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Abstract of the Dissertation 

Photoacoustic Reporter Gene Imaging and Optical Coherence Computed Tomography 

by  

Li Li 

Doctor of Philosophy in Biomedical Engineering 

Washington University in St. Louis, 2010 

Research Advisor: Lihong V. Wang 

 

 

Advances in imaging technologies have always been the major driving forces for the 

evolution of biomedical research. Compared with other modalities, optical imaging 

possesses several prominent merits. Because light interacts with tissue at the microscopic 

level through many distinct physical mechanisms, optical methods allow sensitive 

exploration of various aspects of the life down to the single-molecule level. From the 

technical perspective, optical systems utilize safe non-ionizing radiation, could be 

implemented at relatively low cost, also have the potential to be miniaturized for portable 

or endoscopic applications. As a result, optical imaging tools are playing an increasingly 

important role in both laboratorial research and clinical practice. Among them, 

photoacoustic imaging (PAI) and optical coherence tomography (OCT) are the two 

fastest growing branches. PAI measures the laser-induced acoustic wave, and produces 

high-resolution images of the optically absorbing features of tissue at multiple length-

scales. OCT detects singly backscattered photons, and enables real-time high-resolution 
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in vivo biopsy of tissue up to an optical transport mean-free-path. My doctoral research is 

focused on developing three novel optical imaging techniques based on the spirits of PAI 

and OCT. 

In the first part of this study, we established a new paradigm to visualize gene expression 

in vivo based on optical absorption. In the post-genomic era, we are now being 

challenged to develop novel molecular imaging methods to identify the functions of 

genes. PAI can detect specific molecules according to their characteristic absorption 

spectra, thus is a promising candidate for molecular imaging of gene expression. The full 

potential of photoacoustic molecular imaging still remains to be explored. For the first 

time, we demonstrated imaging gene expression by PAI in living mice and rats, using a 

chromogenic lacZ/X-gal reporter gene system. We demonstrated the expression of the 

lacZ reporter gene can be detected by PAI as deep as 5 cm inside tissue. In addition, we 

showcased that PAI could follow gene expression from the microscopic to the 

macroscopic level. This work represents one of the pioneering efforts to extend 

photoacoustic methods for molecular imaging. 

In the second part of this study, we developed a novel multimodal microscope, called the 

integrated photoacoustic and optical coherence microscope (iPOM), which combines PAI 

and OCT in a single imaging platform. PAI is predominantly sensitive to optical 

absorption, while OCT exploits optical scattering. By combining their naturally 

complementary imaging contrasts, iPOM can provide comprehensive information about 

biological tissue. We designed and built a reflection-mode prototype of iPOM, which 

fuses optical-resolution photoacoustic microscopy with spectral-domain optical 
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coherence tomography. The potential applications of iPOM in studying cutaneous and 

ocular microcirculation, and tissue engineering were demonstrated. 

Finally, we invented a new optical tomography, named optical coherence computed 

tomography (optical CCT), which overcomes several major limitations of OCT. OCT 

relies on singly backscattered photons to obtain high-resolution images. Its image quality 

degrades fast with the increase of the depth, because the multiply scattered photons 

quickly become dominant at a penetration larger than 500 µm. As a result, OCT can only 

effectively penetrate ~1 mm into highly scattering tissue like skin. In addition, OCT is 

mainly sensitive to optical scattering, which does not reflect the molecular content of 

tissue directly. Optical CCT measures both singly and multiply scattered photons using a 

low-coherence interferometer. We make use of both types of photons by adopting a 

model-based reconstruction algorithm. The light-tissue interaction model was established 

using the time-resolved Monte Carlo method. The optical properties of the tissue were 

reconstructed from measurements by solving the inverse radiative transport problem 

under the first Born approximation. As a result, optical CCT could image deeper than 

OCT, and provide extra molecule-specific contrasts, such as optical absorption. We 

designed and built the first optical CCT system. In experiments, absorbing inclusions of 

100 µm diameter were imaged with consistent quality through a 2.6-mm-thick 

(equivalent to ~3 transport mean-free-paths) tissue-mimicking phantom. 
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Chapter 1 Introduction 

 

Ever since Roentgen’s discovery of X-ray in 1895, innovations in imaging technologies 

have always been important driving forces for the modernization of biology and 

medicine. However, current mainstream imaging modalities, such as X-ray computed 

tomography (CT), ultrasonography and magnetic resonance imaging (MRI), are still 

limited, especially in early detection of diseases and revealing molecule-specific 

information of biology. Hence, demanding biomedical applications keep pushing for new 

imaging techniques to offer new insights into the life. Recently, biomedical optical 

imaging is emerging as a promising candidate for meeting these challenges. Compared 

with other modalities, optical imaging possesses several prominent advantages in 1) 

providing a rich set of sensitive imaging contrasts, such as absorption, scattering, 

fluorescence and polarization, most of which are molecule-specific, 2) the utilization of 

safe non-ionizing radiation, 3) the potential to be miniaturized for portable or endoscopic 

applications, and d) the relatively low cost. 

In soft tissue, the collective migration behavior of photons can be loosely classified into 

three regimes [1]. Within the first millimeter in tissue, a large portion of photons follow 

their incident directions and travel roughly along a ballistic trajectory. It is called the 

ballistic regime. Between 1 mm and 1 cm is the quasi-diffusive regime, where most 

photons have been scattered more than ten times and retain only a weak memory of their 

original directions. After 1 cm, photons virtually forget their incident angles, propagate 
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along randomized directions, and enter the diffusive regime. Optical imaging tools 

working in all the three regimes have been developed based on different strategies for 

diverse biomedical applications from the microscopic to the macroscopic level. Figure 

1.1 summarizes major optical imaging techniques on a maximal penetration depth-to-

spatial resolution graph. The blue diagonal in the plot indicates where the depth-to-

resolution ratio is 100. Techniques located on and below this line are considered to be 

high-resolution, which means they could produce images with more than 100 effective 

pixels along each dimension. For microscopic applications, various high-resolution 

ballistic optical microscopes, such as confocal microscopy [2], multiphoton microscopy 

[3] and coherent anti-Stokes Raman scattering microscopy [4], can penetrate a few 

hundred microns into tissue, and see details of cells or sub-cellular organelles with 

diffraction-limited spatial resolution at the order of a fraction of a micron. Recently, a 

group of fluorescence nanoscopes [5], such as stimulated emission depletion microscopy 

[6], photoactivated localization microscopy [7], and stochastic optical reconstruction 

microscopy [8], pushed the envelope of spatial resolution even further and broke the 

optical diffraction resolution limit. These techniques utilize the switching between the 

bright and dark state of a fluorescence marker to record sub-wavelength features 

sequentially in time. They currently can penetrate a monolayer of living cells, and resolve 

down to ~20 nm. Looking into the future, the optical nanoscopy carries the hope to see 

individual molecules in living cells. In the macroscopic world, low-resolution diffuse 

optical tomography (DOT) [9] maps the optical properties of tissue by inversing 

measurements of diffusive photons. Although it could penetrate ~5 cm into tissue, the 

resolution is only ~1/5 of the tissue thickness. Nevertheless, DOT is sensitive to changes 
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in tissue’s optical properties caused by physiological functions. It is being tested for 

clinical applications to detect early-stage breast cancer, evaluate individual treatment 

outcome of tumor therapy, and study brain functions, usually as a complementary method 

to another high-resolution imaging technique (for example, MRI). 

 

Figure 1.1  Survey of major biomedical optical imaging techniques. STED: stimulated 

emission depletion microscopy. PALM: photoactivated localization microscopy. 

STORM: stochastic optical reconstruction microscopy. CM: confocal microscopy. MPM: 

multiphoton microscopy. CARS: coherent anti-Stokes Raman scattering microscopy. 

OCT: optical coherence tomography. PAI: photoacoustic microscopy. DOT: diffuse 

optical tomography. 
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Recently, high-resolution photoacoustic imaging (PAI) and optical coherence 

tomography (OCT) are making increasing impact on both biomedical research and 

clinical diagnosis. They bridge the gap between the aforementioned microscopic and 

macroscopic optical imaging methods and are the two fastest growing branches in the 

field of biomedical optical imaging. 

 

Photoacoustic Imaging  As a physical phenomenon, the photoacoustic effect 

was first documented in 1880 by A. G. Bell, who invented the world’s first wireless 

communication system – ―Photophone‖ based on this discovery [10]. The photoacoustic 

effect describes a mechanism to listen to light-tissue interaction. When an object is 

irradiated by electromagnetic wave, part of the energy will be absorbed and further 

converted to heat. When the excitation is fast time-variant in energy, a transient increase 

in pressure will be induced through thermal-elastic expansion, and distributes spatially 

according to the object’s optical absorbing structure. Finally, the initial pressure rise will 

propagate as an acoustic wave, named the photoacoustic wave, which could be detected 

outside the object. Assuming heat doesn’t diffuse significantly during the short duration 

of excitation, the generation and propagation of the photoacoustic wave will be governed 

by the following general photoacoustic equation 

, 

(1.1) 
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which links the measured photoacoustic pressure  to the distribution of the optical 

absorption coefficient  in the object. Here, denotes the speed of sound. is the 

Grueneisen parameter, a constant connecting thermal energy and mechanic energy in 

material. is the percentage of absorbed electromagnetic energy that is converted to 

heat.  is the local optical fluence rate. 

Photoacoustic imaging (PAI) refers to a novel imaging modality to visualize the 

absorbing features of tissue based on the photoacoustic effects. With the advent of laser, 

ultrasonic transducer, and imaging sciences, PAI has emerged rapidly as a new tool for 

both laboratorial investigation and clinical diagnosis since 2003 (See reviews [11-16]). 

By combining the merits of optical absorption contrast and ultrasonic detection, PAI 

possesses the following key advantages: 

1) PAI is the only available imaging technique, which has 100% relative sensitivity to 

the molecule-specific optical absorption contrast. Optical absorption is a quantitative 

measure of the molecular content of tissue. A small fractional variation in the optical 

absorption coefficient in objects causes the same percentage of change in the 

measured photoacoustic signal. As a result, PAI can be used to quantitatively assess 

molecular-specific events. Many intrinsic physiologically important molecules, such 

as hemoglobin, melanin, and water, strongly absorb light in the visible and near-

infrared parts of the optical spectrum. As a result, using endogenous contrast, PAI can 

visualize blood vasculature [17-19], melanin-containing lesions [20], and potentially 

edema [21]. In addition, the local concentration of a specific molecule could be 

quantified by measuring the photoacoustic signal at multiple optical wavelengths and 
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then solving a group of linear equations. For example, estimation of the local 

concentrations of the two different forms of hemoglobin, oxy-hemoglobin (HbO2) 

and deoxy-hemoglobin (Hb), in single blood vessel has been demonstrated. As a 

result, PAI can quantify two key functional indicators of the local metabolism, the 

local total hemoglobin concentration (THb), and the blood oxygen saturation level 

(SO2) [22]. What’s more, PAI can be applied to study molecular biology by 

introducing exogenous contrast agents that modulate optical absorption, such as a 

chromogenic reporter gene assay [23, 24], organic dye [25] or nanoparticles [26]. 

2) PAI is capable of imaging with high resolution at all the three regimes of photon 

migration, and could become an important link between biomedical research in the 

microscopic level and the macroscopic level. An unparalleled advantage of PAI is 

that it, when implemented in different ways, can provide scalable imaging depth and 

spatial resolution suitable for multi-scale studies in from cells to humans. In the 

microscopic level, optical-resolution photoacoustic microscopy (OR-PAM) [19, 27, 

28] was proposed to confine photoacoustic excitation inside a tight optical focus, and 

achieves an optical diffraction-limited lateral resolution down to a fraction of a 

micron. With an optical focusing of numeric aperture (NA) = 0.1, OR-PAM is 

capable of quantifying hemodynamic functions in each single blood micro-vessel and 

is good at characterizing microcirculation [29]. Most recently, our group has 

demonstrated OR-PAM could resolve individual red blood cells in single capillaries 

[27], and sub-cellular organelles in melanoma cells [28]. In the quasi-diffusive regime 

(1mm ~ 1cm in tissue), optical focusing works poorly. Acoustic-resolution 

photoacoustic microscopy (AR-PAM) was developed to detect the photoacoustic 
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signal using a high-frequency focused ultrasonic transducer [18, 30, 31]. Because 

sound scatters 2 ~ 3 orders of magnitude less than light in tissue, AR-PAM could 

maintain a relatively good spatial resolution (tens of microns) beyond the penetration 

of other high-resolution optical imaging modalities (~1 mm). Till now, AR-PAM has 

been applied to diagnose subcutaneous melanoma [20], and monitor brain functions 

in small animals [32]. In the macroscopic world, photoacoustic computed tomography 

(PACT) [17] is able to penetrate beyond 5 cm into biological tissue [33] while 

maintaining sub-mm spatial resolution. In PACT, deeply seated absorbers are excited 

by diffusive photons. The generated photoacoustic signal is measured at different 

locations surrounding the object by a low-frequency scanning single-element 

transducer or an ultrasonic array. A reconstruction algorithm is applied to inverse the 

measurements to form an image. Due to its deep penetration, PACT is mostly 

targeted at clinical applications, such as screening breast cancer [34], imaging 

neonate brains [35], and mapping  the sentinel lymph nodes [36], etc. 

3) PAI produces images devoid of speckle artifacts. (See Appendix A for details.) Other 

coherent imaging techniques (such as ultrasonography, OCT, etc.) suffer from strong 

speckle artifact, a randomized granular mask obscuring images. Speckles deteriorate 

the image quality significantly by reducing both the effective spatial resolution and 

the detectability of small lesions. By contrast, PAI possesses an intrinsic mechanism 

to suppress speckles. We found this unique advantage of PAI is again due to its 

dependence on the optical absorption contrast [27]. All optical absorbers expand on 

laser excitation, and therefore all initial photoacoustic pressure rises are positive, 

which engenders strong correlations among the photoacoustic waves from the 
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absorbers. As a result, prominent boundaries always build up in photoacoustic images 

and suppress the interior speckle. 

 

Optical coherence tomography  First proposed in 1991 [37], optical 

coherence tomography (OCT) works mostly in the ballistic regime. It allows real-time in 

vivo biopsy of tissue with µm-scale spatial resolution up to ~1 mm deep inside highly 

scattering tissue like skin. OCT is currently the most successful paradigm of clinical 

translation of optical imaging modality. According to a recently released market research 

report, the current global OCT market is around $200 million/year and grows at an 

annual rate of 34%. This rapid growth is expected to continue for the next several years, 

and the revenue will exceed $800 million by 2012 [38]. OCT is now a routine clinical 

examining tool in ophthalmology [39-44]. Eyes are relatively transparent to light, and 

ophthalmological OCT can penetrate through the eyes and diagnoses diseases in both 

retina and the anterior segment. Recently, the use of OCT through a catheter provides 

access to internal organs and has further broadened its applications to cardiology [45, 46] 

and gastroenterology [47-49]. Also, other applications of OCT in dermatology [50, 51], 

neurology [52, 53], dentistry [54, 55], and developmental biology [56, 57], are also under 

intensive investigation. 

From the technical perspective, OCT is an optical analog to B-mode ultrasonography, 

except that it uses low-coherence light instead of a short ultrasonic pulse for depth 

ranging. An OCT system is basically an optical interferometer, which mixes the 

backscattered light from tissue with a reference light reflected by a mirror. The 
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interference between the two is recorded by a square-law detector. Thanks to the adoption 

of low-coherence light sources, photons backscattered from different depth could be 

separated with a superior axial resolution according to the coherence length of the source 

(typically 1 ~ 20 µm). Another advantage of OCT is that it can exploit the Doppler 

principle to measure blood flow in vivo [58-62]. Doppler OCT can estimate depth-

resolved blow flow as slow as 10 μm/s with micrometer-scale spatial resolution. 

Comparing with widely used Doppler ultrasound, it provides ~2 orders better velocity 

sensitivity and more than 1 order better spatial resolution. 

Figure 1.2 shows a simplified schematic of a typical spectral-domain implementation of 

OCT, which is the foundation of my research elaborated in Chapters 3&4. The 

interference signal here is recorded as a spectrum using a high-resolution spectrometer, 

which can be written as 

 

Figure 1.2  Schematic of a fiber-based spectral-domain implementation of optical 

coherence tomography. 
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(1.2) 

where is the power spectrum of the low-coherence source as a function of 

wavenumber .  denotes the amplitude reflectivity of the mirror in the reference arm, 

while is the amplitude reflectivity density of the sample at depth . is the 

refractive index of sample. In Equation (1.2), the first and the second terms are the power 

spectra of the light reflected back from the reference mirror and backscattered light from 

the tissue, respectively. Both of them are removed using calibration procedures. The third 

term codes the image, and represents the cross-interference between light from reference 

and sample. This scattering profile of tissue can be obtained from it through an inverse 

Fourier transform as 

 
(1.3) 

where is the autocorrelation function of light source, which determines the axial 

resolution of the system. In OCT,  is presented as an image, and represents the 

depth-resolved reflectivity of tissue. We also noted that there exists a mirrored term 

, which is symmetrical to  with respect to the point . By carefully 

setting the length of the reference arm, this mirrored image can be easily separated from 

the real image. 
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In my doctoral research, I developed three novel optical imaging techniques based on the 

spirits of PAI and OCT. 

In Chapter 2, I summarized our work on establishing a new way to visualize the 

expression of a gene in vivo based on optical absorption using PAI [23, 24]. In the post-

genomic era, we are being challenged to develop new molecular imaging methods to 

monitor the gene expression in living organisms and decipher the functions of genes. PAI 

can detect specific molecules according to their characteristic absorption spectra, thus is a 

promising candidate for molecular imaging. Here, for the first time, we proposed a new 

paradigm of molecular imaging to study gene expression in vivo using PAI and a 

chromogenic reporter gene system. We demonstrated imaging the expression of the lacZ 

reporter gene using PAI in living rats and mice, following the introduction of the 

sensitive colorimetric X-gal assay. We demonstrated the expression of lacZ can be 

detected by PAI as deep as 5 cm in biological tissue. In addition, we showcased that PAI 

could follow the gene expression from the microscopic level to the macroscopic level. 

This work represents one of the pioneering efforts to extend photoacoustic methods for 

molecular imaging. 

In Chapter 3, I summarized our development of a novel multimodal microscope, named 

the integrated photoacoustic and optical coherence microscope (iPOM) [63]. iPOM 

combines PAI and OCT in a unified imaging platform. PAI is predominantly sensitive to 

optical absorption, while OCT exploits optical scattering. By combining their naturally 

complementary imaging contrasts, iPOM can provide comprehensive information about 

biological tissue. We designed and built a prototype of iPOM, and demonstrated its 
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potential applications in studying cutaneous and ocular microcirculation, and tissue 

engineering. 

In Chapter 4, I summarized our invention of a new optical tomography, the optical 

coherence computed tomography (optical CCT). Optical CCT overcomes several major 

limitations of OCT. Traditionally, OCT assumes all detected photons are scattered only 

once in tissue. However, a photon will be scattered an average of 10 times after traveling 

1 mm inside normal soft tissue. Multiply scattered photons blur the OCT image, and are 

generally considered as noise. Consequently, OCT suffers from fast degradation in 

imaging quality with the increase of depth, and can only penetrate ~1 mm when imaging 

highly scattering tissue like skin. What’s more, OCT is mainly sensitive to optical 

scattering, and is limited in terms of providing molecule-specific information. Optical 

CCT measures both singly and multiply scattered photons by low-coherence 

interferometry, similar to OCT. However, optical CCT makes use of both types of 

photons using a model-based reconstruction. We established a light-tissue interaction 

model based on the time-resolved Monte Carlo method. The optical properties of the 

tissue were reconstructed from the measurements by solving the inverse transient 

radiative transport problem using this model under the first Born approximation. We 

designed and built the first optical CCT system. We proved that optical CCT could 

imaging deeper than OCT, and provide extra molecule-specific contrasts, such as optical 

absorption. In experiments, absorbing inclusions of 100 µm diameter were imaged with 

consistent quality through a 2.6-mm-thick (equivalent to ~30 scattering mean-free-paths) 

high-scattering tissue-mimicking phantom. 
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Finally, in Chapter 5, I summarized this work and suggested potential future directions. 

In addition, in Appendix A, I included our work to theoretically understand the speckle-

free nature of PAI, which was previously an unsolved puzzle to many researchers in this 

field. 
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Chapter 2 Photoacoustic Molecular Imaging of 

Reporter Gene Expression In Vivo
*
 

 

2.1 Motivation for Molecular Imaging of Gene Expression 

The accomplishment of the human genome project in 2003 launched a new revolution in 

both biomedical research and clinical practice. For 13 years, scientists across the world 

deciphered the blueprint of the human life, and completed a high-quality sequence of the 

entire human genome that contains ~3.2 billion base pairs. Surprisingly, it was found that 

the enormous human genome only contains in 2% of its entire length a total of 20,000 ~ 

25,000 genes, which encode all the proteins responsible for building human body and 

executing physiological functions [64]. 

In the post-genomic era, we are now being challenged to identify the functions of the 

discovered genes, understand the molecular mechanisms of physiology and pathology, 

and develop personalized treatment of diseases. [65] All these investigations require 

evaluating the expression patterns of genes. Traditionally, gene expression studies were 

carried out in vitro using cell lysates. Most methods, including northern blotting, reverse 

transcription quantitative polymerase chain reaction, DNA microarray, and serial analysis 

of gene expression, measure mRNA, the intermediate transcriptional product of genes, to 

                                                 

*
 Reprinted with permission from (1) L. Li, R. J. Zemp, G. Lungu, G. Stoica, and L. V. 

Wang, "Photoacoustic imaging of lacZ gene expression in vivo," Journal of Biomedical 

Optics 12, 020504 (2007) and (2) L. Li, H. F. Zhang, R. J. Zemp, and L. V. Wang, 
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infer the level of gene expression. Proteins, the final expression product of gene, can be 

assessed with western blotting [66]. There are several major limitations with these 

approaches. (a) Their results may not correspond to what happens in vivo, due to the 

complexity of replicating the native microenvironment. (b) They produce only a single 

data point from each cell culture or sacrificed animal. To overcome the intrinsic variation 

among individuals, or to get longitudinal information, procedures must be repeated on a 

large number of samples or animals to get statistically robust results. As a result, the 

traditional gene expression studies are labor-intensive, time-consuming, and extremely 

costly. (c) They are incapable of localizing where gene expression happens in cells. (d) 

The level of mRNA for a gene may not quantitatively correlate with the protein product 

of the same gene [67] due to the varied translational and post-translational regulation of 

gene expression. 

With the promise of overcoming these limitations of the above in vitro tools, molecular 

imaging is rapidly emerging as a promising candidate for interrogating gene expression in 

vivo [68-70]. Conventional imaging methods reveal the anatomical and functional 

features inside bodies, and provide only non-specific information about the foundational 

molecular events. By contrast, molecular imaging marries start-of-art imaging 

technologies with modern molecular biology methodology to look at specific molecular 

events underlying physiology and pathology, and is viewed by many as the next 

generation of medical imaging. In a typical molecular imaging protocol, an exogenous 

―molecular probe‖ is introduced into the body, interacts specifically with intrinsic 

molecules of interest and gives out a localized physical signal that could be visualized by 

an imaging modality. As a result, molecular imaging can visualize the spatiotemporal 
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distribution of specific proteins, the ultimate products of gene expression, within their 

native environment in vivo. Thanks to the non-invasive nature of molecular imaging, 

animals studied serve as their own control in a longitudinal study to minimize the 

uncertainty caused by the inter-sample differences. Thus, molecular imaging is expected 

to greatly facilitate gene expression research, by significantly reducing the animal use, 

workload and financial investment. From the clinical perspective, molecular imaging 

could potentially reveal the causes of diseases besides the resultant symptoms, and 

represents a significant paradigm shift for medical imaging. It is believed that molecular 

imaging could not only accelerate laboratorial research in molecular biology, but also 

deeply impact clinical practices by contributing to early detection and fast staging of 

diseases, accurate evaluation of treatment outcome, and rational design of novel therapy. 

The expression of a gene can be studied by molecular imaging either directly or 

indirectly. In the direct category, molecular probes interact directly with the native 

protein product of an endogenous gene, and gives out imaging signals where they are 

expressed. As a classical example, the expression of the Glut-1 gene can be evaluated by 

positron emission tomography (PET) using a radiotracer derived from 2-deoxy-2-

(
18

F)fluoro-D-glucose (FDG) to diagnose and stage cancer [71]. Glut-1 codes a glucose 

transporter on the surface of cells, and is found to be over-expressed in most tumors. A 

radiolabeled analogue of glucose, 
18

F-FDG, can serve as a molecular probe to facilitate 

PET imaging of the expression of Glut-1. Following injection, 
18

F-FDG is first shipped 

into the cells by Glut-1 transporter just as the native glucose, then phosphorylated by 

hexokinase, and finally gets trapped inside cells. After non-phosphorylated probes are 

washed out through circulation, we can use PET to detect the intracellular radioactive 
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molecular probes, and localize malignant cells that are characterized by their hyper-

metabolism of glucose. However, the direct assessment of endogenous gene expression 

using molecular imaging is limited, due to the fact that proper direct molecular probes 

need to be designed specifically for each gene-coded protein. Establishment of a single 

molecular probe involves identifying the configuration of targeted proteins, selection 

from a huge library of chemicals, and validation of efficacy and safety in cell cultures, 

animals and finally humans. This process generally requires significant efforts, time and 

investment. A recent review estimated that specific molecular probes have been 

developed for <5% of molecular markers of cancer [72]. Thus, another group of 

molecular imaging is developed to visualize gene expression indirectly using reporter 

genes. [73] A reporter gene is a short segment of exogenous DNA, which is virally or 

non-virally incorporated into the host genome, and codes a special protein product that 

can be readily visualized by an imaging tool, usually with the assistance of the 

corresponding reporter probe. These methods are attractive, because they are versatile in 

applications. In contrast with the direct methods, only a few reporter gene systems are 

required to be established for an imaging modality to study the expression of any 

endogenous genes. By inserting a reporter gene into the same reading frame as an 

endogenous gene, the regulation of different genes of interest under normal and 

pathological states can be studied. Also, through introducing a reporter gene 

constitutively under the control of a ubiquitous promoter, we can monitor the trafficking 

of the marked cells. In addition, protein-protein interactions could be studied using a 

transcriptional activation scheme [74]. In a pioneering work, S. Gambhir’s group 

demonstrated repetitively molecular imaging the regulation of endogenous albumin gene 
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by visualizing the expression of herpes simplex virus type 1 thymidine kinase (HSV1-tk) 

reporter gene under the control of the albumin promoter using PET. [75] 

In this chapter, I summarized my work in establishing a new paradigm to image gene 

expression in vivo using a novel physical contrast - optical absorption. We demonstrated 

the first photoacoustic molecular imaging of gene expression using a chromogenic 

reporter gene [23, 24]. Our work represents one of the pioneering efforts to extend 

photoacoustic methods for molecular imaging. Technical merits of photoacoustic 

molecular imaging in imaging depth and multi-scale research are also demonstrated. 

 

2.2 Advantages of Photoacoustic Molecular Imaging 

Not all existing imaging modalities are suitable for molecular imaging. Till now, only a 

few imaging technologies have been successfully exploited to depict reporter gene 

expression in vivo (summarized in Table 2.1). Among them, nuclear imaging, mainly 

PET, is most mature and is now moving towards clinical applications [76]. PET detects 

the paired γ-photons generated during the annihilation between the positron emitted by a 

radioactive probe and a nearby electron. It can image through the entire human body, and 

is sensitive to trace amounts (~pM) of accumulated molecular probes [77]. The major 

pitfalls of PET include poor spatial resolution (~6 mm with clinical systems, ~2 mm with 

microPET [77]), requirement of the proximity of a cyclotron, utilization of radioactive 

materials, and incapability of simultaneously studying expressions of multiple genes. 

Magnetic resonance imaging (MRI) measures the different relaxation rates of unpaired 

dipoles induced by a high magnetic field under various physiochemical environments. It 
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gives excellent soft tissue contrasts, achieves superior sub-mm spatial resolution [78] and 

has no penetration limit for medical imaging. However, in terms of molecular imaging, 

MRI suffers from its inherent low sensitivity (~mM level [69]). Sensitive reporter genes 

for MRI are still being actively pursued. Two optical imaging tools, bioluminescence 

imaging (BLI) and fluorescence imaging (FLI), are currently prevalent for molecular 

biology investigations in preclinical research: They sense photons emitted from specific 

molecular probes following a chemical reaction or optical excitation. BLI can detect 

extremely low signal at the level of fM, due to its virtually null background in vivo. FLI 

has a typical sensitivity on the order of nM, because it fights against the background of 

autofluorescence [69]. Another prominent advantage of the two optical methods is their 

high throughput rate, which is not available with current PET and MRI. The limitations 

shared by the two include limited imaging depth (~1 cm [69]), lack of depth resolution 

and poor lateral resolving power. Although μm-order resolution is achievable within a 

thin preparation of tissue, deeper structures are poorly resolved in vivo due to the nature 

of optical diffusion. 
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Table 2.1 Comparison among different molecular imaging modalities 

Imaging 

modalities 

Spatial 

resolution 
Depth Sensitivity 

Representative reporter gene 

systems (Type) 

PET Poor Excellent Good 
NIS gene with [

124
I]iodide 

(Transporter) 

MRI Excellent Excellent Poor 
TfR gene with Tf-MION 

(Receptor) 

BLI Poor Poor Excellent 
Fluc gene with D-luciferin 

(Enzyme) 

FLI Poor Poor Good eGFP (Fluorescence protein) 

PAI Excellent Good Good lacZ with X-Gal (Enzyme) 

Here, we propose photoacoustic imaging (PAI) will be the next promising candidate for 

molecular imaging. By exploiting optical absorption contrast, PAI is capable of detecting 

specific molecules according to their characteristic optical spectra. Compared with other 

molecular imaging modalities summarized above, we predict that PAI features the 

following remarkable merits for studying gene expression: 

1) PAI utilizes non-ionizing radiation, and can safely follow the temporal regulation of a 

gene in the same subject through an extended study. As a comparison, PET use 

radioactive material, which presents a health risk when repetitively used. 

2) PAI is well suited for studying multi-scale biology, and can cover the complete 

spectrum of gene expression studies from fundamental research in cell cultures to 

clinical applications in human. PAI is scalable in terms of spatial resolution and 
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imaging depth. When implemented in different ways, PAI can either resolve sub-

cellular structures within the first few hundreds of microns into tissue, or penetrates 

several centimeters while retains sub-mm resolution. All aspects of gene expression 

can be potentially investigated with PAI based on the same physical contrast. Hence, 

we expect that, using PAI, laboratorial discoveries on genetic functions and therapy 

could be translated to applications in animal and human through an accelerated path. 

3) In its deep-penetration version, PAI could visualize the three-dimensional expression 

pattern of a gene with sub-mm spatial resolution up to 5 cm deep inside highly-

scattering biological tissue. As a comparison, BLI and FLI penetrate much shallower, 

lack the depth resolution, and obtain only mm-order lateral resolution. 

4) PAI is sensitive, and can potentially detect low level of gene expression. The 

sensitivity of a particular photoacoustic molecular imaging protocol depends on a 

number of different parameters, including the resolution and noise floor, the depth 

and dimension of the target, the absorption cross-section of the molecular probe and 

the wavelength and intensity of the photoacoustic excitation, etc. In literatures, it was 

reported PAI was able to sense as low as ~10 pM of golden nanoparticles [79] and 

~100 nM of organic dye [23, 80]. Generally speaking, the sensitivity of PAI is lower 

than BLI, comparable to PET and FLI, and better than MRI. 

5) PAI can assess anatomical and physiological changes associated with the regulation 

of a gene using endogenous contrast. By detecting extrinsic chromophores, PAI can 

depict the morphology of tissue and quantify many crucial functional parameters, 
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such as the local oxygen saturation level, the local total hemoglobin concentration, 

blood flow, and temperature, etc. 

6) PAI can study the expression of multiple genes in parallel. Spectroscopic PAI can 

differentiate different molecular probes based on their distinct absorption spectra. 

Thus, PAI can follow the expression of multiple genes using different molecular 

probes simultaneously, and allow us to reveal the complex genetic network. As a 

comparison, PET relies on 511-keV γ-photons regardless of molecular probes, and is 

only able to study one gene at a time. 

Although PAI develops fast since 2003 in terms of structural and functional imaging, the 

potential of PAI in molecular imaging still remains to be explored. Table 2.2 summarizes 

both direct and indirect photoacoustic molecular imaging methods with demonstration in 

living organisms in literatures. In 2007, we first reported in vivo photoacoustic molecular 

imaging of the expression of the lacZ reporter gene in living rats and mice [23], and 

suggested that photoacoustic imaging could complement other existing molecular 

imaging modalities in studying the functions of genes. Most of other studies published 

later focused on using bioconjugated organic dyes or nanoparticles to directly target over-

expressed cancer biomarkers to enable photoacoustic detection of tumors [25, 26, 81, 82]. 

Most recently, photoacoustic detection of other reporter genes coding fluorescence 

proteins has been reported [83]. Due to their considerable fluorescence emission, 

fluorescence proteins generally have a low efficiency of photoacoustic generation. Also, 

they lack of intrinsic amplification of molecular signal. As a result, this strategy only 
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worked in relatively transparent model organisms, such as Drosophila melanogaster pupa 

and zebrafish. 

Table 2.2 Existing photoacoustic molecular imaging methods 

Indirect 

Reporter gene  Applications Year References 

lacZ 
Monitoring lacZ-tagged 9L gliosarcoma 

in rats and mice 

2007, 

2008 
[23, 24] 

Fluorescence 

proteins, eGFP and 

mCherry 

Monitoring eGFP and mCherry marked 

cells in Drosophila melanogaster pupa 

and zebrafish 

2009 [83] 

Direct 

Molecular probes Biomarker Year References 

Organic dye, 

IRDye800-c(KRDF) 
αvβ3 integrins in U87 glioblastoma 2008 [25] 

Gold nanorods, 

AuNR785-HER2 and 

AuNR1000-EGFR 

HER2 and EGFR receptors in OECM1 

and Cal 27 squamous cell carcinoma 
2008 [26] 

Single-walled carbon 

nanotube,  

SWNT-RGD 

αvβ3 integrins in a U87 glioblastoma 2008 [81] 

Gold nanocages, 

[Nle
4
,D-Phe

7
]-α-

MSH-AuNC 

α-MSH receptor in melanoma 2010 [82] 
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2.3 Chromogenic Reporter Gene System 

In established methods, the proteins expressed by reporter genes work with specifically 

engineered reporter probes or light and generate radioactive, paramagnetic or luminescent 

signal that can be imaged by nuclear imaging, MRI, BLI or FLI. Based on the type of the 

reporter proteins, there exist four different kinds of reporter genes, which encode 

receptors, transporters, enzymes or fluorescence proteins, respectively. Representative 

examples of different report genes are listed in Table 2.1. The transferrin receptor (TfR) 

reporter gene produces a specific membrane receptor to transferrin, an iron-carrying 

protein responsible for regulating cellular uptake of iron. After binding with an 

engineered superparamagnetic reporter probe, a conjugate of transferrin and 

monocrystalline iron oxide (Tf-MION), the receptor is internalized. Thus, cells over-

expressing TfR can be detected with MRI by a decrease in T2 signal [84]. In contrast to 

receptor that usually binds with its ligand in a 1:1 ratio, a transporter can accumulate a 

large number of probes inside cells to sensitively detect gene expression. The 

sodium/iodine symporter (NIS) reporter gene codes a membrane transporter that ships 

iodine into cells. Radioactive [
124

I]iodide enables PET to detect the expression of NIS at a 

low level. [85] In BLI, the firefly luciferase (Fluc) reporter gene expresses an enzyme, 

which can oxidize its substrate D-luciferin to give out light. [86] An enzyme can work on 

multiple probes, thus generate a strong signal even when the reporter gene is expressed at 

a low level. Fluorescence protein reporter gene is special due to the fact that they do not 

require supplying additional molecular probes. The 2008 Nobel prize in chemistry was 
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awarded to the work on the development of the most famous member of this family, the 

green fluorescence protein (GFP). When excited with light, GFP emits light at a red-

shifted wavelength and can be visualized by FLI. [87] 

As a new paradigm, we propose here to image the expression of a chromogenic reporter 

gene in vivo. Although developed earlier than their counterparts, the chromogenic 

reporter genes were previously neglected for molecular imaging, largely due to the lack 

of tools to visualize their expression inside living organisms. PAI fills this vacancy, and, 

in our opinions, will rejuvenate the development of new in vivo chromogenic reporter 

gene systems to solve the post-genomic challenges. In this study, we selected the lacZ 

gene, one of the most widely used chromogenic reporter genes, as a demonstration of the 

principle. Originated from E. Coli, lacZ encodes β-galactosidase, a bacterial enzyme 

responsible for metabolizing lactose into glucose and galactose. The expression of lacZ 

can be assayed by several chromogenic assays. Among them, we chose to use the 

sensitive 5-bromo-4-chloro-3-indolyl-β-D-galactoside (X-gal) as our molecular probe in 

vivo. X-gal is a colorless analogue of lactose, where the glucose fragment is replaced by 

an indole-derivative. β-galactosidase cleaves the glycosidic linkage in X-gal and yields 

galactose and an optical transparent indoxyl monomer, 5-bromo-4-chloro-3-

hydroxyindole. Afterwards, two of the monomers are oxidized and form a stable 

insoluble blue product, 5,5'-dibromo-4,4'-dichloro-indigo [Figure 2.1(a)]. [88] Figure 

2.1(b) shows the dramatic chromogenic process during 24 hours after adding 20 mg/ml 

X-gal solution to the native cell lysate of transgenic 9L gliosarcoma cells expressing the 

lacZ reporter gene. There are other colorimetric assays for β-galactosidase activity, such 

as o-nitrophenyl-β-D-galactoside (ONPG). However, the blue product from X-gal 
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absorbs at a longer wavelength than the chromophores produced by those alternative 

assays, and allows us to detect the expression of lacZ at a greater depth in tissue. 

 

Figure 2.1  Detect the expression of the lacZ reporter gene using the chromogenic X-gal 

probe. (a) The hydrolysis of X-Gal catalyzed by β-galactosidase. (b) Photographs 

showing the chromogenic process by adding X-gal solution into the native lysate of 

9L/lacZ cells. 

For in vivo imaging, the lacZ/X-gal reporter gene system has two noticeable advantages. 

First, X-gal is an activatable probe. X-gal alone is colorless. Strong optical absorption is 

generated only after it is cleaved by β-galactosidase. Thus, the clearance of the un-

cleaved X-gal before imaging is not required. As a result, the activity of -galactosidase 

can be measured by PAI against a minimized background. Second, this enzymatic 

reporter system possesses an intrinsic signal-amplification mechanism. As an enzyme, a 
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single β-galactosidase molecule can cleave multiple X-gal molecules to produce a large 

number of blue product molecules, allowing us to detect a low expression level of lacZ. 

Historically, the lacZ/X-gal reporter gene system has contributed extensively to genetic 

research as an indispensable ex-vivo technique. The blue-white screen built on this 

strategy is a standard tool for rapid selection of cells that are successfully transfected with 

the desired transgene. In addition, by assessing postmortem tissue samples, this reporter 

system has been used to investigate the coordinated gene expression in developmental 

biology [89], the regulation of specific promoters [90], the progression and metastasis of 

tumor [91, 92], and the outcome of gene therapy [93]. With PAI, all these researches 

could potentially be carried out in vivo. 

Few other methods for in vivo imaging lacZ expression have been reported. One MRI 

approach used a β-galactosidase-cleavable paramagnetic molecular probe, which was 

introduced into an embryo of Xenopus at the two-cell stage [94]. Recently, FLI was used 

to image the fluorescent product from 9H-(1,3-dichloro-9,9-dimethylacridin-2-one-7-yl) 

β-D-galactopyranoside (DDAOG) cleaved by β-galactosidase [95]. PAI will complement 

these methods, and provide a new way to look at the expression of the lacZ gene at 

multiple length scales. 
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2.4 Quantitative Measurement of the Absolute Molar Extinction 

Coefficients of 5,5'-dibromo-4,4'-dichloro-indigo 

The absorption spectrum of 5,5'-dibromo-4,4'-dichloro-indigo has not been documented 

previously to the best of our knowledge. In order to select the optimal parameters for 

photoacoustic imaging and quantify the expression of lacZ, we measured the absolute 

molar extinction coefficients of the blue product in the visible and near-infrared part of 

the optical spectrum. It is not a trivial task, because it is difficult to measure the 

concentration of the blue product. 

In our experiment, we first obtained a total of 3.6 ml solution of natively expressed β-

galactosidase by lysing the cultured 9L/lacZ cells. The cell lysate was divided equally 

into 5 cuvettes. 20 µl of X-gal solutions at concentrations of 2 mg/ml, 0.4 mg/ml, 0.2 

mg/ml and 0.04 mg/ml were added to the cuvettes 1~4, while 20 µl of water was added to 

the last cuvette as the baseline [Figure 2.2(a)]. After given enough time for reaction, these 

solutions were measured for the optical absorbance from 500 nm to 900 nm using a 

commercial spectrometer (USB2000, Ocean Optics, Dunedin, FL). In order to 

compensate for the absorption spectrum of the solvent, the measured absorbance of the 

control solution was subtracted from those of solutions of blue products at each measured 

wavelength. Assuming all X-gal molecules were cleaved, we calculated the 

concentrations of the blue product according to the total amount of X-gal added. The 

assumption of enzyme excess was further confirmed by observing that the absorbance 

increases linearly with estimated concentration of the blue product at every single 
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wavelength [Figure 2.2(b)]. Finally, the absolute molar extinction coefficients of the blue 

product were obtained as the slope of the fitted lines in Figure 2.2(b). 

In Figure 2.2(c), we compared the measured molar extinction spectrum of the blue 

product with those of the main intrinsic absorbers: oxy-hemoglobin (HbO2) and deoxy-

hemoglobin (Hb). The absorption of the blue product peaks between 605 ~ 665 nm, 

which is part of the well the well-recognized ―optical window‖ in biological tissue for 

optical imaging. Because endogenous chromophores of tissue (HbO2 and Hb) absorb the 

 

Figure 2.2  Measurement of the absolute molar extinction coefficients of the blue 

product, 5,5'-dibromo-4,4'-dichloro-indigo. (a) Cuvettes 1~4: 720 µl of cell lysate + 20 

µl of X-gal solutions at 2 mg/ml, 0.4mg/ml, 0.2mg/ml and 0.04 mg/ml. The control 

cuvette: 720 µl of cell lysate + 20 µl of water. (b) Linear fitting of measured 

absorbance of solutions with varying concentrations of the blue product at 650nm. (c) 

Comparison among absorption spectra of the blue product, HbO2 and Hb. 
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least within this spectral region, light can penetrate deeply into tissue and the expression 

of lacZ can be sensitively detected over a minimized background. For example, at 650 

nm, the absolute molar extinction coefficient of the blue product was calculated to be 

1.04×10
4
 cm

-1
M

-1
, compared to 368 cm

-1
M

-1
 of HbO2 and 3.75×10

3
 cm

-1
M

-1
 of Hb. 

Assuming the background tissue had a averaged blood oxygenation of 75% and a normal 

tissue hemoglobin concentration of 30 mg/100 g [96], we estimated that, with single-

wavelength excitation at 650 nm, PAI can detect as low as 523 nM of the blue product 

with a 1:1 contrast-to-background ratio. 

 

2.5 Imaging the lacZ Expression In Vivo with Multi-scale PAI 

We demonstrated photoacoustic molecular imaging of gene expression by visualizing 

transgenic 9L gliosarcoma, which constitutively expresses the lacZ reporter gene, 

implanted in living rats and mice by multiple PAI systems. 

2.5.1 Circular-scanning Photoacoustic Computed Tomography 

First, we show that an ―invisible‖ tumor could be detected according to the lacZ/X-gal 

reporter gene system using a circular-scanning photoacoustic computed tomography. 

Figure 2.3 shows the obtained photoacoustic images of subcutaneous 9L/lacZ tumor in 

Sprague Dawley rats before and after injection of X-gal. Before injecting X-gal, while the 

median fissure of the brain and some small cortical vessels were visible, the tumor was 

not [Figure 2.3(a)]. Following X-gal injection at points indicated by arrows in Figure 

2.3(c), the tumor became prominent in Figure 2.3 (b). No signal up-regulation was 
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observed at the right-side injection point, which served as a negative control. Figure 

2.3(c) is the photograph of the rat head following X-gal injection and just prior to 

imaging. Although a small bump is present, the exact shape of the tumor and distribution 

of lacZ expression was unknown. Figure 2.3(d) is the underside of the dissected scalp in 

the rectangular region indicated in Figure 2.3(c), showing the X-gal stained tumor, which 

is dark blue in color. 

 

Figure 2.3  Detecting an ―invisible‖ tumor by circular-scanning photoacoustic 

computed tomography using the lacZ/X-gal reporter gene system. (a) and (b) 

Photoacoustic images before and after the injection of X-gal. (c) Photograph of the 

rat’s head after X-gal injection. The two arrows indicate the position of injection of X-

gal. (d) Photograph of the underside of the rat’s scalp in the rectangular region in (c), 

excised after sacrificing the animal. The scale bars represent 5mm. 

To estimate the molar sensitivity, we imaged a tube (Inner diameter: 250 m), transparent 

to light and ultrasound, filled with a solution of blue product at a concentration of 5.4 



32 

 

and embedded 5 mm deep in chicken breast tissue. The region with blue product was 

imaged with a contrast-to-background ratio (CBR) of 10.5. Hence, the minimum 

detectable concentration of blue product (with CBR=1) was less than 515 nM, which 

agrees well with the theoretical prediction in Section 2.4. 

 

2.5.2 Array-based Photoacoustic Computed Tomography 

Next, we demonstrate fast three-dimensional imaging of deeply seated 9L/lacZ tumor 

using an array-based photoacoustic computed tomography. The circular-scanning 

photoacoustic computed tomography is slow in imaging speed. It takes a single 

photoacoustic measurement at a time, and requires firing hundreds of laser pulses to get 

an image. By contrast, an ultrasonic array can acquire photoacoustic data simultaneously 

through a large number of parallel detection channels. As a result, an array-based 

photoacoustic tomography could obtain one image with a single laser shot, and improves 

the imaging speed by more than 2 orders of magnitude. 

Figure 2.4(a) is the photograph of the imaged nude mouse taken before imaging. 9L 

tumors with and without lacZ transgene were grown in its right and left flanks, 

respectively. Both tumors were injected with the same amount of X-gal before imaging. 

After the mouse was sacrificed after experiment, we removed the skin on top of the 

tumors, and found only the lacZ+ tumor was stained blue, which further confirms the 

specificity of the detection of the lacZ expression by the chromogenic X-gal probe 

[Figure 2.4(b)]. The tumor-bearing region of the mouse was imaged in vivo with both 

photoacoustic and ultrasonic imaging. Figure 2.4(c~e) show the composite dual-modality 
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images in volumetric visualization, a cross-sectional view, and the projection view, 

respectively. Therein, photoacoustic images are colored green, while ultrasonic images 

are colored in gray scale. Figure 2.4(c) shows we could localize the lacZ+ tumor in three 

dimensions. Also, we observed that although tumor showed as a hypoechoic area in 

ultrasonic images, the lack of ultrasonic scattering is not a specific indicator for tumor 

[Figure 2.4(d)]. By contrast, using the lacZ/X-gal reporter strategy, PAI could detect the 

lacZ-marked tumor with a high specificity [Figure 2.4(e)]. In addition, by overlaying 

chicken breast tissue on top of the tumor, we found the expression of lacZ remains visible 

at a depth of 5.0 cm in biological tissue with a contrast-to-background ratio of 2.5. This 

proved the advantage of PAI over other optical molecular imaging techniques, such as 

BLI and FLI, in penetration depth. In addition, all images were obtained by averaging 

over 100 measurements, but using a low optical energy at 1/10 of the ANSI exposure 

limit. Assuming noise was uncorrelated between measurements, we could potentially 

obtain images with the same quality at a speed of 10 frames/second using the maximal 

laser energy allowed by the ANSI standard. The imaging speed can be further improved 

by adopting a high-repetition laser. 
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Figure 2.4  Imaging 9L tumors with and without the lacZ reporter gene by an array-

based photoacoustic computed tomography and ultrasonic imaging system. (a) 

Photograph of a tumor-bearing mouse before imaging. (b) Photograph of the lacZ- and 

lacZ+ tumors by removing the above skin after euthanasia. Composite photoacoustic 

and ultrasonic images shown in (c) three-dimensional visualization, (d) a typical B-scan, 

and (e) the maximum amplitude projection view. (f) B-scan image showing the lacZ-

marked tumor can be imaged at 5-cm depth in biological tissue by overlaying chicken 

breast tissue on top of a mouse. Photoacoustic images are colored green, while 

ultrasonic images are colored in gray scale. The scale bars represent 5 mm. 

 

2.5.3 Acoustic-resolution Photoacoustic Microscopy 

We further demonstrated simultaneous imaging of lacZ-marked tumor and its 

surrounding microvasculature by dual-wavelength acoustic-resolution photoacoustic 

microscopy. Remodeling of microcirculation plays an important role in oncology. 

Although photoacoustic computed tomography is able to detect the lacZ-marked tumor at 

great depth, it lacks the resolving power to visualize the microcirculation system 

associated with the tumor. Acoustic-resolution photoacoustic microscopy uses high-
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frequency focused transducer, and could achieve sufficient resolving power to visualize 

microvasculature at the cost of imaging depth. When operating at 50 MHz ultrasonic 

frequency, it penetrates ~3 mm into biological tissue with a lateral resolution of 45 µm 

and an axial resolution of 15 µm. 

Blood vessels and the blue product have well-separated absorption peaks, and can be 

separately visualized by PAI at different optical wavelengths (Figure 2.2). Two 

wavelengths (584 nm and 635 nm) were selected to maximize the difference between the 

optical absorption of hemoglobin and the blue product within the efficient emission band 

of the DCM laser dye. The 584-nm wavelength was used to visualize the 

microvasculature. It is an isosbestic spectral point of hemoglobin, where HbO2 and Hb 

have identical molar extinction coefficients, which dominate that of the blue product by a 

5.4:1 ratio. The photoacoustic amplitude in the image acquired at 584 nm directly 

correlate with the local total hemoglobin concentration. The 635-nm wavelength was 

selected to map the lacZ-marked tumor, where the molar extinction coefficient of the blue 

product was 20.4 times greater than HbO2’s and 2.2 times greater than Hb’s. Although 

this difference becomes bigger at longer wavelengths, the laser output was strongest at 

635 nm. 

The lacZ-marked 9L gliosarcoma was clearly visualized in the photoacoustic image 

acquired at 635 nm [Figure 2.5(a)]. By contrast, the morphology of the surrounding 

microvasculature was mapped in great details in the MAP image taken at 584 nm [Figure 

2.5(b)]. The photoacoustic signal in Figure 2.5(b) represents the relative value of total 

hemoglobin concentration, a key parameter of the local metabolism. A combined pseudo-
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colored image [Figure 2.5(c)] shows the spatial relation between the tumor and the 

surrounding microvasculature. From it, we were able to identify several tumor feeding 

vessels, which are indicated by arrows in Figure 2.5. 

Furthermore, we were able to assess the expressional level of lacZ in the tumor. Under 

the assumption of uniform local optical fluence, the amplitude of the photoacoustic image 

is linearly proportional to the local absorption coefficient, which is the product of 

molecule’s concentration and its molar extinction coefficient. In Figure 2.5(a), the 

photoacoustic amplitudes from the lacZ-marked tumor and the residual blood vessels 

were estimated to have a 4.0:1 ratio. The concentration of hemoglobin in normal blood is 

~2.3 mM. Assuming blood has an oxygen saturation level of 90% and taking into account 

the aforementioned relations among molar extinction coefficients, we estimated the 

concentration of the blue product to be ~ 840 μM in the tumor. Given efficient delivery of 

X-gal, this estimated concentration of blue product will positively correlate with the 

concentration of β-galactosidase, i.e., the expression level of lacZ gene. Also, the tumor 

image in Figure 2.5(a) had low background, excluding the residual blood vessels. We 

estimated that the stained tumor was imaged with a contrast-to-background ratio (CBR) 

of ~36.6 dB. Hence, the minimum detectable concentration of blue product (with CBR = 

1) was less than 12.3 μM. The detection threshold of the real expression product, β-

galactosidase, was expected to be several orders of magnitude lower than this value. 
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Figure 2.5  Simultaneously imaging a lacZ-marked tumor and its associated 

microvasculature by dual-wavelength acoustic-resolution photoacoustic microscopy. (a) 

MAP mage acquired at 635 nm showing tumor morphology. (b) MAP image acquired at 

584 nm showing microvasculature. (c) Composite pseudo-colored image showing the 

spatial relations between tumor and blood vessels. Red: Blood vessels. Blue: tumor. 

Arrows indicate feeding vessels of tumor. Images are 10 mm × 10 mm. 

 

2.5.4 Optical-resolution Photoacoustic Microscopy 

Finally, we briefly show the sub-cellular localization of the lacZ expression using optical-

resolution photoacoustic microscopy. By confining photoacoustic excitation by tight 

optical focusing, optical-resolution photoacoustic microscopy has been proven to obtain a 

lateral resolution at a fraction of a micron [28], and could potentially play an important 

role to study molecular biology in cultured cells. 

Figure 2.6 shows photoacoustic images of a layer of fixed 9L/lacZ cells after staining in 1 

mg/ml X-gal solution at 37˚C for 2 hours. We observed that, 9L/lacZ cells were between 

20 ~ 40 µm in diameter. Inside cells, strong absorbers were scattered surrounding low-

scattering absorbing centers that probably are cell nuclei. This implies that, β-

galactosidase, the final product of lacZ expression, exists mostly in cytoplasm. 
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Figure 2.6  Imaging 9L/lacZ cells stained with X-gal by optical-resolution photoacoustic 

microscopy. nu: cell nucleus. The scale bar represents 10 µm. 

 

2.6 Conclusion 

In summary, we presented a new paradigm of molecular imaging to visualize the 

expression of a gene in vivo based on optical absorption by photoacoustic imaging. As 

the first demonstration, we successfully imaged the expression of the widely used lacZ 

reporter gene using multi-scale PAI systems in cells and living mice and rats, using a 

sensitive colorimetric probe, X-gal. We further demonstrated several merits of 

photoacoustic molecular imaging. We proved the expression of lacZ can be detected by 

PAI as deep as 5.0 cm in biological tissue. In addition, we showcased that PAI could 

follow the gene expression at multiple length-scales. We expect PAI could potentially 

become the important link between biological studies in the microscopic and 

macroscopic levels, which is currently absent in biomedical research. This work 

represents one of the pioneering efforts to extend photoacoustic methods for molecular 

imaging. With the future development of new chromogenic reporter gene systems, 
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photoacoustic reporter gene imaging will impact on both laboratorial research and 

clinical practice. 

 

Methods: 

Cell culture The wild-type 9L rat gliosarcoma cell line was a generous gift from Dr. 

Michael Welch’s laboratory in the School of Medicine of Washington University in St. 

Louis. The 9L/lacZ cell line was created by transfecting the 9L cell with BAG replication 

deficient retroviral vector carrying the E. Coli lacZ gene. The 9L/lacZ cells were 

purchased from American Type Culture Center (Manassas, VA). Cells were cultured in a 

growth medium of 90% of DMEM with 4.5 g/L glucose, and 1 mM sodium pyruvate and 

10% of fetal bovine serum. 

Preparation of the native cell lysate After removing the growth medium, the cultured 

9L/lacZ cells were rinsed by 1× PBS and then collected into a 15 ml centrifuge tube. The 

cells were harvested after centrifuging at 3,200 rpm at 4°C for 5 minutes and discarding 

the supernatant. Then, we mixed ice-cold RIPA lysis buffer (Sigma-Aldrich, St. Louis, 

MO) with the cells, and incubated them in ice for 40 minutes. During the incubation, the 

solution was re-suspended every 10 minutes. Finally, the solution was centrifuged at 

27,000 g for 20 minutes at 4°C. The supernatant was collected as the lysate of 9L/lacZ 

cells, which contains the active natively expressed β-galactosidase. 

Animal preparation for imaging For tumor inoculation, 5 µl suspension containing 5 

million wild-type 9L or 9L/lacZ cells was injected under the skin of anaesthetized 
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animals using 0.3-ml syringe with a 29-gauge needle. Tumors were left to grow and 

monitored on a daily basis. Imaging was performed after the progression of the tumor 

became obvious. Hair was removed before experiments. For detecting the expression of 

lacZ, ~0.4 mg of X-gal in 20 µl PBS and DMSO (1:1) was injected close to the tumor 1 

day ahead of imaging. During imaging, animals were kept asleep by a gas mixture of 

oxygen and 1% isoflurane at a flow rate of 1 L/min, and their blood oxygenation and 

heart rates were closely monitored. All animals recovered naturally after experiments 

without noticeable photodamage. 

Circular-scanning photoacoustic computed tomography [17, 23] A dye laser (ND6000, 

Continuum) with DCM laser dye, pumped by a Q-switched Nd:YAG laser, emitted light 

at 650 nm. Before reaching the animal, the light was broadened by a concave lens and a 

ground glass. The illumination was measured to be ~5 mJ/cm
2
 on the skin surface. A 

single-element ultrasonic transducer (V323-SU, Panametrics-NDT. Central frequency: 

2.25 MHz) was mechanically scanned around a circle surrounding the animal with 240 

steps. Signals were amplified, digitized and averaged for 50 times at each scan position. 

A photodiode (DET110, Thorlabs) was used to compensate for fluctuations in the 

illuminating energy. Images were reconstructed using a modified back-projection 

algorithm [97]. By imaging a crossed-hair phantom, the in-plane spatial resolution was 

estimated to be ~400 µm [23]. It took ~25 minutes to acquire one image. 

Array-based photoacoustic computed tomography [98] This system is capable of 

performing both photoacoustic and ultrasonic imaging of the same sample. Photoacoustic 

signal was excited by 6.5-ns laser pulses at 10-Hz repetition rate generated by a tunable 
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dye laser (NS, Sirah) pumped by a Q-switched Nd:YAG laser (PRO-350-10, Newport). 

The light was delivered to the sample by a bifurcated optical fiber bundle (CB18043, 

Fiberguide). The acoustic signal was detected by a 128-element ultrasonic linear array 

with a nominal bandwidth of 4~8 MHz (L8-4, Philips Healthcare). The ultrasonic array 

and optical fiber bundle were assembled in a hand-held probe. The probe was scanned by 

a manual translation stage along the elevational direction to obtain a volumetric dataset. 

For each frame of photoacoustic image, measurements were averaged for 100 times, and 

took us 10 s to acquire. Photoacoustic and ultrasonic data were acquired sequentially with 

a modified clinical ultrasound imaging system (iU22, Philips Healthcare). Both 

photoacoustic and ultrasonic images were reconstructed using a Fourier-domain beam-

forming algorithm [99]. For imaging the expression of lacZ, the dye laser was loaded 

with DCM dye, and emitted at 650 nm. Light fluence on the surface was measured to be 

~2 mJ/cm
2
, 10 times lower than the ANSI safety limit (20 mJ/cm

2
). 

Acoustic resolution photoacoustic microscopy [18, 24]  A tunable dye laser 

(ND6000, Continuum), pumped by a Q-switched Nd:YAG laser (Brilliant, Bigsky), 

provided laser pulses at two different wavelengths, 584 nm and 635 nm. Each laser pulse 

had a duration of 6.5 ns, and a pulse repetition rate of 10 Hz. The laser output was 

delivered to the imaging system through a multimode optical fiber with a 600-μm core 

diameter. The light coming out of the fiber was first expanded by a conical lens to form 

an annular beam and then weakly focused into the tissue, with its focal region coaxially 

overlapping the focus of a high-frequency ultrasonic transducer (V214-BCRM, 

Panametrics. Central frequency: 50MHz). The incident energy density at the tissue 

surface was controlled to be under 6 mJ/cm
2
, which was well within the ANSI safety 
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standard. By using dark-field illumination with an incident angle of 45°, the strong 

acoustic waves otherwise emitted from structures close to the skin were reduced, which 

allowed us to image deeper structures better. The transducer had a central frequency of 

50 MHz, a nominal bandwidth of 70%, and an NA of 0.44. It was immersed in water 

inside a tank with an opening at the bottom that was sealed with a thin transparent plastic 

membrane. The photoacoustic signal received by the transducer was amplified and then 

recorded by a digital oscilloscope (sampling rate: 250 MHz). At each lateral position, the 

data acquisition lasted for 2 μs, without averaging. A mechanical stage drove the raster 

scanning of the imaging probe to obtain a volumetric dataset. The acquired data was first 

processed by a synthetic-aperture focusing technique [100] to correct for the blurring 

outside the ultrasonic focus. The maximum photoacoustic amplitudes along each axial 

line were then projected on the skin surface, to form a maximum-amplitude projection 

(MAP) image. In previous experiments, the current system was quantified to have a 

lateral resolution of 45 μm and an axial resolution of 15 μm, and was capable of imaging 

~3 mm deep into the skin [18].  

Optical-resolution photoacoustic microscopy [101]  For photoacoustic excitation, 

a compact diode-pumped Nd:YVO4 laser (SPOT 100-532, Elforlight, UK. Maximal 

pulse repetition rate: 50 kHz) generates 1.2-ns pulses at the wavelength of 532 nm. The 

light was delivered to the imaging probe by a single-mode optical fiber. The light coming 

out of the fiber was first collimated, then focused into a diffraction-limited spot inside the 

tissue by the optical objective with a NA of 0.6. The generated photoacoustic signal was 

detected by the ultrasonic transducer (with a central frequency of 40 MHz and a 

numerical aperture of 0.5) in transmission mode. The signals were then amplified and 
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digitized at a sampling rate of 1 GHz. The objective and the transducer were 

mechanically scanned in raster mode in the x-y plane by two-axis step-motor driven 

linear stages. After scanning, a maximum-amplitude projection (MAP) image was 

obtained by projecting the maximum amplitude of each time-resolved signal onto the x-y 

scanning plane. The lateral resolution of this set-up was previously quantified to be 0.40 

µm [28]. 



44 

 

Chapter 3 Integrated Photoacoustic and Optical 

Coherence Microscopy (iPOM)
†
 

 

3.1 Motivation 

Microcirculation is vital to sustain human health, and disturbed microcirculation is 

involved in most pathological processes [102]. Existing microscopic imaging techniques, 

although they have greatly facilitated our understanding of morphology, function and 

regulation of normal and pathological microcirculation, suffer from several limitations. 

Intravital microscopy [103] and orthogonal polarization spectral imaging [104] lack depth 

resolution, and thus are unable to visualize three-dimensional morphology of 

microvasculature. Confocal and multiphoton microscopy [105, 106], although they can 

image tissue in three dimensions, generally require invasive introduction of exogenous 

fluorescence contrast agents. 

In this chapter, I summarized our development of a novel multi-modality optical 

microscopy, the integrated photoacoustic and optical coherence microscopy (iPOM), 

which overcomes these problems and is capable of providing comprehensive information 

about microcirculation using endogenous contrasts. 

                                                 
†
 Reprinted with permission from L. Li, K. Maslov, G. Ku, and L. V. Wang, ―Three-

dimensional combined photoacoustic and optical coherence microscopy for in vivo 

microcirculation studies,‖ Optics Express 17, 16450–16455 (2009). 
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iPOM combines photoacoustic microscopy (PAM) and optical coherence tomography 

(OCT) in a single system. When designed properly, OCT and PAM can have comparable 

imaging depths and spatial resolutions, which are suitable for microscopic imaging. More 

importantly, PAM and OCT has naturally complementary imaging contrasts. PAM is 

sensitive to optical absorption, and can provide detailed morphology of microvasculature. 

Based on multi-wavelength measurements, PAM can quantify the local total 

concentration of hemoglobin and blood oxygenation in each single vessel. OCT exploits 

the optical scattering contrast, and can provide real-time, in vivo biopsy of tissue with 

µm-order resolution. Based on the Doppler effect, depth-resolved profile of blood flow 

can be estimated. Combining the merits of the two, iPOM not only can reveal the 

morphological relation between the microvasculature and its surrounding tissue, but also 

can quantify important functional parameters of each single vessel, like the total 

concentration of hemoglobin, local blood oxygen saturation level and volumetric blood 

flow. What’s more, with future development, iPOM could potentially quantify some 

novel important functional biomarkers of diseases, such as the local oxygen metabolic 

rate. We expect iPOM will have an impact not only on basic biomedical research, but 

also on clinical practice and pharmaceutical drug development.  

 

3.2 System Design 

Figure 3.1 illustrates our design of the current prototype of iPOM. It integrates optical-

resolution PAM and spectral-domain OCT in a single imaging platform.  
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The source of OCT is a broadband superluminescent diode (D890, Superlum, Ireland. 

Central wavelength: 890 nm, FWHM bandwidth: 150 nm). For photoacoustic excitation, 

a compact diode-pumped Nd:YVO4 laser (SPOT 100-532, Elforlight, UK. Maximal 

pulse repetition rate: 50 kHz) generates 1.2-ns pulses at the wavelength of 532 nm. Light 

irradiating both OCT and PAM sub-systems is delivered to a shared imaging probe 

(dashed box in Figure 3.1) through single-mode optical fibers. After coming out of the 

fibers, light is collimated, combined by a cold mirror and focused into the tissue by an 

achromatic lens (AC-254-035B, Thorlabs, Newton, NJ). The OCT sub-system collects 

the backscattered photons from a sample back into the fiber coupler, mixes them with the 

light reflected by a reference mirror, and records their interference using a custom-made 

spectrometer. The profile of depth-resolved reflectivity of the sample is then obtained by 

Fourier transform of the recorded spectra after compensation for the dispersion difference 

between two arms, and re-sampling into the linear-k domain. The photoacoustic wave is 

reflected sideway by a glass slide and detected by a cylindrically focused ultrasonic 

transducer (Alpha series, GE Inspection Technology, Pomona, CA. Central frequency: 25 

MHz. Focal length: 18 mm). A galvanometer (GVS001, Thorlabs, Newton, NJ) was 

applied to scan the optic focus along the ultrasonic focal line (x-axis). To acquire a 

volumetric imaging, the imaging probe is loaded on a precision linear stage (LS-65, 

Micos, Irvine, CA) and scanned along the y-axis.  

We use an analog output card (NI 6713, National Instruments, Austin, TX) to generate 

timing signals (dashed lines in Figure 3.1) to synchronize firing of the pulsed laser, 

galvanometer and stage scanning, PAM and OCT image acquisition. Currently, at each 

lateral position, the OCT data is first integrated for 150 µs and downloaded by a frame 
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grabber (Horizon Link, i2S, Cos Cob, CT). Then the photoacoustic signal is sampled at 

200 MHz for 1 µs by a high-speed digitizer (NI 5124, National Instruments, Austin, TX). 

As a result of the interleaved acquisition, PAM and OCT images are inherently 

registered. During image acquisition, the most recent PAM and OCT B-scan images (x-z 

slice) are displayed on the computer screen in real time, which intends to help guide 

physicians to quickly locate regions of interest in clinical applications. The system 

control, data acquisition and on-screen visualization were implemented on a single 

commercial workstation driven by a custom-written multi-threading VC++ code. 

Compared with the optical-resolution PAM previously reported in Ref. [19], our iPOM 

system has advantages in imaging speed and flexibility In the previous system, the 

bottleneck of imaging speed is the slow mechanical scanning of probes across both lateral 

directions. iPOM overcomes this obstacle, and scans the optical focus by a galvanometer 

along the x-axis at a much faster speed. Now, the frame rate of iPOM is limited by the 

maximum pulse repetition rate where the pulsed laser can provide enough pulse energy 

out from the single-mode fiber for photoacoustic excitation. Using the current pulsed 

laser, we are able to obtain dual-modality images at a speed of 5,000 A-lines/second. A 

B-scan image comprising 800 A-lines can be repeated at ~6 frames/second. A typical 

volumetric dataset with 800 × 800 A-lines takes ~ 2 minutes to acquire, which is more 

than 5 times faster than previous system. Also, in iPOM, the light for imaging was 

delivered to the probe through flexible optical fibers, which allow us to adapt this system 

to a portable set-up in the future for intraoperative applications. In both PAM and OCT 

images, the lateral resolution is determined by the width of the optical focus, which was 

estimated by imaging a USAF-1951 resolution test chart to be better than 3.5 µm in the 
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focal zone. The axial resolutions of PAM and OCT are determined by the bandwidth of 

the ultrasonic detection and light source, respectively. We estimated them to be ~31 µm 

in PAM images, and ~3.5 µm in OCT images. 

 

Figure 3.1  Schematic of the integrated photoacoustic and optical coherence microscope 

(iPOM). SLD: superluminescent diode; PC: polarization controller; I: isolator; FC: 80/20 

2×2 fiber coupler; C: collimator; NF: neutral density filter; M: mirror; CM: cold mirror; 

GA: galvanometer; L: achromatic lens; UT: ultrasonic transducer; GL: glass plate. 
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3.3 Demonstration of Potential Biomedical Applications 

3.3.1 Imaging a Mouse Ear 

We first demonstrated the capability of iPOM by imaging mouse ears in vivo using a 

transmission-mode prototype [63]. Nude mice (Harlan, Indianapolis, IN. Weight: ~30 g) 

were used in our experiments. 

Figure 3.2 shows that the x-y projection images of a nude mouse ear obtained in vivo by 

iPOM correlate well with the photograph taken through an optical transmission 

microscope with 4× magnification. OCT and PAM visualized different aspects of the 

tissue better than the traditional optical microscope. In the OCT image [Figure 3.2(a)], 

the sebaceous glands are resolved with higher resolution, due to the better rejection of 

background scattered light. The PAM image [Figure 3.2(b)] clearly maps the 

microvasculature at higher contrast in greater details than the photograph. The average 

contrast-to-background ratio between blood micro-vessels and surrounding tissue was 

estimated to be ~25:1, which manifests the advantage of the absorption-based 

photoacoustic method in imaging microvascular morphology. In Figure 3.2(c), we co-

registered the two images, with the blood vessels in red and avascular structures in gray 

scale. 
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Figure 3.2  iPOM images of a nude mouse ear (x-y projection) (a) OCT. (b) PAM. (c) 

Overlay dual-modality images. (d) Photograph taken through an optical microscope. SG: 

sebaceous gland; BV: blood vessel. 

The benefits of combining the complementary contrasts of OCT and PAM can be better 

appreciated by looking at a cross-section of tissue. To achieve axial resolution, PAM 

records the time-of-flight of sound, whereas OCT uses coherence gating. Figure 3.3 

shows typical cross-sectional images of a nude mouse ear acquired by iPOM at a fixed y 

position, where the ventral side of the ear appears on the top. OCT provided us a 

microanatomy of the avascular structures in the ear [Figure 3.3(a)]. From the OCT cross-

sectional images, we were able to estimate that the imaged regions had a thickness 

varying from 200 to 300 µm. Both OCT and PAM could see through the entire thickness 

of the mouse ear. By comparison with typical histology, we were able to identify various 

structures in the ear. The ear consisted of two skin layers separated by a layer of non-

scattering cartilage. The epidermis, the outmost layer of the skin, tended to be more 
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scattering. The weak-scattering regions embedded in the skin layers were most likely 

sebaceous glands. We found more sebaceous glands in the dorsal skin layer than in the 

ventral layer, which agreed well with previous reports [107]. However, blood vessels 

were not evident on the OCT image. By contrast, PAM [Figure 3.3(b)] is good at locating 

micro-vessels in the ear, with little information about the surrounding tissue forming the 

local environment of vessels. Some vessels, such as the one labeled as CP, had a diameter 

of ~ 7 µm, and were believed to be capillaries. From the co-registered cross-sectional 

image [Figure 3.3(c)], we could identify the anatomical location of each imaged vessel. It 

was observed that the smallest vessels were located close to the skin surface. Other layers 

of vasculature were found near the cartilage layer. More interestingly, a large number of 

vessels were found to surround sebaceous glands, as reported earlier [107]. 

 

Figure 3.3  iPOM images of a nude mouse ear (x-z cross-section). (a) OCT. (b) PAM. (c) 

Overlay the dual-modality images. ED, epidermis; CT, cartilage; SG, sebaceous gland; 

CP, capillary. 
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Both PAM and OCT are intrinsically three-dimensional imaging modalities. In order to 

obtain a volumetric dataset, iPOM only needs two-dimensional raster scanning, unlike 

confocal and multi-photon microscopes, which depend on three-dimensional scanning. 

The three-dimensional PAM image [Figure 3.4(a)] reveals details of the shape, direction, 

branching and connectivity of blood micro-vessels. Figure 3.4(b) shows a top view of the 

volumetric rendering of the dual-modality dataset, where the microscopic epidermal 

ridges are evident from the OCT contrast. The distinguishable vascular morphologies in 

the ventral and dorsal layers of the skin are also compared in Figure 3.4(c) and (d). 

 

Figure 3.4  iPOM images of a nude mouse ear (3-D visualization). (a) PAM image of the 

microvasculature only; (b) Dual-modality image showing the skin surface, a top view; (c) 

Dual-modality image showing the microvasculature in the ventral skin layer, a top view 

from 88 µm below the skin surface; (d) Dual-modality image showing the 

microvasculature in the dorsal skin layer, a top view from 148 µm below the skin surface. 

The micro-vessels imaged by PAM are colored in red, while avascular tissues imaged by 

OCT are in gray. The bounding box has dimensions of 3.6 mm x 3.6 mm x 0.4 mm. 
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3.3.2 Imaging Mouse Skin 

Cutaneous microcirculation was suggested to be a representative model for studying 

generalized mechanisms underlying microvascular functions and dysfunctions. Structural 

remodeling and functional disturbance of cutaneous microvasculature are involved in 

various cardiovascular diseases, and can be assessed to aid accurate diagnosis and 

optimized treatment [108]. We further explored the potential application of iPOM in 

studying cutaneous microcirculation, which may lead to its clinical translation. 

We imaged the scalp of a Swiss Webster mouse (Harlan, Indianapolis, IN. Weight: ~20 

g) in vivo. The PAM images are colored red, while the OCT images are rendered in gray 

scale. Figure 3.5(a) and (b) show the composite dual-modality images in the x-y 

projection view and the x-z cross-sectional view, respectively. iPOM not only sees details 

of the microvascular morphology down to single capillaries using photoacoustic 

detection, but also depicts the microanatomy of the surrounding tissue by OCT. By 

comparing OCT images against a photograph of a typical histological slice of a mouse 

scalp taken by a commercial optical microscope [Figure 3.5(c)], we found OCT clearly 

distinguished the striated structure of the skin, including the epidermis, the papillary and 

reticular dermis, as well as the subcutaneous tissue. The hair follicles and the attached 

sebaceous glands manifested themselves as weak-scattering dark areas inside the skin. 

More importantly, from the three-dimensional visualization of photoacoustic data, we 

observed that the cutaneous microvasculature was organized as two distinct horizontal 

plexuses. The first plexus mostly made of microvessels was located in the epidermal-  
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Figure 3.5  iPOM images of skin obtained in vivo. PAM images are colored red, while 

OCT images are colored in gray scale. (a) x-y projection view. (b) A typical B-scan 

image (x-z slice). (c) An H&E stained histological x-z slice for comparison. (d) 3D 

visualization of the cutaneous microvasculature. (e) En face images (x-z projection) of 

three sub-layers of the skin. The scale bars in (a), (b) and (c) represent 100 µm. The 

bounding box in (d) has a dimension of 2 × 2 × 1.5 mm
3
. Each image in (e) has a 

dimension of 2 × 2 mm
2
. C: blood capillary; H: hair follicle; E: epidermis; P: papillary 

dermis; R: reticular dermis; S: subcutaneous tissue; K: skull. 
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dermal junction (within 105 µm under the skin surface), while the second layer 

comprising bigger vessels was at the dermal-subcutaneous junction (169 ~ 385 µm). The 

two were connected with blood vessels running mostly in the vertical directions. [See 

Figure 3.5(e)] This characteristic organization of cutaneous microcirculation was 

documented previously only through histology [109]. To the best of our knowledge, 

using iPOM, we are the first to be able to visualize these features in vivo. 

 

3.3.3 Imaging the Anterior Segment of a Mouse Eye 

OCT could detect ocular lesions based on morphological changes in both the retina and 

the anterior segment of the eye, and has become a major imaging tool in routine 

ophthalmological diagnosis. However, it is limited in term of evaluating physiological 

functions. Hence, invasive fluorescent angiography, which requires the introduction of 

exogenous fluorescence dyes, is still an essential tool for visualizing the morphology and 

functions of ocular microcirculation [110]. We expect iPOM could enable simultaneous 

structural and functional imaging of the eye using only endogenous contrasts, and could 

be a useful tool in ophthalmology. 

Here, we demonstrated label-free imaging of the anterior segment of an eye of a Swiss-

Webster mouse in vivo by iPOM. The PAM images are colored red, while the OCT 

images are rendered in gray scale. Figure 3.6(a), (b) and (c) show the composite dual-

modality images of the eye in the x-y projection view, the x-z cross-sectional view and in 

3-D, respectively. We see iPOM can only reveal the morphology of the cornea, iris, the 

front part of the lens and the ciliary body, but also map the ocular microcirculation 
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system mostly in the iris in great details. To obtain these images, we used a pulse energy 

of 60 nJ, which is well within the ANSI laser safety limit. We predict that, with further 

development of functional imaging capabilities, iPOM will impact our understanding and 

diagnosis of a wide range of eye diseases, such as glaucoma, diabetic microangiopathy, 

and ocular tumor. 

 

Figure 3.6  iPOM images of the anterior segment of a mouse eye obtained in vivo. PAM 

images are colored red, while OCT images are colored in gray scale. (a) x-y projection 

view. (b) A typical B-scan image(x-z slice). (d) 3D visualization. The scale bars in (a) 

and (b) represent 200 µm. The bounding box in (c) has a dimension of 3.4 × 3.4 × 1.5 

mm
3
. CN: cornea; L: lens; I: iris; CB: ciliary body. 
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3.3.4 Imaging Cell Infiltration in Scaffold 

Tissue engineering is an emerging field to use engineered biological substitutes to 

restore, maintain, or enhance functions of tissues and organs [111, 112]. The replacement 

tissue is generally constructed by rationally growing cells on a three-dimensional porous 

scaffold, which provides mechanical support and biochemical microenvironment for 

tissue growth. To help optimizing the design of scaffolds, imaging tools that reveal the 

interactions between cells and scaffolds are highly desirable. We expect iPOM will be 

able to take this role and become a useful tool for facilitating tissue engineering. 

As a preliminary demonstration, we demonstrated label-free chronic imaging of the 

infiltration of B-16 melanoma cells in Poly(D,L-lactide-co-glycolide) (PLGA) inverse opal 

scaffolds [113]. At day 0, B-16 cells were seeded on the upper surface of the scaffolds. 

Figure 3.7 shows iPOM images taken at days 1 and 7. B-16 cells contains strongly 

absorbing melanin, thus can be imaged by PAM. OCT can see the morphology of both 

the scaffold and cells. When making composite dual-modality images, we overlay PAM 

images (red) on top of OCT images (green). As a result, the area where cell grows will be 

red, while the skeleton of the scaffold remains green. Figure 3.7(a) shows that 1 day after 

seeding, most cells were attached to the wall of the pores in a relatively uniform manner. 

In day 7, cells proliferated towards the center of the pores in a non-uniform fashion 

[Figure 3.7(e)]. Compared with the photographs taken by commercial optical microscope 

[Figure 3.7(d) and (h)], we can better appreciate the advantage of PAM to see cells not 

only on the top of the scaffold but also inside the scaffold. Thanks to the depth sectioning 

capability of iPOM, we further observed that most cells were restricted to the upper 
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surface of the scaffold at day 1 [Figure 3.7(b) and (c)], while a large portion of cells 

infiltrated to a depth of 200 µm into the scaffold at day 7 [Figure 3.7(f) and (g)]. 

 

Figure 3.7  iPOM images of infiltration of B-16 melanoma cells in a PLGA inverse opal 

scaffold. PAM images are colored red, while OCT images are colored green. a,e: x-y 

projection PAM image. b,f: x-y cross-sectional dual-modality images at the upper surface 

of the scaffold. c,g: x-y cross-sectional dual-modality images at 200 µm deep. d,h: 

photographs taken with optical microscope. a~d taken at day 1. e~h taken at day 7. The 

scale bars represent 200 µm. 

iPOM has an advantage to be able to image tissue and scaffold with different imaging 

contrasts, thus is especially suited to study the interaction between the two. We predict 

iPOM will find versatile applications in tissue engineering, such as investigating the role 

of angiogenesis in engineered tissue, and monitoring the controlled degradation of 

scaffold during tissue formation, etc. 
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3.4 Conclusion 

In summary, we proposed a novel multi-modality microscopy, iPOM, which can provide 

comprehensive information about biological tissue using both optical absorption and 

scattering contrasts. We designed and built a high-speed reflection-mode prototype of 

iPOM, and further demonstrated its potential applications in studying cutaneous and 

ocular microcirculation, as well as tissue engineering. 
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Chapter 4 Optical Coherence Computed 

Tomography (Optical CCT)
‡
 

 

4.1 Motivation 

Optical coherence tomography (OCT) is an important biophotonic imaging technique, 

which can provide real-time high-definition in vivo biopsy of biological tissue (see 

Chapter 1). OCT assumes all detected photons are scattered only once at the depth that 

equals to one half of the measured pathlength. However, most biological tissues are 

strongly scattering to light. A photon will be scattered an average of 10 times during 

every 1-mm travel in normal soft tissue. Multiply scattered photons coming back from 

other part of tissue can also be collected by OCT with the same pathlength, thus are 

generally considered as noise that will blur OCT images. It was found that, with the 

increase in probe depth, the number of minimally scattered photons decreases 

exponentially, while the population of the multiply scattered photons increases. The latter 

group was estimated to become dominant somewhere beyond 500~700 µm deep in tissue 

[114]. As a result, the imaging depth of OCT is usually restricted to ~1 mm in highly 

scattering tissue like skin, and its image quality degrades quickly with the increase of 

probe depth. In addition, OCT is predominantly sensitive to optical scattering, which is 

                                                 
‡
 Reprinted with permission from L. Li, and L. V. Wang, "Optical coherence computed 

tomography," Applied Physics Letters 91, 141107 (2007). 
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associated with the microstructure of tissue instead of its molecular content. OCT is 

generally insensitive to other molecule-specific optical contrasts, such as absorption.  

In this chapter, I summarized our invention of a novel optical tomography, named optical 

coherence computed tomography (optical CCT), in order to overcome the 

aforementioned restrictions in OCT. Similar to OCT, Optical CCT measures both singly 

and multiply scattered photons from tissue in a time-resolved manner using a low-

coherence optical interferometer. Different from OCT, optical CCT produces an image of 

the optical properties of tissue using a reconstruction algorithm based on a photon 

migration model. 

 

4.2 System Design 

Figure 4.1 shows our design of the first prototype of optical CCT, which is configured as 

a fiber-optic Mach-Zehnder interferometer. The light emitted by a broadband 

superluminescent diode (IPSDD0803, InPhenix, Livermore, CA. Central wavelength 

0=829 nm, bandwidth ∆ =36.4 nm) is split into two parts by a 90/10 fiber coupler. The 

first part is shaped by lenses L1 and L2 and focused onto one surface of the sample. 

Light, scattered once or multiple times in the sample, is collected from the opposing 

surface of the sample by lenses L3 and L4 into a second fiber coupler and interferes with 

the second part of source light that travels through the reference arm of the 

interferometer. Similar to spectral-domain OCT explained in Chapter 1, the interference 

signal is recorded as a spectrum by a home-made spectrometer, comprising a high-
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resolution transmission gratings G, an imaging lens L8 and a high-speed line-scan camera 

(Aviiva M2, Atmel, San Jose, CA). The polarization and dispersion differences between 

the sample arm and reference are carefully compensated for. The time-resolved profile of 

the reemitted light is obtained from the recorded spectrum through Fourier transform as 

previously described in Chapter 1. The illumination and collection optics are pre-aligned 

coaxially. Both can be scanned laterally (in the x-y plane) by translation stages to take 

measurements through different illumination-detection pairs. This system can be easily 

parallelized, for example using a coherent optical fiber-bundle, in the future to increase 

the imaging speed. Using the current set-up, we can measure the reemitted light from the 

tissue with a temporal resolution equivalent to the coherence time of the source light, 

which is (c is the speed of light in vacuum). The temporal resolution 

can be further improved by increasing the bandwidth of the light source. 

 

Figure 4.1  Schematic of optical coherence computed tomography (optical CCT) system. 

SLD: superluminescent diode; FC: fiber coupler; PC: polarization controller; DC: 

dispersion compensation; G: gratings; LSC: Line-scan camera; L1-8: lenses. 



63 

 

4.3 Reconstruction Algorithm 

Photon migration in a biological tissue is believed to be governed by the radiative transfer 

equation (RTE), which can be written as 

, 
(4.1) 

where  is the radiance of the light at position  along the direction ŝ with a total 

traveling time .  denotes the solid angle.  stands for the light-emitting source.  

and  represent the absorption coefficient, the scattering coefficient of the tissue, while 

 is the phase function of scattering that is related to the microstructure of tissue. 

[1]. As indicated in Equation (4.1), the light, reemitted after interaction with medium, 

carries information about important optical properties characterizing the medium, such as 

,  and . 

As exemplified by DOT, a model-based reconstruction algorithm can be used to obtain a 

map of these optical properties in the medium from measurements of the reemitted light 

from tissue. The algorithm comprises two components: 1) a forward model, which solves 

the RTE (sometimes with proper simplifying assumptions) and computes the expected 

measurements from a spatial distribution of tissue’s optical properties, and 2) an inverse 

procedure, which finds the distribution of these properties that matches the theoretical 

prediction of the forward model and the experimental measurement. 
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DOT works in the diffusive regime. The migration of diffusive photons can be forwardly 

modeled by simplifying RTE with the diffusion approximations. The resulted diffusion 

equation can be solved analytically [1]. In contrast to DOT, optical CCT will mostly 

work in the pre-diffusive regime, where the diffusion approximations no longer hold. 

Thus, we must resort to the full transient radiative transport equation (RTE) in Equation 

(4.1), which is much more challenging to solve.  

As an initial demonstration of the concept of optical CCT, in this study we aim to image 

an absorbing object, which represents spatially distributed absorbing perturbation 

. Perturbations in scattering coefficient  and the scattering phase function can 

be mapped by following similar procedures. 

For imaging the small embedded absorber, we measure the temporal profile of the light 

coming out from the tissue through multiple illumination-detection pairs both with the 

absorbing object located therein, , and without the object located therein, 

.  and  are the illumination and detection locations on the surface of the 

medium, respectively. Given the lesion is small, the difference between the two 

measurements  can be derived from Equation (4.1) under the first-Born 

approximation as 
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                  , 

(4.2) 

where represents the increase in absorption coefficient due to the existence of the 

absorbing object.  is the inward normal of the surface at , and is the Green’s 

function solution for Eq. 2. The integration involving  and  can be merged into a 

single function , which links  that we try to image, with measurements . 

 is often referred to as a sensitivity function, which physically means the rate 

of change in measurement  as a result of an absorbing perturbation at . Thus, we 

simplified the forward problem for optical CCT into a linear equation given in Equation 

(4.2). Due to the discrete nature of measurements, the forward model can be further 

described in a matrix form as  

∆T=J∆μa, (4.3) 

where ∆T is the vector representing the differential measurement from experiment, and 

has a total of N=(number of source-detection position pairs)×(number of pathlength 

segments) elements. ∆μa is the vector representing the increase of absorption coefficient 

in each voxel of the media, and has a total of M=(number of voxels) elements. J is the 
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discrete form of the sensitivity function times the volume of a voxel, and is an N×M 

matrix. 

In practice, the sensitivity matrix J is obtained numerically by a time-resolved Monte 

Carlo simulator. We followed the general Monte Carlo method described in Ref. [115] 

with the following major modifications: 1) Tack the traveling time of every photon 

packet during propagation, and record the reemission at the detection surface into a 

matrix as a function both of position and time. 2) Use an auxiliary matrix to record voxels 

at r where scattering events occurs for each photon packet. When this photon packet 

emitted from the detection surface, the remaining weight divided by (μa+μs) is added to 

the element of the sensitivity matrix J corresponding to the illumination-detection 

position pair, time and the voxel position r. The boundary conditions imposed in 

experiments were also taken into account in simulation. 

To obtain an image of the object, we inverted measurements using a standard 

simultaneous iterative reconstruction technique (SIRT), which could be given in the 

matrix format as 

∆μa
k+1

=(I-CJ
T
RJ)∆μa

k
+ CJ

T
R∆T, (4.4) 

where k and k+1 are the indices of iteration. R=diag(ri) and C=diag(ci) are diagonal 

matrices of the inverse of the row and column sums of J=[aij], respectively, that is 

ri=1/Σjaij and cj=1/Σiaij. The iterative inversion procedure begins with initial assumption 

that ∆μa
0
=0, and terminates until Σ[(∆μa

k+1
-∆μa

k
)
2
]/Σ[(∆μa

k
)
2
] falls below a certain preset 

threshold. The matrices (I-CJ
T
RJ) and CJ

T
R∆T do not depend on the position and 

optical properties of the hidden absorbing object, thus can be calculated before 

experiments and stored as a database to significantly reduce the computation time of the 
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reconstruction in real applications. In order to make the reconstruction less susceptible to 

the boundary condition of the object, M0∆T/T0 instead of ∆T is used for inversion, where 

T0 and M0 are the measurements obtained through experiment and simulation without 

absorbing inclusion, respectively. Also, an obvious priori that ∆μa is always positive was 

imposed during the iteration. 

 

4.4 Experimental Results 

4.4.1 Comparison Between Experimental Measurement and 

Theoretical Prediction 

To validate the system, we first compared the optical CCT measurement of the reemitted 

light from a phantom with known optical properties against theoretical predictions by the 

time-resolved Monte Carlo simulator (Figure 4.2). We constructed a highly scattering 

tissue-mimicking phantom using aqueous suspension of 1-μm polystyrene microspheres. 

The optical properties calculated using the Mie theory were μs=113.6 cm
-1

 and scattering 

anisotropy g=0.90, whereas the absorption is negligible. The phantom used in our 

experiment was 2.6 mm thick, corresponding to ~30 scattering mean-free-paths. The 

integration time for recording a single spectrum was 1 ms. The temporal profile of light 

measured by a single source-detector pair was the average based on 500 recorded spectra 

to alleviate the speckle noise. Figure 4.2(a) shows the temporal profile of light detected at 

the source-detector pairs with lateral shift x ranging from -0.5 mm to 0.5 mm. The 

measurements at x=0 mm, 0.2mm, 0.4mm, after compensation for the depth-dependent 

decay due to the finite spectral resolution of the spectrometer, match the predictions from 

the Monte Carlo simulation well, shown in Figure 4.2(b), (c) and (d). 
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Figure 4.2  Comparison between temporal profiles of light measured in optical CCT and 

predicted by Monte Carlo simulation. (a) Experimental measurements obtained at source-

detector pairs with lateral shift x=-0.5 mm to 0.5 mm. Experimental measurements at (b) 

x=0 mm, (c) x=0.2 mm and (d) x=0.4 mm are compared with the predictions from the 

simulation. MC: Monte Carlo simulation. 

 

4.4.2 Imaging Absorbing Objects Using Optical CCT 

We then demonstrated imaging absorbing objects in highly scattering medium by optical 

CCT experimentally. 
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A 100-μm hair fiber was immersed parallel to the y-axis inside the tissue-mimicking 

medium described above. Three tomographic images were obtained when this hair fiber 

was placed at three different depths with a 0.5-mm separation. For each position, data 

were collected at 11×11 source-detector pairs, which covered a 1-mm range along the x-

axis. Figure 4.3(a) shows the three reconstructed optical CCT images of the hair fiber 

thresholded at 50% of the peak value in the image. The hair fiber was clearly identified at 

all three expected positions. The full width at half maximum (FWHM) of the imaged hair 

is 200 μm along the z-direction and 180 μm along the x-direction, both of which are ~100 

µm wider than the actual diameter of the hair fiber. Under the assumption of a linear 

system, the spatial resolution of our optical CCT system is estimated to be ~100 µm. This 

resolution maintains well throughout the whole phantom. The thickness of the phantom is 

equivalent to ~30 scattering mean-free-paths, which is much thicker than the maximal 

penetration depth of OCT (~10 scattering mean-free-paths). 

Also, Figure 4.3(b) shows the reconstructed image of two hair fibers in the same 

scattering medium, with a 1.3 mm separation in both the x and z directions. Transmitted 

light was measured at 21×21 source-detector pairs, which covered a 2-mm range along 

the x-axis. This demonstrates optical CCT is capable of mapping multiple absorption 

perturbations simultaneously. 
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Figure 4.3  Optical CCT images of absorbing objects in highly scattering tissue-

mimicking phantom. (a) Reconstructed images of a 100-μm hair fiber at three different 

depths with 0.5-mm separation. (b) Reconstructed image of two hair fibers with 1.3-mm 

separation along both the x and z directions. 

 

4.5 Conclusion 

In a brief summary, we proposed and demonstrated a new time-resolved optical 

tomography, optical CCT. Optical CCT measures the reemitted light from tissue with a 

superior temporal resolution by a low-coherence interferometer. By using a model-based 

reconstruction algorithm, optical CCT makes use of both singly and multiply scattered 

photons. As a result, optical CCT can work in both the ballistic and quasi-diffusive 

regime. We experimentally proved that our current optical CCT system penetrated deeper 

than traditional OCT, and maintains consistent imaging quality through the whole 
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imaging depth. Furthermore, optical CCT is sensitive to optical absorption, thus could 

provide information about the molecular content of tissue. 

Spectroscopic OCT has been proposed to extract absorption contrast at the cost of spatial 

resolution by exploiting spectral features of absorption [116]. However, this method is 

susceptible to the spectral variation of the scattering coefficient μs, which sometimes 

dominates spectral features of optical absorption. Also, it is also unable to detect 

absorbers whose absorption coefficient μa does not change much in the source bandwidth. 

Optical CCT doesn’t rely on spectroscopic measurement, thus can avoid these problems. 

Previous development of pure optical imaging methods for the quasi-diffusive regime is 

limited to laminar optical tomography [117, 118], which uses continuous-wave 

measurements. The image quality relies on proper regularization, and decays with depth. 

Since time-resolved measurements are adopted in optical CCT, the inverse problem is 

less ill-posed and the reconstruction is more robust. 

Diffuse optical tomography (DOT) measures diffusive photons using other methods, and 

provides maps of tissues’ optical properties through model-based reconstruction from 

measurements at a large number of source-detection pairs. It can image a few centimeters 

into tissue using near-infrared light. However, the spatial resolution achieved is relatively 

poor, typically on the order of millimeters (1/5 of the imaged depth), due to the nature of 

diffusion. Time-domain DOT measures the time-resolved reemission of light from a 

medium in response. It is expected to outperform continuous-wave and frequency-

domain versions, since it carries information of the whole spectrum simultaneously. 

Traditionally, time-resolved profile of light was measured by expensive sophisticated 
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high-sensitivity detection systems, such as a streak camera [119] and a time-correlated 

single-photon counting system [120] with ps-order resolution. However, the slow frame-

rate and the high cost limited their application. Recently, time-gated optical image 

intensifier [121] has been utilized to develop fast parallel time-resolved DOT. However, 

the gate width is ~200 ps, corresponding to a pathlength as long as 6 cm in air. A finer 

temporal resolution is preferred to resolve small lesions in tissue. Using a low-coherence 

interferometer, our current CCT system could measure light with a superior temporal 

resolution of 56 fs at relatively low cost, and achieves a sub-mm resolution better than 

DOT. Optical CCT could potentially bridge the gap between OCT and DOT, which 

means it can image deeper than OCT with a resolving power better than that of DOT. 
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Chapter 5 Conclusion and Future Directions 

In this study, built on the spirits of photoacoustic imaging and optical coherence 

tomography, I developed three novel optical imaging techniques: photoacoustic reporter 

gene imaging, integrated photoacoustic and optical coherence microscopy (iPOM), and 

optical coherence computed tomography (optical CCT). In this final chapter, I want to 

discuss current challenges that we are facing in advancing these techniques, and suggest 

several future directions. 

We believe the combination of photoacoustic imaging and chromogenic reporter gene 

system could result in a new paradigm for molecular imaging. However, the lacZ/X-gal 

reporter strategy used in this study has its limitations. The cleavage of X-gal can 

occasionally cause skin irritation and the in vivo dynamics of the reaction is poorly 

understood. Currently, X-gal was introduced locally. After systemic injection through tail 

vein, the blue product did not seem to accumulate at a detectable concentration. Also, the 

blue product was found to slowly diffuse out from lacZ-marked tumor cells into 

surrounding tissue with time. Hence we are looking for collaborative effort from the 

biochemical society to design a better reporter probe to replace X-gal to report the lacZ 

expression in vivo. First, after reaction with β-galactosidase, the cleaved product of this 

probe should have a large absorption cross-section in the red or near-infrared part of 

optical spectrum. Second, it should be able to be efficiently delivered to targeted tissue 

following a systemic introduction. Finally, the final product is preferred to be trapped 

inside cells that expressing lacZ. More importantly, we propose to explore new 

chromogenic reporter gene systems, especially those doesn’t require the introduction of 
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reporter probes. Considering the vast array of colors in the natural world, this may prove 

to be a fruitful direction of research that could significantly impact the field of molecular 

imaging. 

In terms of iPOM, the next technical advance will be integrating the complementary 

functional imaging capabilities of PAI and OCT into the system. PAI could quantify the 

local hemoglobin concentration and blood oxygenation, and relative changes in 

temperature, while OCT is good at estimating local blood flow. As a result, iPOM not 

only can provide all these important established functional parameters, but also is 

potentially able to provide new functional biomarkers of diseases, such as the local 

oxygen consumption rate. Also, iPOM could be performed at the video rate by adopting a 

laser with higher pulse repetition rate, and delivering light through a photonic crystal 

fiber that can deliver higher energy laser pulse. Finally, I believe iPOM will not only find 

broad applications in laboratorial studies of microcirculation, neuroscience and tissue 

engineering, but also experience a rapid clinical translation to help diagnose and treat 

dermatological and ophthalmological diseases. 

To advance optical CCT, a fast forward model for photon migration in the pre-diffusive 

is highly desirable. Due to the statistical nature of the Monte Carlo method, the current 

forward calculation is extremely computation intensive. What’s more, the linear equation 

in Equation (4.2) will not work when perturbations are large. In that case, a non-linear 

image reconstruction problem needs to be solved the RTE without the linearization 

iteratively. Recently, motivated by the development of time-resolved optical imaging 

techniques, researchers have started to develop fast numerical solutions for solving the 
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full transient RTE based on the discrete transfer method, the discrete ordinates method 

and finite volume method [122]. However, further studies are needed to clarify their 

applications in the content of biomedical optical imaging, especially for the quasi-

diffusive regime. Their accuracy need to be tested against the Monte Carlo method, a 

well-accepted golden standard. Also, it should be possible to reconstruct a map of tissues’ 

scattering coefficient and phase function following similar procedures as presented in this 

study. In addition, many biomedical applications require us to further implement optical 

CCT in reflection mode. The major obstacle there is that the strong specular reflection 

from the air-tissue interface will dominate the light scattered from the inside of the tissue, 

and raises the noise floor in measurements. We may potentially solve the problem by 

apply proper couplant on the tissue surface, or reject the strong specular reflection by a 

cross-polarization technique. Finally, I expect that optical CCT can be scaled up to image 

thicker tissues (>1 cm) by relaxing the temporal resolution, because the number of 

photons detected at each time point increases by extending time gate. Of course, this will 

likely be done at the cost of spatial resolution. Detection of light after penetrating 1.5-cm 

chicken tissue was previously reported by relaxing the time gate to 900 fs [123]. 
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Appendix A The Speckle-free Nature of 

Photoacoustic Imaging
§
 

 

A.1 Introduction 

Speckle has been considered ubiquitous in all coherent imaging modalities, such as laser 

imagery [124, 125] , ultrasonography [126, 127] , synthetic aperture radar [128], and 

optical coherence tomography [129]. Fully developed speckle is formed by the 

interference among partial waves, either scattered from randomly distributed scatterers or 

reflected from a rough surface, whose phases are completely randomized over 2π. The 

speckle pattern generally has a high-contrast, fine-scale granular appearance, which does 

not correspond to the real structure of the sample. Although useful in certain applications, 

such as optical speckle imaging and ultrasound tissue characterization, speckle reduces 

both the effective spatial resolution and the detectability of small lesions, and thus 

deteriorates the image quality significantly. Many efforts have been made to mitigate this 

undesirable deterioration; however, speckle can be only partially reduced and only at the 

cost of system complexity, imaging time, or spatial resolution. 

A long-standing conundrum is why photoacoustic imaging (PAI) possesses the unique 

ability to produce images devoid of speckle artifacts while all other coherent imaging 

                                                 
§
 Reprinted with permission from Z. Guo*, L. Li*, and L. V. Wang, ―On the speckle-free 

nature of photoacoustic tomography,‖ Medical Physics 36, 4084–4088 (2009). (*These 

Authors contributed equally to this work.) 
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technologies do not. We found that this feature of PAI results directly from the optical 

absorption contrast. All optical absorbers expand on laser excitation, and therefore all 

initial photoacoustic pressure rises are positive, which engenders strong correlations 

among the photoacoustic waves from the absorbers. As a result, prominent boundaries 

always build up in photoacoustic images and suppress the interior speckle. This analysis 

was validated by simulations based on an experimental  

 

A.2 Three Theoretical Explanations 

When researchers analyze the speckle statistics in ultrasound imaging, a scattering 

structure is usually modeled as a collection of randomly distributed sub-resolution 

scatterers. The ultrasonic waves scattered from these scatterers interfere with each other, 

and a speckle results. Owing to the structural continuity, the scattered waves usually 

possess either positive or negative polarity. Similarly, in PAI, an optically absorbing 

structure can be modeled as a collection of randomly distributed sub-resolution absorbers. 

The absorbers can vary in dimension widely, from hemoglobin molecules to red blood 

cells, as long as they are much smaller than the spatial resolution. The axial resolution of 

the 5-MHz PAI system, limited by the transducer bandwidth, is ~144 µm. The lateral 

resolution, determined by the width of the focal spot, is ~560 µm. Because an average 

adult has ~5 million red blood cells (~7.4–9.4 µm in diameter and ~1.6–2.0 µm in 

thickness) per microliter of blood, the ultrasonic transducer may receive photoacoustic 

waves from 4~5.8 10  red blood cells within a resolution cell. The photoacoustic signals 

emitted from these absorbers interfere with each other. Curiously, investigators have 
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noticed that photoacoustic methods, despite their coherent nature, produce images devoid 

of speckle artifacts. We found that this salient feature is a direct result of the absorption 

contrast in PAI.  

As the first explanation of the speckle-free nature of PAI, we compare a pulse-echo 

ultrasound imaging system with the 5-MHz reflection-mode PAI system. Both systems 

can be described by the same linear model. For a fair comparison without loss of 

generality, the same spatial-temporal system impulse response  is assumed for 

both systems. In reality,  in pulse-echo ultrasonography represents a round trip 

response, while  in PAI represents only one way. 

Figure A.1 shows that a focused ultrasonic transducer detects A-scan signals from a slab 

of tissue. The tissue slab is modeled as a collection of randomly distributed particles (red 

dots), which can be either acoustic scatterers in ultrasound imaging or optical absorbers 

in PAI. For simplicity, we consider the particles as point targets because they are small 

relative to the spatial resolution. In the ultrasonic A-scan, the received signals from the 

individual scatterers may either maintain (red solid curves) or flip (blue dotted curves) 

the polarity of , because the acoustic impedance of the scatterers may be either 

lower or higher than the surrounding medium. The photoacoustic A-scan from the 

absorbers of the same geometry is also plotted. Because all initial pressure rises are 

positive, all received photoacoustic waves uphold the polarity of , which is the 

major difference between PAI and ultrasound imaging. The A-scan signals, plotted in 

green dashed lines, result from the interference among the signals from the individual 
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particles. In the middle segment of the A-scan signals in both imaging modalities, we 

observe random fluctuations, because of the cancellation among the positive and negative 

parts of . Further, the mean of the amplitudes of the fluctuations are zero because 

 does not contain a DC component (in the cases when very wideband acoustic 

sensors that can detect DC component are employed in PAI, we expect to see not only the 

boundary buildups, but also the baselines inside the object.). Near both the front and back 

boundaries, however, prominent boundary signals are observed in the photoacoustic A-

scan, because of the constructive interferences. As a result, the random fluctuations in the 

middle are suppressed by the boundary signals, which we found to be the dominant 

features in photoacoustic images. By contrast, the boundary signals in ultrasound images 

do not stand out because of the existence of both scattering polarities. Therefore, speckle 

appears ubiquitously in ultrasonic A-scans.  
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Figure A.1  Comparison of pulse-echo ultrasound imaging and reflection-mode PAI. A 

focused ultrasonic transducer records the A-scan signal from a slab. ελ: a fraction of the 

central acoustic wavelength λ; c: speed of ultrasound. PA: Photoacoustic; US: 

Ultrasound. 

 

As the second explanation, the classic speckle theory, which usually models only 

monochromatic waves, is invoked. As stated above, the fully developed speckle is 

formed by the interference of coherent waves with completely randomized phases. Two 

components contribute to the phase difference between waves: the initial phase and the 

phase delay. When profiling the central part of the structure in both photoacoustic and 

ultrasound imaging, we always receive acoustic waves from particles with completely 
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randomized phases, which result from phase-delay variations. However, particles close to 

the boundaries send out waves that reach the transducer with approximately equal phase 

delays. Here, the initial phase plays a key role. As the initial photoacoustic pressure rises 

are always positive, the emitted photoacoustic waves add constructively to manifest the 

boundaries. By contrast, the scattered ultrasonic waves can take on both positive and 

negative initial phases. Hence, no boundary buildups are observed. 

As the third explanation, we analyze the condition for building up boundaries in all 

coherent imaging modalities and compare the strengths of the boundaries and of the 

interior speckle in PAI quantitatively. Assume that a total of n  particles (absorber or 

scatterer) are statistically uniformly distributed at positions . We use random 

process  to denote the particle impulse response, which accounts for the properties 

of a single particle. Because PAI is based on the optical absorption contrast,  

depends on the optical absorption, shape, and size of the absorber [130]. As an absorber 

quickly expands on laser excitation, a strong positive initial pressure is always generated. 

Consequently, the early part of  is always positive. In ultrasound imaging, as a 

typical scattering-based imaging modality,  is related to the acoustic properties 

(density and compressibility), shape, and size of the scatterer [131]. In reality, the shape 

of  is relatively random. The amplitude of an A-scan can be written as 

, 
(A. 1) 
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where  denotes convolution in the time domain, and  denotes the propagation velocity 

of the ultrasonic wave. When Eq ((A. 1) is applied to ultrasound imaging, round trip 

delays and multiple scattering are neglected because they are not key factors in our 

discussions. The instantaneous power of an A-scan is , and the ensemble 

average of  becomes 

, 
(A. 2) 

where ,  is the particle density,  is the structure 

volume,  is averaging over all n  particles, and  is averaging over all particle 

pairs. 

The first term in Eq. ((A. 2) is the sum of the powers of the waves generated from all 

particles. Therefore, it is called the uncorrelated contribution to the total power. It 

represents the power of the random fluctuations—speckle, which is shared in both 

imaging modalities. Speckle in ultrasound imaging has been widely used for tissue 

characterization [132]. 

The second term in Eq. (2) is responsible for the prominent boundary features in 

photoacoustic images. Because this term represents the correlations among the particles, 

it is responsible for the correlated contribution to the total power. First, the correlated 

power appears only as boundary features, because is always zero 

inside the structure. Second, the correlated power exists in photoacoustic images but 
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usually disappears in ultrasound images. As stated above,  in PAI always starts with 

a positive value, which produces strong correlations among the absorbers. After 

averaging over all particle pairs, the correlated power shows up as strong boundary 

features in PAI. In ultrasound imaging, however, the polarity of  is relatively 

random. After averaging, the correlated power usually becomes negligible. 

Eq. ((A. 2) can be further simplified by assuming the particles to be point targets. The 

photoacoustic wave from each point target excited by a delta laser pulse becomes 

, where each  is a random variable with a positive mean. In ultrasound 

imaging, researchers usually assume , where each  is a zero mean 

random variable [133] because the scattered signal is due to fluctuations in acoustic 

properties relative to the mean. By substituting  or  into Eq. 

((A. 2), we have 

 
(A. 3) 

Since integral with  denotes differentiation with respect to time, we have 

 in PAI and  in ultrasound imaging. Here  and  are 

the mean and variance of , respectively. 

From Eq. ((A. 3), we can quantify the visibility of the interior speckle in PAI, which is 

defined as the ratio of the square root of the average speckle power to the magnitude of 

boundary features, which are composed of both uncorrelated and correlated powers. The 
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uncorrelated power is proportional to , while the correlated power is proportional to 

. When  is sufficiently large, the correlated power is much stronger than the 

uncorrelated power, and the speckle visibility in PAI is approximately inversely 

proportional to . In this case, the correlated power dominates the photoacoustic 

image. From Eq. ((A. 3), we also note that the visibility of speckle in PAI does not 

depend on the particle absorbing strength, because both the correlated and uncorrelated 

powers are proportional to . In ultrasound imaging, the second term in Eq. ((A. 2) and 

Eq. ((A. 3) equals zero, and the correlated contribution is usually negligible. Therefore, 

the speckle visibility is independent of the scatterer density. The uncorrelated power 

dominates in ultrasound imaging and all other scattering-based coherent imaging 

modalities. 

 

A.3 Simulation of a Photoacoustic Imaging System 

We use simulation to further illustrate our analysis. Our numerical phantom contains a 5-

mm thick tissue structure, whose center is located 5 mm away from the transducer 

surface. It is composed of a large number of absorbers randomly distributed between 2.5 

mm and 7.5 mm along the ultrasonic axis. The transducer is assumed to have 5-MHz 

central frequency with 100% bandwidth. Figure A.2 compares the photoacoustic profile 

with the ultrasound profile, where the exact boundary positions are marked as vertical 

dotted lines. The envelopes represent the magnitude of absorption or scattering.  
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Figure A.2  Simulated depth profiles of a slab. (a) PAI, absorber density: 1,000/λ. (b) 

Ultrasound imaging, scatterer density: 1,000/λ. (c) PAI, absorber density: 100,000/λ. (d) 

Ultrasound imaging, scatterer density: 100,000/λ. λ: the acoustic wavelength of 5-MHz 

ultrasound. PA: Photoacoustic; US: Ultrasound. 

 

Between Figure A.2 (a) and (b), the object has the same particle density. In the 

photoacoustic A-scan [Figure A.2(a)], we notice two prominent semi-deterministic 

boundaries, which dominate the random speckle fluctuations in between. The separation 

between either maximum profile position and the corresponding boundary position is a 

fraction of the center ultrasonic wavelength. In the ultrasonic A-scan [Figure A.2(b)], the 
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speckle fluctuations spread across the entire imaged object, and no outstanding 

boundaries are observed. 

In PAI, the visibility of the interior speckle was also found to decrease with increase in 

absorber density, as demonstrated in Figure A.2 (a) and (c) and further quantified in 

Figure A.3(a). The linear fit between the logarithm of the speckle visibility and the 

absorber density has a slope of –0.479±0.003, which is close to the inverse square-root 

dependence as predicted above. By contrast, the speckle visibility stays approximately 

constant in the ultrasound images, as illustrated in Figure A.2(b) and (d) and further 

quantified in Figure A.3(b). In both Figure A.2(a) and (c), each middle segment—

between the two outermost minima of the profile within the two maxima—proves to be a 

fully developed speckle, because the magnitude of the photoacoustic signal follows the 

 

Figure A.3  Relationship between the speckle visibility in photoacoustic/ultrasound 

imaging and the absorber/scatterer density. (a) PAI; (b) Ultrasound imaging. Error bars: 

standard errors of the means (circles) based on 10 realizations of particle distributions; 

solid lines: linear fits. PA: Photoacoustic; US: Ultrasound. 
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Rayleigh distribution and the intensity follows the exponential distribution. Therefore, the 

simulation confirms the aforementioned explanations. 

In Figure A.4(a) and (b), we present simulated photoacoustic and ultrasonic cross-

sectional images (B-scan) of a round tumor, where the exact boundaries of the tumors are 

plotted as dashed lines. The ultrasound spatial-temporal response of the 5-MHz focused 

ultrasonic transducer is calculated by the Field II program [134]. We first simulate the 

case when the absorbing or scattering strength of the particles in the tumor area is 10 

times that of the background particles. For a large tumor with a diameter of 2 mm, strong 

signals at its top and bottom boundaries are observed in the photoacoustic B-scan [Figure 

A.4(a)]. The side boundaries are missing due to the limited view of the linear detection 

geometry. Figure A.4(b) shows the corresponding ultrasonic B-scan image, where 

speckle artifacts prevail. The higher scattering strength of the tumor induces a stronger 

speckle in the tumor area, which suppresses the background speckle. In reality, a 10:1 

scattering strength contrast is usually unavailable in ultrasound imaging. Therefore, the 

background speckle may be more prominent.  

In Figure A.4(c) and (d), respectively, the photoacoustic and ultrasonic B-scans of a sub-

resolution-sized tumor with a diameter of 100 μm are shown. In Fig. 4c, the small tumor 

appears in the photoacoustic B-scan image as a solid area without distinct front and back 

boundaries. In Figure A.4(d), the tumor cannot be identified in the ultrasonic B-scan 

image. We also simulated the case when the particle density is higher in the tumor area. 

As expected, the interior speckle is further suppressed in the photoacoustic image, 

whereas the visibility of speckle remains unchanged in the ultrasound image. 
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Figure A.4  Simulated cross-sectional photoacoustic and ultrasonic images of round 

tumors. Photoacoustic/ultrasonic B-scans of tumors with 2 mm diameter (a/b) and 100 

μm diameter (c/d). Absorber/scatterer density: 5 million/μL. Absorbing/scattering 

strength contrast: 10:1. 

 

A.4 Discussion and Conclusion 

We should note that the correlated power can also exist in ultrasound imaging in rare 

cases. For example, the observation of correlated power at scatterer concentration 

gradients (boundaries) in ultrasonic A-scans of a sponge slab was reported [135]. If the 

shape, size and acoustic properties of the scatterers within the structure volume are 
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similar, the correlation among the particle impulse responses becomes strong. As a result, 

the correlated power may show up at the boundaries. However, this assumption usually 

does not hold in real human tissue, and hence no boundary buildup occurs. 

We conclude that speckle artifacts in PAI are suppressed by prominent boundary 

buildups. The initial all-positive photoacoustic pressure rises provide strong correlation 

among the absorbers, which gives rise to strong boundary buildups. While images from 

ultrasound imaging and all other scattering-based imaging modalities are dominated by 

uncorrelated power, photoacoustic images are dominated by correlated power.  
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