptualization tools ocught to reflect and

incorporate application demain knowledge.

REALIZATION PHASE

System design activities start with the realization phase whose main
function is that of generating a technology independent system specification

called the processing model. Technology independence is achieved by main-

taining the design activities at a very high level of abstraction. The
processing model is conceived as the result of a highly interactive sequence
of synthetic and analytic steps. The synthetic steps represent design acti-
vities aimed either at altering am unsatisfactory design solution or at
adding new details to the model. The analytic steps establish, on one

hand, the logical correctness of the design and, on the other hand, con-
formity with given qualitative and quantitative constraints which may have
originated with the customer or developer, or may represent generally ac-
cepted rules of the trade.

The motivation behind developing the processing model is two-fold.
First, the model describes top level system design from the point of view
of functionality and behavior at an abstract enough level so as to be
independent of detailed technical considerations. Secondly, the processing
model is envisioned to become the basis for both hardware/software par-
titioning and hardware selection, which take place in the binding phase.

As such, in addition to functionality, the processing model ought alse to
include performance related information such as data volume, message rates,
data access patterns, ete. This information could originate, in part, in
the conceptual model and among customer provided constraints while the rest
would have to be generated during the performance checks to which the
model is subjected in the realization phase.

The fundamental steps involved in developing the processing model are

17

listed below,.

{a) Elaboration

(b) Logical verification

(¢) Partitioning

(d) Performance check

{(e) Qualitative check

When considering the general case of a potentially distributed
system, the scenario defined by the steps above is as follows. The e-
laboration step starts by establishing the set of events relevant to
the particular level of abstraction and groups them inteo parallel pro-
cesses. The resulting specification is then subject to logical verifica-
tion, which attempts to determine its consistency with respect to the
level above and with respect to the conceptual model. During partitioning,
processors are approximated in terms of the processes assigned to them.
This partitioning of the various processes among hypothesized processors is
based on estimating relative communication costs within the same processor
and across processors. Subsequently, performance and qualitative checks
are carried out in order to evaluate the design's conformity to the set of
realization pertinent censtraints.

Because of the size of the systems and the complexity of the decisions
invelved in the realization phase, the same steps would have to be
repeated for each successive level of abstraction employed in the processing
model., Consequently, as the need for further refinement and distribution
is determined, one or more processors on level n may be further refined
by employing the same procedure, thus generating level (n + }). As an
example, processors on level one may represent network nodes while on level
two they may abstract single machines. The level of detail at which the

refinement and distribution activities (i.e., the realization phase) are

18
curtailed is a function of the ability to assess compliance with all
relevant constraints; however, failures in being able to carry out the
binding may require later resumption of this phase.

The elaboration step as well as all the subsequent steps involved in
the realization phase require the support of system design languages
capable of describing processes and their interactions in a precise manner
and of generating specifications suitable for purposes of analysis. Con-
siderable effort has been and continues to be expended towards the develop-
ment of such specification languages. Some of the languages mentioned under

(5)

conceptualization are actually better suited for this purpose, HOS for
instance, Others, such as PSL(IO), lack the full range of capabilities
suggested here but function well for a restricted set of problems. Most
languages based on graphic descriptions and informal semantics such as those
reviewed by Peters and Tripp(ll) are adequate only for the design of sys-
tems without concurrency. Highly formalized specification languages

(12) (13) (14)

such as SRI modules , DREAM have better chances of

or SARA
success and encourage mechanization of some of the analytic steps. Other
serious contenders are parallel programming languages such as concurrent
PASCAL(IS) which have been used for specification purposes. Unfortunately,
parallel languages have not been designed with the intent of supporting

the specification activity and, as such, tend to be somewhat cumbersome

to use and too restrictive.

BINDING PHASE

Determination of the hardware/software boundary and selection of
particular hardware components of the system are the goals of the binding
phase. All decisions taken during this phase are controlled by market
availability, technological state-of-the-art, and manufacturing capa-
bilities, The constraints imposed by these factors are manifest not
only in terms of sheer availability of hardware having certain given
qualities, but also in the cost of various existing components. Binding
and all subsequent phases are heavily technology dependent and are expected
to change as long as technological progress takes place. As the cost
structure of alternate options varies with time, the binding techniques
may change substantially. Such a phenomenon is actually observable today
in a trend away from the large mainframes and toward distributed systems.

(16,17) even for

The complexity of binding has long been recognized
the somewhat simpler situation when a single computer system is to be pur-
chased. The difficulties stem from the growing multitude of feasible alter-
natives, the virtual impossibility to objectively compare highly dissimilar
systems, the lack of sophistication of the performance measurements, the
complexity of evaluating cost and human factors, the subjectivity of the
selection team, its role, power, and composition, etc. As one considers
distributed systems and custom-made components, the complexity grows many
fold with the technical expertise required of the selection team in-
creasing accordingly.

A comprehensive and cohesive approach to binding has been proposed by
Roman.(ls) His strategy takes advantage of the top-down organization of

the processing model in order to minimize not only the objective function

but also the effort required to carry out the binding. Furthermore, various

20
binding options are considered on a priority basis. For instance,
the following sample options are ordered as listed: commercially
available computer system, customized computer (changes in microcode
or operating system), custom-made machine, and custom-made (VLSI) device.
A lower priority option is introduced only when increased levels of dis-
tribution cannot satisfy the performance needs given the current option
or become prohibitive in terms of cost. Furthermore, given a feasible
option, an attempt is made to minimize cost and number of components (when
cost differences are small),

The first step of the binding phase (see Figure 2) identifies the
minimum distribution requirements, i.e., what processors are prohibited
from being implemented on the same (physical) machine. This is done
by reviewing pertinent customer imposed constraints (e.g., survivability,
fault tolerance, etc.) and by recognizing performance constraints which
obviously require distribution. Next, tightly coupled processors of
comparable structure, behavior, and performance are grouped into clusters.
They represent areas of hardware regularity which ought to result in uniform
binding, i.e., each processor in the cluster is bound to the same type of
physical machine.

Based upon the characteristics of its members, a binding option is
selected for each cluster. Every time an option is considered, selection
rules for determining the set of viable candidates are established. They
help in reducing the number of candidates to those that have a better
than average chance of success and satisfy all the basic binding constraints.
The rules have to be simple to apply, making initial candidate selection
trivial.

Once the candidate set has been chosen, each candidate is evaluated

with respeect to the cluster. The evaluation method depends on the current

21
option. Its role is that of determining how good a match the candidate is
for the particular cluster. Each processor is mapped into a physical
machine. The mapping is verified and later evaluated with respect to per-
formance and other qualities that the system must exhibit. Candidates that
are too powerful or not powerful enough are rejected. A good match between
some candidate and the cluster results in a successful binding which,
along with other successful bindings, is saved for future consideration.
Failure to bind at least one of the candidates results in taking one of
the following three courses of action: further distribution of the processors
in the cluster, selection of a different binding option, or restructuring
of one or more clusters.

The strategy above results in a number of possible configurations.

Not all of them are viable due to incompatibilities that may occur when com-
municating clusters are separately bound. As such, all incongruent con-
figurations need to be discarded before continuing with the binding of the
communication links.

At this point a final validation of each configuration takes place,
and all acceptable configurations receive a cost-value coefficient. The
cost estimation ought to include, in each case, hardware costs, software
costs {(two equally priced machines but having different software result
in different software development costs), and communication costs. The
final choice is determined by contrasting the cost of the various alter-
natives (development cost plus any other cost factors) and by considering
any other issues perceived to be relevant to the decision in question.

The binding phase, however, cannot be completed until precise and complete
software and hardware requirements are generated, thus assuring the
stability of both types of components during the implementation and manu-

facturing phases.

22

Tdentify Minimum Distribution

Iy

Identify Clusters
i

For every Select Binding Option
cluster
Develop Candidate Selection Rules

Select Candidates

For every rh Generate Cluster/Candidate Map
candidate

— Verify Happing

— Performance Check

‘— Qualitative Check

L wr

Accept Candidate Reject

|

Restructure Clusters \\;
-

Review Cluster Binding Z- Incrcase Distribution -

1 Consider New Option

)

Eliminate Incongruent Configurations

!

For cvery Bind the Communication
confipuration 1

Validate the Configuration —— —— . Reject

!

Assign Cost-Value Coefficient

Limit the Number of Configurations
Select Winning Configuration
Generate Hardware Requirements

Generate Software Requirements

figure 2: Binding Phase

23

POST-BINDING PHASES

Because the phases following binding have already received adequate
coverage elsewhere, the implementation, manufacturing and integration phases
are not reviewed here. The interested reader, however, is directed to

(19) . i
Wegner for an evaluation of the state-of-the-art in software tech-
(20)

nology, to Bell et. al., for a treatment of hardware systems design,

and to Mead and Conway(zl) for issues related to VLSI design.

CONCLUSIONS

The Total System Development (TSD) methodological framework emerges
from the need to establish a unified view of the various activities in-
volved in the development of systems that span across hardware/software
boundaries. It is an attempt to merge concepts, techniques, and methodologies
under a cohesive philosophical and technical framework, thus enabling one
to more clearly relate approaches that address disjoint facets of the sys-
tem development cycle.

TSD is not a specific distributed systems design methodology but a
methodeolgical framework supporting methodology research, development, and
evaluation. TSD provides the researcher with the foundation for a systematic
approach to methodology develepment and with a new conceptual tool. TIts
high level of abstraction allows for a clearer identification of basic
methodological issues transcending individual methods. The policy maker
and the manager of research organizations may employ TSD in devising a
fixed point of reference against which research planning, trends, and accom-
plishments may be judged. Finally, the production manager may choose to use

TSD as an aid in methodology analysis, selection, and enhancement.

25

REFERENCES

1.

10.

11.

12,

13.

Heninger, K. L. "Specifying Software Requirements for Complex
Systems: New Techniques and their Applications.' Proceedings
of the Conference on Specifications of Reliable Software, April
1979.

Taggart, W. M., Jr. and Tharp, M. 0. "A Survey of Information
Requirements Analysis Techniques.' Comp. Surv. 9, No. 4,
December 1977.

Roman, G.-C. and Garfinkel, D. "BIOSSIM - A Structured Machine-
Independent Biological Simulation Language.” Comp. and Biomed.
Res. 11, pp. 3-15, 1978.

Hammer, M., Howe, W. G., Kruskal, V. J. and Wladawsky, I. "A Very
High Level Programming Language for Data Processing Applications."
CACM 20, No. 11, ppn. 832-840, November 1977.

Hamilton, M. and Zeldin, S. "Higher Order Software - A Methodology
for Defining Software." IEEE Trans. on Soft. Eng. SE-3, No., 1,
pp. 9-32, March 1976.

Shaw, A. "Software Descriptions with Flow Expressions.” IEEE Trans.
on Soft. Eng. SE-4, No. 3, pp. 242-254, May 1978,

Reif, J. H. "Analysis of Communicating Processes.' Technical
Report TR 30, Computer Science Department, University of Rochester,
Rochester, N. Y. 14627.

Codd, E. F. "Relational Completeness of Database Sublanguages."
Data Base Systems, R. Rustin editor, Prentice-Hall, 1971.

Smith, J. M. and Smith, D. C. P. "Database Abstractioms: Aggregation
and Generalization." ACM Trans. on Database Sys. 2, No. 2, pp. 105-
133, June 1977.

Teichroew, D. and Hershey, III, E. A. "PSL/PSA: A Computer-Aided
Technique for Structured Documentation and Analysis of Information
Processing Systems." IEEE Trans. on Soft. Eng. SE-3, No. 1, pp. 41-
48, January 1977.

Peters, L. J. and Tripp, L. L. "Comparing Software Design Metho-
dologies." DATAMATION, pp. 89-94, November 1977.

Robinson, L., Levitt, K. N., Neumann, P. G. and Saxena, A. R.

"A Formal Methodology for the Design of Operating System Software.”
Current Trends in Programming Methodology, edited by R. Yeh, Vol. 1,
Ch. 3, pp. 51-110, Prentice-Hall, 1977.

Riddle, W. E., Wiledon, J. C., Sayler, J. H., Segal, A. R. and
Stavely, A. M, "Behavior Modeling During Software Design." IEEE
Trans. on Soft. Eng. SE-4, pp. 283-292, July 1978.

14,

15.

16.

17.

18.

19.

20.

21.

26

Campos, I. M. and Estrin, G. "Concurrent Software System Design
Supported by SARA at the Age of One.: Proceedings of the 3rd
International Conference on Software Engineering, pp. 230-242,

May 1978.

Hansen, B. The Architecture of Concurrent Programs, Prentice-Hall
1977.

Joslin, E. 0. Computer Selection. Addison-Wesley, 1968.

Timmreck, E. M. "Computer Selection Methodology." Comp. Surveys
5, No. 4, pp. 199-222, 1973.

Roman, G.-C. "Total System Development Framework." Technical Report
WUC5-79-10, Department of Computer Science, Washington University,
St. Louis, Missouri 63130, 1979.

Wegner, P. (editor) Research Directions in Software Technology,
MIT Press, 1979,

Bell, C. G., Mudge, J. C., and McNamara, J. E. Computer Engineering:
A DEC View of Hardware Systems Design. Digital Press, Digital
Equipment Corporation, 1978.

Mead, €. A. and Conway, L. A. Introduction to VLSI Systems.
Addison-Wesley, 1980.

	Total System Development Framework
	Recommended Citation

	tmp.1465589165.pdf.tv9zR

