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Professor Philip V. Bayly, Chair 

 

 

Cilia are microscopic cellular appendages that help us breathe by clearing our airways, maintain 

the health of our central nervous system by circulating cerebrospinal fluid, and allow us to 

reproduce by transporting eggs and propelling sperm cells. Cilia even determine the asymmetry 

of our internal organs during embryonic development. However, the mechanisms underlying 

ciliary beating are not fully understood. Questions remain as to how arrays of the motor protein 

dynein generate the propulsive waveforms observed in cilia and how structural elements within 

the cilium and its connection to the cell deform during beating. In the current work, 

mathematical modeling, analysis, and simulation are applied to answering these questions in 

three related aims: (i) a mathematical model of ciliary beating driven by steady dynein forces 

solved by linear stability analysis of custom finite-element equations; (ii) a model of the basal 

body and cilium created in commercial finite-element software and solved using a geometrically-

nonlinear time-domain solver; and (iii) a custom software tool written for automated tracing of 

ciliary imaging, and applied to the analysis of beating cilia. Through these aims, I estimated 

properties of the cilium and basal body, supported the plausibility of a model of ciliary beating, 

and gained insight into the motility of cilia on pancreatic beta cells.



1 

 

Chapter 1: Introduction to the dissertation 

1.1 Overview 
Motile cilia are slender organelles, often described as ‘hair-like’ or ‘whip-like,’ that cells use to 

impel fluid or propel themselves through fluid. Arrays of cilia that protrude from the epithelial 

cells lining our airways beat in a coordinated motion to clear mucus that protects our lungs from 

pathogens and particulates [1]. Ependymal cells lining our brain ventricles circulate 

cerebrospinal fluid that clears waste and carries nutrients [2, 3]. Motile cilia are also important in 

our reproductive systems. Cilia within fallopian tubes are responsible for egg transport [4], and 

the tail of a sperm cell, often called a flagellum, is nearly identical to the cilia mentioned above 

in terms of its internal structure (the axoneme) [5, 6].  

Small organisms propel themselves through fluid using cilia. Tetrahymena thermophila is a 

single-celled organism covered in an array of several hundred cilia that propel it through fluid 

[7]. The alga Chlamydomonas reinhardtii uses two cilia in a ‘breast stroke’ motion to pull itself 

through fluid [8], though in some cases it swims in reverse by using its cilia to push itself 

backwards in a symmetric beating motion often described as ‘flagellar’ [9]. Remarkably, the cilia 

used by these single-celled organisms are nearly identical to the motile cilia that occur in the 

human body. This fact illustrates how evolutionarily ancient these organelles are [10] and also 

makes Chlamydomonas and Tetrahymena ideal model organisms for the study of ciliary function 

and structure. 

1.2 Motivation 

Disorders of cilia, called ciliopathies, are implicated in a number of health problems and 

developmental defects. Primary ciliary dyskinesia (PCD) is a condition which affects the proper 
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function of motile cilia throughout the body. People affected by PCD experience chronic 

respiratory issues due to impaired mucociliary clearance, as well as issues with fertility [11]. In 

approximately half of all cases of PCD, a person’s internal organs develop on the opposite side 

of the body from what is normal [12]. This condition, called situs inversus totalis (SI), arises 

because developmental asymmetry is established in the embryonic node by the swirling motion 

of nodal cilia [13]. The combination of respiratory symptoms and SI is known as Kartagener 

syndrome [14]. Cystic fibrosis (CF) is not a disorder of the cilia themselves, but it causes a 

decrease in mucociliary clearance by increasing the viscosity of the airway surface liquid (ASL) 

layer in which airway epithelial cilia beat [15]. While the study of ciliary mechanics is 

interesting from the perspective of pure science alone, a better understanding of how cilia beat 

and the effects of environmental parameters such as viscosity on ciliary beating could facilitate 

the development of treatments for ciliopathies and disorders affecting ciliary performance. 

Researchers have taken a multi-faceted approach to studying the beating of cilia and eukaryotic 

flagella for decades, involving imaging, experiments, and modeling. Early applications of the 

electron microscope revealed similarities in the structure of cilia and flagella [16], and 

improvements in imaging technique have clarified the details of the complex internal structure 

now known as the axoneme [17-19]. Gibbons used extraction and reconstruction of axonemes in 

1963 to determine that ATPase activity occurred in the ‘arms on the outer fibers’ [20]. We now 

know these arms to be the motor protein dynein. Interestingly, the necessity of distributed motors 

along the length of the axoneme had been predicted by Machin 5 years earlier through a 

mathematical model [21, 22]. Machin showed that mathematical models of beating driven by 

motion at the base of the flagellum did not create the type of shapes observed in flagella, but that 

such shapes could be created by modeling ‘contractile elements’ distributed along the flagellum. 
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This landmark paper put to rest one hypothesis and established the plausibility of another. Later 

experimental work showed that the beating of cilia and flagella is driven not by contractile 

elements, but by the relative sliding of the outer filaments of the axoneme [23]. These examples 

illustrate the complimentary nature of imaging, experiment, and mathematical modeling. 

1.3 Current work 
In the current work, I aim to better understand ciliary beating through modeling, analysis, and 

simulation of ciliary motion. 

1.3.1 Modeling 

A mathematical model is a simplified representation of a physical system in terms of 

mathematical equations [22, 24, 25]. The point of the model is to make predictions about the 

behavior of the system being modeled. Models must be consistent with the relevant physical and 

mechanical laws, but it is not possible to represent every minute detail of the system being 

modeled. Thus, the model is simplified to include those aspects of the physical system that are 

essential to predicting its behavior as accurately as desired but exclude information about the 

system that unnecessarily complicates the model or the solution of the model. For example, when 

we use modeling to predict the load that some structure can bear before failing (by some 

criterion), we make simplifying assumptions about the material properties, geometry, loading, 

and initial stress state within the structure. It is, of course, important to assess the impact that 

these assumptions make on our predictions. 

Often a model is used to predict the behavior of a system with parameters that are known (with 

some degree of certainty). In that case the model is created, its solution is verified, and if the 

predictions are compared to the behavior of the real system, the model may be validated. In the 
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case of modeling cilia and associated structures, many of the parameters of the system are 

unknown. We only have estimates for a few parameters of the system and observations of the 

overall behavior. This is a kind of inverse problem where we are trying to determine the forces, 

structural properties, and nanoscale internal couplings in the axoneme that lead to the observed 

microscale (or nanoscale) behavior. While this type of mathematical modeling defies validation, 

it can rule out or establish the plausibility of a conceptual model (as Machin did in 1958). 

Whereas an experimentalist may ask if a hypothesis is testable, modeling gives us a way to 

determine whether the hypothesis is plausible or even possible. 

1.3.2 Analysis 

For experimental data to be useful, they must be put into a form that allows quantification, 

interpretation, and comparison for the purpose of gaining understanding of the system being 

studied and drawing conclusions. In the study of cilia, raw data are often in the form of image 

stacks (3D electron tomograms or confocal microscope stacks) or sequences of microscope 

images (videos). The first step in analyzing such data is often to create a coordinate system 

within the imaging data and assign coordinates to points along continuous structures such as 

individual filaments within the axoneme (electron tomograms) or whole cilia (bright-field 

microscopy). In the analysis of beating cilia, traces may be drawn (manually or using automated 

methods) frame-by-frame over hundreds of frames to determine the planar coordinates of the 

cilium as a function of time [26]. Here time means the relative position of an image in a 

sequence of images multiplied by the time delay between captured frames. Ciliary traces, in the 

form of arrays of coordinates locating points along the cilium at multiple times, may then need to 

smoothed or have the dimensionality of the data reduced through techniques such as polynomial 

regression, Fourier decomposition, or principal component analysis. 
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From these traces, we can calculate the frequency of beating as well as the kinematics of the 

cilium (e.g, position, angle, curvature, velocity) as a function of the distance along the cilium and 

the time. From the kinematics, we use fluid mechanics to calculate the dynamics (kinetics) of the 

system: forces the cilium applies to the surrounding fluid, the power output of the cilium, and the 

moment the basal attachment of the cilium must resist under beating. 

By comparing the kinematic and dynamic quantities above, as well as qualitative observations of 

the traces, we can determine the effects of mutations and environmental parameters on the 

beating of cilia in model organisms [27-29]. We can also establish the plausibility of a 

mathematical model of ciliary beating by comparing the quantities solved for in the model with 

the quantities calculated from experimental data [21, 30, 31]. 

1.3.3 Simulation 

For a mathematical model to be useful, we must be able to solve it. For some models, exact 

solutions are possible to obtain. However, multi-filament models of the axoneme give rise to 

coupled systems of nonlinear partial differential equations which are difficult or impossible to 

solve exactly. In these cases, we must use approximate methods, which are facilitated by modern 

computers. 

One approach to solving such problems is to use a commercial finite-element (FE) or 

multiphysics software package. This approach allows the user to take advantage of one interface 

to define the model (geometry, material properties, body forces, boundary conditions, and multi-

body couplings), discretize and solve the model, and extract data of interest from the solution. 

In some cases, it may be advantageous or necessary to create a model, solve it, and analyze the 

results using a custom software implementation of the FE or other numerical method. In the 
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current work, the commercial FE software we were using did not permit efficient linear stability 

analysis of the multi-filament model of the axoneme we were studying. In this case the modeling 

and discretization were written “from scratch” in code to create a system of matrix equations. 

Built-in time-stepping and eigenvalue solvers were employed to solve the problem, and a 

combination of custom code and built-in visualization tools were used for analysis of the results. 

1.4 Summary and aims 
The goal of this dissertation is to improve our understanding of the underlying mechanisms of 

ciliary beating through mathematical modeling of the cilium and associated structures, analysis 

of images of beating cilia, and simulation of ciliary beating under various parameters and 

assumptions about the underlying forces and structures.  

This dissertation has three specific aims: 

1.4.1 Aim 1 – Efficient stability analysis of the axoneme through a custom 

multi-filament finite-element model 

Though it has long been assumed that some mechanism of dynein regulation is necessary to 

create the oscillatory, base-to-tip propagating beating patterns observed in cilia, this mechanism 

has never been shown to be necessary or present in the axoneme. Recent work has demonstrated 

that oscillations may arise under steady dynein forces due to a dynamic instability similar to 

aeroelastic flutter [32, 33]. Here I model and efficiently predict ciliary beating behavior in a 

multi-filament model of the axoneme using custom-written FE software. This software captures 

the conventionally modeled effects of filament bending stiffness, the viscosity of the surrounding 

fluid, and the curvature inducing effects of the dynein motors, but it also captures elastic and 

viscous inter-filament couplings, and the geometric effects of the axial loading that can lead to 

buckling and unstable oscillations. The custom software allows for efficient eigenvalue-based 
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stability analysis of the mathematical model. This analysis is used to estimate properties of the 

axoneme and may be used to inform parameter selection for more computationally demanding 

time-domain analysis in commercially available finite element software. 

1.4.2 Aim 2 – A finite-element model of the cilium and basal body to 

understand how forces are transmitted from the cilium to the cell 

Basal bodies are microtubule-based structures that nucleate and anchor cilia in cells. Though 

they have been assumed to be relatively rigid structures, imaging data from the Pearson Lab have 

shown that basal bodies deform in phase with the beating of cilia in model organisms such as 

Tetrahymena thermophila [34]. Using computational modeling in commercial FE software, I 

reproduced important aspects of the bending behavior observed in imaging data using 

biologically plausible geometry, material parameters, and forces. This modeling work helps us to 

better understand the role that basal body components and accessory structures play in stabilizing 

the basal body against ciliary forces, understand the interactions between basal bodies in multi-

ciliated organisms, and gain insight into the mechanisms of ciliary beating through this 

additional source of experimental and simulated data. 

1.4.3 Aim 3 – A semi-automated software for the analysis of ciliary kinematics 

and dynamics 

To understand the underlying mechanics of ciliary beating, we need to quantitatively analyze 

data from observations of cilia beating under various conditions. These data are used to 

understand the forces and kinematics involved in ciliary propulsion and are used to evaluate the 

plausibility of models of ciliary beating. Such data often come in the form of traces of ciliary 

shape from live image sequences obtained under the microscope [26]. This tracing process can 

be tedious and time-intensive if done by hand, motivating the need for an efficient software-
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based approach to automatically trace cilia in sequences of images [35]. In this work I create 

such a software using a novel algorithm and apply it to the kinematic and kinetic analysis of 

motile and primary cilia and sperm flagella. Additionally, I apply waveform analysis and 

resistive force theory to study the effects of genetic mutations on the coordinated beating of 

Tetrahymena thermophila cilia [36]. 

Chapter 2 serves as an introduction to the study of ciliary beating.  

Chapter 3 addresses Aim 1.  

Chapter 4 addresses Aim 2.  

Chapters 5 and 6 address Aim 3. 

1.5 Statement of contributions 
This dissertation describes research work done in the Bayly lab from May 2018 to July 2022. All 

work was advised by Professor Phil Bayly. 

Chapter 2 is reproduced from Woodhams et al., “Chapter 12: Physics and mechanics of ciliary 

beating,” in The Chlamydomonas Sourcebook, Volume 3: Cell Motility and Behavior, S. Dutcher 

Ed., 3rd Ed. Elsevier 2022 (in press) [37]. Senior authors Phil Bayly and Kirsty Wan wrote the 

Motivation and background section. Phil Bayly wrote the initial draft of Fundamental principles 

and concepts. Louis Woodhams expanded Fundamental principles and concepts and wrote the 

section Mechanics of waveform generation. All authors contributed to editing and generation of 

figures. 

Chapter 3 is reproduced from the article Woodhams L.G., Shen Y. and Bayly P.V. 2022, 

Generation of ciliary beating by steady dynein activity: the effects of inter-filament coupling in 
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multi-filament models, J. R. Soc. Interface [38]. Louis Woodhams was responsible for deriving 

equations, performing all the analysis, writing the first draft, creating all figures, investigation, 

and writing software. Phil Bayly contributed writing, revision, and leadership of the project. 

Chapter 4 is reproduced from the submitted article Junker et al., Basal bodies bend in response 

to ciliary forces, (submitted to Current Biology) [34]. First author Anthony Junker was 

responsible for conceptualization, imaging, investigation, writing the first draft, revision, and 

creating figures. Co-first author Louis Woodhams was responsible for conceptualization, all 

mathematical modeling, writing the modeling methods and results, creating modeling figures, 

and contributing to the revision process. 

Chapter 5 includes material reproduced from Cho et al., Islet primary cilia motility controls 

insulin secretion (in press – Science Advances) [39]. Louis Woodhams created software used for 

analysis and generation of figures, supervised early analysis conducted by undergraduate 

researcher Toby Utterback, and contributed to design of experiments. Chapter 5 also includes 

application of the software to sperm cell analysis. Tracing and analysis of sperm flagella was 

conducted by undergraduate researcher Alicia Gupte under the supervision of Louis Woodhams 

and Phil Bayly. This ongoing work was done in collaboration with the Celia Santi Lab and Juan 

Ferreira. 

Chapter 6 includes material reproduced from Soh et al., 2022, Intracellular connections between 

basal bodies promote the coordinated behavior of motile cilia, Mol. Biol. Cell  [36]. First author 

Adam Soh is responsible for the bulk of this paper including experiments, manually tracing cilia, 

performing statistical analysis, and writing the first draft. Second author Louis Woodhams wrote 
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software for the dynamic analysis of ciliary traces, conducted statistical analysis, wrote results 

and methods related to that analysis, and contributed to the revision process.  
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Chapter 2: Mechanics of ciliary beating1 

 

Louis G. Woodhams1, Dario Cortese2, Philip V. Bayly1, Kirsty Y. Wan2 

1 Mechanical Engineering and Material Science, Washington University in St. Louis, MO, United States 
2 Living Systems Institute & Department of Mathematics, University of Exeter, Exeter, United Kingdom 

 

2.1 Motivation and background 
High-resolution cryo electron tomography (cryo-ET) has illustrated the structure of the 

Chlamydomonas cilium in exquisite detail, yet the mechanism of beating remains incompletely 

understood. In particular, the detailed explanation of how the forces produced by distributed 

dynein motor proteins generate propulsive, wavelike oscillations remains elusive. Moreover, it is 

not yet clear how cells are able to control and modulate these oscillations in real-time to change 

waveform or swimming direction in their response to behavioral cues. The question of 

generation and control of ciliary form is challenging in part because it lies at the interface of 

biology, physics, engineering, and mathematics. The following chapter focuses on illuminating 

this interface and summarizing the current state of knowledge with the goal of motivating 

continued interdisciplinary efforts in this field.   

Ciliary oscillation has been investigated and progressively elucidated in a series of studies by 

biologists, biophysicists, and engineers. Pioneering theoretical work by Machin introduced the 

equations of slender beam bending, powered by waves of contractility. Machin’s calculations 

demonstrated the existence of active force-generating components along the cilium to account 

for the capacity to sustain large amplitude oscillations, prior to experimental proof revealing 

these components to be dyneins [21]. His work was followed by Brokaw, who replaced local 

 
1 Material in this chapter is taken from [37] L. G. Woodhams, D. Cortese, P. V. Bayly, and K. Y. Wan, "Chapter 

12: Physics and mechanics of ciliary beating," in The Chlamydomonas Sourcebook, vol. 3, S. Dutcher Ed., Third 

ed.: Elsevier, 2022 (in press). See section 1.5 Statement of contributions. 
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contractility with an active bending moment that is produced by shear force between sliding 

filaments [30]. Lubliner and Blum introduced the full 9+2 structure of the axoneme into the 

governing equations [40]. Hines and Blum followed the general approach of Brokaw, deriving a 

“single filament” model of ciliary waves that included properties (shear resistance) of the 

original composite structure [41]. 

The idea that dynein activity on different sides of the axoneme is switched on and off 

periodically, or modulated asymmetrically so that one side alternately bends the axoneme 

actively or is bent passively, has been pervasive since it was suggested by Satir [42]. The models 

of Brokaw as well as Hines and Blum demonstrated that feedback, in the form of modulation of 

dynein activity by curvature (including a time delay), sufficed to create wavelike oscillations in 

the axoneme. Although their simulations showed curvature feedback to be plausible, there was 

no evidence to directly support the assumption. Further models by Brokaw demonstrated sliding-

control (regulation of dynein by interdoublet sliding) could also produce oscillations. Lindemann 

introduced the “geometric clutch” hypothesis, that spacing between doublets (or the induced 

tension on the dynein arms opposing separation) could regulate dynein [43]. Riedel-Kruse and 

colleagues promoted the plausibility of sliding-control [31], while other work has re-ignited 

interest in curvature control as a possible means of regulating dynein activity [44, 45]. In short, 

neither a precise biophysical mechanism of dynein regulation nor the general phenomenon of 

switching has been convincingly demonstrated to date.  

Cryo-ET studies [6] showed that the distribution of dynein conformations appears to be different 

on different sides of the axoneme, in regions that correspond to principal and reverse bends. 

However, in cryo-ET it is not clear if the different conformations are the cause of, or a result of, 

bending. Recently, Bayly and co-authors [32] proposed that dynein regulation may not be 

https://paperpile.com/c/B0h5Cg/LdoU
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essential, and that a dynamic instability, like fluttering of a flag, can drive oscillations even while 

dynein activity is steady. This phenomenon has also been illustrated and extended in studies of 

single filaments under external axial loads [46, 47]. Later sections of this chapter (sections 2.2 

and 2.3) will explore the basic mechanics and physical principles that underlie each of the 

current models of ciliary dynamics introduced above. 

 
Figure 2.1: The multiscale physics and mechanics of ciliary beating in Chlamydomonas. (A) Motile cells swim 

along helical trajectories by actuating a pair of nearly identical cilia, which beat on slightly tilted planes. (B) The 

cilia, distinguished by their position relative to a unique eyespot, are coupled by cytoskeletal structures that promote 

synchronization, and relay signals during tactic behaviors. (C) The ciliary axoneme is a highly conserved structure 

comprising microtubule doublets and a central pair complex. The coordinated activity of dynein motors (inset) 

causes the structure to bend and produce propulsive waves. 
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2.2 Fundamental principles and concepts 

 

Figure 2.2: Viscous forces on a Chlamydomonas cell. (A) Equations of motion for a Chlamydomonas cell are 

derived by balancing viscous forces and torques on a cell body (𝑭𝐷, 𝑴𝐷) and resultant forces and moments on the 

cilia (𝑭𝟏, 𝑴1, 𝑭2, 𝑴2). Here 𝒗 is the velocity of the cell, ω is the angular velocity, and 𝑅 is an effective cell radius. 

(B) Resultant forces and torques on the cilium are calculated by integrating the local distributed viscous drag forces 

along the length of the cilium. 

This section briefly summarizes the basic principles of physics and mechanics that underlie 

ciliary motion. Books by Howard [48], Boal [49], and Jacobs et al. [50] provide extensive and 

thorough treatments of cellular and cytoskeletal mechanics. 

2.2.1 Useful Definitions 

Vector: A physical quantity with both magnitude and direction, such as force or velocity (Fig. 

2.2). Vectors can be compactly described in terms of their Cartesian components. We denote 

vectors by bold font; the same variable in regular font typically indicates the magnitude of that 

vector. 

Kinematics: The motion of the cell body and the shape of the cilium, considered without regard 

for what creates the motion, comprise their kinematics. Kinematic variables include position, 

velocity, acceleration, angle, and curvature. 



15 

 

Kinetics: The causes and effects of forces and torques on ciliary beating and cell motion are 

described by physical kinetics. Kinetic variables include force, torque, work, and power. 

2.2.2 Key physical quantities and units 

Kinematics 

Position: The location of a cell body or component is described with respect to a reference point 

in space, or on the body. Position can be written as a vector, 𝒙. 

Velocity: The rate of change of position. Velocity is a vector, 𝒗 =
d𝒙

d𝑡
. Speed is the magnitude of 

velocity. Velocity of Chlamydomonas cells or cilia is typically expressed in units of µm/s. 

Acceleration: The rate of change of velocity, 𝒂 = d𝒗/d𝑡. In cell mechanics, acceleration is 

typically much less important than velocity because the force needed to overcome inertia 

(resistance to acceleration) in biological systems at cellular scales is much less than the force 

needed to overcome viscosity (resistance to velocity). 

Angle: The difference in direction of two vectors, or between a vector and a reference axis. 

Angle can be expressed in degrees or radians (1 rad =  
180

𝜋
 degrees ≈ 57 degrees). The ciliary 

waveform is compactly described by the angle of the cilium as a function of distance from the 

base. 

Curvature: Curvature, 𝜅, of the cilium is the change in angle, 𝜓, with distance, 𝑠, along the 

cilium, 𝜅 =
d𝜓

d𝑠
. Appropriate physical units of curvature are rad/µm. 

Kinetics 

Force: An interaction that, if unopposed, causes a change in the velocity of a body. A body can 

have constant velocity if no forces act on it, or if forces are equally balanced, like propulsion and 

https://www.codecogs.com/eqnedit.php?latex=%5Cbf%20x#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctextbf%7Ba%7D%3Dd%20%5Ctextbf%7Bv%7D%2Fdt#0
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drag. Force is generally expressed in units of Newtons (N): 1 N = 1 kg-m/s2. In Chlamydomonas, 

forces are more usefully expressed in units of piconewtons (pN): 1 pN = 10-12 N. 

Torque (or moment): The measure of how force changes the rotation of a body. Torque is 

produced by a component of force at a distance from an axis of rotation, in the direction of 

rotation. Units of torque are N-m; torques relevant to Chlamydomonas are better expressed in 

terms of pN-µm. 

Work: Energy transferred to or from a body by the application of force as the body displaces. 

The unit of work is the joule (1 J = 1 N-m). In cell mechanics the units of attojoules are 

appropriate (1 aJ = 1 pN-µm). 

Power: The rate at which work is done. The units of power are watts (1 W = 1 J/sec); power 

developed by cilia or cells can be expressed in attowatts (1 aW = 1 pN-µm/sec). 

2.2.3 Physical principles 

Newton’s laws:  The net force (the sum of all the force vectors) on a body equals the rate of 

change in its linear momentum. In a body with constant mass the net force equals the mass 

multiplied by the acceleration of the mass center. The net torque on a body equals the rate of 

change in its angular momentum. In cell mechanics, active forces and torques are required to 

balance forces of elastic and viscous resistance; the residual net force and torque needed to 

accelerate a cell or a cilium (i.e., inertial effects) are negligible at their respective length and time 

scales. 

Energy balance: Energy is not created or destroyed, but can be transferred between parts of a 

system, or lost to its surroundings (dissipation). 
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2.2.4 Properties and interactions 

Elasticity (stiffness) 

Elastic components resist deformation, and store as potential energy the work done on them as 

they are deformed. 

Flexural modulus (bending stiffness): Slender elements like beams bend in response to applied 

loads. The flexural modulus, , describes the elastic resistance to bending. In a uniform slender 

beam, energy of bending depends on the flexural modulus and the curvature, 𝜅, of the beam-like 

element: 
1

2
∫ 𝐸𝐼𝜅2𝑑𝑠

𝐿

0
. The bending moment required to produce the curvature is 𝑀 = 𝐸𝐼𝜅. The 

flexural modulus is a product of the Young’s modulus, 𝐸 (units N/m2 or Pa), an intrinsic property 

of the material, and the area moment of inertia, 𝐼 (units m4), a property of the shape of the cross-

section of the beam. Units of 𝐸𝐼 in cell mechanics are pN-µm2 (1 pN-µm2 = 10-24 N-m2). 

Persistence length: An alternative measure of bending stiffness, that describes the loss of 

correlation with length of a slender elastic element, due to thermal effects (Fig. 2.3) [51]. The 

persistence length is related to flexural modulus by Boltzmann’s constant,𝑘𝐵 and temperature, 𝑇: 

𝐿𝑝 =
𝐸𝐼

𝑘𝐵𝑇
 

Axial stiffness: Elastic resistance to extension or compression is described as axial or “spring” 

stiffness. Radial spokes, nexin links, and doublets have axial stiffness. The simplest model 

assumes that force is a linear function of extension or compression: 𝑓𝑘 = 𝑘𝛥𝑥 , where 𝑘 is the 

stiffness (units of N/m, pN/µm or pN/nm) and 𝛥𝑥 is the change in length. A slightly more 

sophisticated model is the tensile stress-strain relationship in a bar: 
𝑃

𝐴
= 𝐸

𝛥𝐿

𝐿
, where stress is the 
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axial force 𝑃 per unit cross-sectional area 𝐴 and strain is the change in length normalized by the 

original length 𝐿. In this model the equivalent spring stiffness is 𝑘 =
𝑃

𝛥𝐿
=

𝐴𝐸

𝐿
. 

Shear stiffness (elastic resistance to interdoublet sliding): Elastic resistance to sliding is 

commonly attributed to the stretching of links at an angle to the doublets. A simple, linear force-

displacement relationship is sometimes assumed: 𝑓𝜏 = 𝑘𝜏𝑢 , where 𝑘𝜏 is the shear stiffness and 𝑢 

is the relative axial displacement of the two doublets. These definitions are clear and precise for 

parallel, straight doublets, but in three-dimensional, curved doublets, the elastic forces that resist 

sliding are more complicated. In cilia, shear stiffness is given as stiffness (pN/µm) per unit 

length, with units pN/µm2. 

Dissipation 

Viscosity: The resistance of a fluid to flow; specifically, the ratio of shear stress (force per unit 

area) to the rate of shear deformation (change in shape). Units of viscosity, 𝜇, are Poise (1 Poise 

= 0.1 N-s/m2=0.1 Pa-s) or centipoise (1 cP = 0.001 Pa-s = 0.001 pN-s/µm2). 

Drag: The force exerted by a viscous fluid on a moving body is the drag. The drag on a sphere of 

radius  can be determined when the inertia of the fluid can be neglected (at low Reynolds 

number): 𝑓𝐷 = 6𝜋𝑎2𝑣. 

Resistive force coefficients: At low Reynolds numbers, the vector force per unit length on a 

cilium can be approximated by normal, 𝑞𝑁 = −𝑐𝑁𝑣𝑁, and tangential, 𝑞𝑇 = −𝑐𝑇𝑣𝑇, force 

components that are each proportional to normal, 𝑣𝑁, and tangential, 𝑣𝑇, velocity components. 

𝑐𝑁 and 𝑐𝑇 are known as resistive force coefficients, and have units pN-s/µm2 
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Friction and dissipation: Often elastic deformation (storing energy) is accompanied by 

dissipation. A common modeling strategy is to add a rate-dependent component (a “dashpot”) to 

any elastic element (i.e., a spring). For example, axial force in a link with elasticity and 

dissipation could be modeled as: 𝑓𝑘 = 𝑘(𝛿 − 𝛿0) + 𝑐𝛿̇ . 

2.2.5 Active forces 

Motor protein (dynein) behavior: Each dynein molecule uses hydrolysis of ATP to convert 

chemical energy into mechanical work, exerting a force as it ‘steps’ throughout each cycle. The 

molecular mechanism is described elsewhere [52, 53]. Here we summarize key mechanical 

features: 

          Dyneins exhibit force-velocity relationships characterized by decreasing force as velocity 

increases. The ‘stall’ force is the force developed at zero velocity, and the free-stepping speed is 

determined by the stepping rate at zero load.  Different dynein classes exhibit different force-

velocity relationships [29, 54-57]. 

          Axonemal dyneins attach via their tail domain to the A-tubule (A-MT) and transiently by the 

microtubule binding domain (MTBD) at the end of the stalk to the B-MT[58]. Normal, forward 

stepping of the dynein motor moves it toward the minus end (proximal) of the B-MT[59], 

applying a tipward force on the B-MT. In vitro studies have shown that cytoplasmic dynein also 

can step ‘backward’ under an applied load in the opposite direction [60]. 

          As the dyneins on the A-MT on doublet N exert a tipward force on the B-MT of doublet 

N+1, they also exert normal or ‘transverse’ forces between the doublets [61]. These normal 

forces tend to pull the doublets together or push them apart. Passive elements resist the dynein 
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forces, maintaining and modulating doublet separation. The result is a net bending moment 

(torque) [30, 41].   

 

Figure 2.3: Beam bending. (A) A simple beam, fixed at its base (cantilevered), subjected to transverse tip load, P. 

The shape can be described by the tangent angle, ψ, which is a function of arc length, s. (B) A simple beam 

subjected to a transverse load at an intermediate distance along its length. The equation below states that the second 

derivative of ψ is proportional to the elastic bending moment per unit length. Because there is no moment distal to 

the applied load, there is no change in curvature from the point of application to the tip of the beam. (C) Internal 

elastic shear resistance, like that observed in axonemes, creates a counterbend distal to the applied load. The 

equation below the figure states that the elastic shear moment per unit length is proportional to ψ. (D) A 

compressive axial end load leads to Euler buckling when the load exceeds a critical value, 𝑃𝐵, given by the equation 

below the figure. (E) A ‘follower’ load tangent to the beam end leads to dynamic instability known as flutter when a 

critical load, roughly 15 times the buckling load in this case, is exceeded. (F) Persistence length is a measure of 

beam bending stiffness that describes the beam’s conformational response to thermal excitation. Beams with length 

far exceeding the persistence length tend to be highly distorted by thermal effects, whereas beams with length 

smaller than the persistence length are less affected. 

 

2.2.6 Basics of beams: bending, shear, buckling, and flutter 

Slender filaments can be modeled as Euler-Bernoulli beams in which the curvature is 

proportional to the internal bending moment: 𝑀 = 𝐸𝐼𝜅. See [62, 63] for details. Several beam 

loading cases are shown in (Fig. 2.3). A simple beam fixed at its base with an applied transverse 

tip load, ,  has an internal bending moment that diminishes in magnitude along its length: 

𝑀(𝑠) = 𝑃(𝐿 − 𝑠) = 𝐸𝐼
𝜕𝜓

𝜕𝑠
. Note that we distinguish between the internal elastic bending 
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moment, 𝑀(𝑠), defined by standard beam conventions, and the (counterclockwise positive) 

applied moment per unit length, 𝑚(𝑠). Beam angle and small-deformation transverse 

displacement are obtained by successive integrations. A simple beam with an applied transverse 

point load shows no bending distal to the point of application as there is no bending moment in 

this region. In contrast, a beam composed of multiple filaments with shear resistance between 

those filaments exhibits a counter-bend [30, 64-66]. This counterbend is due to the applied 

moment from elastic shear, 𝑚𝑠ℎ𝑒𝑎𝑟 = 𝑘𝜓𝜓. Deformations may be obtained by integrating the 

applied moment/unit length, 𝑚𝑎𝑝𝑝𝑙𝑖𝑒𝑑 = −𝐸𝐼
𝜕2𝜓

𝜕𝑠2 , twice to obtain filament angle as a function of 

arc length. 

Microtubules (MTs) are often treated as inextensible in mathematical models as axial 

deformations are insignificant compared to transverse deformations [67]. This has led many 

researchers to believe that axial loads could be safely ignored in models of ciliary beating. 

However, when beams are subjected to axially oriented loads, instabilities and large deformation 

geometric effects may emerge [61, 68-70]. Static instability (buckling) emerges when the 

transverse stiffness of a filament is effectively diminished by compressive axial loading until the 

undeformed conformation becomes unstable. Buckling loads for slender beams are given by 

Euler’s critical load, shown in (Fig. 2.3D). To understand the critical buckling load, imagine 

adding small weights to the tip of a slender, flexible, vertical rod that is fixed at its base. For 

small weights, the rod will remain vertical. However, once the weight exceeds a critical value, 

the vertical position becomes unstable, and the rod will droop over to one side or another.   

Dynamic instability (flutter) can emerge in cases where the orientation of a sufficiently large 

axial load remains tangential to the filament under deformation (Fig. 2.3E); this is called a 
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‘follower load’. Follower loads can add energy to a system by re-orienting their direction of 

application as the system deforms; growing oscillations can occur if this allows the forces to do 

positive work on the system each cycle. As a macro-example, flutter instability is responsible for 

the violent oscillations of a hose above a critical flow rate. This type of dynamic instability has 

been proposed as a mechanism for oscillations in cilia and biological filaments in recent years 

[32, 46, 47]. 

2.3 Mechanics of waveform generation 
Chlamydomonas cilia exhibit two different kinds of propulsive waveform; they can use a 

forward, ‘breaststroke’ motion in which the cilia curve away from the longitudinal axis of the 

cell body, and a ‘reverse mode’ in which the mean curvature of each cilium, averaged over the 

beat, is close to zero (Fig. 2.4). In each of these beating modes, the movement of the cilium lies 

mostly within a plane, but there is a small out-of-plane component (Fig. 2.1). These beating 

patterns may be quantified by temporal and spatial characteristics including beat frequency and 

waveform curvature. See Table 2.1 for a summary of properties. 

 

Figure 2.4: Chlamydomonas forward (A) and reverse (B) waveforms, over one beat cycle. Arrows show the 

direction of cell movement (contributed by M. Bottier). 
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2.3.1 Waveform characteristics 

Table 2.1 - Properties of wild-type Chlamydomonas cells 

Property Estimated Value References 

Chlamydomonas swimming speed (average) 50-200 µm/s [71-74] 

Chlamydomonas swimming speed (peak instantaneous) 500-900 µm/s [71, 73] 

Beat frequency  50-70 Hz (breaststroke) 

65-100 Hz (photoshock)  

[29, 35, 75] 

 

Rotational velocity (axial) 1-2Hz [76] 

Cell body diameter 7-10 µm [8]  

Cell body aspect ratio 0.66-0.94 [8] 

Cilium length 10-14 µm [29, 35] 

Propulsive force / cilium (peak) 3-23 pN [73, 77-79] 

Average power / cilium 3.2-6.6 fW [8, 71] 

 

Beating frequency 

Wild-type Chlamydomonas beat frequency is typically in the range of 50-70Hz for the forward, 

‘breast-stroke’ mode, whereas beat frequency in the symmetric reverse mode is typically higher, 

in the range of 65-100Hz [26, 29, 35]. It should be noted that many of the studies of cilia motion 

in Chlamydomonas are conducted on uniciliate mutants such as uni1 which, lacking a second 

cilium, tend to rotate in place rather than swim out of the field of view of the microscope. 

Ciliary beating shape (kinematics) 

Ciliary shape is conventionally described by the tangent angle of the cilium, 𝜓, relative to some 

axis, often the tangent to the cilium base as this is a convenient reference. Ciliary tangent angle is 

a function of arc length, s, and time, t. The x and y coordinates of the cilium can then be obtained 

by integrating the ciliary tangent angle over the length of the cilium as in (Fig. 2.5). It is often 
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convenient to represent local forces and velocities in terms of their components in the local 

tangent, 𝑻, and normal, 𝑵, directions. 

 

Figure 2.5: Kinematic equations of the Chlamydomonas cilium. (A) Parameters of the cilium shape depend on arc 

length, 𝑠, and time, 𝑡. Cartesian coordinates 𝑥 and 𝑦 are obtained by integrating the cosine and sine, respectively, of 

the tangent angle, 𝜓, along the arc length, 𝑠, of the cilium. Local curvature, 𝜅, is the derivative of tangent angle with 

respect to arc length. (B) A Cartesian coordinate system is aligned to the base of a trans cilium. Arc length, 𝑠, is 

equal to zero at the base and 𝐿 at the tip of the cilium. 𝜓 is the angle between the local tangent vector, 𝑻, and the 𝑥 

axis. The local normal vector, 𝑵, is perpendicular to 𝑻 and points in the direction of curvature. The radius, 𝑅, of an 

arc (blue line) with curvature equal to that of an arbitrary point along the cilium is represented by the orange arrow 

line. The radius of curvature, 𝑅, is inversely proportional to curvature, 𝜅. 

 

An important characteristic of ciliary shape is the curvature, 𝜅. Curvature is the derivative of the 

tangent angle, 𝜓, with respect to the arc length, 𝑠, and is equal to the reciprocal of the radius of 

curvature, 𝑅 (Fig. 2.5). Two opposite directions of planar curvature occur in the ‘principal bend’ 

and ‘reverse bend’. In Chlamydomonas, the principal bend is the curvature responsible for the 

effective stroke and bends the cilium outward toward the 5-6 doublets. The reverse bend curves 

the cilium in the opposite direction, toward doublet 1 [18]. How these dynamically changing 

bends are created by the interaction of active and passive structural elements within the cilium is 

the fundamental question in ciliary mechanics. 

http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cbf%20T#0
http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5Cbf%20N#0
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Symmetry 

Chlamydomonas cells typically swim in a ‘breast-stroke’ motion, where each cilium pulls the 

cell forward through its fluid environment with a waveform that is biased in curvature to the 

outside of the cell. In response to certain stimuli, such as bright light, Chlamydomonas cells 

undergo photoshock and enter a ‘reverse mode’ in which the cilia beat in a symmetric ciliary 

pattern to propel the cell backward.  In this mode the average tangent angle of each cilium aligns 

roughly with the anterior-posterior axis of the cell [26]. 
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Effects of mutations 

Table 2.2: A few selected mutations and their effects 

Mutant Phenotype Effect on beating Phytozome Name/ 

Chlamydomonas Resource 

Center 

References 

uni1  
 

Assembles primarily one cilium Cell rotates in place CC-1926  [80-83] 

uni2-2 
 

Assembles zero, one, or two cilia 50% of cells rotate in place Cre09.g394695/ 
CC-4161 

[82, 83] 

uni3-1 Assembles zero, one, or two cilia 50% of cells rotate in place Cre03.g187350/ 
CC-4179 

[82] 

oda2 
oda1 

Outer dynein arm deficient Decreased beat frequency Cre11.g476050/ 
CC-2231  

Cre16.g666150/ 

CC-2229  

[8, 28, 29, 84, 85] 

ida1/pf9 
 

I1/f Inner dynein arm deficient Diminished waveform amplitude Cre12.g484250/ 
CC-3904   

ida4 a, c, d, and DHC11 inner dynein 

arm deficient 

Diminished waveform amplitude Cre12.g494800 

CC-2670 

[86] 

mbo1 

mbo2 
mbo3 

Lacks beak-like projections in 

doublets 

Swims backwards only CC-2376  

Cre09.g41655 
CC-2377  

CC-2378  

[9, 87] 

pf1  

 

Radial spokehead deficient Reduced motility Cre05.g242500 

CC-1024  

[88-91] 

pf14  

 

Radial spoke deficient; Reduced motility Cre06.g291700 

CC-1032 

[88-90, 92] 

pf18 Central apparatus deficient Paralyzed CC-1036 [93] 

agg1 Altered phototaxis Negative phototaxis Cre13.g590400/ 
CC-1328  

[94, 95] 

ptx1 Altered Phototaxis Abnormal ciliary synchrony  CC-2894  [96-99] 

vfl1 

vfl2  
vfl3 

asq1 asq2 

Lack of bicililate coordination and 

slow swimming 

Abnormal ciliary synchrony Cre08.g372900/ 

CC 1388  
Cre11.g468450/ 

CC 2530  

Cre06.g279900/ 

CC 1686  

--- 

Cre09.g39488 

[100-103]. 
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Mutations in Chlamydomonas are crucial to our understanding of cilia biology, and for testing 

hypotheses about ciliary beating and cell behavior (Table 2.2). The uniciliate mutant uni1 lacks a 

second cilium to balance the moment (torque) applied by its single, usually trans, cilium [81]. As 

a result, this mutant spins in place; this is ideal for microscope observation as the organism tends 

to remain within the field of view without the need for trapping or fixation by micropipettes. 

Recent studies of Chlamydomonas ciliary beating have made use of uni1 as their ‘wild-type’ 

model organism, crossing this mutant with other mutants to observe the effects of those 

mutations. 

Brokaw and Kamiya  showed that Chlamydomonas mutants with impaired or missing outer 

dynein arms had a decreased beat frequency but waveforms similar to those of wild-type cells, 

whereas inner dynein arm deficiencies lead to subdued waveforms at close to wild-type 

frequencies [29]. The interactions of these defects with viscous media were explored in several 

studies [28, 57, 84]. The effect of select axonemal mutations are summarized in (Fig. 2.6). 

Other mutants include strains that swim only in backward mode (mbo), that have reverse 

phototaxis (agg1), and strains with cilia that lack the radial spoke structures (pf14). Detailed 

discussion of the effects of genetic mutations on the beating behavior of Chlamydomonas cells 

can be found in Chapters 4, 6, 8, and 17 of [37]. 
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Figure 2.6: Each column shows results at a specific viscosity; each row corresponds to a specific mutant. Ciliary 

waveforms are shown at intervals of 1/12th period; scale bar 5 µm. Reproduced from [28] with permission. 

 

Effects of viscosity 

At the scale of Chlamydomonas cilia, the viscous resistance of the surrounding fluid medium is 

much greater than the forces needed to overcome inertia of the cell and surrounding fluid [104]. 

The reversibility of motion in viscous fluids means the waveform must be asymmetric about the 

axis normal to the direction of swimming: the Chlamydomonas cell would not swim forward if 

the power and recovery strokes were mirror images of each other, and would not swim backward 

(in photoshock) if the waveform did not propagate from base to tip [105, 106].  

The Reynolds number is a dimensionless quantity that measures the relative influence of inertia 

to viscosity in a fluid system (𝑅𝑒 =
𝜌𝑣𝐷

𝜇
), where 𝜌 is the density of the fluid, 𝑣 is a characteristic 

velocity, 𝐷 is a characteristic dimension such as cilium diameter, and 𝜇 is the dynamic viscosity 

of the fluid. In cilia, the Reynolds number is usually in the range of 10−5 to 10−3 indicating the 
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dominance of viscous over inertial effects. This allows the modeling of viscous forces on the 

cilium by simple resistive force theory, in which force is linearly proportional to velocity (Fig. 

2.7) [107, 108]. In large deformation models of ciliary beating, a different coefficient is given for 

resistance to motion tangent and normal to the ciliary axis. Resistance to cell body translation 

and rotation can be treated similarly using Stokes’ Law (Fig. 2.2) [8]. 

 
Figure 2.7: Resistive force theory applied to the cilium. (A) Local velocity vectors are shown along the length of the 

cilium. (B) Local force vectors are proportional in magnitude and opposite in sense to the velocity vectors above. 

(C) Normal and tangential components of viscous force, 𝑓𝑁 and 𝑓𝑇, on the cilium are proportional in magnitude and 

opposite in direction to the velocity components, 𝑣𝑁 and 𝑣𝑇. The proportionality constants, 𝑐𝑁 and 𝑐𝑇, are often 

called resistive force coefficients. In cilia, the normal resistive force coefficient, 𝑐𝑁, is typically roughly twice the 

tangential coefficient, 𝑐𝑇. 

 

Brokaw studied the effect of viscosity on spermatozoa waveforms and found that increasing 

viscosity uniformly decreased beat frequency and bend propagation velocity, and usually 

decreased waveform amplitude. Curvature of the waveforms either increased or remained 

constant with increased viscosity [27]. Yagi and coauthors as well as Wilson and coauthors 

studied effects of increased viscosity on Chlamydomonas waveforms [28, 57]. Yagi and 

coauthors found that swimming velocities greatly decreased for Chlamydomonas cells in higher 
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viscosity fluid and that this was especially true for the inner dynein arm deficient mutant ida9. 

The ida9 mutant produced far less propulsive force than wild-type cells at higher viscosities. 

Wilson and coauthors found that wild-type and inner (ida1) and outer (oda2) dynein arm 

deficient mutant waveforms were affected differently by increasing viscosity. Beat frequencies 

decreased less in ida1 than in wild type, while oda2 mutants had consistently low beat 

frequencies at all viscosities. In contrast, high viscosity decreased the waveform amplitude of 

ida1 more than in wild-type or oda2 cells (Fig. 2.6). 

Some cilia operate in fluids with more complex properties such as mucous. Using 

Chlamydomonas as a model system for ciliary beating in mucosal environments, Qin and 

coauthors explored the effects of non-Newtonian viscoelastic fluid properties on the beat 

dynamics. Here elastic properties are quantified by the Deborah number De=ωλ, where ω is 

beating frequency and λ is a characteristic fluid relaxation time. They found that while fluid 

elasticity increased beat frequency, it slowed cell swimming speed [109]. Viscoelastic effects are 

further explored using computer simulations in [110]. 

Another important dimensionless number is the sperm number, 𝑆𝑝 = 𝐿 (
𝜔𝑐𝑁

𝐸𝐼
)

1

4
, which measures 

the relaxation timescale of the filament relative to a characteristic timescale such as beat period 

[70, 111-113]. Here 𝐿 is the length of the cilium, ω is a characteristic beating frequency,  is the 

normal resistive force coefficient, and  is the flexural rigidity. Small values of the sperm 

number indicate filaments that are rigid with respect to the fluid forces. The relaxation timescale 

is given by the relative contributions of hydrodynamic forces to elastic bending forces .  
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2.3.2 Structure of the axoneme 

The microtubule structure of cilia is called the axoneme [17, 18, 114, 115]. The outer structure 

comprises nine MT doublets arranged in a cylindrical array roughly 200nm in diameter. Looking 

distally from the base, these are numbered sequentially in a clockwise direction (Fig 2.8) with 

doublet microtubule (DMT) 1 of each cilium facing the other cilium. A pair of singlet MTs runs 

along the axial center of the axoneme surrounded by multiple appendages (see Chapter 7 of  

[116]). The outer doublets are circumferentially interconnected by nexin-dynein regulatory 

complexes (N-DRCs) (See Chapter 7 of [116]) and are connected to the central pair complex by 

radial spokes (see Chapter 6 of  [116]). Motive force in the axoneme is provided by arrays of the 

motor protein dynein and associated proteins (Chapter 4 of [116]). Dyneins are arranged in 

arrays of inner and outer arms and create a one-way, axially oriented sliding force between 

adjacent MT doublets. 

 

Figure 2.8: Model of bending by alternate-side dynein activation (switching). (A) Electron micrograph of a 

Chlamydomonas axoneme, showing structural heterogeneities. View is looking from proximal to distal. (B) 

Schematic showing switching model. In this model, dyneins associated with doublets 2,3,4 produce principal 

bending (toward doublets 5-6) and dyneins associated with doublets 6,7,8,9 produce reverse bending (toward 

doublet 1). Figure adapted from [18]. 
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Although the axoneme has a high degree of 9-fold rotational symmetry, there are components 

that break this symmetry (see Chapter 10 of [116]). These include the central pair and its 

associated projections as well as the bridge between DMT 1 and 2 found in the Chlamydomonas 

axoneme [18]. These asymmetries may lead to a preferred bending direction in the axoneme and 

could explain why the Chlamydomonas cilium has a largely planar beat [5]. It has been shown 

recently however that there is a slight non-planar aspect to the beat pattern of the individual cilia, 

which underlies the organism’s helical swimming trajectories [117]. While the basic structure of 

the axoneme is by now well understood, the physical or material properties of many axonemal 

components have proven difficult to measure.  

Physical properties of the axoneme and its components 

Some physical properties of the ciliary structures may be investigated experimentally, but many 

of the nanoscale structures present are too small to be investigated directly [64, 66, 90, 118-121]. 

Estimates of some physical properties that can be obtained experimentally are given in Table 2.3. 

Other values, such as the axial and bending stiffness of radial spokes, have been estimated from 

the shape and constituents of these nanoscale structures. Properties may also be estimated 

through inverse modeling, where parameter estimates are made and adjusted to bring the 

behavior of models of ciliary beating in line with observed behavior[38]. 
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Table 2.3: Relevant physical parameters of the axoneme 

Parameter Estimated Value Description References 

EI 200-1,000 pN-µm2 Flexural Rigidity - axonemal resistance to bending 

due to stiffness of MT doublets 

[64-66, 121] 

kT 1,000-2,500 pN/µm2 Interdoublet Shear Stiffness - resistance to relative 

sliding of doublets 

[66, 90, 122] 

cN 0.001-0.003 pN-s/µm2 Resistive force coefficient in normal direction [8] 

p 200-1,000pN/µm Applied dynein force per unit length along doublet [123] 

L 10-14 µm Length of wild-type Chlamydomonas Cilium [29, 35] 

a 180-200 nm Axoneme outer diameter [115, 124] 

μ 1 mPa-s Dynamic viscosity of water at 20 ℃  

 

Active properties of the axoneme 

Arrays of dynein motor proteins create a one-way sliding force between adjacent MT doublets to 

cause ciliary bending.  As noted earlier, dynein arms attach to the A-MT of doublet N at one end 

by a stem structure and transiently attach to the B-MT of doublet N+1 by a tubulin binding 

domain at end of the dynein stalk. Dyneins then undergo an ATP-driven power stroke and 

release [52]. This creates the relative longitudinal force between adjacent doublets as well as an 

applied bending moment due to the distance between the points of application of the opposing 

forces. The exact mechanics of this motor protein mechanism are a topic of active research, and 

the binding of individual dyneins is thought to be stochastic [52, 125]. The net result force is 

probably smoothed by the high number of individual dyneins participating. 

2.3.3 Review of models of ciliary beating 

The central questions of ciliary beating mechanics revolve around whether there is an active 

mechanism by which dynein activity is regulated, and if so, what is it? A closely related question 

is, what are the spatiotemporal patterns of dynein activity during beating? In other words, are 
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dynein motors switched on and off during beating by some external signal, or do beating 

waveforms arise simply due to biophysical feedback, or even just mechanical instability in the 

system? 

Much of the work aimed at uncovering the mechanism of ciliary beating has involved creating 

mathematical models to represent the theories of ciliary beating and assessing their ability to 

explain observed beating behavior in a manner consistent with physical principles. Any model of 

ciliary beating must also account for both asymmetric (forward) and symmetric (reverse) 

waveforms on the same structure (Fig. 2.4). 

The conventional wisdom in ciliary mechanics is that in order to achieve bending, dyneins on 

one side of the axoneme must be active and, at the same time, dyneins on the other side of the 

axoneme must be passive, or at least less active [126]. A mechanism that would enforce this 

condition is called reciprocal inhibition [67]. It is often thought that without a net difference in 

dynein force on either side of the beating plane, dynein activity will lead to a rigor state in which 

the axoneme is locked in a static, twisted shape [6, 104]. However, some models have shown that 

concurrent activation need not lead to paralysis; symmetry-breaking instabilities (buckling or 

flutter) could, in principle, lead to oscillations under steady, balanced dynein loading [32, 38].  

Single filament vs. multifilament models 

Many mathematical models of ciliary beating reduce the axonemal system to a single filament, 

treating interactions between dyneins and doublets as an internally generated bending moment 

that creates curvature in the axoneme. Although multiple filaments may have been taken into 

account in development of the model, the equations of motion for a single filament are derived 

and solved [30, 31, 41].  
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Multiple filament models are more complex and allow the study of geometric interactions 

between multiple filaments as they dynamically deform. Equations of a 2-filament model are 

derived and analytical solutions proposed in [32]. Higher-complexity models typically must be 

solved using numerical solution methods, often implemented in commercial finite-element 

method software [32, 33, 38, 127]. 

Equations of motion 

Conversion of dynein force to bending 

To understand the conversion of dynein activity into curvature, we begin by looking at a reduced 

two-filament system. This could be viewed as a pair of doublets studied in isolation, but this has 

also been used as a reduced model of the axoneme [30, 31]. The combination of one-way dynein 

shear force between two doublets, an applied moment due to interdoublet spacing, passive 

resistance to interdoublet sliding at the basal attachment, and passive structures resisting 

interdoublet sliding and separation distributed along the length of filament couple lead to a 

curvature in the direction of the higher-numbered doublet to which the dynein attaches 

transiently (Fig. 2.9). 

 

Figure 2.9: (A) Computational (finite-element) model of the 9+2 axoneme. Blue indicates compression, red 

indicates tension, and arrowheads indicate applied dynein force. Note that the tension and compression of loaded 

doublets is opposite in sign to what would be caused by passive bending of the structure. (B) Schematic model of a 

pair of doublets coupled by dynein motors and passive components, such as N-DRCs. Passive elements contribute 

normal and shear stiffness and damping. Dyneins contribute active shear and bending moments in addition to their 

passive contributions. 
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Brokaw showed that in such a model, internal resistance to double sliding (shear stiffness) led to 

curvature in one direction proximal to an applied shear load (dynein force) and an opposite 

counter-curvature distal to the applied shear force [30]. The total curvature at any point along the 

cilium is proportional to a balance of the accumulated bending moment due to internal dynein 

forces, velocity proportional viscous forces, and internal shear stiffness of structures such as N-

DRCs. The spatial derivative of curvature is the balance of the distributed moment densities. For 

derivations of equations of motion see [30, 32, 41]. 

 

Figure 2.10: (A) General equation of equilibrium for a single filament expressed in terms of the distributed moment 

densities (torque per unit length); contributions of each term illustrated above. (B) Distributed moment density from 

elastic bending is proportional to spatial derivative of curvature. (C) Equation of motion for small deflections of a 

slender filament (flexural modulus 𝐸𝐼) in viscous fluid (coefficient of normal resistance 𝑐𝑁), subject to distributed 

shear force (active and passive), 𝑓𝑇, acting across effective diameter 𝑎. Subscript terms after comma represent partial 

derivatives. 

 

  

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=EI#0
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2.3.4 Leading models of cilia oscillation 

Mathematical modeling of ciliary beating has been an active area of study since Machin [21], 

and no single model has gained consensus support. Models are based on the combination of 

fundamental physical principles with what is known about the geometry, biophysics, and 

mechanical properties of the cilium and its environment. Here, we summarize what we believe to 

be representative and relevant models. For other reviews and commentary on models of cilia 

beating see [67, 128]. 

Open loop (no feedback) models 

Central pair as distributor 

Omoto and Kung found that the central pair in the ciliate, Paramecium, rotates with respect to 

the outer doublets during beating [129]. This led to a hypothesis that the central pair acts as a 

rotational ‘distributor’ for a dynein regulation signal, where the radial spokes might convey 

activation signals from the central pair to the dynein motors. It should be noted that the 

Chlamydomonas central pair has also been shown to rotate during beating [130]. Smith and Sale 

found further evidence for the hypothesis that radial spokes convey activation information to 

dyneins in the Chlamydomonas pf14 mutant that lacks radial spokes. While axonemes from this 

mutant normally showed lower MT sliding velocities than those of wild-type axonemes, sliding 

velocities could be increased using dynein from axonemes with intact spokes [54]. 

However, not all motile cilia have central pair microtubules that rotate [114]. In those that do, 

rotation of the twisted central pair can be explained as a response to, not a cause of, oscillatory 

bending [131, 132].  Additionally, Omoto and coauthors note that there are motile cilia that lack 

a central pair [133], which casts doubt on the central pair as distributor theory. They propose that 

there is a default behavior of dyneins that is modified by interactions between the central pair 
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and radial spokes to create a more complex beat shape. Smith and Yang proposed a mechano-

chemical regulatory system that acts through the radial spokes [134]. 

Switched inhibition 

Lin and Nicastro used cryo-ET with sub-tomogram averaging to determine activation states of 

dyneins in rapidly frozen sea urchin sperm cells [6].  They found alternate activation states of 

dyneins on either side of the cilium depending on the direction of curvature.  In principal bend, 

they found conformations thought to be active in dyneins attached to the A-tubules of doublets 2, 

3, and 4, and all other dyneins to be in an inactive pre-powerstroke configuration. In reverse 

bend, they found the active conformations in dyneins attached to the A-tubules of doublets 7, 8, 

and 9, with inactive configurations in all other dyneins. This study suggests that there is some 

mechanism for programmed activation or inactivation of dyneins, but what this mechanism 

might be is still unclear. Nicastro proposes a ‘Switch-inhibition’ model in which dynein activity 

states are actively regulated by an inhibitory signal. In this model, dyneins are active by default 

leading to ‘rigor’ state of the cilium.  Ciliary beating occurs as an alternating principal-reverse 

inhibition signal propagates distally along the cilium. 

Mechanical feedback mechanisms 

An argument against the activation of dynein motors being dependent on a signal from the cell 

body out through the axoneme is the fact that demembranated isolated axonemes (in the absence 

of the cell body) beat in the presence of ATP [135]. This demonstrates that all the necessary 

components of ciliary beating are contained within the axoneme itself. 

If dyneins have different activation states, the switch that activates, inactivates, or alters dynein 

function could be some physical feedback mechanism. A number of such feedback mechanisms 
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have been proposed including interdoublet sliding, interdoublet spacing, and axonemal curvature 

(Fig. 2.11A-C). 

 

Figure 2.11: Models of mechanical feedback in the axoneme. (A) Sliding control is a hypothesized mechanism in 

which dynein activity is regulated by a rate or distance of interdoublet sliding. (B) Curvature control involves 

regulation of dynein activity by the curvature of the doublets to which dynein motors are attached. (C) The 

interdoublet spacing (geometric clutch) theory proposes that dyneins have greater binding affinity and therefore 

create more force when interdoublet separation is lower. Arrows indicate internal compressive and tensile forces in 

the filaments. (D) Dynamic instability is a phenomenon that can arise when steady loads remain tangential as 

filaments deform, leading to oscillations. Arrows indicate ‘follower’ forces due to dynein activity. 

 

Sliding control 

Different forms of feedback mechanisms based on interdoublet sliding have been proposed. In 

one version, dyneins actively create sliding force between adjacent doublets until sliding is 

slowed to a halt by elastic resistance to bending and sliding [136]. At this point dyneins that 

created this curvature are inactivated or overwhelmed and temporarily unable to bind and 

opposing dyneins activate to create curvature in the opposite direction. Physically, this can be 

justified by the hypothesis that dyneins bind more easily when sliding in their preferred direction 

leading to positive feedback of more bound dyneins and greater applied force until elastic 

bending resistance is insurmountable. Brokaw suggests that this behavior is similar to a 

relaxation oscillator [67]. Riedel-Kruse and coauthors explore sliding-control feedback using a 

complex proportionality constant between dynein force and sliding displacement called the 
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‘dynamic stiffness’ that allows for positive feedback proportional to sliding rates (negative 

damping) or sliding displacements (negative stiffness) [31]. 

Curvature control 

The idea that ciliary beating may be driven by curvature feedback dates back to Machin, who 

proposed active contractile elements along the cilium that were controlled by local curvature 

[21]. Machin found that a time delay was necessary between curvature feedback and activation 

of contractile elements; in Machin’s model this delay would need to vary to allow for different 

beating frequencies. Brokaw extended curvature control to a sliding filament model consisting of 

two parallel, inextensible filaments, though the equations are reduced to those of a single 

equivalent filament. Brokaw found using the sliding filament model removed the necessity of a 

time delay in the feedback mechanism for small deformations but did require nonlinear feedback 

to produce acceptable waveforms at large deformations [30]. Later work by Brokaw adds a time 

delay to curvature control on the grounds that, “It is unlikely that any control mechanism for the 

active process can respond instantaneously to changes in curvature” [137]. Hines and Blum 

derived the equations of motion for a single-filament model with computational efficiency in 

mind. They found that a time delay, implemented by making the time derivative of dynein 

activity proportional to the curvature, was necessary for local bending moments to overcome 

elastic bending and shear resistance. This time delay was found to be the dominant parameter 

controlling beat frequency [41]. Recent papers have supported curvature control [138, 139]. 

Although feedback from curvature to dynein regulation has largely been a mathematical 

abstraction used in models, Cibert proposed a plausible biophysical mechanism for the idea 

[127]. When a filament bends, one side of that filament is compressed, and the other side is 

elongated. Because microtubule doublets are composed of discrete tubulin monomers, when the 
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doublets bend, the spacing between monomers will be reduced on the compression side and 

expanded on the elongated side. Cibert proposes that the difference in spatial frequency of these 

monomers in adjacent doublets may provide a physical mechanism for dynein regulation. 

Another possible biophysical mechanism for curvature control is the coupling of bending to 

torsion in the axoneme [138]. 

Interdoublet spacing or transverse force 

Lindemann proposed a mechanism of dynein regulation based on interdoublet spacing. This is 

often referred to as the ‘geometric clutch’ hypothesis [43]. The model starts with the assumption 

that there are active dyneins between doublets 2-3-4 and 7-8-9. The idea is that dyneins may be 

more likely to bind to the adjacent doublet when the space separating the doublets is below a 

threshold. The spacing between doublets is modulated by the transverse force or ‘t-force’ 

between the doublets. Lindemann proposed two sources of t-force: a ‘global’ component (Fig. 

2.11C) due to longitudinal forces on curved filaments (equal to the longitudinal force times the 

curvature), and a ‘local’ component due to tension on interdoublet links (a function of local shear 

displacement). Because the sign of the global t-force will vary with the direction of filament 

curvature as well as the sense of the longitudinal forces applied to the filament by the dyneins, 

dynein activity will tend to alternate across the beat plane based on curvature. Computer 

simulations were able to produce convincing beat patterns based on this model and asymmetric 

beating was created by setting different binding thresholds on the two sides of the cilium. 

Models of the geometric clutch hypothesis have been implemented as numerical simulations of 

discrete systems of springs and rigid links [43, 56, 124]. Bayly and Wilson derived a set of 

partial differential equations (PDE) from a continuum model of a simplified axoneme [140]. 

These PDEs allow for eigenvalue stability analysis of the system and provide insight into aspects 
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of the model such as spatially dependent dynein behavior and base-to-tip (anterograde) 

propagation of waves.  

Viscoelastic instability 

Another theory of the origin of ciliary beating has been proposed in recent years based on 

dynamic instability without dynein regulation. If dynein forces act tangentially to the doublets, 

then as the doublets are reoriented under axonemal deformations the direction of the dynein force 

is reoriented as well. This reorienting force is often called a ‘follower load’ and has been known 

to lead to oscillations by what is known as ‘dynamic instability’ or ‘flutter’ which is similar to 

the static instability known as ‘buckling’ [68, 69].  

Gadêlha and coauthors investigated the role that geometric nonlinearity could play in ciliary 

beating and showed that nonlinear instabilities can have important effects on models of ciliary 

beating, leading to symmetry breaking in waveform and trajectory. Since the model assumed a  

prescribed symmetric spatiotemporal distribution of dynein force, this study did not investigate 

instability as a cause of oscillation, but rather as an important contributor to waveform behavior 

[70]. 

Bayly and Dutcher first investigated a purely mechanical dynamic instability as a primary cause 

of oscillation [32]. They showed that steady dynein forces can lead to oscillatory behavior in a 

two-filament model of ciliary beating. Stability analysis and simulation of the partial differential 

equations of motion of the two coupled filaments revealed unstable oscillatory solutions that 

generate propulsive waves. Propulsive waveforms were also found in time-domain simulations 

of a six-doublet finite-element model. This model is appealing in that it does not require active 

feedback or dynein regulation in order to produce beating. The model was further explored by 
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Hu and Bayly in ‘6+1’ and ‘9+1’ systems with additional nonlinearities such as sliding of radial 

spokes at the central pair attachment [33]. Similar single-filament models explored in [46, 47] 

also exhibit spontaneous wavelike oscillations under follower loads, although these loads do not 

represent internal forces that could be produced by dynein activity. 

Work by Woodhams, Shen, and Bayly [38] using custom finite-element code has confirmed the 

emergence of waves from dynamic instability in multi-filament systems with internal, steady 

dynein activity. This recent work has demonstrated the importance of coupling between the 

filaments which is physically provided by passive elements such as radial spokes and N-DRCs. 
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Chapter 3: Generation of ciliary beating by steady 

dynein activity: the effects of inter-filament coupling 

in multi-filament models1 

 

Louis G Woodhams1, Yenan Shen2, Philip V Bayly1 

1 Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO 
2 Mechanical & Aerospace Engineering, Princeton University, Princeton, NJ 

 

Abstract 
The structure of the axoneme in motile cilia and flagella is emerging with increasing detail from 

high resolution imaging, but the mechanism by which the axoneme creates oscillatory, propulsive 

motion remains mysterious. It has recently been proposed that this motion may be caused by a 

dynamic “flutter” instability that can occur under steady dynein loading, and not by switching or 

modulation of dynein motor activity (as commonly assumed). In the current work, we have built 

an improved multi-filament mathematical model of the axoneme and implemented it as a system 

of discrete equations using the finite-element method. The eigenvalues and eigenvectors of this 

model predict the emergence of oscillatory, wavelike solutions in the absence of dynein regulation, 

and specify the associated frequencies and waveforms of beating. Time-domain simulations with 

this model illustrate the behavior predicted by the system’s eigenvalues. This model and analysis 

allow us to efficiently explore the potential effects of difficult-to-measure biophysical parameters, 

such as elasticity of radial spokes and inter-doublet links, on the ciliary waveform. These results 

support the idea that dynamic instability without dynamic dynein regulation is a plausible and 

robust mechanism for generating ciliary beating. 

 
1 This chapter is reproduced in its entirety from the publication of the same name [38] L. G. Woodhams, Y. 

Shen, and P. V. Bayly, "Generation of ciliary beating by steady dynein activity: the effects of inter-filament 

coupling in multi-filament models," J. R. Soc. Interface, no. 19, 06/07//2022 2022, Art no. 20220264, doi: 

https://doi.org/10.1098/rsif.2022.0264.. See section 1.5 Statement of contributions. 
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3.1. Introduction  
Cilia are slender organelles that cells use to move fluid or propel themselves. Motile cilia clear 

mucus from our airways, circulate cerebrospinal fluid in our brain ventricles and play important 

roles in reproduction and embryonic development. Cilia are highly conserved from single-cell 

ciliates to humans. Ciliary motion is driven by an active, microtubule-based cytoskeletal 

structure known as the 9+2 axoneme (Fig. 1).  The axoneme is approximately 200nm in diameter 

and consists of nine outer microtubule doublets (MTDs) arranged in a cylindrical array 

surrounding two inner microtubule singlets in the central pair complex (CPC) [18, 124]. The 

CPC is connected to the MTDs by radial spokes (RSs), and adjacent MTDs are circumferentially 

interconnected by nexin-dynein regulatory complexes (NDRCs). Though the basic structure of 

the axoneme has been known for decades, details of its intricate architecture are still emerging 

[6, 19, 141, 142]. 
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Figure 3.1: (A) Structure of the axoneme. Reproduced from [128]. (B-E) Model of individual dynein arm and 

interaction with microtubule (MT) reproduced from [143]. Upon binding an ATP molecule, the microtubule binding 

domain (MTBD) releases and the dynein reconfigures, moving the MTBD toward the minus end of the MT (B-C). 

Hydrolysis of ATP causes a rebinding of the MTBD to the MT and “power-stroke” reconfiguration of the dynein 

that pulls the cargo (the A subtubule of the adjacent MTD in the case of axonemal dynein) toward the minus end of 

the bound MT (D-E). DRC: Dynein Regulatory Complex. 

 

Ciliary beating is driven by the motor protein dynein. Dynein is arranged in arrays of inner and 

outer arms permanently attached by tail (stem) structures to the A subtubules of the outer MTDs. 

At the opposite end of each dynein arm is a stalk that terminates in a microtubule binding 

domain (MTBD) that intermittently attaches to the B subtubule of the adjacent MTD. Dyneins 

create a one-way sliding force between adjacent MTDs through a cycle of binding, power-stroke, 

release, and reconfiguration using energy from the hydrolysis of ATP [52, 144]. This one-way 

sliding force has been shown and measured experimentally [123, 145-148]. 

Most research on waveform generation has been guided by the assumption that oscillatory 

motion requires periodic modulation of dynein activity, so that dynein arms on each side of the 

axoneme alternately produce bending in the corresponding direction [67]. There are multiple 
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competing theories of dynein regulation. Several theories propose that dynein activity is 

regulated locally by feedback, either from inter-doublet sliding [31, 136], axoneme curvature 

[30, 45], or axoneme twist [44]. Some possible biophysical mechanisms have been proposed for 

such feedback [61, 127], but to date, none have been clearly established. Other studies have 

postulated regulation of dyneins through a mechanically or chemically distributed signal [6, 

133]. 

Although the assumption of dynein switching or regulation is intuitive, it may not be necessary.  

Steady forces or fluid flows produce oscillations in many mechanical systems, such as flags or 

aircraft wings, by a mechanism known as dynamic instability or “flutter” [149]. Dynamic 

instability occurs when a system departs from equilibrium by way of oscillations of increasing 

amplitude. In the case of filaments under steady axially oriented loading, the dynamic instability 

arises as the deflection of the initially perturbed filament reorients the local tangent vector and 

therefore re-orients the direction of axial load. This phenomenon is well known for the case of a 

“follower” end load (“Beck’s Column”) and has also been studied in filaments with distributed 

follower loads (Fig. 2) [46, 47, 68, 69]. The phenomenon in which an oscillatory system 

becomes unstable and a periodic solution emerges as a control parameter is varied is called a 

“Hopf bifurcation” [150]. 
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Figure 3.2: (A) A single filament with a follower tip load (Beck’s column) provides an example of flutter. (B) 

Oscillation shapes of the filament under tip load through one half cycle (from blue to green in time). (C) A single 

filament with a distributed follower load loosely approximates the distribution of dynein along the MTD, but lacks 

internal force and moment balance. (D) Oscillation shapes of a filament under distributed follower load through one 

half cycle (from blue to green in time). (E) The eigenvalues of either system, linearized about the straight 

equilibrium, predict exponentially growing oscillations (flutter) when the applied load is larger than a critical load. 

This panel shows transverse tip displacement for an unstable oscillation. (F) Tip displacement prediction from a 

time-domain simulation that includes geometric nonlinearities.  Nonlinearities typically limit growth, leading to 

finite oscillations (limit cycles). 

 

Previous studies have suggested that steady (unregulated) dynein forces can lead to oscillatory, 

cilia-like beating in models of the axoneme through dynamic instability [32, 33, 47]. In the 

current work, we develop an improved model and a corresponding system of discrete equations, 

which can be analyzed to efficiently explore the effects of various biophysical parameters on 

predicted beating behavior. 

This study advances earlier work in three ways: (i) The current model enforces the exact balance 

of internal dynein forces. The equations in prior models [32, 33] included the approximation that 

opposing dynein forces between two doublets act parallel to each doublet. While this is 

approximately true, when doublets are not perfectly parallel, internal forces do not balance 
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exactly. In the current model, the opposing forces on each active doublet pair are aligned in the 

direction of their average tangent vector, enforcing balance. (ii) The current model is 

implemented using a custom finite-element approach to obtain discretized equations governing 

the motion of multiple coupled doublets. These equations can be analyzed efficiently by finding 

eigensolutions that identify and characterize oscillatory behavior. (iii) The current model 

includes a model of dynein arm kinematics that predicts changes to the force and moment 

produced by the dynein motor under variation of the inter-doublet spacing. 

In any mathematical model, the choice of parameters is important. In general, a model is more 

useful if its predictions are not sensitive to parameter values, i.e. the existence of a certain 

behavior does not depend sensitively on the precise value of an unknown parameter. The ability 

of a model to predict trends in behavior in response to changes in parameter is also important. A 

useful model will predict trends in simulated behavior that resemble trends in observed behavior 

under analogous parameter variations. The complexity of the axoneme leads to a large set of 

parameters, and its spatial scale (on the order of nanometers) makes it difficult to determine 

those parameters. While some parameters may be measured experimentally, others may only be 

estimated from the size, shape and composition of substructures, and some parameters are not 

known at all. In this situation, models can be used to estimate plausible values for un-measured 

or currently unmeasurable parameters. 

The custom finite-element implementation of the current model allows us to efficiently explore 

this large parameter space to find ranges of parameter values that generate propulsive, oscillatory 

waveforms. It further allows us to investigate the effects of model parameters on behavior. In 

particular, the aggregate elastic and dissipative properties of the components that couple doublets 

to each other, either directly or through the central apparatus, such as the RSs and NDRCs, are 
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difficult to characterize. In this study we investigate the role of these inter-doublet coupling 

elements in determining the existence and properties of oscillatory waveforms produced by 

steady, unregulated dynein activity.  

3.2. Methods 

3.2.1 Modeling the axoneme 

Microtubules within the axoneme are modeled as Euler-Bernoulli beams subject to inter-doublet 

dynein forces, inter-doublet viscoelastic coupling, and viscous resistance due to the fluid in 

which the cilium is beating. The boundary conditions on each beam represent attachment at the 

basal body. The system was first reduced to a single beam with a baseward oriented follower 

load (Fig. 3.2C) to study the behavior of a single filament under steady dynein-like loading. 

A system of two coupled beams in two dimensions (Fig. 3.3B) was then used to study how the 

coupling of two doublets affects the dynein force required to cause the system to oscillate, as 

well as the beating shape and frequency. In this system the dynein forces are modeled as equal 

and opposite forces on the two beams, and a distributed moment is imposed due to the distance 

(the length of the dynein arm) between the opposing forces. Distributed springs and viscous 

dampers couple the two beams. 

A system of four coupled beams in three dimensions (Fig. 3.3C) was created to model axoneme 

behavior more accurately. This system essentially couples two of the previously-described two-

doublet systems so they act in opposition; its 3D structure allows out-of-plane beating. The four-

filament system is the least complex system in which the bending moments of opposing MTD 

pairs oppose each other. Finally, the model was extended to include six outer MTDs coupled to a 
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central filament representing the CPC (Fig. 3.3D). While still a simplification, this seven-

filament system replicates the approximately circular symmetry and behavior of the axoneme. 

 

Figure 3.3: Mathematical models of the axoneme. (A) Conceptual model: dyneins between MTDs 2, 3, and 4 are 

placed in one “active” group and dyneins between MTDs 7, 8, and 9 are placed in another “active” group on the 

opposite side of the beat plane. The two groups are treated as having 180° rotational symmetry about the central 

axis. (B) The two-doublet system is modeled as a pair of beams with tangential follower loads, moments, and elastic 

and viscous damping. See Supplemental Material for details. (C). Combining two two-doublet systems creates the 

simple four-doublet representation. Baseward and tipward forces are represented as dotted and crossed circles, 

respectively. Orange arrows represent applied moments. (D) Adding additional doublets and a beam representing the 

CPC leads to a more accurate seven-beam model of the axoneme. 

 

3.2.2 Rotational symmetry of the axoneme 

The axoneme has several features that may cause it to bend preferentially in the plane that passes 

through MTD 1 and between MTDs 5-6. One is the CPC, which rotates in some species, but not 

in others [129]. Others are permanent cross-bridges between MTDs 1-2 in Chlamydomonas cilia 
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[18], and between MTDs 5-6 in other species [151]. In sperm flagella, a central partition lies 

between MTDs 3-8 [5, 152]. To model these effects, the bending stiffness of the axoneme was 

doubled in the out-of-plane direction. To model the effects of inactive dynein cross bridges, the 

normal elastic stiffness between “inactive doublet pairs” was increased by a factor of 10 relative 

to the stiffness between “active doublet pairs.” 

3.2.3 Modeling the applied dynein force and moment 

Because dynein motors are distributed along the axoneme, the force of a linear array of dyneins 

applied to a single MTD is modeled as a distributed force approximately tangent to the 

longitudinal axis of the MTD (Fig. 3.2C). This “distributed follower load” model [69] leads to 

oscillatory beating, but physically it is incomplete as it does not maintain a balance of forces 

within the axoneme. Therefore, in multi-doublet models, dynein forces are modeled on pairs of 

MTDs, where the dynein forces applied to one doublet are equal and opposite to the dynein 

forces applied to the adjacent doublet. These forces are oriented along the average tangent vector 

of the two doublets. Basing the dynein force orientation on the average tangent angle rather than 

orienting dynein forces directly along the tangent vector of each doublets ensures a balance of 

internal forces (a key improvement on the model of [32]). Additionally, there must be a 

distributed bending moment applied to one or both doublets to account for the moment created 

by the dynein force couple (Fig. 3.3B).  

Dynein force or moment will depend on inter-doublet spacing 

In the simplest model of dynein as a steady-force mechanical motor, the shear force created 

between adjacent doublets is constant, as is the moment created by the application of forces 

separated by the inter-doublet spacing. However, the axoneme is a dynamic system in which the 

spacing between adjacent doublets varies as the cilium deforms. There are several possible ways 
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to model the relationship between the dynein force and moment as the inter-doublet separation 

varies. 

Under case A, the axial component of the force produced by the dyneins is constant and in the 

linearized model, the moment is exactly proportional to the inter-doublet distance 𝑎 = 𝑎0 + δ𝑎:  

 𝑚 = 𝑚0 (1 +
𝛿𝑎

𝑎0
) (3.1) 

Here 𝑚0 = 𝑝0𝑎0 (the moment due to the steady dynein force, 𝑝0, and undeformed inter-doublet 

spacing, 𝑎0). This case in which the moment is directly proportional to the inter-doublet spacing 

will be referred to as having a moment gain of 1. 

Under case B, the dyneins are assumed to produce a constant moment (moment gain equal to 0), 

so the axial force is inversely proportional to the inter-doublet distance: 𝑝 =
𝑚0

𝑎0+𝛿𝑎
. When this is 

linearized using a first-order Taylor series expansion, the equation for the force becomes:  

𝑝 =
𝑚0

𝑎0
(1 −

𝛿𝑎

𝑎0
). 

A third case, case C, is one in which the moment produced by dynein increases less than 

proportionally with increasing inter-doublet separation (moment gain less than 1). The dynein 

moment may even decrease with inter-doublet spacing (moment gain less than 0). This behavior 

occurs in the kinematic model of the dynein motor shown in Fig. 3.4. In this model, the stem of 

the dynein is treated as a rigid arm and the stalk is treated as a flexible fiber in tension, so the 

dynein arm acts like a mechanical “winch” [153, 154]. A geometric analysis and linearization of 

this model leads to equations for the variation of moment and axial force with respect to 

variation in inter-doublet spacing. 
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Figure 3.4: (A) Dynein schematic diagram adapted from [143]. (B) Model of dynein kinematics. The inter-doublet 

spacing is 𝑎, the dynein stem length is 𝑑, the distance from the stem to the binding domain is 𝐿, and the distance 

between the fixed attachment at MTD 𝑛 and the transient attachment at MTD 𝑛+1 is 𝑏. The dynein force is modeled 

as a tensile force along the stalk, which is treated as a flexible fiber. 

 

If the length of the stalk is assumed constant and the longitudinal attachment length, 𝑏, is 

allowed to vary with the inter-doublet spacing, 𝑎 = 𝑎0 + 𝛿𝑎, the equations become: 

 𝑚 = 𝑚0 (1 + (1 −
𝑎0(𝑎0−𝑑)

𝑏2 )
δa

𝑎0
) (3.2) 

The difference between Eq. 3.2 for the dynein winch model and Eq. 3.1 for the steady dynein 

force model is the moment gain term (1 −
𝑎0(𝑎0−𝑑)

𝑏2
) in front of the inter-doublet distance 

variation. This value is less than unity, and for plausible estimates of this dynein geometry, the 

moment gain is negative, indicating the moment decreases as the inter-doublet spacing increases. 

Moment gain is incorporated into an additional matrix term in the equation of motion (see 

Appendix A - Dynein kinematics and moment gain). 
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3.2.4 What are the parameters that affect ciliary beating? 

As any model increases in complexity, the number of model parameters grows as well.  

Estimates are available for some mechanical properties of the axoneme, such as the flexural 

rigidity of MTDs [65, 66, 120]. However, other properties, such as stiffness and damping of 

individual NDRCs and RSs, are not easily measured; this leaves the corresponding parameters 

undetermined within a large, physically plausible range (Table 3.1). The efficient exploration of 

this undetermined parameter space – exploring the effects of parameter combinations on the 

overall behavior of the model system – is the focus of this work. By identifying which parameter 

combinations give rise to cilia-like oscillation, we can efficiently obtain estimates of physical 

properties that would lead to beating under steady dynein loading. 

Table 3.1: Estimated values of some axoneme parameters. 

Parameter Estimated Value Description references 

𝐿 5.6 – 200 µm Length of cilia of various organisms 

and gametes 

[29, 35, 104] 

𝐷 180 – 200 nm Axoneme outer diameter [115, 124] 

𝐸𝐼 200 – 1,000 pN-𝜇m2  

 

Flexural rigidity of axoneme [64, 66, 121] 

𝑘𝐿 1,000 – 2,500 pN/𝜇m2
 

 

N-DRC normal stiffness [90, 122] 

𝑘𝑆 106 – 2.5×106 pN/𝜇m2
 

 

RS axial stiffness estimated 

𝑘𝑇 1,000 – 2,500 pN/𝜇m2
  

 

Shear stiffness of axoneme [66] 

𝑝 20 – 1,000 pN/𝜇m  Applied dynein force [123, 145] 

𝑐𝑁  
 

0.001 – 0.003 pN-s/𝜇m2 

 

Resistive force coefficient [8, 107] 

𝑐𝐿 𝜏 / 200 Link damping estimated 

𝑘𝜃 90 × 106 pN-𝜇m/rad Tangent angle Coupling estimated 
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3.2.5 Overview of derivation of finite-element equations of motion 

The mathematical model used in this study is based on the finite-element method.  For a single 

beam element, displacements are represented as a sum of basis or shape functions 𝜙𝑖 which are 

functions of longitudinal position 𝑥. The nodal displacements or generalized coordinates, 𝑞𝑖, are 

functions of time, 𝑡: 

 𝑦(𝑥, 𝑡) = ∑ 𝜙𝑖(𝑥)𝑞𝑖(𝑡)𝑖  (3.3) 

Using small-angle assumptions and Euler-Bernoulli beam theory, equations were derived for the 

kinetic and potential energy of the beam in terms of the generalized coordinates.  Using Eq. 3 to 

represent the state of the continuous system by a finite number of these coordinates, Lagrange’s 

equations (Eq. 3.4) were employed to derive the discretized equations of motion.   

 
𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝑞𝑖̇
) −

𝜕𝑇

𝜕𝑞𝑖
+

𝜕𝑉

𝜕𝑞𝑖
= 𝑄𝑖

𝑛𝑐 (3.4) 

The resulting equations take the form (using Einstein notation): 

𝑞̈𝑗 ∫ 𝑚̅𝜙𝑖𝜙𝑗𝑑𝑥
𝐿

0

+ 𝑞̇𝑗 ∫ 𝑐𝑛𝜙𝑖𝜙𝑗𝑑𝑥
𝐿

0

+ 𝑞𝑗 ∫ 𝐸𝐼𝜙𝑖
′′𝜙𝑗

′′𝑑𝑥
𝐿

0

+ 𝑞𝑗 ∫ 𝑁(𝑥)𝜙𝑖
′𝜙𝑗

′𝑑𝑥
𝐿

0

 

 = 𝑞𝑗 ∫ −𝑝𝜙𝑖𝜙𝑗
′𝐿

0
𝑑𝑥 (3.5) 

Here 𝑚̅ is mass per unit length (kg/m), 𝑐𝑛 is a distributed resistive force coefficient (
Ns

m2), EI is 

the flexural rigidity (Nm2), 𝑁(𝑥) is the internal axial tension (N), and 𝑝 is the distributed 

follower load (
N

m
). Derivatives with respect to 𝑡 are denoted with an overdot, and derivatives with 

respect to 𝑥 are denoted with a prime. The first and third terms of Eq. 3.5 represent the consistent 

mass and stiffness matrices. The fourth term is a “geometric stiffness matrix” that describes the 

effects of loading on the effective stiffness of the beam (filament).  The viscous damping matrix 



57 

 

(second term) and non-conservative follower load matrix (right hand term) are derived from the 

virtual work of these non-conservative forces under variation of the generalized coordinates. 

Finite-element matrices (4 x 4) for individual elements were created by analytically evaluating 

the terms in Eq. 3.5 with cubic Hermite interpolating polynomials for shape functions, and these 

element-level matrices were combined to create filament-level matrices.  System-level matrices 

for multi-filament systems were created by combining filament-level matrices in block matrices.   

Additional system-level matrices were derived to model viscoelastic coupling between filaments 

and follower loading on active MTD pairs based on the average tangent angle (to ensure internal 

force balance). Coupling block matrices are created as the Kronecker product of a truss matrix 

representing the filament links and the filament-level coupling matrices. 

The final system may be written compactly as: 

 𝑴𝒒̈ + 𝑪𝒒̇ + (𝑲 + 𝑲𝑮 − 𝑷)𝒒 = 𝟎 (3.6) 

𝑴 is the system-level consistent mass matrix (a diagonal block matrix of beam-level mass 

matrices). C is the damping matrix which captures the effects of external fluid damping (mass-

proportional), internal beam damping (stiffness-proportional), and damping in the beam 

coupling. 𝑲 is the global stiffness matrix which captures both the flexural rigidity of the 

individual beams and the beam coupling stiffness. 𝑲𝑮 is the system-level geometric stiffness 

matrix.  P is the system-level geometric loading matrix, which due to the non-conservative 

follower load is non-symmetric. This loading matrix represents the ability of non-conservative 

forces to add energy to the system and leads to the possibility of dynamic instability without 

dynein regulation. 
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Non-dimensionalization of the system 

The system above can be written in dimensionless form using appropriate definitions of 

characteristic length, time, and force (Table 3.2); this reduces the complexity of the matrix 

equations and avoids ill-conditioning. The system in Eq. 5 is first nondimensionalized using a 

characteristic length, 𝐿, and a characteristic force, 𝑓𝑐 =
𝐸𝐼

𝐿2. Using  parameter estimates for typical 

cilia [32] the coefficient of the dimensionless mass matrix is on the order of 10-7, hence inertial 

terms are neglected. The characteristic time is chosen to be 𝜏 =
𝑐𝑁𝐿4

𝐸𝐼
, so that the period of the 

system will generally scale with 𝑐𝑁. 

 (
𝑚̅𝐿4

𝜏2𝐸𝐼
) 𝑴̃𝒒̈ + (

𝑐𝑛𝐿4

𝜏𝐸𝐼
) 𝑪̃𝒒̇ + (𝑲̃ + 𝑲̃𝑮 − 𝑷̃)𝒒 = 𝟎 (3.7) 

 𝑪̃𝒒̇ + (𝑲̃ + 𝑲̃𝑮 − 𝑷̃)𝒒 = 𝟎 (3.8) 

System behavior is described in terms of dimensionless parameters, such as the dimensionless 

dynein force 𝑝̅ =
𝑝𝐿3

𝐸𝐼
, and distributed link stiffness nondimensionalized as 𝑘̅ =

𝑘𝐿4

𝐸𝐼
. Table 3.2 

lists example values of these dimensionless parameters. 

Table 3.2: Example dimensionless model parameters 

Dimensional Dimensionless Description 

𝐿 = 12 µm ~ Characteristic length 

𝐸𝐼 = 73 pN-𝜇m2 ~ Flexural rigidity per filament 

𝑐𝑁 = 0.003 pN-s/𝜇m2 ~ Resistive force coefficient 

𝜏 = 0.8554 s ~ Characteristic time 

𝑐𝑁𝐿4/𝐸𝐼 

𝑝 = 25 pN/𝜇m 𝑝̅ = 600 
𝑝̅ =

𝑝𝐿3

𝐸𝐼
 

𝑘𝑠 = 3.5×103 pN-𝜇m2 𝑘̅𝑠 = 106 

𝑘̅𝑠 =
𝑘𝑠𝐿4

𝐸𝐼
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3.2.6 Eigenvalue-based stability analysis of linearized finite-element model 

The analysis is based on finding the eigenvalues and eigenvectors of the finite-element matrices 

of the system, linearized about an equilibrium position (linear stability analysis). The 

construction of the finite-element matrices and subsequent eigenvalue analysis are 

computationally inexpensive and can be easily parallelized. This allows rapid generation of 

solutions over a wide range of parameter combinations to obtain a quantitative portrait of system 

behavior over the defined parameter space. 

Once the finite-element matrices have been assembled, the eigenvalues and eigenvectors of the 

system are found numerically using the MATLAB solver eig() [155]. The real part of each 

eigenvalue tells us the rate of growth (positive real part) or decay (negative real part) of the 

corresponding mode shape. The imaginary part of the eigenvalue tells us the frequency of 

oscillation (if it is nonzero). Eigenvalues with a positive real part and a nonzero imaginary part 

are said to be dynamically unstable. Dynamically unstable modes exhibit growing oscillations 

when perturbed from equilibrium. In most physical systems, such growing oscillations are 

limited in amplitude by nonlinearities in the system and settle into limit cycles. 
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Figure 3.5: Eigenvalue analysis for the example of a single filament with distributed follower load. (A) Eigenvalues, 

𝜆, are calculated as a function of nondimensional distributed force 𝑝̅ and separated into real and imaginary parts. 

Negative real parts indicate the mode is stable (i, ii). Positive real parts indicate the mode is unstable (iii). Nonzero 

imaginary parts (ii, iii) indicate frequency of oscillation (nondimensional in this example). (B) The complex mode 

shape at 𝑝̅ = 100 (corresponding to the eigenvalue denoted by asterisks in panel (A)) visualized through one beat 

cycle. 

 

Each eigenvalue has a corresponding eigenvector which determines the waveform.  If the 

eigenvalue/eigenvector pair is complex, the angles of the complex values of the eigenvector 

indicate the phase delay as a function of axial position and determine propagation of the ciliary 

waveform. These “mode shapes” may be visualized to compare their shape and propagation to 

those observed in cilia. The eigenmode with the largest positive real eigenvalue part is the most 

unstable (will grow the fastest) and will dominate the system behavior. We focus on this single 

eigenvalue for each parameter combination, although other unstable modes may participate. 

3.2.7 Time domain simulations 

Representative predictions from stability analysis were confirmed by time-domain simulation. A 

cubic nonlinearity was added to the linking stiffness as a simplified representation of the multiple 

physical nonlinearities that might limit the beating amplitude and create limit cycle behavior. 

The system was solved using the MATLAB ode15s() solver for stiff systems. 
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3.3 Results 

3.3.1 Overview of multi-filament system behavior 

Analysis of system eigenvalues reveals regions of stability in parameter space, as well as regions 

of dynamic instability and, in some cases, static instability (buckling- or divergence). For regions 

showing dynamic instability, visualization of the eigenvectors shows cilia-like beating shapes. 

The effect of system parameters on frequency and instability is described in detail below. 

Overview of frequency and stability behavior - eigenvalues 

System behavior is summarized by contour plots of output characteristics, such as dominant 

frequency, as input parameters are systematically varied. Frequency maps for 4- and 7-filament 

systems are shown in Fig. 3.6, as functions of non-dimensional dynein force and spoke stiffness. 

Nondimensional frequency is dimensionalized by the characteristic time in Table 3.2. 

The 4- and 7-filament systems share key behaviors. With all other parameters held constant, 

below a critical value of 𝑝̅, the system is stable and non-oscillatory as evidenced by the zero 

frequency and negative maximal real eigenvalue part (to the left of the red “critical value” line). 

Oscillations emerge when the frequency (imaginary eigenvalue part) becomes nonzero. As the 

critical value is exceeded, the system becomes unstable, exhibiting a Hopf bifurcation and the 

emergence of oscillations. As 𝑝̅ increases further, frequency initially increases as well, but the 

relation is generally nonlinear and non-monotonic. In some cases, if 𝑝̅ is increased further still, 

the oscillation frequency eventually vanishes, and the system becomes statically unstable 

(divergent). 
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Figure 3.6: Effect of nondimensional spoke stiffness, 𝑘̅𝑠, and nondimensional dynein force, 𝑝̅, on stability and 

frequency for 4- and 7-filament systems. Color indicates frequency of the dominant (least stable) mode. (A) 

Stability/frequency plot for the 4-doublet system. The red line indicates the stability border. Points to the left of the 

red line (lower 𝑝̅) are stable, and points to the right of it (higher 𝑝̅) are unstable.  (B) Stability/frequency plot for the 

7-filament system. Values along the horizontal green line at 𝑘̅𝑠 = 104 are shown in the next panel. (C) Frequency 

and growth rate (not shown in color maps (A,B)) for points along the horizontal green line from previous panel. The 

vertical red line indicates the critical value of 𝑝̅ for instability (Hopf bifurcation). Growth rate increases 

monotonically with increasing 𝑝̅. 

 

Overview of spatial behavior – eigenvector mode shapes 

Example mode shapes of 1-beam system under a distributed follower load, as well as 2-, 4-, and 

7-filament systems are shown in Fig. 3.7. All systems produce oscillatory waveforms, although 

only the 4- and 7-filament systems are consistent with internal loading (balanced opposing 

dynein force pairs and moments). In Fig. 3.7A-D, the mode shapes shown are calculated at the 

same 𝑝̅. In the 1-beam case (Fig. 3.7A), the filament experiences an unopposed baseward 

compressive force; the system oscillates at 347Hz. In the 2-filament case, forces are balanced, 

but there is an omitted unbalanced moment (the mode shape is shown without the static bend that 

would be imposed by the unbalanced moment). In the 4- and 7-filament cases, moments are 

balanced by those in the opposing dynein-coupled pairs of MTDs. These systems both beat at 

~50 Hz. In Fig. 3.7E-H, all parameters are kept constant other than 𝑝̅. As 𝑝̅ is increased, the 

temporal frequency increases and the spatial wavelength decreases. 
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Figure 3.7: (A-D) Comparison of mode shapes from 1-, 2-, 4-, and 7-filament systems at 𝑝̅ = 300. For multi-

filament systems, 𝑘̅𝑠 = 106, 𝑘̅𝐿 = 103, 𝑐𝐿̅ =
1

200
.  (A) 1-filament (347 Hz). (B) 2-filaments (83 Hz). (C) 4-filaments 

(49 Hz). (D )7-filaments (51 Hz). (E-H) Effect of increasing steady dynein force on mode shapes of 7-filament 

system. Points in parameter space for (E-F) are labeled in Fig. 8D. (E) 𝑝̅ = 150 (17 Hz). (F) 𝑝̅ = 200 (22 Hz). (G) 

𝑝̅ = 400 (66 Hz). (H) 𝑝̅ = 800 (245 Hz). Animations for (E-F) are shown in Supplemental Movies S1-S2 [38]. 

 

3.3.2 Effect of inter-doublet stiffness 

RSs and NDRCs create elastic resistance to changes in inter-filament spacing. To reduce the 

parameter space, the ratio of RS stiffness to NDRC stiffness was studied at three markedly 

different values: 1: 1, 103: 1, 106: 1. RSs are larger structures than NDRCs and therefore thought 

to be stiffer [142, 156]. Increasing the inter-doublet stiffness had a stabilizing effect on the 

system at all ratios and in all ranges of stiffness values (Fig. 3.8). At high RS:NDRC ratios 

oscillation is dominated by circumferential motion of outer MTDs relative to the CPC. 
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Figure 3.8: Effect of nondimensional inter-filament RS stiffness, 𝑘̅𝑠, and nondimensional dynein force, 𝑝̅, on 

frequency. Plots of frequencies along the vertical green lines at 𝑝̅ = 150 and 𝑝̅ = 600 are shown below. (A) 

RS:NDRC (spoke:link) stiffness ratio 1:1. (B) Plot of frequency vs 𝑘̅𝑠 at 𝑝̅ = 150. (C) Plot of frequency vs 𝑘̅𝑠 at 

𝑝̅ = 500. (D) RS:NDRC stiffness ratio 103:1. White asterisks indicate points in parameter space with mode shapes 

shown in Fig. 7E-G. (E) Plot of frequency vs 𝑘̅𝑠 at 𝑝̅ = 150. (F) Plot of frequency vs 𝑘̅𝑠 at 𝑝̅ = 500. (G) RS:NDRC 

stiffness ratio 106:1. (H) Plot of frequency vs 𝑘̅𝑠 at 𝑝̅ = 150. (I) Plot of frequency vs 𝑘̅𝑠 at 𝑝̅ = 500 

 

3.3.3 Effect of inter-filament damping 

In addition to elastic coupling between filaments, internal viscous coupling is provided by 

cytoplasm and rate-dependent resistance of NDRC and RS structures. Though difficult to 

measure, these viscous properties may affect the stability and frequency of the system. 

Physically, internal damping can modulate the frequency and stability of the system. 

At RS:NDRC ratio 𝑘𝑠/𝑘𝐿= 103, and 𝑘̅𝑠 = 103, different behavior is observed again in the 

relationship of frequency to link damping, 𝑐𝐿̅, at different ranges of 𝑝̅ (Fig. 3.9). At lower values 

of 𝑝̅ (150), 𝑐𝐿̅ has little effect on the frequency, though frequency eventually decreases slightly as 

𝑐𝐿̅ becomes very large. At larger values of 𝑝̅ (500), 𝑐𝐿̅has a strong nonlinear, non-monotonic 

effect on of the system. Increasing 𝑐𝐿̅ from 10-4 initially drives the frequency up. In the higher 
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range of spoke stiffness (𝑘̅𝑠 = 106), increasing 𝑐𝐿̅ tends to strongly decrease the frequency of the 

system. 

 
Figure 3.9: Effect of nondimensional link damping, 𝑐𝐿̅ , and nondimensional dynein force, 𝑝̅, on frequency. 

Colormap indicates frequency. RS:NDRC ratio 𝑘𝑠/𝑘𝐿 = 103. Red line indicates stability boundary. Plots of 

frequencies along the vertical green lines at 𝑝̅ = 150 and 𝑝̅ = 600 are broken out below. (A) Stability plot for 𝑘̅𝑠 = 

103. (B) Plot of frequency vs 𝑐𝐿̅ at 𝑝̅ = 150. (C) Plot of frequency vs 𝑐𝐿̅ at 𝑝̅ = 500. (D) Stability plot for 𝑘̅𝑠 = 106. 

(E) Plot of frequency vs 𝑐𝐿̅ at 𝑝̅ = 150. (F) Plot of frequency vs 𝑐𝐿̅ at 𝑝̅ = 500. 

 

The effect of 𝑐𝐿̅ on stability is more straightforward in this regime as increasing damping 

monotonically increased stability (lowered the positive real part of the eigenvalue) at all values 

of 𝑝̅ for which the system was unstable. 
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3.3.4 Effect of dynein moment gain 

Increasing the dynein moment gain, 𝛾 (the effect of doublet separation on active bending 

moment), lowers the critical value of 𝑝̅ for instability (Fig. 3.10) and generally speeds growth of 

oscillations. However, the effect of moment gain on frequency is more pronounced. Decreasing 

moment gain from zero (so that active bending moment decreases with doublet spacing) 

increases frequency sharply, and higher values of 𝑝̅ increase the steepness of that slope. 

Likewise, raising moment gain from zero decreases frequency until it vanishes. To the right of 

the neutral stability isoline, this zero-frequency contour represents the border between 

oscillations and divergence (static instability). An animation of the dominant mode shape with 

𝑝̅ = 400, 𝛾 = −2 is shown in Supplemental Movie S3 [38]. 

 
Figure 3.10: Effect of moment gain, 𝛾, and nondimensional dynein force, 𝑝̅, on frequency. 𝑘̅𝑠 = 106, RS:NDRC ratio 

𝑘𝑠/𝑘𝐿= 103, 𝑐𝐿̅ = 1/20. The stability boundary is lowered by increasing the value of the moment gain as indicated by 

the red contour indicating the largest real eigenvalue part is zero. To the left of this line the axoneme is stable; to the 

right of this line the system is dynamically unstable (flutter) or divergent (buckling-type behavior). 
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3.3.5 Propagation velocity and wavelength of the dominant mode 

Propulsive beating patterns of cilia and flagella have a base-to-tip propagation direction [107]. 

The propagation rate is quantified in the current model by calculating the average gradient of the 

phase of the dominant complex eigenmode. The sign of this gradient gives the direction of 

propagation, and its magnitude provides propagation rate. The axial distance associated with a 2π 

difference in the phase is the spatial wavelength of the mode.  

All parameter combinations that led to oscillations also led to anterograde (base-to-tip) beating 

propagation. For the parameter values analyzed in Fig. 3.11, the wavelength of the mode shape 

varies between 6.4-50um, and propagation velocity ranges from 50-1350 um/s. These values 

overlap with values found in [26, 157, 158], where investigators obtained wavelengths of 10-

20μm in Chlamydomonas cilia and 20-30μm in sperm flagella.  The values of wavelength and 

frequency from these prior measurements correspond to a propagation velocity range of 500-

1200μm/s. 

 
Figure 3.11: (A) Wavelength, 𝜆, as a function of nondimensional spoke stiffness, 𝑘̅𝑠, and nondimensional dynein 

force, 𝑝̅. Mode shapes for points i, ii, and iii shown above. (B) Propagation velocity is calculated from the product of 

the wavelength and the beat frequency at each point in the parameter space 
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3.3.6 Out-of-plane beating  

While many cilia beat predominantly in a plane, other cilia, such as nodal cilia, have waveforms 

that are highly nonplanar [13, 159]. The dominant mode shapes obtained from the eigenvectors 

of the current model are predominantly planar, though they tend to lie in planes at a slight angle 

from the plane dividing the two active halves of the model (Fig. 3.12). These modes typically 

exhibit a small out-of-plane component, with less than 5% of the amplitude of the in-plane 

component (Fig. 3.12). At values of 𝑝̅ studied in this work, additional mode shapes become 

unstable and may contribute to the waveform. An example of such an out-of-plane mode shape is 

shown in Additional results section 3.6.2 (Fig. 3.14). Additionally, the axoneme undergoes 

torsion (rotation of the osculating plane) and twisting about its axis during beating [160]. These 

behaviors are illustrated in Additional results section 3.6.4 (Fig. 3.16). 

3.3.7 Comparison with time-domain simulations 

Time-domain simulations generate solutions by iteratively marching forward in time, updating 

the state of the model at discrete, consecutive time points. Simulations performed with parameter 

values near the stability boundary confirm that beating occurs as predicted by dominant 

eigenvalues and eigenvectors (Fig. 3.12). A small perturbation is applied to initiate departure 

from the straight equilibrium configuration. As predicted by the eigenvalue analysis, simulations 

in unstable regions of the parameter space exhibit growing oscillations (as determined from 

visualizations of the time-domain beating shapes and time-series plots of the tip displacements 

(Fig. 3.12D,E). 
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Figure 3.12: Comparison of behavior predicted by time-domain simulation and eigenanalysis with parameter values 

𝑘̅𝑠 = 106, 𝑅𝑆: 𝑁𝐷𝑅𝐶 = 103, 𝑝̅ = 150, 𝑐𝑁̅ =
1

200
. (A) Waveform predicted by time-domain simulation. (B) Non-

symmetric beat shapes predicted by time-domain simulation of oscillation superimposed on a curved configuration 

produced by an imbalanced moment. Animation shown in Supplemental Movie S4. (C) Waveform predicted from 

the unstable eigenmode.  (D-E) Time series of non-dimensional tip displacement corresponding to waveforms in 

panels (A,B). 

 

Asymmetric beat shapes  

It has been proposed that asymmetric beat shapes in multiciliate cells and organisms may arise 

from the superposition of a symmetric beat and an asymmetric curvature [45, 157]. In the current 

steady dynein force model of ciliary beating, asymmetric curvature could be caused by an 

imbalance in dynein forces on opposite sides of the beat plane, or alternatively, by an initial 

static (buckling) instability. Our eigenvalue analysis, which is based on a model linearized about 

the straight equilibrium, cannot capture the effects of large initial deformation due to either 

mechanism. This phenomenon can be seen in time-domain simulations, however. Adding a 

constant distributed moment to the steady dynein forces along the entire flagellum leads to the 

asymmetric beat patterns shown in Fig. 3.12B (Supplementary Movie S4)[38], which 

qualitatively resemble the waveforms observed in cilia of mammalian airways or 
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Chlamydomonas algae. This simulation produces a waveform with wavelength 17μm,  frequency 

17Hz, and dynamic amplitude 0.71 rad. The static curvature was -0.044 
rad

μm
 , as measured by the 

approach of Geyer et al. [157] with a 12μm cilium length and a moment imbalance 

corresponding to dynein force on one side of the axoneme approximately 5 times the force on the 

other side. While the results here are not intended to replicate any of the cases shown in [157], 

they are comparable to values observed for mutant (mbo2; curvature -0.04±0.01 
rad

μm
 and 

frequency 28±7Hz) and WT (curvature -0.24±0.02 and frequency 68±3Hz) axoneme waveforms 

in that study. 

3.4 Discussion 
Analysis of finite-element models of the ciliary axoneme, each consisting of coupled filaments 

under steady, unregulated dynein loading, reveal different types of behavior including wavelike 

oscillations.  In all examples shown, there exists a boundary between stability and dynamic 

instability of the straight equilibrium shape. This boundary is strongly affected by dynein force, 

length and flexural rigidity of the axoneme, but is also affected by parameters such as inter-

doublet elastic and viscous resistance, and the kinematics of dynein motors. While the oscillation 

frequency is not uniquely defined by the non-dimensional loading parameter 𝑝̅, values 

corresponding to a distributed dynein force of ~20-40 (pN/µm) gave realistic frequencies with 

reasonable estimates of other system parameters. 

Increasing RS and NDRC stiffness tends to increase stability and generally decreases oscillation 

frequency near the stability boundary, but the relationship between stiffness and frequency is 

nonlinear and non-monotonic. If the NDRCs are made much less stiff than the RSs (by a factor 

of 106), the system remains unstable for higher values of RS stiffness, as shown by the stability 
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boundaries in Fig. 3.9. While radial motion of outer filaments becomes constrained at high RS 

stiffness, circumferential motion of filaments remains relatively unrestricted. 

Inter-doublet damping provides a potential mechanism for the control of ciliary beat frequency.  

Near the stability boundary, adding damping to inter-filament links surprisingly increases 

instability in some ranges of parameter values. At larger values, inter-filament damping stabilizes 

the system. Likewise, near the stability boundary inter-filament damping lowers the beat 

frequency, but at higher values of 𝑝̅ the dependance is nonlinear and non-monotonic. This non-

monotonic behavior is difficult to explain, but may be related to the emergence and interaction of 

different unstable modes as parameters are varied (see section 3.6.3 in Additional Results). 

Beat propagation is anterograde (base-to-tip; Fig. 3.11B) in all cases analyzed here. This is likely 

due to the boundary conditions: motion is constrained at the base of the axoneme and free at the 

tip. While this behavior is consistent with most observations of ciliary beating, retrograde 

propagation has been reported under some conditions [161]. It is possible that changes to the 

boundary conditions and inter-filament coupling (i.e., adding compliance to the base and 

constraining relative motion of filaments at the tip) might lead to retrograde propagation. If and 

how this occurs could be a topic of future work. 

The current model of dynein arm kinematics reveals the potential influence of a parameter we 

denote as “moment gain”.  Positive values of the moment gain decrease frequency, increase 

instability, and can lead to divergence as a dominant mode of instability. Negative values of 

moment gain increase frequency, and slightly stabilize the system. Both positive and negative 

values of moment gain can be obtained using plausible dimensions in the dynein model. Small 

changes in baseline dynein geometry lead to qualitative differences in behavior, providing a 
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plausible mechanism to vary the beating of cilia and flagella. Mutations (sup-pf-1) affecting the 

dynein stalk can restore motility to central-pair deficient cilia and affect beating frequency [162].  

Axonemes lacking spokes or central pair likely have different passive properties and dynein 

kinematics from wild type axonemes, and it is plausible that suppressor mutations like sup-pf-1 

compensate for these differences. The behavior of paralyzed mutants and their suppressors 

clearly merits future investigation. Negative moment gain has similar effects to the “geometric 

clutch” described by Lindemann, although without actual modulation of dynein activity [43, 

163].  

The possibility of divergent (buckling-like) behavior deserves attention. In this small-

deformation model, divergence (monotonic growth without oscillation) may seem inconsistent 

with cilia behavior. However, eigenvalue analysis cannot predict the behavior of the fully 

nonlinear system. An axoneme that initially diverges from its straight equilibrium configuration 

may reach a new curved equilibrium, and undergo a secondary dynamic instability leading to 

limit cycle oscillation about that curved shape. This can only be studied in a model that 

rigorously accounts for large-deformations and is thus deferred to future work. 

Future work should include exploration of asymmetric beating patterns and non-planar beating. 

In the current steady dynein force model, asymmetry may arise from sustained imbalance 

between dynein activity on opposite sides of the axoneme. Time-domain simulations in the 

current model exhibit asymmetric beating similar to the asymmetric beating patterns of cilia in 

airway epithelia or Chlamydomonas algae. The controllability of this asymmetry offers a 

possible explanation for the presence or absence of static curvature in waveforms observed by 

Geyer et al. [157].  
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The current model also exhibits non-planar beating. All eigenmodes had some non-planar 

component, and some unstable modes were highly nonplanar, consistent with the helical motion 

of nodal cilia [13]. Complete exploration of this behavior will require nonlinear models, but such 

models can be guided by the current results. Finally, all parameters have been assumed constant 

along the axoneme. Future studies might explore the effects of longitudinal variations. 

This study confirms the general predictions of an earlier study that suggested steady dynein force 

can lead to wavelike oscillations in axonemes [32]. The current study addresses a key limitation 

of the previous model, in which dynein forces on opposing doublets did not exactly balance if 

doublets did not remain parallel. We note that even though the current model predicts that steady 

dynein activity is sufficient to drive ciliary oscillation, it does not rule out alternative 

mechanisms. Nevertheless, the current work strongly supports an important role for axial loading 

of doublets in ciliary beating. 

3.5 Conclusion 
This study confirms that steady dynein forces without active dynein regulation can lead to 

oscillatory beating in mathematical models of the axoneme with biologically plausible physical 

parameters. Predicted waveforms resemble those observed in cilia in terms of their physical 

shape, frequency, and direction of propagation. Eigenanalysis of discrete finite element models 

provides an efficient way to identify parameters that lead to cilia-like beating and to assess the 

effects of those parameters.  

Future directions include stability analysis of more realistic axoneme models, as well as 

extending the current models to capture larger deformations and more complicated behavior of 

dynein and passive structural components. 
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3.6 Additional results 

3.6.1 Assumptions about stiffness between active pairs  

In the manuscript, all results are based on the assumption that the passive elastic coupling 

between ‘non-active’ MTD pairs is ten times as stiff as the elastic coupling between active pairs, 

due to the assumed resistance of inactive dynein arms. However, this assumption is not necessary 

to produce oscillations by dynamic instability. In Fig. 3.13A, unstable oscillatory modes are 

shown over a wide range of spoke stiffness and dynein force values for the case where elastic 

stiffness is equal among all doublet couples. Representative mode shapes at high RS stiffness 

values (𝑘𝑠 = 106 pN/μm2) and the effect of moment gain on the mode shapes are shown in Fig. 

3.13B-E. 

 
Figure 3.13: (A) Oscillation frequency as a function of nondimensional dynein force 𝑝̅ and nondimensional spoke 

stiffness 𝑘̅𝑠. RS:NDRC stiffness ratio 103, link damping, 𝑐 ̅_𝐿 = 1/200. Here the coupling stiffness between each 

doublet pair is equal whether the pair is active or passive. The central yellow region (i) is a region of high frequency 

(>100Hz) oscillation. The blue region in the lower right (ii) denotes parameter combinations that lead to divergence. 

The two asterisks indicate the parameters for the mode shapes in (B-E). (B) Dominant mode shape at 𝑝̅ = 1500 

(p=63pN/μm), 𝑘̅𝑆 = 3 × 108(𝑘𝑠 = 106𝑝𝑁/(𝜇𝑚2)), geometric moment, 𝛾=0, 𝑓 = 2.7𝐻𝑧. (C) Mode shape with all 

parameters equal to those of (B), but with 𝛾 = −2. 𝑓 = 11.7𝐻𝑧. (D) Dominant mode shape at 𝑝̅ = 1700, 𝛾 = 0. 

𝑓 = 3.4𝐻𝑧. (E) Mode shape with all parameters equal to those of (D), but with 𝛾 = −2. 𝑓 = 14.6 𝐻𝑧. 
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3.6.2 3D Shapes 

Though planar oscillations have been the primary focus of the current work, 3-dimensional 

helical waveforms emerge when asymmetries such as the increased bending stiffness about the 

axis running between doublets 1 and 5-6, and the increased elastic coupling between inactive 

MTD pairs are removed. This is shown in Fig. 3.14 both in the most unstable mode and also in a 

higher but still unstable mode. 

 

 
Figure 3.14: Mode shapes with equal stiffness in x and y directions and equal elastic coupling between all doublet 

pairs.  𝑝̅ = 350, 𝑘̅ = 106, 𝑅𝑆: 𝑁𝐷𝑅𝐶 = 103, 𝛾 = −2, 𝑐𝐿̅ =
1

200
. (A) Mode 1 (mode with most positive real 

eigenvalue part). 𝑓 = 108𝐻𝑧 (B) Mode 5. 𝑓 = 20𝐻𝑧.  
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3.6.3 Emergence of unstable modes and frequency changes under parameter 

variations 

As control parameters such as 𝑝̅ are varied, additional unstable modes emerge as the real parts of 

the eigenvalues become positive (Fig. 3.15A,B). Nonmonotonic behavior of the modal 

frequencies with respect to 𝑝̅ is clearly seen in Fig. 3.15B. As additional unstable modes emerge 

and existing unstable modes become more unstable, the interactions of these modes affect how 

dynein motors add energy to the system, and how internal and external viscous resistances 

dissipate energy from the system. Though it is difficult to explain specific frequency changes, 

this type of behavior is common to variation of several system parameters such as link stiffness 

(Fig. 3.8) and damping (Fig. 3.9) that affect the coupling between interdoublet motion and 

axoneme bending. 

 
Figure 3.15: As the control parameter 𝑝̅ is increased, additional unstable modes emerge in the 7-filament system. 

𝑘̅ = 104, 𝑅𝑆: 𝑁𝐷𝑅𝐶 = 103, 𝑐𝐿̅ = 1/200, 𝛾 = 0.  The eigenvalues of the 16 modes with the largest real part are 

shown here. (A) Plot of the imaginary vs real components of the eigenvalues as 𝑝̅ is varied. Eigenvalues become 

unstable as they cross to the right of the 𝑟𝑒𝑎𝑙(𝜆) = 0 line. (B) Real eigenvalue parts are shown in blue with values 

on the left axis, imaginary parts are shown in red with labels on the right axis. Modes become unstable as the real 

part of the eigenvalue becomes positive. 
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3.6.4 Axonemal twist and torsion during beating 

As cilia beat, it has been observed that the axoneme undergoes twisting about its axis [44]. The 

torsion, or rate of change of the osculating plane [164], was measure in [160]. Plots of axonemal 

twist rate from the 7-filament model were obtained by averaging the change of angle in the 

transverse plane of each outer filament with respect to the reference configuration. The 

derivative of this angle with respect to arc length is the twist rate (Fig. 3.16). Symmetric beat 

shapes obtained by modal analysis are observed to have a pattern of twist and torsion that repeats 

with twice the frequency of bending (which has two mirror-image subintervals) (Fig. 

3.16A,B,C). Asymmetric beating in time-domain simulations has a pattern of twist and torsion 

with the same period as the beat stroke in the time domain study shown (Fig. 3.16D,E,F). These 

results invite comparison to the results of Mojiri et al. [160], although a thorough analysis of this 

behavior is beyond to scope of the current work and will be a subject of future investigation.  
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Figure 3.16: Axonemal twist rate and torsion of the ciliary shape in the 7-filament model. As filaments deform under 

beating, the cross sections undergo an average rotation. The change in this rotation with respect to axial position is 

the twist rate. Only the relative values are meaningful in these small deformation studies, hence the values are 

normalized by the maximum absolute value. Positive values indicate a ‘right-handed’ twist or torsion (like a screw 

thread), and negative values indicate ‘left-handed’ twist or torsion. Torsion indicates the rate of change of the 

osculating plane with respect to the axial distance. (A) Normalized twist rate as a function of normalized axial 

position (
𝑠

𝐿
; 0 at the base, 1 at the tip) from eigenvalue analysis. 𝑝̅ = 250, 𝑘̅ = 106, 𝑅𝑆: 𝑁𝐷𝑅𝐶 = 103, 𝑐𝐿̅ =

1

200
. (B) 

Normalized torsion as a function of normalized axial position for the same study as (A).  (C) Plot of tip displacement 

as a reference for (A,B). (D) Normalized twist rate from the time-domain simulation with unbalanced moment 

shown in Fig. 12B. (E) Normalized torsion for the study shown in (D). (F) Plot of tip displacement as a reference for 

(D,E). 
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3.6.5 Videos of mode shapes 

Animations are available online at https://doi.org/10.6084/m9.figshare.c.6060227.v4 [38] 

Animations are of the 7-filament system with parameters 𝑘̅𝑆 = 106, 𝑘̅𝐿 = 103, 𝑐𝐿̅ =
1

200
. All 

animations have been plotted by integrating the predicted tangent angle 𝜃(𝑠, 𝑡) (the mean of the 

tangent angles of the 7 individual filaments) along the cilium to obtain Cartesian coordinates 

according to 𝑥(𝑠, 𝑡) = ∫ cos 𝜃(𝜁, 𝑡) 𝑑𝜁
𝑠

0
, 𝑦(𝑠, 𝑡) = ∫ s n 𝜃(𝜁, 𝑡) 𝑑𝜁

𝑠

0
. This allows for a length 

preserving visualization of the small deformation predictions. 

Movie S1. Oscillations of least stable mode at 𝑝̅ = 150 (Fig. 7E) 

Movie S2. Oscillations of least stable mode at 𝑝̅ = 200 (Fig. 7F) 

Movie S3. Oscillations of least stable mode at 𝑝̅ = 400 with moment gain 𝛾 = −2. 

Movie S4. Time domain simulation of beating with moment imbalance (Fig. 3.12B) 

  

https://doi.org/10.6084/m9.figshare.c.6060227.v4
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Chapter 4: Basal bodies bend in response to ciliary 

forces1 

 
Anthony D. Junker1,&, Louis G. Woodhams2,&, Adam W. J. Soh1, Eileen T. O’Toole3, Philip V. Bayly2, Chad G. 

Pearson1 

1 Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 
2 Department of Mechanical Engineering and Material Science, Washington University in St. Louis, St. Louis, MO 
3 Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 
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Abstract 
Motile cilia beat in a coordinated fashion with neighboring cilia to generate fluid flow. Ciliary 

beating is produced by dynein microtubule (MT) motors that slide doublet MTs within the ciliary 

axoneme relative to each other to produce asymmetric ciliary bending patterns. Tetrahymena 

thermophila cilia undergo an asymmetric ciliary waveform consisting of a power stroke that 

generates a propulsive force and a recovery stroke that returns the cilium back to the start of this 

cycle. Cilia are anchored to the cell cortex by basal bodies (BBs) that are directly coupled to the 

ciliary doublet MTs. While forces from doublet MT sliding are transmitted to the cell via BBs, 

the transmission of ciliary forces through BBs is not well understood. Using a combination of 

genetics, live cell microscopy, EM tomography, and computational modeling, we find that, 

consistent with ciliary forces imposing directly on BBs, bending patterns in BB triplet MTs are 

responsive to the ciliary beating pattern. BB bending varies as environmental conditions change 

the ciliary waveform. The dominant site of BB bending is where striated fibers (SF) attach to BB 

triplet MTs. Mutants with short SFs that fail to make connections to adjacent BBs exhibit 

abnormal BB bending patterns supporting a model in which SFs couple ciliary forces between 

 
1 This chapter is reproduced in its entirety from the article of the same name [34] A. D. Junker, L. G. Woodhams, A. 

W. J. Soh, E. T. O'Tool, P. V. Bayly, and C. G. Pearson, "Basal bodies bend in response to ciliary forces," Current 

Biology, 2022 (in review). See section 1.5 Statement of contributions. 
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BBs. Finally, loss of the BB stability protein, Poc1, that helps link BB triplet MTs prevents the 

normal distributed BB bending patterns. Collectively, BBs experience ciliary forces and manage 

the mechanical coupling of these forces to their surrounding architecture in the cell. 

4.1 Introduction 
Ciliary beating is utilized by microorganisms and epithelia to move fluid for cell motility and the 

clearance and circulation of biological fluids [165, 166]. Motile cilia comprise axoneme 

scaffolds of nine doublet (A-B) microtubules (MTs) radially arranged around a central pair of 

singlet MTs. Doublet MTs slide and bend by the coordinated activities of axonemal dynein 

motors, nexin links, and radial spokes [167]. Concerted axonemal bending promotes an 

asymmetric waveform that drives directed fluid flow and exerts asymmetric mechanical forces to 

the cell.  

Computer models of ciliary and flagellar beating indicate that the ciliary forces needed to bend 

axonemes dominate over viscous drag forces generated by cilium-fluid interactions [168, 169]. 

Thus, the major forces acting upon cilia are created by the activities of cilia themselves. 

Axonemal dynein microtubule motors are anchored to A-tubules of the ciliary doublet MTs and 

the motor domain extends to the B-tubules of adjacent doublet MTs. Dynein activation slides 

doublet MTs relative to each other [31, 146, 147, 158, 170]. Doublet MT sliding is resisted by 

nexin links that connect adjacent doublet MTs, thereby promoting axonemal bending. Through 

concerted dynein activity and interconnection between the doublet MTs, axonemes produce 

asymmetric and cyclical bending patterns during ciliary beating. The cyclic axonemal trajectory 

consists of a power stroke, which generates directed fluid flow, and a recovery stroke, which 

resets the cycle back to the beginning. Several models propose that the asymmetric ciliary 

waveform is established by asymmetric dynein activation, which spatially and temporally 
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regulate doublet MT sliding along the axoneme [6, 31, 61, 171-173]. Each model uses dynein-

based doublet MT sliding of 25-100 nm to create and propagate ciliary waveforms [31, 171, 173, 

174]. The sliding control model hypothesizes that the mechanical properties of the axoneme base 

can modulate the forces that are transmitted along the axoneme [31, 173, 174]. Flagellar doublet 

sliding at the axoneme base, so called basal sliding, imposes mechanical forces on the outer 

dense fibers associated with the axoneme MTs and the connecting piece [173, 175]. The sperm 

base is predicted to resist doublet MT sliding for propagating axonemal bends [176]. Resistance 

to basal sliding through variance in asymmetric elastic compliance and deformation of the 

connecting piece or basal region modulates flagellar beating [5, 31, 171, 173, 175, 177]. Less is 

understood about how basal sliding forces in cilia at the cell cortex impacts the canonical basal 

body (BB) structure. It is suggested that the BB at the ciliary base may experience and resist 

ciliary forces [173, 178]. How axonemal forces are transmitted, resisted, and regulated at the 

ciliary base remains poorly understood. 

Cilia are anchored to promote the transmission of axonemal forces to the cell for both cell 

motility and epithelial fluid flow. Motile cilia are nucleated, positioned, and anchored to the cell 

cortex by BBs. BBs comprise nine triplet MTs (A-B-C) where the A-B tubules of BBs are 

continuous with the axoneme’s A-B tubules. The cartwheel (CW) at the BB proximal end 

comprises a central hub and spokes that connect to the proximal end of the BB triplet MTs. The 

CW is important for new BB assembly. Moreover, Bld10, a protein that establishes CW-triplet 

MT connections is required to stabilize BBs against ciliary forces [179, 180]. The nine BB triplet 

MTs are linked to each other by connections with neighboring triplet MTs (A-C linkers and the 

helical inner scaffold) [181-183]. Poc1 is a helical inner scaffold protein and loss of Poc1 

disrupts A-C linker positioning and spacing [181-183]. Loss of Poc1 also causes ciliary beating-
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dependent BB instability and the asymmetric disassembly of specific triplet MTs relative to the 

axis of the ciliary power stroke [181, 184]. This suggests that the asymmetric forces produced by 

beating cilia are resisted by BBs. Consistent with this, both BB proteins and MT post-translation 

modifications that stabilize BBs localize asymmetrically to BBs relative to the direction of the 

power stroke [180, 185, 186]. BBs are considered structurally rigid because of the many linkages 

within the BB ultrastructure (triplet MTs, CW, helical inner scaffold, A-C linkers), the presence 

of stabilizing MT post-translation modifications, and the lack of ciliary dynein [7, 187]. 

However, sperm that lack conserved BBs structures (CWs and A-C linkers), deform at the 

connecting piece, and produce sperm head translocations during flagellar beating [124, 173, 

188]. This is consistent with axonemal basal sliding force transmission to the sperm head [171, 

173, 188, 189]. While BBs are responsive and stabilized against ciliary forces and suggested to 

deform [178], it is still unclear how asymmetric forces from cilia are transmitted to BBs and how 

the conserved BB structures respond to ciliary forces. 

Cilia and BBs are attached to the surrounding cortical cytoskeleton and plasma membrane by 

BB-appendage structures [3, 190-197]. These structures help establish and maintain the 

positioning of BBs and motile cilia. Moreover, BB-appendage structures and the surrounding 

cytoskeletal network resist the ciliary forces and / or shear forces from ciliary beating and fluid 

movement [3, 195, 198, 199]. T. thermophila BBs possess three BB-appendage structures – two 

MT bundles facing the cell posterior and right (when viewed from above) of the BB, and one 

striated fiber (SF) facing the cell anterior [200]. While all BB-appendages appear to be important 

for BB organization, SFs elongate in response to elevated ciliary forces and gain attachments to 

the cell cortical cytoskeleton [191, 201]. This was suggested to further anchor BBs to resist the 

elevated ciliary forces. Moreover, mammalian and C. elegans rootlet structures, analogous to 
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Tetrahymena SFs, are required for ciliary base stability [202, 203]. When the Tetrahymena SF 

length is reduced, BBs and cilia disorganize in a ciliary force-dependent manner [191, 201, 204]. 

SFs maintain BB organization by contacting anteriorly positioned BBs and the cortical 

cytoskeleton [191]. Interconnections between neighboring BBs through their SFs are thought to 

regulate ciliary beating through intracellular coupling [191, 205]. Thus, SFs are responsive to 

forces from cilia. The inherent asymmetries within T. thermophila ciliary units (cilium, BB, and 

BB-appendages) and the asymmetry of their beat stroke would suggest they establish 

mechanisms for transmitting and resisting asymmetric mechanical forces from cilia to the BB 

and cell cortex.  

Cilia, BBs, and BB-appendages experience mechanical forces produced by motile cilia. We 

show that the triplet MTs of BBs bend coincident with cilia bending during the beat stroke. BB 

bending is focused to the triplet MTs adjacent to the SF connection. Environmental temperature 

alters BB bending patterns coincident with changes to the ciliary waveform and SF connectivity 

to neighboring BBs and the cell cortex. BB bending is no longer focused on the SF connection 

when SF length and inter-BB connections are reduced. Furthermore, the BB stability protein, 

Poc1, helps propagate normal bending patterns through the BB. This suggests that BBs 

physically transmit forces from beating cilia into the cell and that the structural properties of BBs 

and BB-appendages chaperone force transmission. 
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4.2 Results 

4.2.1 Basal bodies bend during ciliary beating 

Axonemal doublet MTs are continuous with the A-B MTs of BBs, providing a direct link 

between ciliary sliding forces and BBs (Appendix C: Fig. C1A; [178]). To test whether forces 

produced by axonemal dynein sliding affect the canonical BB architecture, swimming T. 

thermophila cells were fixed using high pressure freezing and freeze substitution (HPF-FS) to 

catch beating cilia and BBs in their dynamic states. Thin section EM images and 3D EM 

tomography of BBs were visualized relative to cilia at different positions in their beat stroke. 

Both methods show BB triplet MTs bend in response to ciliary beating while unciliated BBs do 

not bend (Figs. 4.1 and C1B; [200, 206]). The BB MTs’ bend is concave relative to the cell 

anterior at the beginning of the power stroke (negative curvature) and convex at the end of the 

power stroke (positive curvature). At the midpoint of the ciliary power stroke, when doublet MTs 

are not displaced relative to their neighbors, BBs are straighter. Consistent with BB bending as a 

direct response to ciliary beating, the magnitude of BB bending corresponds with that of the 

bending cilium (Fig. 4.1B). The primary site of BB bending is near the junction connecting BBs 

to the SF (Fig. 4.1C). SFs are oriented towards the cell’s anterior, opposite to the direction of the 

ciliary power stroke. Thus, BB bending is asymmetric and maximal at the site of BB connection 

to the SF that anchors BBs to neighboring BBs and to the cell cortex. SFs may therefore transmit 

the asymmetric forces produced by cilia into the cell cortex. 
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Figure 4.1: Basal bodies bend consistent with ciliary bending. (A) Thin (80 nm) section EM images of T. 

thermophila BBs show triplet MT bending. Unciliated BB triplet MTs are straight. Conversely, in ciliated BBs the 

bending in the BB’s triplet MTs corresponds to the direction of the ciliary bending. Scale bar, 200 nm. n=37 BBs. 

(B) Increased cilia bending correlates with increased BB bending (p=0.013, R2=0.16). Measurements were taken 

from thin section EM images. BB bending (y-axis) is defined as the average angle formed by three points (BB 

proximal and distal ends and the BB mid-point) of BB MT walls. Cilia bending (x-axis) is defined as the angle 

formed by three points (the cilium proximal end, 750 nm up the cilium, and a central point in between; Fig. S1E). 

Data are represented as dots on an x-y plot. n=37 BBs. (C) Representative image of a bent BB and cilium at the end 

of the power stroke acquired by 3D EM tomography. Left image displays cilium, BB, and SF. Middle image is a 

single slice view of a model overlay of the BB triplet MTs (red) and SF (green) constructed using 3D modeling. 

Right image displays a single slice view without the model. White arrow denotes a bending triplet MT. Scale bar, 

200 nm. 

 

4.2.2 Patterns of isolated triplet MT curvature relative to cilia position in the 

beat stroke 

The ciliary beat stroke of T. thermophila consists of a power stroke moving in the anterior to 

posterior direction and then a counterclockwise recovery stroke in which the cilium travels 

parallel to the cell surface in preparation for the next power stroke (viewed from above the cell; 

[207]). The power stroke produces directed fluid movement for motility. The bending of BBs 
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relative to the ciliary power stroke at 37°C was analyzed to test when, during the ciliary power 

stroke, forces are transmitted to specific triplet MTs within BBs. BB curvature was quantified 

relative to the cilium’s position. EM sections of tomograms were scanned to identify ciliated 

BBs in the medial region of unobstructed cells. For each condition, 50-100 BBs were screened in 

10-20 cells. Only BBs in the beginning, middle or end of the power stroke were analyzed. Where 

tomograms were acquired, BB triplet MTs were modeled in 3-dimensions, and their maximum 

curvature was quantified (Figs. 4.2 and C2). BB bending differs in amplitude and location 

depending on the cilium’s position in the power stroke. At the power stroke beginning (0-60°), 

BBs bend in the same direction as their cilium (Figs. 4.2A and C2). The bending is negative 

(concave curvature relative to cell’s anterior-posterior axes) within the triplet MTs and is greatest 

(max=3.6 rad/µm) at triplet MTs 5 and 6. Triplet MTs 5-6 connect to the SF and the observed 

bending in these triplet MTs occurs just above the SF attachment. In the middle of the power 

stroke (61-120°), when the cilium is relatively straight, BBs display less curvature. The curvature 

is positive (convex curvature relative to the cell’s anterior-posterior axes) and distributed around 

the medial region of the triplet MTs. At the end of the power stroke (121-180°), the cilium is 

pointed towards the cell’s posterior and the BB bends in the same direction. The positive bending 

is again focused on the anterior triplet MTs 5-6 (max=2.5 rad/µm) adjacent to the SF. At the 

beginning of the recovery stroke or end of the power stroke, BBs bending is focused on anterior 

triplet MT 6 (max=3.3 rad/µm). Thus, the individual BB triplet MTs bend with distinct patterns 

relative to the ciliary position in the power stroke. This bending pattern is focused 

asymmetrically to triplet MTs 5 and 6 that attach to the SF. 
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Figure 4.2: Basal body bending is consistent with its ciliary position in the beat stroke. (A) BBs display different 

bending patterns at distinct positions in the beat stroke. Left panels are 8.6 nm max-projected images of EM 

tomograms. Scale bar, 200 nm. The three middle panels are model views (side view, internal slice view, and top 

view) of BB triplet MTs from the corresponding BBs in the EM tomogram. Colors indicate curvature of the modeled 

triplet MTs where “cold” colors (purple-blue) indicate low curvature and “warm” colors indicate high curvature 

(red-magenta) (range= 0.3 to 3 rad/µm). Right two panels show graphs of the BB proximal to distal axis (left) and 

normalized maximum BB curvature for each triplet MT (right). The maximum value for each bin (1/10th the length 
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of the BB) along the BB proximal-distal axis is normalized by subtracting the lowest maximum value of all bins in 

each BB. The graph represents the means and standard deviations of these normalized maximum values for each 

proximal to distal bin (left) or each triplet MT (right). n=8 tomograms, 5 BBs analyzed. (B) BB bending depending 

on the cilium’s position along the power stroke. The left heatmap quantifies the change in bending between the 

beginning and middle of the power stroke. BB bending becomes more positive in the middle of triplet MT 5 

(indicated by black boxes: p=>0.05, >75% greatest difference from other bins). The middle heatmap quantifies the 

change in BB bending between the beginning-middle and middle-end phases of the power stroke. BB bending 

changes are most prominent at the base of triplet MT 5 where bending becomes more positive (p=>0.05, >75% 

greatest difference from other bins). The right heatmap indicates the changes in BB bending between the end of the 

power stroke and the beginning of the recovery stroke. Prominent BB bending is observed at the base of triplet MTs 

6-8 where bending becomes more positive (indicated by black boxes; p=>0.05; >75% greatest difference from other 

bins). The blue and red colors indicate the negative and positive direction of curvature relative to the cell’s anterior-

posterior axis and the axis of the ciliary power stroke (range= -4 to +4 rad/µm). (C) Average BB bending is greatest 

at triplet MTs 5-6. Heatmap indicates the average of normalized maximum curvature values from the four BBs in 

Fig. 2A. Purple indicates negative bending and orange indicates positive bending (range= -1.5 to +1.5 rad/µm). The 

presence of the greatest positive and negative bending in triplet MTs 5-6 indicates that these triplet MTs experience 

the greatest structural deformations during the ciliary beat stroke. (D) The greatest standard deviation to BB bending 

occurs in the middle and at the base of triplet MTs 4-6. Heatmap indicates the standard deviation in the normalized 

maximum curvature values from the four BBs in Fig. 2A. Black indicates low standard deviation and magenta 

indicates high standard deviation (range= 0 to 1.5 rad/µm). The presence of the greatest standard deviation in 

bending at triplet MTs 5-6 indicates that these triplet MTs experience the greatest structural deformations during 

these events of the ciliary beat stroke. (E) Schematic models represent cilia and BBs through the power stroke 

(Beginning, Middle, and End) and the onset of the recovery stroke. 

 

To understand the dynamic BB changes, BB bending during the ciliary power stroke was 

quantified and differences were visualized as heatmaps depicting each triplet MT along the BB 

axis. Each model analyzed for this dynamic distribution of bending is based on a single BB. 

Between the beginning and middle of the power stroke, the primary curvature change is in the 

middle-anterior region of the BB that switches from a negative bending direction to a positive 

one (Figs. 4.2A-B and C2). Between the middle and end of the power stroke the positive 

curvature moves downward to the proximal end of triplet MT 5. Between the end of the power 

stroke and the beginning of the recovery stroke, the positive curvature shifts to triplet MTs 6-8. 

When BB bending patterns from all four BBs shown in Fig. 4.2A are combined and averaged for 

each bin, the greatest curvature occurs in the medial (negative curvature) and basal (positive 

curvature) regions of triplet MTs 5-6 (Fig. 4.2C). The standard deviation of the described 

maximum curvature indicates which regions of the BB undergo the greatest changes during the 
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ciliary beat stroke. The greatest standard deviation occurs in the medial and proximal regions of 

triplet MTs 4-6 (Fig.4.2D). These regions therefore undergo the most physical deformation in 

triplet MT bending. We posit that these regions must be stabilized to maintain the structural 

integrity of BBs. Overall, this supports a model for BBs experiencing and absorbing mechanical 

forces through triplet MT bending (Fig. 4.2E). Furthermore, prominent BB bending is adjacent to 

the SF (triplet MTs 5-6) and the transverse MTs (triplet MT 4), supporting a model in which SFs 

and the transverse MTs also experience ciliary forces from BBs and transmit them to 

neighboring BBs and the cell cortex. 

4.2.3 Computer simulation of BB bending in response to ciliary beating 

We next tested whether the BB bending patterns observed in our 3D EM tomography studies 

would be recapitulated in a computational model of ciliary beating that includes the BB. A 

computational (finite-element) model of the cilium, BB, SF, BB-appendage MTs, and cell cortex 

was generated in the commercial simulation software COMSOL Multiphysics (COMSOL 

Multiphysics® v. 5.6. www.comsol.com. COMSOL AB, Stockholm, Sweden.) using the Beam 

interface within the Structural Mechanics module (Figs. 4.3A and C3). All MT filaments 

including axonemal doublet MTs and BB triplet MTs are modeled as slender (Euler-Bernoulli) 

beams. The central pair MTs are modeled as a single beam with a preferential bending direction. 

Viscous drag is applied using resistive force coefficients [8, 107]. This model uses asymmetric 

activation of dynein on one side of the axoneme (doublet MTs 5-9) to model the power stroke. 

Radial spokes in this model are flexible enough to allow sliding between doublets and central 

pair, but do not support sliding at their attachment points. To avoid undesired structural 

nonlinearities and ensure convergence of the simulation, relative sliding between adjacent 

doublet MTs was limited by reducing the maximum distributed dynein force to 125 pN/μm; 
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deformations were scaled to account for effects of larger forces (see Methods). This analysis 

predicts a maximum sliding amplitude at the tip between doublet MTs 6 and 7 of 151 nm (Table 

3). At the base of the cilium, maximum sliding amplitudes of ~25 nm occurred between doublet 

MTs 2 and 3. While a rigorous comparison of these sliding amplitudes to experimental data is 

beyond the scope of the current work, these results show that inter-filament sliding occurs in the 

model at amplitudes comparable to experimental measures. Further computational model details 

are provided in the Methods. 
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Figure 4.3:  Computer model of BB bending relative to ciliary bending. (A) Computational model depicting the 

cilium, BB, SF, and BB-appendage MTs at the beginning, middle, and end of the power stroke. The model was used 

to determine the parameters required to simulate BB bending in Fig. 3B-C. Scale bar, 200 nm. (B) Computational 

modeling can replicate the BB bending profiles that are observed in the EM tomograms. Focused bending occurs at 

triplet MTs 5-6. The three left panels are model views (side view, internal slice, and top view) of BB triplet MTs 

from computational models. Colors indicate curvature of the modeled triplet MTs where cold colors (purple-blue) 
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indicate low curvature and warm colors indicate high curvature (red-magenta) (range = 0 to 0.95 rad/µm). Right two 

panels are graphs showing BB curvature for the BB proximal to distal axis (left) or for each triplet MT (right). Scale 

bar, 200 nm. (C) BB bending direction changes with ciliary position in the power stroke. The left heatmap quantifies 

the curvature difference in BB bending between the beginning-middle and middle-end phases of the ciliary beat 

stroke. BB bending becomes more positive in the middle of triplet MTs 1-2 and middle/top of 5-6 (indicated by 

black boxes: >75% greatest difference from other bins). The right heatmap quantifies the difference in BB bending 

between middle and end of ciliary beat stroke. BB bending becomes more positive in the middle of triplet MT 6 

(indicated by black boxes: >75% highest difference from other bins). The blue and red colors indicate the direction 

of curvature relative to the cell’s anterior-posterior axis (axis of the ciliary power stroke). Blue and red indicate 

negative or positive bending (range= -0.6 to +0.6 rad/µm). (D) The largest standard deviation to BB curvature 

occurs at triplet MTs 5-6. The heatmap indicates the standard deviation in the maximum curvature values from 

computer modeled BBs at the beginning, middle and end of the power stroke. Black indicates low standard deviation 

while magenta indicates high standard deviation (range= 0 to 0.6 rad/µm). The presence of the highest standard 

deviation in bending at triplet MTs 5-6 indicates that these triplet MTs experience the greatest structural 

deformations during the power stroke. 

 

The BB is anchored to the cell cortex by several attachments: (1) the distal end of the BB is 

linked to the cortex, (2) post ciliary MTs link the proximal end of BB triplet MT 9 to the cell 

cortex, (3) transverse MTs link the proximal end of BB triplet MT 4 to the cell cortex, and (4) 

the SF links triplet MTs 5 and 6 to the cell cortex. All of these structures are required for BB 

anchorage to resist ciliary forces (Movies 1-8). Detachment of the SF from the cell cortex in the 

model led to a 6-fold increase in BB front-to-back rocking (periodic rotation in the direction of 

the predicted cell anterior-posterior axis) and an 11-fold increase in side-to-side rocking, as well 

as an average 25% reduction to maximum BB bending in triplet MTs 5 and 6 (Table C4). 

However, removal of the SF attachment places additional burden on the remaining accessory 

structures and the triplet MTs they are attached to. Maximum bending in triplet MT 4 increased 

by 30% and maximum bending in triplet MT 9 increased by 85%. Detachment of the post-ciliary 

MTs at the cell cortex led to a complex rocking motion with a 3-fold increase in BB front-to-

back rocking and a 5-fold increase in side-to-side rocking, as well as an average 10% increase in 

maximum bending in triplet MTs 5 and 6. Detachment of the transverse MTs at the cell cortex 

led to no significant increase in the amplitude of front-to-back rocking, but a 6-fold increase in 

side-to-side rocking. Maximum curvature in triplet MT 9 increased 18% at the end of the cycle.  
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In all cases, removing one of the three BB anchoring structures led to increased bending and 

twisting in the remaining two. These three structures are analogous to a three-legged stool, as the 

loss of any one component leads to increases in rocking about the axis defined by the remaining 

two cortical attachments. Baseline rocking measurements in the computational model (measured 

at the BB base) show maximum amplitude of 6.8 degrees of front-to-back rocking and 6 degrees 

of side-to-side rocking. This equates to a predicted displacement of 59 nm. All rocking data are 

given as the angle swept by a vector tangent to the proximal end of the BB. Experimental 

rocking data are difficult to obtain due to the lack of a consistent reference against which to 

measure BB angles. 

Consistent with the experimental results in Fig. 4.2, the BB bends coincident with the cilium’s 

position in the beat cycle (Fig. 4.3A-B; Movies 1-2). At the beginning of the power stroke the 

BB bends negatively, in the middle it is relatively straight, and at the end bending is positive 

(Fig. 4.3B). At both the beginning and the end of the power stroke the bending is focused to the 

medial region of triplet MTs 5-6, adjacent to the SF (Fig. C3). The predominant differences 

between the beginning, middle, and end of the power strokes are also focused on triplet MTs 5-6 

(Fig. 4.3C). This is evident by the highest standard deviation of BB curvature at triplet MTs 5-6 

(Fig. 4.3D). The BB bending direction and the focus of bending to triplet MTs 5-6 is consistent 

with the experimental EM tomography data (Fig. 4.2). The principal difference between BBs in 

the computational model compared to experimental EM tomograms is in the degree to which BB 

bending is focused at triplet MTs 5-6 at the BB-SF interface. BB bending at triplet MTs 5-6 in 

the EM tomograms is elevated and less distributed across the other triplet MTs when compared 

to the computational model (Figs. 4.2 and 4.3). This suggests that additional BB structural 

elements and/or events may be required in the model. For example, the SF may exert additional 
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forces to the BB absent from this model or the helical inner scaffold, missing from this model, 

may be important to create the deformed shape (see below). Differences may also result from the 

limited bending amplitudes the current computational model can achieve. Despite these 

differences, the computational simulation supports our hypothesis that axoneme sliding forces 

can produce the bending patterns in BBs found in our EM tomography. Moreover, this bending 

is focused to the site of connection between BB triplet MTs 5 and 6 and the SF. 

4.2.4 Environmental temperature reverses the direction of BB bending 

Ciliary forces can be reduced by decreasing the environmental temperature of culture conditions 

that also reduce cell motility rates [201, 208]. To test whether altered ciliary forces change BB 

bending, we reduced the cellular growth temperature from 37°C to 30°C. Surprisingly, BBs at 

30°C have a greater maximum curvature across triplet MTs when compared to 37°C (2.8-fold 

increase; Fig. 4.4A-B). Moreover, the direction of BB curvature at the end of the power stroke is 

reversed at 30°C (negative) compared to 37°C (positive). At 30°C, BB bending is focused to the 

medial region of the BB as opposed to the proximal end at 37°C (Fig. 4.4A-B). The greater 

overall BB bending at 30°C is accompanied by a distribution of the bending to triplet MTs 

around the entire BB (Figs. 4.4A-B, C2A, and C4A). However, focused bending on triplet MTs 

5-6 still occurs just above the BB’s attachment to the SF (Fig. 4.4A). These results remain 

consistent across multiple BBs at different phases of the ciliary beat stroke (Figs. 4.4A, C2, and 

C4). Thus, the distribution and the directionality of BB curvature changes when ciliary forces are 

reduced with decreased temperature and asymmetric forces are more equally distributed across 

triplet MTs. 



97 

 

 
Figure 4.4: Changes in temperature impact BB bending patterns and ciliary waveform. (A) The direction of BB 

bending at the end of the power stroke changes at 30°C. Left panels are 8.6 nm max-projected images of EM 

tomograms. Scale bar, 200 nm. The two middle panels are model views (side view and top view) of BB triplet MTs 

from corresponding BBs in EM tomogram. White arrows indicate regions with high curvature. Colors indicate 

curvature of the modeled triplet MTs where cold colors (purple-blue) indicate low curvature and warm colors 

indicate high curvature (red-magenta) (range= 0.3 to 3 rad/µm). Right two panels are graphs showing BB curvature 

for the BB proximal to distal axis (left) or for each triplet MT (right). The maximum value for each bin (1/10 th the 

length of the BB) along the BB proximal-distal axis is normalized by subtracting the lowest maximum value of all 

bins in each BB. The graph represents the means and standard deviations of these normalized maximum values for 

each proximal to distal bin (left graph) or for each triplet MT (right graph) n= 15 tomograms, 9 BBs analyzed. (B) 

Heatmaps show the difference in curvature directionality and location when comparing 37°C and 30°C BBs at the 

end of the power stroke. The left heatmap shows 37°C BB curvature. The middle heatmap shows 30°C BB 

curvature. The right heatmap, quantifies the difference between triplet MT bending between 37°C and 30°C. The 
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greatest difference between 37°C and 30°C BB curvature is in the medial region of the BB at triplet MTs 2-5 and 7 

(indicated by black boxes: p=>0.05, >75% highest difference from other bins). The blue and red colors indicate the 

direction of curvature relative to the cell’s anterior-posterior axis (axis of the ciliary power stroke). Blue indicates 

negative bending which is towards the cell anterior. Red indicates positive bending which is towards the cell 

posterior (range= -3.3 to +3.3 rad/µm). Schematic model on the right represents differences at the end of the ciliary 

power stroke between 37°C and 30°C. (C) Cilia at 30°C compared to 37°C display more curvature at the proximal 

region of the cilium at the end of the power stroke. The curvature of cilia in EM tomograms is represented by traces 

along the anterior wall of the BB and cilium. Colors indicate the relative position of the cilium in the power stroke, 

beginning (cyan), middle (green), end (orange), and beginning of the recovery stroke (red). Traces include the BB 

and approximately the proximal 1 µm of the cilium depending on their orientation within the tomogram. (D) Cilia at 

30°C display more curvature than cilia at 37°C throughout the power stroke. Average ciliary curvature is displayed 

as colored lines. Colors indicate the relative position of the cilium in the beginning (cyan), middle (green), and end 

(orange) of the power stroke. Heatmaps of cilia curvature show that 30°C cilia curvature is greatest in the proximal 

regions of cilia at the beginning and end of the power stroke. The blue and red colors indicate the direction of cilium 

curvature relative to the cell’s anterior-posterior axis (axis of the ciliary power stroke). Blue indicates negative 

bending which is towards the cell anterior. Red indicates positive bending which is towards the cell posterior 

(range= -0.5 to +0.5 rad/µm). (E) Computer simulated BB bending can recapitulate negative bending and ciliary 

waveform through the addition of a posteriorly-oriented force on the SF attachment and an anteriorly-oriented force 

on the cortex attachment resulting in a 60 nm relative displacement along the anterior-posterior axis. This model 

mimics forces from coupled BBs, both anterior and posterior, and from forces transmitted through the SF from 

neighboring cilia. The resulting shear and rotation of the BB reorient the cilium at its base with respect to the 37°C 

model (hence the clockwise rotation of the 30°C cilium in the figure). 

 

Because BB bending was increased and in the opposite direction when ciliary forces were 

reduced by lowering the temperature, we asked whether the ciliary waveform was different 

between these conditions. Using live cell differential interference contrast (DIC) microscopy at 

high frame rates, we visualized ciliary beating of immobilized T. thermophila cells at different 

environmental temperatures. Immobilization of T. thermophila cells was performed via a 

magnetism-based approach [36]. Consistent with an elevated T. thermophila swim speed at 

higher temperatures, the cilium beat frequency (CBF) at 37°C was elevated by approximately 

10% as compared to 30°C. Quantification of cilia curvature revealed that the ciliary waveform 

changes when T. thermophila cells are cultured at 30°C compared to 37°C (Fig. 4.4C-D). At 

30°C, the magnitude of cilia bending increases. The increased bending is most prominent at the 

proximal end of the cilium (closest to the BB) at the beginning and end of the power stroke. 

Therefore, bending patterns of BBs and their cilia are altered based on the cell’s environmental 

response to temperature.  
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That BB bending and cilia waveform change when temperatures are lowered was unexpected. To 

gain insight into how this may occur, computational models were utilized to determine the 

conditions that recapitulate similar BB bending patterns. The WT power stroke at 30°C exhibits 

a greater degree of ‘counterbend’ (a reversal of the ciliary curvature at the distal end of the 

cilium) as compared to the 37°C power stroke (Fig. 4.4C-D). To test whether the cause of the 

ciliary counterbend could also be responsible for the reversal of curvature in the BB at 30°C, we 

created counterbend in the cilium by two different methods. The dynein activation model relies 

on asymmetric activation of dynein on one side of the axoneme. First, the dynein activation 

model was altered by replacing the longitudinally uniform, temporally varying activation pattern 

with a sinusoidal spatial activation pattern (with an amplitude 250 pN/μm and wavelength 7.5 

nm) that propagates distally to create the beat stroke. While this change did create a counterbend 

in the cilium, it did not reverse the bending of the BB. Second, an increased shear stiffness was 

applied at the distal end of the cilium by stiffening the distal array of radial spokes to the 

stiffness of the doublets. This created a counterbend in the cilium and reduced the overall beating 

amplitude but did not reverse bending in the BB. None of the tested manipulations of the 

axoneme produced BB bending consistent with the negative BB bending observed at the end of 

the power stroke in our experimental results. This suggests that the changes to the ciliary 

waveform are not responsible for the changes to the BB bending pattern that we observe at 30°C. 

SFs are shorter and have fewer cortical cytoskeleton attachments when cells are grown at 30°C 

compared to 37°C [191, 201]. The mechanical and structural properties of SFs therefore change 

at lower temperatures. We hypothesized that force transmission (from neighboring BBs) through 

the SF onto the BB could produce the bending patterns observed in the EM tomography. To test 

this in the computational model, a translational force was exerted on the distal end of the SF such 
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that it would transmit into the BB (Fig. 4.4E and Movies 9-10). This represents the force created 

by the SF connection to the pcMTs of the anterior BB and its surrounding cell cortex [191, 206]. 

A force in the opposite direction was applied to the BB distal end attached to the cell cortex, 

representing force transmitted from the posterior BB SF to the pcMTs. Adjacent Tetrahymena 

cilia in the cell medial region beat with a temporal delay, whereby the posteriorly positioned 

cilium is approximately 3 msec ahead in its beat cycle [36]. To account for this temporal delay, 

the applied forces were coordinated with the ciliary beat cycle. Thus, the force that is exerted by 

the anterior BB is a function of its cilium’s position during the power stroke, which is 3 msec 

behind in its beat cycle relative to its posterior cilium neighbor. The combination of these forces 

resulted in a 60 nm relative translation of the distal end of the BB to the proximal end during the 

power stroke (Fig. 4.4E). A force amplitude of 900 pN (estimated 3600 pN at large deformation) 

was required to create the BB counterbend that has a comparable magnitude to those observed in 

EM tomography results. This magnitude is comparable to the total shear force produced between 

two adjacent doublet MTs if all the dynein arms generate ~2 pN each. 

Indeed, imposing this change to the SF forces produced a negative bending pattern of the BB 

similar to that observed by EM tomography (Fig. 4.4E). Furthermore, forces transmitted from 

SFs into BBs created a counterbend at the ciliary base suggesting it is possible for intracellular 

SF forces to alter ciliary power strokes by BB bending and force transmission to the cilium (Fig. 

4.4E). This suggests a model in which changes to BB bending upon environmental temperature 

change occurs through altered force transmission by SFs. While much remains to be understood 

about these forces, they may be responsible for propagating mechanical coupling of neighboring 

BBs and impacting the ciliary waveform. These results highlight the importance of SFs in 

promoting cilia and BB dynamics. 
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4.2.5 SFs focus BB bending to triplet MTs 5 and 6 

BB bending concentrates at the site of connection between BBs and SFs suggesting that SFs are 

a focal point where ciliary forces are imposed upon BBs. To test if SFs are responsible for 

focused BB bending through their attachments to neighboring BBs, we quantified BB bending in 

a T. thermophila genetic mutant with short SFs that lose connections with neighboring BBs 

(disA-1; [191, 201, 204]). BB bending was compared between WT and disA-1 cells at 30°C with 

cilia at matching positions at the end of the power stroke. Unlike WT BBs, disA-1 BBs had 

increased levels of triplet MT curvature in both positive and negative directions within the same 

BB (Fig. 4.5). This bending or buckling is distributed throughout BBs without focused bending 

at triplet MTs 5-6, as observed in WT BBs (Figs. 4.5 and C5). BB bending is observed at other 

triplet MTs (e.g., triplet MT 4) that are not connected to SFs but are linked to the transverse MTs 

(Figs. 4.5B and C5A-B). Additionally, WT BBs at 30°C bend primarily in the BB’s medial 

region while disA-1 BBs bend throughout the BB length (Fig. 4.5A-B). Thus, SF length or 

connectivity to neighboring BBs and the cell cortex is important for focused bending of the 

medial region of BB triplet MTs 5-6 that normally connect to SFs. 
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Figure 4.5: SFs focus bending to specific BB regions. (A) The direction and locations of BB bending at the end of 

the power stroke change in disA-1 mutants have short SFs and reduced connections to neighboring BBs and the cell 

cortex. Left panels are 8.6 nm max-projected images of EM tomograms at 30°C. Scale bar, 200 nm. The two middle 

panels are model views (side view and top view) of BB triplet MTs from corresponding BBs in EM tomogram. 

Colors indicate curvature of the modeled triplet MTs where cold colors (purple-blue) indicate low curvature and 

warm colors indicate high curvature (red-magenta) (range= 0.3 to 3 rad/µm). Right two panels are graphs showing 

BB curvature for the BB proximal to distal axis (left) or for each triplet MT (right). The maximum value for each 

bin (1/10th the length of the BB) along the BB proximal-distal axis is normalized by subtracting the lowest 

maximum value of all bins in each BB. The graph represents the means and standard deviations of these normalized 

maximum values for each proximal to distal bin (left graph) or each triplet MT (right graph). n=7 tomograms, 3 BBs 

analyzed. (B) SF connections are important for consistent negative bending that is focused at triplet MTs 5-6. The 

left heatmap shows 30°C WT BB curvature. The middle heatmap show 30°C disA-1 BB curvature. The right 

heatmap quantifies the difference between triplet MT bending between WT and disA-1 BB curvature. The greatest 

difference between WT and disA-1 BB curvature is in the elevated positive bending in triplet MT 4 (indicated by 

black boxes: p=>0.05, >75% highest difference from other bins). The blue and red colors indicate the direction of 

curvature relative to the cell’s anterior-posterior axis (axis of the ciliary power stroke). Blue indicates negative 

bending which is towards the cell anterior. Red indicates positive bending which is towards the cell posterior 

(range= -5.3 to +5.3 rad/µm). (C) SF connections are important for negative BB curvature and focused bending at 

triplet MTs 5-6. Schematic model shows disA-1 BBs have both positive and negative curvature with positive 

curvature predominating across the BB compared to WT. 

 

A major difference between WT and disA-1 BB bending at 30°C is that disA-1 BB bending is 

mostly positive while WT BB bending is mostly negative (Fig.4.5B). This demonstrates 
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experimentally that SFs at 30°C promote negative bending in BBs at the end of the power stroke 

as disA-1 mutant cell SFs are disconnected from neighboring BBs and the cell cortex and should 

therefore weaken force transmission to BBs. The lack of negative bending in disA-1 BBs is 

consistent with our computational simulation that reproduced negative bending in WT BBs by 

the addition of forces transmitted through SFs (Fig. 4.4E). We hypothesize that SF linkages to 

the anterior BB allows for physical coupling between neighboring BBs that regulate BB bending 

and ciliary beating. Importantly, BBs in disA-1 cells do not display WT 37°C BB bending 

patterns as focal bending at the medial-proximal regions of triplet MTs 5-6 were not observed. 

Moreover, when the SF is detached in the computer simulations, we observe a similar result. The 

mean curvature over the entire BB at the end of the beat stroke is similar between the two models 

(approximately 0.4 rad/μm). However, the maximum curvature in triplet MTs 5-6 in the baseline 

model is 0.92 rad/μm but exhibits a 20% reduction in the detached SF model (0.74 rad/μm). 

Removal of the SF led to an increase in curvature in triplet MT 9 from 0.73 in the baseline model 

to 1.28 rad/μm in the detached SF model. Triplet MT 9 attaches to the pcMTs that link to the cell 

cortex and this suggests that a balance between anchorage structures is important for BB 

bending. This indicates that SF length and connectivity to neighboring BBs and/or the cell cortex 

is important for transmission of ciliary forces through triplet MTs 5-6. We predict that this 

asymmetric force transmission towards the regions of the BB that face the cell anterior is utilized 

for directed cell motility. 
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4.2.6 Poc1 is required for dissipating forces in BB bending to neighboring 

triplet MTs 

BB triplet MTs are laterally interconnected by structures including the A-C linkers and the 

helical inner scaffold [181-183]. The Poc1 protein resides at the BB helical inner scaffold and is 

enriched at the proximal region of BBs [180, 181, 183, 184]. When Poc1 is lost, A-C linker 

spacing is disrupted, most commonly triplet MTs 1-2 facing the cell posterior disassemble, and 

BB instability increases with increasing ciliary force [180, 181, 184]. To test whether BB triplet 

MT interconnectivity is important for normal BB bending, we quantified triplet MT bending in 

WT and poc1Δ BBs at 30°C. In contrast to WT BBs, poc1Δ BBs exhibit isolated regions of both 

positive and negative triplet MT bending within the same BB, particularly on triplet MT 5 (Figs. 

4.6A and C6). Curvature in WT BBs at 30°C is distributed across multiple triplet MTs. 

Importantly, this was not observed in poc1Δ BBs (Figs. 4.6A and C6). poc1Δ BB bending is 

specifically enriched at triplet MT 5 which exhibits a higher degree of curvature in both the 

positive and negative directions (Fig.4.6A-B). The bending is not propagated to neighboring 

triplet MTs. In addition, the overall direction of poc1Δ BB bending is positive as compared to the 

negative bending in WT BBs at 30°C (Fig. 4.6B). In the poc1Δ, negative bending is limited to 

triplet MT 5 and is absent in neighboring triplets. This suggests that forces from SFs are received 

by triplet MT 5 but are not effectively dissipated to neighboring triplet MTs in poc1Δ cells. 

These data support a model where Poc1, by promoting linkage between neighboring triplet MTs, 

is important for the distribution of forces between triplet MTs (Fig. 4.6C; [182]).  
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Figure 4.6: Poc1 distributes coordinated BB bending. (A) The direction and location of BB bending at the end of 

the power stroke change in poc1Δ at 30°C. Left panels are 8.6 nm max-projected images of EM tomograms at 30°C. 

The two middle panels on the left are model views (side view and top view) of BB triplet MTs from corresponding 

BBs in EM tomogram. Colors indicate curvature of the modeled triplet MTs where cold colors (purple-blue) indicate 

low curvature and warm colors indicate high curvature (red-magenta) (range= 0.3 to 3 rad/µm). Right two panels are 

graphs showing BB curvature for the BB proximal to distal axis (left) or for each triplet MT (right). Each maximum 

value for a proximal-distal bin (1/10th the length of the BB) is normalized through the subtraction of the smallest 

maximum value in each BB. The graph represents the means and standard deviations of these normalized maximum 

values for each triplet MT or proximal distal bin. Scale bars, 200 μm. n=12 tomograms, 3 BBs analyzed. (B) poc1Δ 

BBs show both positive and negative bending focused on triplet MT 5. The heatmap on the left shows BB curvature 

in 30°C WT BBs. The heatmap in the middle shows BB curvature in 30°C poc1Δ BBs. The right heatmap quantifies 

the difference between WT and poc1Δ BBs. The greatest difference between WT and poc1Δ BBs are in triplet MTs 

5-7 which display curvature in opposing directions (indicated by black boxes: p=>0.05, >75% highest difference 

from other bins). The blue and red colors indicate the direction of curvature relative to the cell’s anterior-posterior 

axis (axis of the ciliary power stroke). Blue indicates negative bending which is towards the cell anterior. Red 

indicates positive bending which is towards the cell posterior (range= -3.3 to +3.3 rad/µm). (C) Inner scaffold and 

A-C linker integrity is important for distributing negative curvature. Schematic model shows poc1Δ BBs have high 

positive and negative curvature on triplet MT 5 which is not effectively propagated across the BB compared to WT. 

 

poc1Δ BBs can also exhibit highly variable curvature in triplet MTs 1, 7, 8, and 9 (Fig. C6C-E). 

This region of high variability corresponds to the triplet MTs that face the cell posterior and 

specifically disassemble when experiencing ciliary forces in poc1Δ cells (Fig. C6F; [181]). We 

suggest that the elevated and variable curvature in these triplet MTs contributes to BB instability 
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in poc1Δ cells. This elevated and variable triplet MT curvature may be due to defective 

transmission of ciliary forces between triplet MTs resulting in local focal bending events that 

cannot be redistributed to neighboring triplet MTs. Further studies are required to identify the 

key events that produce BB instability in poc1Δ cells. Our studies suggest that most bending 

occurs at triplet MT 5 and may be stabilized by SF attachment. Conversely, variable bending in 

posterior facing triplet MTs 1, 2, 8, and 9 may precipitate in their instability, breakage, and loss. 

These MTs were found to disassemble before complete loss of the BB [181]. To further capture 

these disassembly events, we performed thin section EM of chemically fixed poc1Δ cells at high 

temperatures to escalate BB disassembly. As found previously, we observed weak triplet MT 

breakage near the middle of the BB but this appears to be a transient event that is difficult to 

capture in our fixed cell EM analyses (Fig.C6F-H; [184]). Further studies of high-resolution 

defects associated with poc1Δ BBs are necessary. In summary, triplet MT interconnectivity 

contributed by the helical inner scaffold and/or the A-C linkers produce consistent and 

distributed BB bending patterns and likely act to distribute forces from both cilia and SFs (Fig. 

4.6C). 

4.2.7 Improved simulation using triplet MT connections and SF forces 

To simulate the effect of Poc1 loss on BBs, the stiffness of the A-C linkers in the model was 

reduced by an order of magnitude. This led to an increase in BB rocking concentrated in the 

front-to-back direction (Table 4), an increase in the maximum curvature in triplet MTs connected 

to external structures (triplet MTs 4, 5, 6, and 9), and a relative decrease in the maximum 

curvature of triplet MTs not connected to external structures (Table 4). Interestingly, the average 

interdoublet shearing at the transition zone increased by ~20% when the A-C linker stiffness was 

reduced in the model, indicating an increase in BB shearing. 



107 

 

Because Poc1 also localizes to the helical inner scaffold, we next included a predicted helical 

inner scaffold into the model [209]. The overall dimensions of the modeled helical inner scaffold 

(155 nm diameter and extending 150-450 nm from the base of the BB) were based on the 

structure obtained for Paramecium tetraurelia BBs [209]. The helical inner scaffold was 

parameterized by assigning it an elastic modulus of ~1 GPa and varying the diameter of the 

beams from 2-16 nm. At small diameters (2 nm), the helical inner scaffold had a minimal effect 

on the overall BB bending, but as the diameters were increased, overall BB bending decreased. 

Thus, the helical inner scaffold has a stabilizing effect on BBs. 

We hypothesized that the helical inner scaffold may account for some of the observed 

differences between the EM tomography and the computer model, including the concentration of 

the medial bend at the end of the power stroke that was observed in the EM tomography (Fig. 

4.2A). In contrast, the computer model exhibited a more evenly distributed bend (Fig. 4.3B). 

Indeed, in the model at low to moderate helical inner scaffold stiffness, the helical inner scaffold 

suppresses curvature in the distal region of triplet MTs 5-6, while having a minimal impact on 

the curvature of those triplets adjacent to the SF (Fig. C3D). However, we were not able to 

completely recreate the medial to distal diminishing average curvature observed in the EM 

tomography. A possible explanation for these differences is material nonlinearities not accounted 

for in the model. Regions of elevated curvature adjacent to the SF in triplet MTs 5-6 in the model 

may lead to increased nonlinear local bending (‘kinking’) that more closely resembles the EM 

tomography. 

Though the 37°C model captures many aspects of the deformations observed by EM 

tomography, as noted above, differences remain (Fig. C3A). Significantly, the average BB 

curvature at 37°C decreases from the medial to the distal region thereby concentrating medial 
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curvature at the end of the power stroke (Fig. 4.2A). In the model, the average curvature remains 

nearly constant. In our initial model (Fig. 4.3), the SF at 37°C is longer and attaches to the cell 

cortex, causing it to be a stationary structure, whereas the shorter SF at 30°C is detached from 

the cell cortex and is therefore able to transmit motion and force between the adjacent BBs that 

the SF couples. However, to determine if SF pushing and/or pulling forces could be responsible 

for differences between the model and the data, we modulated the phase and magnitude of the 

periodic force applied to the SF attachment point. If the SF force transmission is reversed in 

phase from the 30°C model – pulling on the BB during the power stroke and pushing on the BB 

during the recovery stroke – it magnifies the curvature of the medial region of the BB (with a 2-

fold increase in triplet MTs 5-6; Fig. C3D). The overall effect of this is that the average 

curvature is elevated in the medial region. However, the distal curvatures are not as low as those 

observed in the EM tomography.  

To attempt to reduce distal curvatures in the model, the reverse SF force was applied to the 

model including the helical inner scaffold. Though adding the helical inner scaffold did reduce 

curvature in the distal region, it did not reduce the average curvature in that region to below the 

levels of curvature in the proximal region, as observed in the EM tomography (Fig. 4.2A). The 

helical inner scaffold in this case has the additional effect of transmitting the elevated curvature 

adjacent to the SF in triplet MTs 5-6 to triplet MTs 7-8, which was not observed in the EM 

tomography. Thus, additional modeling parameters are required to resolve the bending observed 

in the EM tomography. 

4.3 Discussion 
We illustrate how BBs receive and transmit mechanical forces imposed by beating cilia 

(Graphical Abstract). Previously, BBs were thought to be rigid and stable structures. We show 
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BB structural deformations via triplet MT bending that correspond with ciliary beating. 

Temperature-dependent changes to the BB bending pattern are coincident with alterations to 

ciliary waveform. SFs are critical for focusing BB bending to sites of connection between BBs 

and SFs. This is consistent with a physical model where forces from asymmetric ciliary beating 

are transmitted to the cell by SFs. Moreover, these forces likely promote BB dynamics allowing 

force transmission to neighboring BBs, helping to coordinate ciliary beating. Finally, the 

structural integrity of the helical inner scaffold and / or A-C linkers are important for ciliary 

force distribution and generalized BB bending patterns. Coordinating these activities facilitate 

rapid cilia dependent hydrodynamic flow that responds to environmental conditions. 

4.3.1 Flagellar and ciliary basal deformation 

Pioneering studies in mammalian and urchin sperm set the stage for how basal sliding forces are 

propagated to the base of the axoneme. In the case of sperm flagella, doublet microtubules link to 

the connecting piece at the base of the cilium via outer dense fibers. Sliding forces then impose 

both compressive and tensile forces upon the connecting piece thereby creating deformations and 

changes to the position of the sperm head. Moreover, changes to resistance to these sliding forces 

by the basal domain are proposed to impact flagellar beating by controlling switching in beating 

direction and changes to the waveform. A more rigid base was proposed to anchor cilia and 

produce a more rigid waveform. Thus, basal sliding forces are both imposed upon the base of the 

flagellum and tune flagellar activities. A key question is whether and how the connecting piece at 

the flagellum and the BB at the cilium share similar activities in limited basal sliding and 

controlling ciliary beating [31, 173, 178]. 

Our studies show that BBs experience basal sliding forces that causes bending to the triplet 

microtubules. In contrast to changes in the sperm head position and forward motility found in 
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sperm flagella, ciliary beating imposes mechanical bending at triplet MTs experiencing 

compression. This bending requires attachments to SFs that, along with post-ciliary MTs and 

transverse MTs, anchor BBs and cilia to each other and to the cell cortex. Changes to SF 

anchorage and movement may be responsible for changes to the ciliary waveform. This is 

consistent with intracellular coupling found for Chlamydomonas flagella [205, 210]. Moreover, 

linkages within the BBs appear to further support resistance to basal sliding forces. As predicted 

by Vernon and Woolley [173], loss of linkages impact the coupling between triplet microtubules 

and this disrupts both the stability of BBs as they resist basal sliding forces. We now know that 

these linkages may be in the form of A-C linkers and/or the helical inner scaffold [181, 209, 

211]. Ultimately, our studies suggest that dynamic impact and resistance of ciliary forces on BBs 

support the models that basal resistance and deformation impact dynein motor coordination 

required for ciliary and flagellar beating. Further studies are required to dissect the precise 

interplay between BB and ciliary dynamics, but this is the first model to show discrete and 

quantifiable differences in BB morphology as a function of ciliary beating. 

4.3.2 Conservation of BB triplet MT bending 

Motile cilia are present across all eukaryotic lineages [212-214]. Force transmission from motile 

cilia to BBs is likely be conserved. We hypothesize that organisms with similar cilia and BB-

appendages to T. thermophila also exhibit analogous BB bending patterns. Upon reinspection of 

published EM images, we find BB bending in T. thermophila to be apparent in previous 

publications (Figs. 4.1 and C1; [200, 206]). Triplet MT bending is also observed across several 

subphyla or classes of ciliate BBs [215, 216]. Additionally, BB triplet MTs of algae, such as 

Chlamydomonas, bend [217]. The bending of vertebrate multiciliary arrays is less evident, 

possibly because of rotational triplet MT bending [218]. 
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While BB and BB-appendage structures of vertebrate multi-ciliary arrays have differences from 

single-celled organisms, we suspect that BB curvature will similarly be focused at junctions 

between BBs and BB-appendage structures. For example, BB bending may focus on connection 

sites between BB triplet MTs and the basal foot that nucleates the MTs for BB orientation and 

interconnection. BB rootlets may also serve as a hinge point in BB bending. In mice, rootlets in 

multiciliated epithelia are striated fibers at the base of BBs that may distribute or restrict BB 

bending to the proximal ends of BBs as found in T. thermophila. In Xenopus, striated rootlets 

extend from the BB base and fan out to contact actin filaments from posterior BB neighbors 

[194]. Moreover, mammalian and C. elegans rootlet structures are required for ciliary base 

stability [202, 203]. Thus, the position, orientation, and interactions of BB-appendage structures 

at the cell cortex may influence the transmission of forces to and from neighboring cilia. We 

suspect that the BB bending patterns will differ between organisms based on the structures of the 

BBs, the BB-appendages, and the waveforms of the cilia. Importantly, we predict that the 

focused site of triplet MT bending will occur on the BB side that is opposite to the direction of 

fluid flow as that is the site of sliding compression when ciliary are at the end of their power 

stroke. For flagella that have relatively symmetric waveforms and conserved BB structures, 

connecting piece deformations or BB bending is expected to similarly occur in the plane of the 

ciliary beat stroke most prominently near BB-appendages [188, 219, 220]. Thus, BBs and their 

associated structures adapt to the ciliary waveform and environment in which they beat to 

maximize effective cell motility and fluid flow. 

4.3.3 Plasticity of ciliary waveform and SFs to environmental change 

BB bending and ciliary waveform adjust with an environmental change to temperature [36, 221-

223]. Elevated temperature increases ciliary beat frequency [224, 225]. Both BB bending 
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patterns and ciliary bending waveforms are different when comparing cells at 37°C and 30°C 

[36]. While the bending pattern of 37°C BBs can nearly be computationally modelled utilizing 

the forces of the ciliary bend alone, the inverse bending observed in 30°C BBs could not be 

recapitulated by changing the cilia bending waveform itself (Fig. 4.4C-D). SFs decrease in length 

at lower temperatures suggesting that BBs are less stably anchored to neighboring BBs or to the 

cell cortex [191, 201]. Using computer modeling, we show that pushing forces imposed on BBs 

by SFs can reverse the direction of BB bending (Fig. 4.4E). The negative bending in these BBs 

also propagates to the cilium. The cilium bending increases at the end of the power stroke, 

particularly at its proximal or basal region, and this is consistent with the bending changes 

observed in live imaging of beating cilia (Fig. 4.4C-D; [36]). This suggests that changes in force 

transmission by SFs can regulate the ciliary waveform. Therefore, changes to ciliary waveform 

and associated changes to fluid flow and cell motility might be produced through changing 

intracellular force transmission through SFs and BBs.  

T. thermophila disA-1 and poc1Δ mutants provide further insight into how force transmission 

through BBs and SFs can impact the ciliary waveform. Neither of these mutants have known 

ciliary defects yet they both display altered ciliary waveforms compared to control cilia (our 

unpublished data). Thus, while 37°C BB bending can be explained using ciliary force 

transmission through BBs to the junction with SFs, our findings with WT at 30°C, disA-1, and 

poc1Δ BBs all support a model where changes in force transmission from SFs and neighboring 

BBs can explain changes to bending patterns of both BBs and cilia. This is consistent with 

computer models proposing that the mechanical properties of BBs and coupling between BBs 

can regulate ciliary waveform [5, 31, 171, 226]. In the context of temperature changes, this 
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indicates that changes to force transmission through BBs and SFs could provide a mechanism for 

ciliary waveform modulation.  

4.3.4 SFs connect BBs and ciliary units 

The differences between BB bending at 30°C, 37°C, and in disA-1 mutants can be explained 

through changes in length and connectivity of SFs to neighboring BBs and the cell cortex and the 

consequent changes in force transmission between these structures. This begs the question as to 

how forces from SFs are generated and transmitted back onto their BBs and cilia. SFs point 

anteriorly and contact the posterior facing post-ciliary MT bundle from the anterior BB, and also 

contact the nearby cortical cytoskeleton (Graphical Abstract; [191]). Thus, forces from anterior 

BBs and cilia could be transmitted to neighboring BBs through the physical connections between 

post-ciliary MT bundles and SFs. These physical connections are hypothesized to provide a 

means of intracellular physical coupling to regulate the synchronicity between beating cilia. We 

propose that changes to BB bending, and ciliary waveform are achieved though force 

transmission from adjacent ciliary units through post-ciliary MT bundles and SFs. At 30°C, SFs 

shorten and lose connections with the cortical cytoskeleton adjacent to the anterior BBs. If this 

connection of SFs to the cortical cytoskeleton acts to ground ciliary forces, then loss of this 

secondary connection could increase force transmission between post-ciliary MTs and SFs of 

adjacent BBs and cilia. We suggest that this creates a route for the increased transmission of 

ciliary forces between adjacent ciliary units. Increasing the forces transmitted between the two 

ciliary units could explain the increase in overall BB bending and the directional inversion in the 

BB bend when comparing BBs at 37°C to those at 30°C. Thus, force transmission between 

ciliary units is modulated by the length and connectivity of SFs (and possibly post-ciliary MTs). 

In turn, this impacts BB bending patterns. This intracellular coupling between adjacent BBs and 
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cilia might also provide a means for regulating ciliary beating and metachronal synchronicity. 

Further studies are required to capture the precise dynamics for how pushing and pulling forces 

may be produced between neighboring BBs using SFs and how this might be controlled. In 

summary, we propose that cells modulate ciliary waveforms (e.g. in response to changes to 

environmental temperature) by altering BB bending by tuning the relative transmission of force 

from the cilium to the neighboring BBs, through changes to BB-appendages, in particular the SF. 

4.4 Conclusions 
This study demonstrates that BBs bend in response to forces from beating cilia. Asymmetric 

forces from beating cilia are transmitted into the cell through BB bending and focused on the BB 

triplet MTs that connect to SFs. Both cilia waveform and BB bending are responsive to 

temperature changes and these differences can be explained by SF force transmission altering 

BB bending patterns. Both the length and connectivity of SFs and the doublet MT 

interconnections are important for normal BB bending patterns. Together, we propose a model 

where cilia, BBs, and BB-appendages interact through the transmission of mechanical forces for 

ciliary beating and directed fluid flow.  
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4.5 Method details 

4.5.1 Experimental model and subject details 

Tetrahymena thermophila wild type B2086, SB1969 and their derived mutant strains disA1-1 

and poc1Δ were used in experiments for this study. Each strain is verified as T. thermophila 

through successful conjugation/mating events with known T. thermophila strains and genome 

sequencing[227]. The sex of each Tetrahymena thermophila strain were not accounted for 

because T. thermophila has 7 mating types (sexes). All experiments were performed in 

accordance with governmental and institutional guidelines. 

4.5.2 Tetrahymena strains and culture 

Tetrahymena thermophila cells B2086, SB1969, disA-1, and poc1Δ were obtained from the 

Tetrahymena Stock Center (tetrahymena.vet.cornell.edu/index). T. thermophila strains were 

cultured in 2% SPP media (2% protease peptone, 0.1% yeast extract, 0.2% glucose, and 0.003% 

Fe-EDTA) at 30°C unless otherwise indicated. Cells collected for analysis were grown to mid-

log phase (approximately 3 × 105 cells/mL). Cell counts were determined using a Coulter 

Counter Z1 (Beckman Coulter). The forces from ciliary beating were manipulated by altering 

temperature [201]. For temperature shift experiments, cells were transferred into fresh SPP 

media and incubated for 24 hours at specified temperatures.  

4.5.3 Electron microscopy and tomography 

Cells were prepared for electron microscopy and tomography as previously described [181, 228]. 

Cells were gently spun in 2% SPP that contains 15% dextran (molecular weight 9000–11,000; 

Sigma-Aldrich) and 5% BSA. Cells were concentrated and transferred to a sample holder and 

high-pressure frozen using a Wohlwend Compact 02 high pressure freezer (Technotrade 
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International). After low-temperature freeze substitution in 0.25% glutaraldehyde and 0.1% 

uranyl acetate in acetone, cells were slowly infiltrated with Lowicryl HM20 resin. Serial thick 

(250–300 nm) sections were cut using a Leica UCT ultramicrotome. The serial sections were 

collected on Formvar-coated copper slot grids and poststained with 2% aqueous uranyl acetate 

for four min followed by Reynold’s lead citrate for three minutes. 

Dual-axis tilt series (−60 to +60°) of Tetrahymena cells were collected on a Tecnai F30 

intermediate voltage electron microscope (ThermoFisher). Images were acquired using the 

SerialEM acquisition program with a Gatan CCD camera at 1.2 nm or 1.5 nm / pixel [229]. 

Serial section tomograms of Tetrahymena cortical structures were generated using the IMOD 

software package [228, 230]. Eight tomograms were reconstructed and modeled using the IMOD 

software package (bio3d.colorado.edu/imod/).  

4.5.4 3D tomographic modeling and quantification 

Three dimensional (3D) models of BBs were generated using the IMOD software package [228, 

230, 231]. Using tomograms from tilt series, BBs were oriented in 3D space to obtain top-down 

views (looking down the cylinder of the BB). BB MTs were modeled as open contours in 5-slice 

max-projected z-stacks by picking 5-6 points along each of the MTs. MTs were identified as 

hollow, circular electron densities with diameters of approximately 25nm. In the event that the 

exact MT location was difficult to discern, crescent-shaped electron densities and relative 

location were used to define the MT location. The relative MT locations were informed by the 

known conserved triplet MT structure. No events deviating from the conserved structure were 

observed except in poc1 mutant BBs when triplet MTs were occasionally missing (Fig. C6F-G). 

IMOD drawing tool’s Smooth Contours function was used to smoothen modeled MTs by adding 

10x~ intermediate points (50~60 total points). The smooth tensile fraction was 0.5 pixels and 
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smooth point distance was 5 pixels, points were added in equal distribution regardless of Z-step 

and originally selected contour points were locked in place before smoothening. These points 

were then manually confirmed to be within the boundaries of the MTs in the tomograms. After 

smoothing modeled MTs, the curvature was quantified using the imodcurvature function. 

Imodcurvature calculates curvature based on circle-fitting to surrounding points over a length of 

110 pixels (63 nm). For points near the end of the contour, the fit is to half of that length on the 

side away from the end and to whatever length is available on the side toward the end. This 

calculation was performed serially for every point with two flanking points. The curvature values 

calculated by imodcurvature are also directly applied as a heatmap on the modeled MTs in 

IMOD. BB curvature is binned as a 10 x 9 array, whereby curvature values along the length of a 

BB were split into 10 bins and the 9 triplet MTs were split into 9 bins, prior to averaging. The 

dynamic range of curvatures in all models are 0.3 rad/µm (dark purple) to 3 rad/µm (magenta). 

The maximum curvature values used in all quantifications were obtained by taking the maximum 

values from normalized bins equal to 1/10th the length of the MT for each MT in the BB. 

Normalization was conducted by subtracting the average lowest maximum values from each 

triplet MT in the BB. Triplet averages (nine triplet MTs) of these maximum values where then 

calculated for each corresponding bin in each triplet MT. Averaging based on triplet MTs is 

consistent with visual representations of MTs in IMOD and curvature does not change based on 

MT identity (A, B, C tubule: data not shown). BB curvature values were represented as 10 x 9 

heatmap arrays (10 bins long, 9 triplet MTs wide). 3D models of SFs were made in IMOD from 

side views of BBs. SFs were projected longitudinally and modeled as closed contours every 3 z-

slices to generate a meshed model. 
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These EM tomogram modeling methods were analyzed for reproducibility through independent 

modeling. The same BB (Fig. 4.2) was independently modeled by authors A. Junker and A. Soh 

(Fig. C1F). The curvature amount and pattern was consistent between both independent models 

where most curvature found near the base-middle of triplet MTs 5 and 6. The only statistically 

significant difference (p=<0.05) was in triplet MT 1. This difference is located at a region of low 

curvature and does not impact the overall pattern of curvature found in the BB. 

4.5.5 Computational modeling 

The computational (finite-element) model of the cilium, BB, and BB-appendage structures was 

created in COMSOL Multiphysics using the Beam interface within the Structural Mechanics 

module (COMSOL Multiphysics® v. 5.6. www.comsol.com. COMSOL AB, Stockholm, 

Sweden). All MT filaments including axonemal doublet MTs and BB triplet MTs were modeled 

as slender (Euler-Bernoulli) beams. The central pair MTs were modeled as a single beam with an 

increased area moment of inertia about the non-power stroke transverse bending axis (to model 

the effect of two coupled MT singlets). All beam connections are modeled as fixed. Viscous drag 

was applied to the central pair using resistive force coefficients [8, 107]. 

Radial spokes (RSs) were modeled using beam elements: 30 circular arrays of 9 radially oriented 

beams were linearly patterned along the length of the model of the axoneme. Each beam 

represents the effects of multiple RSs as the actual number of RSs in the axoneme is much 

greater than the number of spokes in the model. Estimates for RS shear and normal stiffness 

were used to calculate flexural and axial rigidity for these beams. Spoke connections were 

modeled as fixed joints at the central and outer filaments. Though the spoke connections 

themselves do not slide, compliance of the spokes allows relative sliding of the axial filaments. 
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NDRC linkers were modeled using extrusion coupling operators within COMSOL, which make 

it possible to model inter-doublet stiffness as an applied-force function of relative displacement. 

The effect of this modeling is a continuous elastic connection between adjacent doublets that 

creates normal stiffness, but not shear stiffness at small deformations. 

In the BB, AC linkers and the proximal cartwheel structure were modeled using a longitudinally 

oriented linear pattern of representative beams. BB accessory structures such as the SF, PCMT, 

and TMT were modeled as beams. Axial and flexural rigidity for these elements was calculated 

based on estimates of the physical properties of these structures. The helical inner structure was 

modeled as an array of nonagons with vertices located on a 155 nm circle. This array was 

patterned along the BB axis 150 nm to 450 nm from the base of the BB. Vertices of each 

nonagon were connected along the BB axis and to the neighboring MT triplets by beam 

elements. As with other structures represented in this model, the individual beam elements 

represent the overall effect of the biological structures and are not intended to be an accurate 

geometric reproduction. All inter-beam end connections were modeled as fixed joints. 

Connections between the modeled structure and structures external to the model, such as the 

cellular cortex and other BBs, were modeled using the spring foundation constraint. This allows 

elastic connections (with translational and rotational spring constants) to fixed points 

representing other cellular structures. In cases where those external structures were modeled as 

being in motion, the foundation attachment point was given a time-dependent prescribed 

displacement. Forces applied to the SF tip and cortical attachments were applied in this way. 

Beam elements in COMSOL use cubic shape functions for displacements. Large deformations in 

beam structures are obtained through a combination of element-level deformations as well as 

rigid body translations and rotations of linear beam elements. The beam mesh was therefore 
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refined along the BB triplet MTs to ensure deformations of individual elements were small. 

Mesh refinement studies were used to confirm convergence of curvature values in the BB triplet 

MTs in test studies. Meshing of radial spokes was restricted to one element per spoke to reduce 

undesirable behavior such as buckling of spokes, which will prevent convergence of the solution. 

Dynein forces were modeled as distributed axial forces that remain tangentially applied to 

doublets under time-dependent deformation (follower loads). Every base-ward force on one 

doublet must be balanced by a tip-ward force on the adjacent incrementally numbered doublet. 

This ensures that the net internal forces are balanced. Additionally, a distributed moment must be 

applied to counteract the force pair and keep internally produced moments in balance [66, 168, 

232]. For simplicity of modeling, dynein force was prescribed using a ‘switching’ model in 

which dynein arrays on either side of the beat plane are alternately activated to produce the 

power and recovery strokes [147, 233]. In most cases, this was simply applied using sinusoidal 

function of time where dynein motors on the power stroke side of the axoneme activate in 

proportion to the positive regions of the sin wave and dynein motors on the recovery stroke side 

activate in proportion to the negative regions of the sin wave. In some specific studies, a 

prescribed spatiotemporally propagating activation pattern was used to drive the system. 

Time-dependent studies were solved using backward differentiation formula (BDF) time 

stepping with a relative error tolerance of 10-3. Fully coupled nonlinear equations were solved 

using Newton’s method with automatic damping. Geometrically nonlinear effects were included 

in the solution. Inertial effects were considered negligible and not included in the solution.  

This model of the axoneme (like all models) has limitations. Radial spokes likely slide along the 

central pair, and NDRC links may slide along doublets, but sliding at joints is challenging to 

simulate, and are not included in the current finite-element model. Instead, deformations of 
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spokes and links are limited by keeping dynein forces low, maintaining deformations in a regime 

where radial spoke beams and NDRC couplings do not become taut. Triplet MT stiffnesses were 

kept the same as doublet stiffnesses to increase curvature at lower dynein forces. For 

visualization and direct comparison with EM data, deformations and extracted curvature values 

were amplified fourfold. 

A key objective was to accurately model how dynein forces drive ciliary beating; however, some 

compromises were necessary to limit the complexity of the model. First, dynein activation was 

prescribed along the length of the cilium, without modeling any specific theory of ciliary beat 

generation (of which none are yet generally accepted). Second, at large deformations, 

approximations in the model become increasingly inaccurate. For example, the moments 

associated with dynein forces acting across the axoneme diameter are oriented about an axis 

perpendicular to the dominant plane of beating, and do not reorient with out-of-plane 

deformation of the axoneme. This leads to internal moment imbalances at large deformations. 

Additionally, at the discretization level (mesh size) used to generate model results, internal 

moments from interdoublet links (modeled by “extrusion coupling” in the finite element model) 

do not balance. This effect approximately doubles the applied moment at maximum dynein load, 

which increases the bending of the cilium for a given level of dynein activity. Increasing the 

mesh resolution resolves the moment imbalance but prevents the model from converging. 

Finally, applied dynein forces are tangent to individual filaments, which leads to an applied force 

imbalance when loaded filaments become non-parallel (a maximum imbalance of 1.8 pN was 

calculated, which is a fraction of a percent relative to a total inter-doublet force of 700pN).  

Despite these imperfections of the model, it recapitulates many aspects of observed BB 

deformation and serves as a useful tool for gaining insight into the physical BB-cilium system 
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and understanding the role individual components (SF, AC-linkers, pcMT, tMT) serve in 

stabilizing the BB against forces transmitted from the cilium. 

Inter-filament Sliding in Computational Model 

Interdoublet sliding between doublets n and n+1 was evaluated by first calculating the position 

vector, δ(s), from a point on doublet MT n to a point the same distance, s, along the length of 

doublet MT n+1, then projecting that position vector onto the tangent vector, t(s), of doublet n 

using the dot product: Δ(s)=δ(s)⋅t(s). As noted above, sliding between filaments (doublets and 

central pair) is permitted by elastic compliance of spokes and links; sliding at attachment points 

was not modeled. To avoid undesired structural nonlinearities that prevent convergence of the 

simulation, relative sliding between adjacent doublet MTs was limited by keeping the maximum 

distributed dynein force low:  <125 pN/µm. Realistic model behavior, expected to be obtained at 

fourfold higher dynein forces, was obtained by scaling deformations by a factor of four. 

Maximum sliding amplitude at the tip of the small-deformation model was 38 nm between 

doublet MTs 6 and 7. To obtain the predicted sliding at deformations comparable to those 

observed, this amplitude was multiplied by four to obtain the predicted maximum relative sliding 

amplitude of 151 nm between MTs 6 and 7 (Table C3).  

Computational Model Parameters 

An additional challenge of the computer simulation is the estimation of the physical properties of 

the nanoscale structures present in the cilium and accessory structures.  In cases where 

experimentally obtained estimates of properties were available, they were used in the model 

either as fixed estimates or plausible ranges. These included axoneme flexural rigidity, dynein 

force, NDRC stiffness, resistive force coefficients for a cilium in water, as well as parameters 

such as beat frequency and posterior-anterior phase lag (Table C3, Fig. C3). 
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Where experimental estimates of parameter values were not available, ballpark estimates were 

made based on the size, shape, and estimated material properties of structures. Simulation 

parameter sweeps were run to determine sensitivity of the model to the parameters and to bring 

the overall model behavior in-line with observed behavior. Initially, this parameter estimation 

and refinement was run on a 2D version of the model for rapid iteration before building the more 

complex 3D model.  

4.5.6 Live cell imaging of cilia beating 

Using a magnetism-based strategy, T. thermophila cells were immobilized and their cilia were 

imaged via fast timelapse DIC microscopy [36]. Briefly, cells were fed with iron particles 

(Sigma-Aldrich) that were suspended in SPP media. Next, cells were immobilized inside 

microfluidics chambers using bar magnets that are positioned along the chamber. All 

experiments were performed at the respective temperatures (30°C and 37°C) using a microscope 

stage incubator (Pathology Devices). Imaging was performed using an inverted widefield 

microscope (Ti Eclipse; Nikon). A 60X Plan Apochromat (NA 1.4) objective lens (Nikon) was 

used. 2D movies were acquired using a scientific complementary metal-oxide semiconductor 

camera (Zyla; Andor Technology) at approximately 650 frames per second.  

Cilia waveform and curvature analyses were focused on the cilium power stroke axis using a 

previously described approach [78]. Briefly, consecutive movie frames of cilia were manually 

traced and fitted with a 2nd order polynomial line function. Due to reduced contrast at the cilium 

base, analysis was performed on the distal 4.5 µm of all tracked cilia. Curvature along the cilium 

length was quantified. Curvature extrapolation was applied for both ends of all traced cilia. To 

ensure that the curvature of each cilium is uniformly weighted, each cilium was tracked for 6 
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beat cycles. Cilia waveform and curvature were obtained by averaging across nine cilia. All cilia 

were aligned along the same axis based on the relative of the anterior BB’s position.  

4.5.7 Data representation and graphing 

Red-Blue heatmaps indicate differences in BB bending between different parts of the ciliary 

power stroke. The location, level, and direction of the normalized average in maximum curvature 

is determined by the axis and colors. The location of bending is indicated by the axis, y-axis 

indicates relative proximal distal height on BBs broken into 10 bins (normalized BB height, one 

bin= 1/10th the height of a BB), x-axis indicates the triplet (1-9). The colors blue and red indicate 

the direction of curvature relative to the cell’s anterior-posterior axis (axis of the ciliary power 

stroke). Blue indicates negative bending = bending towards the cell anterior, red indicates 

positive bending = bending towards the cell posterior. Colored lines and bars on all dot plots 

indicate the mean and standard deviation, respectively (Fig. C2 and C4-C6). Dots represent 

individual measurements; light grey lines indicate the location of zero. 

4.5.8 Quantification and Statistical Analyses 

All experimental data sets represent a minimum of three BB regions or triplet MTs. Comparisons 

between genotypes or conditions only include analyses from completely modeled BB with cilia 

in the same part of the beat stroke (beginning, middle, end, recovery) with no visible damage 

(Table 1). Statistical tests were run in Prism8 (GraphPad Software). Shapiro-Wilk normality test 

was performed to assess for normal distribution Normally distributed continuous data sets were 

analyzed using unpaired, two-tailed Student’s t-test. Non-normally distributed datasets were 

analyzed using the Mann-Whitney test. F-tests were used to determine variance. This includes 

heatmaps of BB bending in which the normalized maximum values of each triplet in each 
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proximal-distal bin were compared between 2 BBs. All p values are numerically presented. 

Analyses between curvature values in proximal-distal, or lateral (triplet MTs) axes (Fig. C2 and 

C4-C6) were compared against other triplet MTs of the same BB. One-way ANOVA analyses 

were performed on normally distributed data. Wilcoxon Rank Sum Tests were performed to 

obtain p-values on non-normally distributed data. All p-values are numerically presented. 

Statistical significance in the variances between triplet MTs was tested using Bartlett’s test. 

Power statistics was performed to ensure ample sample size for the comparison between cilium 

curvature obtained from live imaging. 5% margin of error and 95% confidence level were 

applied. Colored lines and bars on all dot plots indicate the mean and standard deviation, 

respectively.   
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Chapter 5: Semi-automated software for the analysis 

of ciliary kinematics1 

 

This chapter describes the automated ciliary tracing and cell body tracking software packages I 

wrote for this project, as well as several of their applications. 

5.1 Autotrace: ciliary tracing software 

5.1.1 Motivation 

Waveform analysis is important to studying how drugs, genetic mutations, and environmental 

conditions affect ciliary and flagellar beating. It is also used to study the underlying mechanisms 

that drive and regulate this beating. The analysis of ciliary beating typically involves tracing 

hundreds or thousands of still images from microscope videos of beating cilia [8, 26, 28, 29, 35]. 

This is a time-consuming and tedious process. Automatic tracing software has been developed by 

others [31, 35, 234, 235], but such software may perform poorly (fail to track the cilium 

accurately) on a given set of images due to noise, lack of contrast, or mismatch between image 

properties and the conditions the software was developed for. I therefore decided to develop a 

custom automatic tracing algorithm that was robust to noise and would work in a variety of 

imaging conditions, such as a dark subject against a bright background or vice-versa. 

  

 
1 This chapter contains figures from and describes work done for [39] J. H. L. Cho, Z.A.; Zhu, L; Muegge, B.D.; 

Roseman, H.F.; Lee, E.Y.; Utterback, T.; Woodhams, L.G., Bayly, P.V.; Hughes, J.W., "Islet primary cilia motility 

controls insulin secretion," Science Advances, 2022 (in press).. See section 1.5 Statement of contributions. 
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5.1.2 Autotrace algorithm 

 

Figure 5.1:  Autotrace algorithm. (A) An initial rough trace is obtained by selecting points along the cilium. (B) The 

algorithm proceeds along the cilium segment-by-segment, sweeping a grid of probes to find the optimal angle along 

which to proceed. (C) When all traces are complete, the waveform is interpolated and visualized. (D) The optimal 

angle is computed by an exhaustive sweep of the probe array. The angle chosen is the one that minimizes a linear 

combination of the weighted pixel intensity under the probe array as well as several penalty terms used to improve 

robustness in cases of noise, poor contrast, and poor focus. 

 

Using the first image of a time series, the user manually traces the cilium to obtain the cilium 

length, 𝐿, as well as the initial coordinates (𝑥0, 𝑦0) and angle, 𝜃0, of the cilium base (Fig. 5.1A). 

The program then automatically traces the path of the cilium in successive frames, using the 

following algorithm (Fig. 5.1B):  

1. The length of the cilium is divided into 𝑛 segments. For the first segment, a rectangular 

array of points with a width approximately equal to the diameter of the cilium and a 

length of one segment (
𝐿

𝑛
) is created. Every point in the array is given a numerical weight 

based on a gaussian distribution in the width of the array, with constant values along the 

length. 

2. An array of angles is created centered at an initial estimate of the angle and spanning an 

allowable sweep range. The array is rotated through the range of angles with one end 

pivoting about the base point. At each angle, the weighted average (the ‘brightness cost’) 
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of the interpolated pixel intensities at all points in the array is calculated and stored 

temporarily. 

3. The angle that minimizes the brightness cost is selected as the current angle. In the case 

of a bright cilium against a dark background, the brightness cost is the weighted average 

in (2) multiplied by negative one. 

4. The next point along the cilium is located using the angle from (3), the current base 

coordinate, and the segment length.  

5. The process is repeated from step (2) from each successively selected point along the 

cilium. 

When all 𝑛+1 points along the cilium have been located, the program proceeds to the next image 

in the sequence until all traces are calculated (Fig. 5.1C). The program requires that any 

translation of the base of the cilium be removed [35]. The stabilization of body motion is 

addressed by the body tracking software in section 5.2. 

To improve the robustness of the angle selection, terms are applied to penalize ‘curvature’ 

(change in angle from point to point along the length), translational velocity (change in position 

from previous frame), rotational velocity (change in angle from previous frame), and rate of 

change in curvature (change in approximate curvature from last frame) (Fig. 5.1D). These 

penalty terms are important in cases where lack of contrast, debris in the image, or the interaction 

of multiple cilia in the image may cause the global minimum of the brightness cost to occur at an 

angle other than along the cilium. In such cases, the penalty terms add cost to angles that are 
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unlikely to follow the cilium trace (because the angle bends sharply or would cause an unusually 

large change in translation, rotation, or curvature from the previous frame). 

Note that the algorithm above describes an ‘exhaustive sweep’ of angles to minimize the cost. 

This was determined to be more robust than using more sophisticated optimization routines, such 

as fminbnd() in Matlab, which may converge to local minima. 

5.1.3 Post-processing, dimensionality reduction, and kinematic analysis 

Quantities of interest including period, periodicity, curvature, and amplitude are calculated by 

postprocessing raw angle data obtained by autotrace.  

Period/frequency: Oscillation period is estimated from the nonzero time delay that maximizes 

the autocorrelation of the (interpolated) angle data; this delay is found at all points along the 

cilium and averaged to obtain a single estimate of the period. The frequency is the inverse of the 

period. 

Periodicity: The mean of the maximum autocorrelation value described above at each point is 

used as a measure of periodicity, or how similar the beats are to each other.  

Angle: For each frame (index j), a fourth-order polynomial is fit to the angle data and used to 

reconstruct the tangent angle as a continuous function of the arclength, 𝑠: 

 𝜃(𝑠, 𝑡𝑗) = 𝑐4(𝑡𝑗)𝑠4 + 𝑐3(𝑡𝑗)𝑠3 + 𝑐2(𝑡𝑗)𝑠2 + 𝑐1(𝑡𝑗)𝑠 + 𝑐0(𝑡𝑗) (5.1) 

Curvature: Curvature values are obtained as the first derivative of the tangent angle, 𝜃(𝑠, 𝑡𝑗), 

with respect to arclength:  

 𝜅(𝑠, 𝑡𝑗) = 4𝑐4(𝑡𝑗)𝑠3 + 3𝑐3(𝑡𝑗)𝑠2 + 2𝑐2(𝑡𝑗)𝑠 + 𝑐1(𝑡𝑗) (5.2) 
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Wavelength: Wavelength is calculated as twice the distance between adjacent local minimum 

and maximum curvature values detected using the peak finding function findpeaks(). This value 

is calculated for all time points where both peaks exist and is then averaged to give a single 

quantity. 

Propagation velocity: Propagation velocity is calculated as the time rate of change of the 

location (distance along the cilium or arc length) of the peak magnitude curvature value. This 

value is calculated following several peaks over time and then averaged to obtain a single 

quantity. 

Amplitude: Amplitude of motion is quantified by taking the standard deviation of all angle data 

within the middle 80% of the length of the cilium, excluding the base and the tip, which are 

prone to fitting errors. 

Position: The shape of the cilium, as represented by 𝑥 and 𝑦 positions along the cilium length, is 

reconstructed by numerically integrating the cosine and sine, respectively, of the tangent angle, 

𝜃, evaluated at discrete distances (index 𝑖) along the length of the cilium: 

 𝑥(𝑠𝑖, 𝑡𝑗) = 𝑥0 + ∫ cos 𝜃(𝜁, 𝑡𝑗)
𝑠𝑖

0
𝑑𝜁 ≈ 𝑥𝑖𝑗 = 𝑥0 + ∑ cos(𝜃𝑖𝑗)Δ𝑠𝑖

𝑘=1  (5.3a) 

 𝑦(𝑠𝑖, 𝑡𝑗) = 𝑦0 + ∫ s n 𝜃(𝜁, 𝑡𝑗)
𝑠𝑖

0
𝑑𝜁 ≈ 𝑦𝑖𝑗 = 𝑦0 + ∑ s n(𝜃𝑖𝑗)Δ𝑠𝑖

𝑘=1  (5.3b) 

  



132 

 

Velocity: Velocity components in the 𝑥 and 𝑦 directions are obtained through numerical 

differentiation (using central differences) of (Eq. 5.3a,b) with respect to time. 

 𝑣𝑥(𝑠𝑖 , 𝑡𝑗) =
𝜕

𝜕𝑡
 (𝑥(𝑠𝑖, 𝑡))|𝑡=𝑡𝑗

≈ 𝑣𝑥𝑖𝑗
=

𝑥(𝑠𝑖,𝑡𝑗+1)−𝑥(𝑠𝑖,𝑡𝑗−1)

𝑡𝑗+1−𝑡𝑗−1
 (5.4a) 

 𝑣𝑦(𝑠𝑖, 𝑡𝑗) =
𝜕

𝜕𝑡
 (𝑦(𝑠𝑖, 𝑡))|𝑡=𝑡𝑗

≈ 𝑣𝑦𝑖𝑗
=

𝑦(𝑠𝑖,𝑡𝑗+1)−𝑦(𝑠𝑖,𝑡𝑗−1)

𝑡𝑗+1−𝑡𝑗−1
 (5.4b) 

Some computations are more easily carried out using local tangent, 𝑻, and normal, 𝑵, direction 

vectors. Here only the continuous versions of the equations are shown for simplicity: 

 𝑻(𝑠, 𝑡) = [cos 𝜃(𝑠, 𝑡), s n 𝜃(𝑠, 𝑡)] (5.5a) 

 𝑵(𝑠, 𝑡) = [− s n 𝜃(𝑠, 𝑡) , cos 𝜃(𝑠, 𝑡)] (5.5b) 

Forces: We use the direction vectors (Eq. 5.5a,b) and velocity components (Eq. 5.4a,b) to obtain 

external viscous forces per unit length in the tangent/normal coordinate system using resistive 

force theory with respective tangent and normal resistive force coefficients 𝑐𝑇 and 𝑐𝑁[8, 107]: 

 𝑓𝑇 = −𝑐𝑇𝑣𝑇 = −𝑐𝑇(𝑣𝑥 cos 𝜃 + 𝑣𝑦 s n 𝜃) (5.6a) 

 𝑓𝑁 = −𝑐𝑁𝑣𝑁 = −𝑐𝑁(−𝑣𝑥 s n 𝜃 + 𝑣𝑦 cos 𝜃) (5.6b) 

These are then converted back to cartesian coordinates: 

 𝑓𝑥 = 𝑓𝑇 cos 𝜃 − 𝑓𝑁 s n 𝜃 (5.7a) 

 𝑓𝑦 = 𝑓𝑇 s n 𝜃 + 𝑓𝑁 cos 𝜃 (5.7b) 
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Torque: Torque about the cilium base is calculated by numerically integrating the cross product 

of cilium position relative to the cilium base with the applied viscous force along the length of 

the cilium. 

 𝜏(𝑡𝑗) = ∫ 𝒓 × 𝒇𝑑𝑠
𝐿

0
 = ∫ [(𝑥(𝑠, 𝑡𝑗) − 𝑥0)𝑓𝑦(𝑠, 𝑡𝑗) − (𝑦(𝑠, 𝑡𝑗) − 𝑦0)𝑓𝑥(𝑠, 𝑡𝑗)]𝑑𝑠

𝐿

0
  

 ≈ ∑ [(𝑥𝑘𝑗 − 𝑥0)𝑓𝑦𝑘𝑗
− (𝑦𝑘𝑗 − 𝑦0)𝑓𝑥𝑘𝑗

] Δ𝑠𝑛
𝑘=1  (5.8) 

Power: Power dissipated by the cilium is calculated by integrating the dot product of the applied 

force with the local velocity along the length of the cilium. 

 𝑃(𝑡𝑗) = ∫ 𝒇 ⋅ 𝒗 𝑑𝑠
𝐿

0
≈ − ∑ [𝑐𝑇𝑓𝑇𝑘𝑗

2 + 𝑐𝑁𝑓𝑁𝑘𝑗

2 ]𝑛
𝑘=1  (5.9) 
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5.2 Autotrack: body tracking software 

5.2.1 Motivation 

The Autotrace software described previously requires that the base of the cilium is stationary 

within the coordinate system of the image sequence. Typically, this requirement will not be 

satisfied for swimming cells, so the cell body must be stabilized before performing ciliary 

analysis. Furthermore, tracking the trajectory of microswimmers is useful in determining the 

effects of environmental conditions and mutations on ciliary coordination and effectiveness [117, 

236-238], and potentially for future projects involving characterizing acoustofluidic traps and 

multi-cell interaction [74, 239]. For these reasons, I developed a custom cell body tracking 

algorithm. It should be noted that an algorithm had been developed for cell body stabilization as 

part of a previous project [35]. That software was based on a completely different fast Fourier 

transform (FFT)-based algorithm that was not effective in stabilizing motion of some videos 

(sperm cell bodies). The current software was written to improve performance in those cases, 

though the challenges presented in those cases (the sperm head changes appearance as it rotates 

due to directional illumination) affect the performance of the current software as well. 

5.2.2 Autotrack algorithm 

The Autotrack body tracking software optimizes a three-degree-of-freedom (DOF) rigid-body 

transformation (rotation and translation) of a region of interest (ROI) in the first frame (which we 

will call the template) to a region in every subsequent frame (we will call subsequent frames 

images). In computer vision, such a transformation is an instance of the more general category of 

warping functions, which may include linear and nonlinear deformations [240]. The current rigid 

body transformation will be denoted 𝒘(𝒙, 𝒑), where 𝒘 is a vector of transformed coordinates, 𝒙 
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are the original coordinates, and 𝒑 = [𝑝1, 𝑝2, 𝑝3]𝑇 is a vector of the parameters of the warp 

(translation in x, translation in y, angle of rotation). 

 𝒘(𝒙, 𝒑) = [
𝑤1

𝑤2

1
] = [

 cos(𝑝3) − s n(𝑝3) 𝑝1

s n(𝑝3) cos(𝑝3) 𝑝2

0 0 1

] [
𝑥1

𝑥2

1
] (5.10) 

The objective function used to optimize the warp parameters at each image can be chosen to be 

the sum of the squares of the differences between pixel values in the template ROI and the pixel 

values interpolated at the transformed coordinates in the image: 

 𝑒𝑟𝑟𝑜𝑟 = ∑ (𝐼(𝒘(𝒙𝑖, 𝒑)) − 𝑇(𝒙𝑖))
2

𝑁
𝑖=1  (5.11) 

Here 𝐼(𝒘(𝒙𝑖, 𝒑)) is the (scalar) pixel intensity in the image interpolated at the transformation, 𝒘, 

of coordinate 𝒙𝒊 using the parameters in 𝒑, 𝑇(𝒙𝒊) is the pixel intensity in the template evaluated 

at coordinate 𝒙𝒊, and N is the number of pixels in the ROI. Parameters in 𝒑 are optimized for 

each frame subsequent to the first using fminsearch() in Matlab. As an alternative to the 

objective function in Eq. 5.11 above, the negative of the correlation between the two regions (the 

array of pixels in the ROI of the template and the array of pixels evaluated at transformed 

coordinates in the image) was tried as an objective function. This was determined to work 

similarly and have no significant impact on number of iterations required for convergence or the 

accuracy of the results. 
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Figure 5.2: Body tracking software applied to one of two Chlamydomonas cells in an acoustic trap. Video courtesy 

of Mingyang Cui and Mark Meacham. Initial analysis by Advaith Narayan. (A) Crosshairs indicate orientation and 

location on the object being tracked. The green line indicates the path of the crosshair center over time. Here the cell 

being tracked has moved from the bottom of the frame to the top during the recording. (B) 𝑥 and 𝑦 displacement in 

pixels as a function of frame number. (C) Angle of rotation, 𝜃, of the object being tracked. (D) The correlation 

coefficient is used here as the quantity to be maximized. Larger variation of the maximum correlation over time is 

likely due to rotation of the cell about its anterior-posterior axis. Higher frequency ripples observed in all quantities 

are caused by the beating of the cilia. (E) Kymograph of a stabilized column of pixels transverse to the anterior-

posterior (AP) axis of the cell body intersecting the eye spot. Rotational motion of the body about its AP axis is 

apparent here as a corkscrew pattern of the darker eyespot. At approximately frame 3000, the cell body rotates so 

that the AP axis is perpendicular to the plane of view. 

 

5.3 Applications 
The autotrace software has reduced the time-consuming task of manual image tracing to an 

automated process that can process hundreds of frames in a few seconds. Several projects have 

used this software spanning the Bayly, Hughes, and Santi Labs at Washington University in St. 

Louis. Two of these projects are described below. 
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5.3.1 Motility of primary cilia on pancreatic beta cells 

This section describes the methods and results of the publication Islet primary cilia motility 

controls insulin secretion [39]. Discussion here is limited to those parts of the study that used the 

methods of the current chapter. Additional details of the imaging and analysis methods, 

including Autotrace, are given in another paper, currently in review [241]. 

Motivation 

Cilia described so far in this dissertation have been motile cilia, which typically contain a “9+2” 

axoneme (9 outer microtubule doublets and 2 central microtubule singlets) and are known to 

have motility driven by arrays of dynein arms. By contrast, primary cilia are sensory organelles, 

typically with a “9+0” axoneme [242], which are generally thought to be immotile. However, 

researchers in the Hughes Lab observed that cilia on pancreatic beta cells exhibited time-

dependent deformation under laser-scanning and spinning-disk confocal microscopy. Pancreatic 

beta cells are cells in the pancreatic islets that are responsible for insulin production in response 

to detected glucose concentrations. Disfunction of beta cells and beta cell cilia are implicated in 

type-1 and type-2 diabetes [243, 244]. 

The Hughes Lab reached out to the Bayly Lab to collaborate on analyzing the observed ciliary 

motions and determining whether the motions were caused by forces internal to the cilium (i.e., 

dynein motors), forces within the cell body (i.e., actin-myosin interactions in the cell cortex), or 

forces external to the cell (i.e., hydrodynamic forces due to cell motions). 

Methods 

The autotrace software described previously was applied to the analysis of primary cilia on 

pancreatic beta cells. First, 3D image stacks obtained by confocal microscopy were reduced to 

2D images using a mean projection along the z-axis (Fig. 5.3B). Imaging angles were chosen that 
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maximized the in-plane (x-y) motion of each cilium analyzed. From the automatically generated 

trace sequences of each cilium analyzed, the following quantities of interest were calculated for 

quantitative comparison under different experimental conditions: amplitude, frequency, 

maximum curvature, and periodicity. Calculation of these quantities is described in section 5.1.3. 

 

Figure 5.3: Tracing of pancreatic beta cell cilia. Reproduced from [39]. (A) Image illustrating the quantities of angle, 

𝜃, and curvature, 𝜅. (B) Box shows a pancreatic beta cell cilium with points along its length traced using the 

autotrace software. (C) Representative automatically generated traces color coded according to order under low 

glucose conditions. Scale bar 5μm. (D) Representative traces under high glucose conditions. Scale bar 5μm. 

 

Results 

Several of the important results from this paper are summarized here. I will limit discussion to 

results obtained using the autotrace software, as those are relevant to this dissertation.  

Firstly, motility of pancreatic beta cell cilia is significantly affected by glucose concentration 

(Fig. 5.4). Raising the glucose concentration from 1 mM to 11mM led to a statistically 

significant increase in amplitude, decrease in frequency, and increase in the maximum curvature 

observed. This result does not tell us the exact mechanism of motility in these primary cilia, but 

the dependence on glucose concentrations suggests that it is an active process.  
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Figure 5.4 Analysis of quantities of interest at low (1mM) and high (11mM) glucose conditions. Reproduced from 

[39]. (A) Amplitude is increased at high glucose conditions. Bars show mean+/-SEM. (B) Frequency is decreased at 

high glucose conditions. (C) Maximum curvature in the cilium is increased at high glucose conditions. (D)Glucose 

concentration did not have a significant effect on periodicity of motion. (E) Histogram of amplitude (std(𝜃)) at high 

and low glucose conditions. 𝑛=80 per condition, ***p<0.001, ****p<0.0001 

 

Secondly, the amplitude of beta cell ciliary motion was measured under several conditions to 

determine the source of the motility (Fig. 5.5). To further test whether ciliary motion was driven 

by an active internal process, the effect of exogenous ATP concentration in cilia without glucose 

stimulation was measured. The addition of 10 μM ATP increased amplitude by ~60% (Fig. 

5.5B). Depletion of ATP by Antimycin A and 2-deoxy-D-glucose reduced ciliary motion. These 

findings suggest that motion is driven by an ATP dependent process such as actin-myosin or 

tubulin-dynein binding. 
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Figure 5.5: Response of beta cell cilia motion amplitude to various treatments. Reproduced from [39]. (A)Targeted 

dynein knockdown reduces motion amplitude. (B) ATP supplementation without glucose increases amplitude. (C) 

ATP depletion using antimycin A and 2-deoxy-D-glucose (2DG) inhibits cilia movement. (D) Dynein chemical 

inhibition by ciliobrevin D blocks cilia movement. DMSO-treated islet cilia exhibited unperturbed motility; 

untreated islet cilia are shown as an additional control. (E) EHNA inhibits cilia movement compared to DMSO-

treated and untreated cilia. (F) The actin-myosin inhibitor blebbistatin does not significantly affect ciliary beat 

amplitude. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001; n = 10-50 traces per condition, pooled from three or 

more independent experiments. 

 

Thirdly, it had already been determined through fluorescent labeling that the motor protein 

dynein was present in beta cell cilia. To determine if dynein is responsible for the observed 

motility, several experiments were conducted to study motion of cilia with diminished dynein 

presence or impaired dynein function. Targeted dynein knockout caused a decrease in amplitude 

(Fig. 5.5A). The AAA+ ATPase motor inhibitor ciliobrevin D also decreased amplitude, as did 
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the dynein inhibitor EHNA (Figs. 5.5D,E). To rule out actin-myosin interactions in the cell 

cortex as a cause of motion, the myosin inhibitor blebbistatin was introduced at a concentration 

of 50 μM and found to not have a significant effect on beating amplitude. 

Discussion 

Taken together, these results suggest that beta cell primary cilia are motile sensory organelles, 

driven by the motor protein dynein. This result contradicts the commonly held belief that these 

organelles are immotile. 

5.3.2 Quantifying sperm capacitation 

Work on quantification of sperm capacitation is ongoing and results presented here should be 

considered preliminary. Undergraduate researcher Alicia Gupte deserves credit for her excellent 

analyses of hundreds of video files and presentations of her findings on this work. 

Motivation 

When sperm cells enter the female reproductive tract, they undergo a physiological process 

called capacitation [245]. This process is essential to allowing the sperm cell to fertilize the egg 

and is associated with an increase in motility. Dr. Celia Santi’s Lab studies sperm cell 

capacitation and reached out to the Bayly Lab to collaborate on characterizing the effects of 

capacitation on sperm motility through video analysis. If capacitated and non-capacitated sperm 

can be efficiently distinguished using video analysis, this could be an effective diagnostic in 

determining causes of infertility. 
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Methods 

Videos of beating sperm cells were given to the Bayly lab that were labeled as ‘condition A’ and 

‘condition B’. These were later revealed to be non-capacitating and capacitating conditions, 

respectively, though not all sperm cells incubated under capacitating conditions will undergo 

capacitation [246]. Traces of sperm flagella were generated using the Autotrace software (Fig. 

5.6A,B). Because the videos were captured at low frame rates relative to the frequency of beating 

(20-60Hz framerate, ~10Hz beat frequency), Isomap was used to re-order temporally ordered 

traces according to their position in the beat cycle (Fig. 5.6C) [35, 247]. This effectively 

condenses many cycles with few frames per cycle into one ‘super cycle’ with many frames. This 

super cycle is spatially smoothed using a 4th-order polynomial regression on each trace, and then 

temporally smoothed by applying a truncated FFT reconstruction of each polynomial term as a 

function of time. Analysis of the ‘super cycle’ improved estimates of velocities as well as 

estimates of kinetic quantities that are calculated from the velocities. 

 

Figure 5.6: Traces of beating sperm cells and Isomap sorting. Analysis conducted by Alicia Gupte. (A) Sperm cells 

incubated under non-capacitating conditions. (B) Sperm cells incubated under capacitating conditions. (C) Input data 

are initially unsorted. Isomap software was used to sort the traces according to an estimate of their position in the 

cycle. 4th-order polynomial coefficients are fit for each trace. A smoothed waveform is reconstructed using a 

truncated FFT of the time-series of polynomial coefficients. 
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Results 

This is an ongoing project and any results presented here are preliminary. 

Tracing and analysis of sperm cells using the methods described in this work has produced 

statistically significant results for some quantities of interest comparing groups of sperm cells 

thought to be in a quiescent state and those that were thought to contain hyperactivated sperm 

cells. One way to hyperactivate sperm cells is through the use of the drug thimerosal [248]. The 

results of a comparison of cells incubated under non-capacitating conditions and cells incubated 

under the same conditions with the addition of thimerosal is shown in Fig. 5.7. Using the 

methods described in this chapter, hyperactivated sperm show a decreased beat frequency, but an 

increased beat amplitude. Wavelength and maximum curvature are increased in hyperactivated 

sperm. 

 

Figure 5.7: Comparison of metrics from traces of quiescent and hyperactivated sperm cells (preliminary). Analysis 

courtesy of Alicia Gupte. (A) Frequency of beating decreases under the presence of thimerosal. p<0.01 (B) 

Amplitude of beating increases with thimerosal. p<0.0001 (C) Wavelength of the flagellar beat shape increases with 

thimerosal. p<0.01 (D) Maximum curvature is increased under thimerosal. p<0.001. 
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5.4 Discussion and conclusion 
The custom Autotrace algorithm has proven to be a valuable tool in the analysis of ciliary 

kinematics and kinetics. We have successfully applied the software to the tracing of 

Chlamydomonas cilia, pancreatic islet cilia, and sperm flagella. Undergraduate students in the 

Bayly Lab and the Hughes lab have successfully applied the software to research projects, 

providing evidence that it is user-friendly. Additionally, as this software is now publicly 

available and referenced in publications [39, 241], we hope that others will use the software to 

advance ciliary research as well. 

The software algorithm is robust to difficult conditions such as noise, low contrast, and loss of 

focus. However, there are some conditions that will cause the algorithm to lose tracking and give 

spurious results. These include severe image noise, intersections of multiple cilia, and debris in 

the image field. Careful selection of the penalty terms has been found to help with convergence 

in these conditions.  

5.5 Future work 
Tracing live cilia and flagella through cyclic beating is an important part of research into these 

organelles and I expect future work to involve the application of the software presented here (or 

improved versions of it) to new studies.  

Future versions of the Autotrace software may be improved in several ways. Selection of penalty 

term values has largely been done by trial and error, as once terms are found that work well on 

one data set, they tend to work well on similar data sets. We have created automated 

optimization routines that run the tracing algorithm multiple times on a sample data set, 

optimizing penalty terms to minimize mismatch between the trace and the cilium path, but more 
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work needs to be done here to make it an efficient and user-friendly process. Finally, at the end 

of the tracing process, the user is presented with statistics such as the total cost associated with 

each frame. Large jumps in these values are an indication that there may have been issues with 

the tracing process at a given frame. Undergraduate researcher Joey Guan is currently working 

on adding functionality to the software that would allow convenient manual user intervention to 

correct traces in cases where the algorithm fails. 

The Autotrack cell body-tracking software shows potential for use in several areas. Firstly, cell 

body tracking may be incorporated into future Autotrace software to reduce the two-step process 

(cell body stabilization first, then cilium tracing) into a single tracing process, which would also 

simplify calculation of kinetic terms by allowing us to conduct all analysis in a single reference 

frame. Secondly, early results studying hydrodynamic coupling between Chlamydomonas cells 

trapped in an acoustic trap are promising and may lead to a future publication (Fig. 5.2). Multiple 

cells may be tracked (one at a time) to study their interactions and the relative phase of their 

beating, translation, and rotation both about an axis normal to the imaging plane and about their 

anterior-posterior axes.   
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Chapter 6: Dynamic analysis of ciliary and flagellar 

beating1 

 

Abstract2 
Hydrodynamic flow produced by multi-ciliated cells is critical for fluid circulation and cell 

motility. Hundreds of cilia beat with metachronal synchrony for fluid flow. Cilia-driven fluid 

flow produces extracellular hydrodynamic forces that cause neighboring cilia to beat in a 

synchronized manner. However, hydrodynamic coupling between neighboring cilia is not the 

sole mechanism that drives cilia synchrony. Cilia are nucleated by basal bodies (BBs) that link to 

each other and to the cell’s cortex via BB-associated appendages. The intracellular BB and 

cortical network is hypothesized to synchronize ciliary beating by transmitting cilia coordination 

cues. The extent of intracellular ciliary connections and the nature of these stimuli remain 

unclear. Moreover, how BB connections influence the dynamics of individual cilia has not been 

established. We show by FIB-SEM imaging that cilia are coupled both longitudinally and 

laterally in the ciliate Tetrahymena thermophila by the underlying BB and cortical cytoskeletal 

network. To visualize the behavior of individual cilia in live, immobilized Tetrahymena cells, we 

developed Delivered Iron Particle Ubiety Live Light- (DIPULL) microscopy. Quantitative and 

computer analyses of ciliary dynamics reveal that BB connections control ciliary waveform and 

coordinate ciliary beating. Loss of BB connections reduces cilia-dependent fluid flow forces. 

 
1 This section reproduces sections of material from and summarizes my contributions to [36] A. W. J. Soh et 

al., "Intracellular connections between basal bodies promote the coordinated behavior of motile cilia," Mol Biol 

Cell, Jun 29 2022, Art no. mbcE22050150, doi: https://doi.org/10.1091/mbc.e22-05-0150.. See section 1.5 Statement 

of contributions. 

2 This abstract is reproduced from the original paper for the purpose of giving the reader context for the material 

covered in this chapter. It contains references to material not covered in this dissertation chapter. 
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6.1 Introduction 
Cilia driven hydrodynamic flow in the human body is essential to clearing mucus from airways, 

circulating cerebrospinal fluid in brain ventricles, and transporting the egg along the oviduct [1-

4]. Hundreds or thousands of cilia must beat in a coordinated motion to effectively create these 

flows. Beating in arrays of cilia typically occurs in a ‘metachronal wave’ [42]. This is an 

activation pattern where a wave front of beat initiation propagates spatially, and cilia complete 

their cycles in its wake. As an analogy, the phenomenon resembles ‘the wave’ that spectators 

propagate around sports arenas (though in cilia one cycle tends to follow closely after the last). 

There are several possible reasons for metachronous beating patterns: (i) they are efficient for 

creating hydrodynamic flows and moving cargo [249], and (ii) this coordination allows cilia to 

complete their strokes without interfering with each other (‘ciliary tangles’ – see movie 4 in 

Supplemental Material for [36])[250]. However, the mechanism by which cilia coordinate these 

metachronal waves is not understood [205, 251]. In the current work, we investigate the role of 

basal body (BB) associated structures that act as mechanical couplings between adjacent BBs in 

coordinating ciliary beating and determining ciliary beat shape, force, and duration. 

The ciliated protozoan Tetrahymena thermophila is a single-celled organism that swims using 

approximately 400 cilia distributed over its body [7]. This organism, and mutants of this 

organism which disrupt BB structures such as the striated fiber (SF)[191, 201], serve as a model 

for studying ciliary beating in this study. 

Though there are many interesting experiments and findings in this paper, I will focus here on 

my contributions, which were waveform analysis, estimation of forces on the cilia and body of 

Tetrahymena cells, and the statistical analysis of how the disA-1 mutation and resulting 

disruption of Striated Fiber (SF) development impacts ciliary beating. 
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6.2 Methods 
Note: this chapter does not use the autotrace software from the previous chapter. Though 

automatic methods may be applied to tracing single cilia, tracing an individual cilium within an 

actively beating array is a particularly challenging problem to automate and was conducted 

manually by Adam Soh. 

6.2.1 Ciliary force estimation 

Calculation of forces based on ciliary waveform analysis using resistive force theory 

Forces on Tetrahymena cilia were calculated using resistive force theory [107]. Estimates for the 

value of the resistive force coefficient vary from approximately 1 to 3.5-fold the viscosity of the 

fluid [8, 31, 252]. We used the values obtained for wild-type Chlamydomonas reinhardtii cilia as 

previously described ([8]; CN=1.53×10-3pN·s/μm2, CT=0.64×10-3pN·s/μm2). These values were 

adjusted to account for changes in the viscosity of the surrounding fluid due to temperature 

differences. 

The ciliary waveform was traced using a previously published protocol [78]. To ensure equal 

weightage, each cilium was followed for six consecutive beat cycles. Nine cilia (each from a 

different cell) were analyzed. Briefly, consecutive frames of Tetrahymena cilia undergoing a 

power stroke (in the xy plane) and a recovery stroke (in the yz plane) were manually traced (Fig. 

6.1). For the power stroke, each cilium was aligned along the cell’s anterior-posterior axis using 

the base of the anterior cilium as a reference point. For the recovery stroke, each cilium was 

aligned relative to the power stroke axis of the same cilium and the cell’s anterior-posterior axis. 

Next, each trace was fitted with a polynomial function. Two-dimensional average ciliary 

waveforms of the power stroke and recovery stroke were generated by averaging across 

individual ciliary traces (9 cilia, 6 ciliary beat cycles each, 9 cells). The cilium position is defined 
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by its orientation from the cilium’s distal end (4.5 µm up from the cilium base) relative to the 

cilium’s base and cell’s anterior pole. Cilium positions are categorized into 15° bins for both the 

power and recovery strokes. The start and end positions of each cilium along the power stroke 

and recovery stroke were defined by the orientation of the first and last ciliary trace that appear 

along the imaging focal plane. The reference point for angle measurement is 4.5 µm up from the 

cilium base relative to the cell’s anterior-posterior axis. The average start and stop positions for 

each cilium were calculated by averaging the start and end positions across 6 ciliary beat cycles. 

The angular trajectory for both the power and recovery strokes were quantified by measuring the 

angle between the average start and end positions of each cilium. Analyses were focused on 

ciliary traces that fell within the average angular trajectories (Fig. 5B and G).  

 

Figure 6.1: Tracing immobilized live Tetrahymena cilia during beating. Reproduced from [36]. (A) Tetrahymena 

ciliary array. Bar, 10 µm. (B,C) Timelapse images of power (B) and recovery (C) strokes. Time intervals (msec) are 

indicated. Dotted lines mark manual cilia traces. Average power stroke, red. Average recovery stroke, green. Scale 

bars, 2 µm. 
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Cilium velocity, 𝒗𝒄(𝑠, 𝑡), as a function of arclength coordinate, s, and time, 𝑡, was calculated by 

numerically differentiating the coordinates of the cilium traces with respect to t. Velocities are 

projected onto the tangent and normal vectors along the cilium for calculation of the distributed 

resistive forces [8]. Power per unit length (fW/µm) along the cilium is calculated as the dot 

product of the distributed force and velocity, 𝑃(𝑠, 𝑡) = 𝑭(𝑠, 𝑡) ⋅ 𝒗𝑐(𝑠, 𝑡). Total power produced 

by the cilium at a given time is obtained by numerically integrating the power over the length of 

the cilium. Moment at the cilium basal attachment (pNµm) is calculated as the integral along the 

length of the cilium of the cross product of the position relative to the basal attachment and the 

distributed force, 𝑀0(𝑡) = ∫ 𝒙(𝑠, 𝑡) × 𝑭(𝑠, 𝑡)𝑑𝑠
𝐿

0
. 

Calculation of forces on the cell body 

Forces on the cell body were calculated for comparison against ciliary forces estimated from 

RFT. Average swimming velocities for WT and disA-1 cells used in calculations were based on 

previously reported study [201]. The cell body was modeled as an ellipsoid moving along its 

major axis [8, 253]. If the length of the major and minor axes of the cell body are given as 𝑎 and 

𝑏, respectively, then the eccentricity is given by the equation, 𝑒 = √1 − 𝑏2/𝑎2 . The force along 

the major axis (denoted 𝐹𝑥) is given by Eq. 6.1. 

 𝐹𝑥 = 6𝜋𝜇𝑎𝑣𝑥 × 𝐶𝐹1 (6.1) 

Here 𝜇 is the dynamic viscosity of the medium, 𝑣𝑥 is the component of the cell velocity along the 

major axis, and 𝐶𝐹1is a dimensionless correction factor to account for the eccentricity. 𝐶𝐹1is 

given in Eq. 6.2. 

 𝐶𝐹1 =
8

3
𝑒3 [−2𝑒 + (1 + 𝑒2) ln

1+𝑒

1−𝑒
]
−1

 (6.2) 
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To estimate the average force for each cilium, the body drag force along the cell’s anterior-

posterior axis (Eq. 6.1) was divided by the estimated number of cilia, 400 (assuming all BBs are 

ciliated; [254]). 

6.2.2 Statistical analysis  

All datasets were assessed for normal distribution using the Shapiro-Wilk or Kolmogorov-

Smirnov test. A student’s t-test was performed on normally distributed datasets. A Mann-

Whitney test was performed on datasets that do not conform to a normal distribution. An F-test 

was performed to compare variance between conditions. Tests for significance were unpaired 

and two-tailed. All error bars indicate SD. P value is indicated for all statistical analyses. All 

analyses were performed on samples obtained from 3 independent experiments. 

6.3 Results 

6.3.1 Loss of BB connections reduces ciliary power stroke durations 

To test whether BB connections specifically impact ciliary forces, we focused on individual cilia 

with BBs that are disconnected but still oriented. Oriented cilia were identified as those in which 

the power stroke occurs along the cell’s anterior-posterior axis and remain in-focus during the 

entire power stroke before transiting into the recovery stroke where they exit the imaging focal 

plane (Fig. 6.1B). We also imposed the requirement that the anterior and posterior neighboring 

cilia are similarly oriented. Ciliary parameters that affect fluid flow are defined at minimum by 

ciliary length, ciliary beat frequency or speed, ciliary sweep trajectory, and ciliary curvature. 

Ciliary length is not changed in disA-1 mutants (WT: 5.0±0.7 µm; disA-1: 5.2±0.6 µm; Student’s 

t-test; P = 0.35), and we therefore focused on the remaining three parameters to determine if they 

were impacted when BBs are disconnected. 
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To quantify the ciliary generated forces, the entire cilium must be within the imaging focal plane. 

The relative start and end positions of the power stroke were defined as when cilia first appear and 

exit the side view imaging focal plane, respectively (Fig. 6.1A; red box). The same method was 

applied to define the average start and stop positions of the recovery stroke when cilia were imaged 

from the top of the cell (Fig. 6.1A; green box). Importantly, this method only captures a portion of 

the complete power and recovery strokes when cilia are in focus. The WT power stroke duration 

was 18.0±9.3 msec while that of disA-1 cilia was 11.0±1.8 msec (Mann-Whitney test; P value = 

0.018). While the WT power stroke duration is similar to that obtained by kymograph analysis (see 

published article for details), the disA-1 power stroke is much shorter and likely represents a shorter 

duration in the imaging plane. The WT and disA-1 recovery stroke durations were similar to each 

other but significantly reduced compared to kymograph analysis (WT = 10.0±4.3 msec and disA-

1 = 10.0±3.1 msec; Mann-Whitney test; P value = 0.73). Like the power stroke, this shorter 

measured duration likely results from the recovery stroke moving out of the imaging focal plane. 

These limited segments of the ciliary beat cycle were next used to quantify the ciliary waveforms 

and predicted force outputs. 
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6.3.2 BB connections support normal ciliary waveforms 

The sweep trajectory of disA-1 cilia is not always consistent between beat strokes (see full article 

for details), suggesting that the ciliary waveform is disrupted when BBs are disconnected. 

Quantitative comparisons between the ciliary waveforms of oriented cilia suggest that disA-1 cilia 

display a shorter sweep angle along the power stroke compared to WT cilia (Fig. 6.2A,B; WT 

cilia: 88.0±20.0°; disA-1 cilia: 51.0±27.0°; Mann-Whitney test; P = 0.008). These average 

representative waveforms are generated from many individual ciliary traces that are standardized 

by using the average start and stop positions of all analyzed cilia (Fig. 6.2A (red highlights) and 

B; n = 9 cilia, 6 ciliary beat cycles each, 9 cells). disA-1 cilia initiate the power stroke at 66.0±26.0° 

compared to WT cilia at 42.0±10°; and then transition into the recovery stroke at 120.0±18.0° 

compared to 130.0±19.0° for WT cilia (Fig. 6.2B,G). Subtle increases in variance were observed 

in disA-1 cilia and may be explained by the subpopulation (49%) of oriented cilia with connected 

BBs that we expect to behave like WT cilia. The disA-1 power stoke is shorter, suggesting that BB 

connections promote a long ciliary power stroke trajectory (Fig. 6.2A,B). 
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Figure 6.2: BB connections support ciliary waveform and coordination. Reproduced from [36]. (A) Tetrahymena 

power stroke waveform. Top panel: Average WT power stroke waveform. Bottom panel: Average disA-1 power 

stroke waveform. Red highlight indicates the average angular trajectory (n = 9 cilia). Cilium position is defined by 

the angle from the cilium distal end (4.5 µm up the cilium base) relative to the cell’s anterior-posterior axis. Angles 

are categorized into 15° bins. Each angular bin contains at least 1% of all ciliary traces per condition. The number of 

cilia traces for each bin is indicated. (B) Angular trajectories of WT and disA-1 cilia during the power stroke. disA-1 

cilia undergo shorter trajectories than WT cilia. Each cilium in the analysis is color coded. (C) Curvature heatmaps 

of WT and disA-1 cilia through the power stroke (blue: cilium bends towards the cell anterior pole; red: cilium 

bends away from the cell anterior pole; green: straight cilium). Y-axis marks the cilium position through the power 

stroke. Dotted arrow indicates the change in WT cilium curvature at the start to middle of the power stroke. WT 

power stroke: n = 603 cilia traces (9 cilia, 6 ciliary beat cycles each, 9 cells). disA-1 power stroke: n = 488 cilia 

traces (9 cilia, 6 ciliary beat cycles each, 9 cells). (D) Superimposed WT (black lines) and disA-1 (brown dashed 

lines) average power stroke waveform. Curvature differences are depicted only for stages of the power stroke that 

fall within the average angular trajectories of WT and disA-1 cilia. (E) Ciliary power stroke impulses were estimated 

using resistive force theory. WT cilia exert greater impulse (area under the force-time curve) than disA-1 cilia along 

the anterior-posterior axis per power stroke (n = 9 cilia). (F) Tetrahymena recovery stroke waveform. Top panel: 

Average WT recovery stroke waveform. Bottom panel: Average disA-1 recovery stroke waveform. Green highlight 

indicates the average angular trajectory (n = 9 cilia). Cilium position is defined by the angle from the cilium distal 

end (4.5 µm up the cilium base) relative to the cilium’s power stroke axis. Angles are categorized into 15° bins. 

Each angular bin is at least 1% of all ciliary traces per condition. Number of cilia traces for each bin is indicated. (G) 
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Angular trajectories of WT and disA-1 cilia. Each cilium in the analysis is color coded. disA-1 cilia undergo 

comparable trajectories as WT cilia during the recovery stroke. (H) Curvature heatmaps of WT and disA-1 cilia 

through the recovery stroke (blue: cilium bends towards the cell anterior pole; red: cilium bends away from the cell 

anterior pole; green: straight cilium). Y-axis marks the cilium position through the recovery stroke. WT recovery 

stroke: n = 498 cilia traces (9 cilia, 6 ciliary beat cycles each, 9 cells). disA-1 recovery stroke: n = 584 cilia traces (9 

cilia, 6 ciliary beat cycles each, 9 cells). (I) Superimposed WT (black lines) and disA-1 (brown dashed lines) 

average recovery stroke waveform. Curvature differences are depicted only for stages of the recovery stroke that fall 

within the average angular trajectories of WT and disA-1 cilia. (J) Ciliary recovery stroke impulses were estimated 

using resistive force theory. WT and disA-1 cilia exert comparable impulse (area under the force-time curve along 

the anterior-posterior axis per recovery stroke (n = 9 cilia). (K) Frequency of ciliary tangles. WT: n = 11 cells (14 

cilia pair); disA-1: n = 13 cells (19 cilia pairs). (L) Schematic illustrates the model that BB connections promote fast 

and long power stroke trajectories for coordinated ciliary beating and effective fluid flow propulsion. Scale bars, 1 

µm. 

 

Changes to ciliary curvature alter the efficiency of fluid flow as straight cilia promote greater fluid 

propulsion than bent cilia [107, 255, 256]. We assessed the impact of BB connections on cilia 

curvature. A curvature value of zero indicates a straight cilium, a negative curvature value indicates 

a concave cilium profile that bends away from the cell anterior, and a positive curvature value 

indicates a convex cilium profile that bends towards the cell anterior. The greatest differences 

between WT and disA-1 ciliary curvature occur primarily at the start to the middle of the power 

stroke (Fig. 6.2D). WT cilia are approximately 12-fold more curved than disA-1 cilia at the 

proximal end of the cilium (Fig. 6.2D (inset); WT: -0.17±0.05 radians/ µm; disA-1: 0.01±0.11 

radians/ µm; Mann-Whitney test; P < 0.0001). Importantly, the most proximal region of cilia (1.5 

m) could not be detected in our imaging. There may be unobservable differences between WT 

and disA-1 in this proximal region. At the medial region of the cilium, disA-1 are 2-fold more bent 

than WT cilia (Fig. 6.2D; WT: -0.08±0.02 radians/ µm; disA-1: -0.14±0.04 radians/ µm; Mann-

Whitney test; P < 0.0001). Together, this suggests that BB connections influence ciliary curvature 

during the power stroke. 

The recovery stroke returns cilia back to the start of the power stroke. Unlike the power stroke, SF 

connections do not appear to impact the angular trajectory of the recovery stroke (Fig. 6.2G; WT 
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cilia: 67.0±21.0°; disA-1 cilia: 76.0±20.0°; Mann-Whitney test. P = 0.26). We were unable to 

visualize the transition from the power to the recovery stroke and vice-versa because cilia move 

out of the focal plane during the 3-dimensional ciliary beat stroke. Seemingly contradictory, the 

recovery stroke trajectory of WT and disA-1 cilia appear to be similar despite the shorter average 

sweep trajectory of the disA-1 power stroke (Fig. 6.2B,G). One explanation is that the recovery 

stroke imaging plane of WT and disA-1 cilia is different whereby WT cilia move closer to the cell 

cortex. This would result in comparable recovery stroke trajectory angles between WT and disA-

1 cilia, but the total distance traveled would be reduced for disA-1 cilia. Alternatively, disA-1 cilia 

may change their trajectory during transitions between power and recovery strokes outside the 

imaging focal plane. We next measured the difference in curvature in disA-1 cilia and found they 

are slightly more bent during the recovery stroke than WT (Fig. 6.2I; WT: 0.46±0.11 radians/ µm; 

disA-1: 0.51±0.10 radians/ µm; Mann-Whitney test; P < 0.0001). Thus, our results suggest that BB 

connections are not required for normal recovery stroke angular sweep trajectories but do reduce 

ciliary curvature. 
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6.3.3 Ciliary changes resulting from BB disconnections reduce ciliary force 

To test whether the shorter sweep angle and abnormal curvature exhibited by disA-1 cilia during 

the power stroke reduce ciliary effectiveness, the magnitude of force along the anterior-posterior 

axis was estimated using resistive force theory (RFT). RFT uses resistive force coefficients to 

determine the distributed viscous drag applied to the cilium by the surrounding fluid based on the 

orientation and velocity of the cilium as a function of arc length and time [107]. Overall force 

produced by a cilium during its beat stroke will be affected by the cilium length, angular sweep 

rate, beat shape, and viscosity of the medium. WT cilia exerted an average force of 1.41±0.60 pN 

during the observed power stroke (Fig. 6.3A and Table 6.1; maximum power stroke force by WT 

cilia: 2.70±0.88 pN). The average force exerted during the observed power stroke by disA-1 cilia 

is reduced by 18% (Fig. 6.3A and Table 6.1; disA-1; average power stroke force: 1.16±0.79 pN; 

maximum power stroke force: 2.11±1.19 pN). As shown in Fig. 6.2D, differences in curvature of 

WT and disA-1 cilia are concentrated at the beginning of the power stroke, whereas differences in 

force output are greater toward the middle and end of the power stroke. This suggests that the 

reduced force of disA-1 cilia is not due to the change in curvature but rather to the reduced angular 

sweep rate (Table 6.1; WT: 6.62±2.72°/ msec; disA-1: 5.20±2.88°/ msec). The magnitude of force 

production in the opposite direction during the recovery stroke was similar between WT and disA-

1 cilia (Fig. 6.3B and Table 6.1; average recovery stroke force; WT: -1.05±0.34 pN; disA-1: -

1.13±0.40 pN; Mann-Whitney test; P value = 0.68).  
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Figure 6.3: Ciliary power and recovery stroke forces for wild-type and disA-1 cells throughout the beat cycle. 

Reproduced from [36]. (A) Ciliary power stroke forces were estimated using resistive force theory. WT cilia exert 

more power stroke force per stroke than disA-1 cilia (9 cilia, 6 ciliary beat cycles each, 9 cells). Data bin size is 15°. 

(B) Ciliary recovery stroke forces were estimated using resistive force theory. WT cilia exert comparable recovery 

stroke force per stroke relative to disA-1 cilia (9 cilia, 6 ciliary beat cycles each, 9 cells). Data bin size is 15°. 

 

Table 6.1: Tabulation of results of ciliary force estimation. Ciliary forces were estimated from manual traces 

using previously described resistive force coefficients (CN=1.53μ, CT=0.64μ; [8]). Viscosity of water, μ, applied in 

analysis was 0.889cP at 25°C. All average values for ciliary quantities were calculated by averaging values within 

the mean sweep angle range for each traced ciliary beat stroke (54 total beat strokes each in 4 data sets), then 

calculating the average and standard deviation of the average quantities. Maximum values were calculated by taking 

the maximum value for each stroke within the mean sweep angle range, then calculating the average and standard 

deviation for the maximum quantities. All force values integrate forces in the anterior-posterior axis direction over 

the length of the cilium trace. Sweep rates are calculated by numerically differentiating the angle from the base of 

the cilium trace to 4.5 mm up the cilium with respect to time. WT and disA-1 swim speeds [201] were used to 

estimate viscous drag forces on the Tetrahymena cell body using previously described methods [8, 253]. 

Parameter WT disA-1 P value 

Average power stroke force [pN] 1.41 ± 0.60 1.16 ± 0.79 0.07 

Maximum power stroke force [pN] 2.70 ± 0.88 2.11 ± 1.19 0.001 

Average recovery stroke force [pN] -1.05 ± 0.34 -1.13 ± 0.40 0.73 

Maximum recovery stroke force [pN] -1.51 ± 0.51 -1.68 ± 0.56 0.15 

Average power stroke sweep rate [deg/ msec] 6.62 ± 2.72 5.20 ± 2.88 0.04 

Maximum power stroke sweep rate [deg/ msec] 10.69 ± 4.18 7.74 ± 4.00 0.002 

Average recovery stroke sweep rate [deg/ msec] 5.83 ± 1.94 6.37 ± 2.28 0.31 

Maximum recovery stroke sweep rate [deg/ msec] 7.60 ± 2.02 9.13 ± 3.11 0.008 

Average power stroke basal moment [pN·μm] 2.86 ± 0.87 1.93 ± 1.44  0.00003 

Maximum power stroke basal moment [pN·μm] 10.58 ± 3.16 8.37 ± 5.05 0.0005 

Average recovery stroke basal moment [pN·μm] 1.13 ± 0.59 1.36 ± 0.72 0.16 

Maximum recovery stroke basal moment [pN·μm] 4.90 ± 1.98 5.10 ± 1.93 0.44 

Average power stroke power [aW] 870 ± 600 690 ± 640 0.02 

Average recovery stroke power [aW] 420 ± 220 500 ± 310 0.27 

Swimming Speed [μm/ sec] 272 123 - 

Body force / cilium [pN] -0.26 -0.12 - 

 

  



159 

 

Not only do disA-1 cilia produce lower power stroke forces on average, but they also spend a 

shorter duration of time producing that force due to the shorter sweep angle in our segmented 

analysis using only cilia in focus (Fig. 6.2A,B). This leads to a lower impulse, the measure of the 

area under the force-time curve. The mean axial impulse of WT cilia was 21.9±7.5 pN·ms, and 

that of disA-1 cilia was 11.4±6.2 pN·ms (Fig. 6.2E, Mann-Whitney test; P = 0.01). During the 

recovery stroke, WT cilia produce an impulse of -10.0±3.7 pN·ms and disA-1 cilia produce an 

impulse of -10.4±2.5 pN·ms (Fig. 6.2J, Mann-Whitney test; P = 0.86). Though the power stroke 

of disA-1 cilia is significantly less productive, the recovery stroke produces a similar amount of 

drag impulse. The average measured impulses sum to 11.9±8.4 pN·ms per beat for WT cilia, and 

1.0±6.7 pN·ms per beat for disA-1 cilia, providing an estimate of the overall effectiveness of each 

beat. It should be noted that it was not possible to measure power and recovery strokes on the same 

cilia, and that the standard deviations on the power and recovery stroke impulses for disA-1 cilia 

are larger than the difference in their magnitudes. For WT cilia, multiplying the net average 

impulse of 11.9 pN·ms per beat by the average frequency of 24 Hz gives an average total force per 

cilium of 0.29 pN, which compares well to the body drag force per cilium of -0.26 pN (Table 6.1). 

In summary, disA-1 cilia are less effective in part due to their lower average force output during 

their beat stroke, but more significantly due to the shorter time duration spent sweeping a shorter 

trajectory. 

6.4 Discussion 
The disA-1 mutation, and its impairment of SF formation and thus BB interconnection has been 

known to reduce ciliary effectiveness as measured by swimming speed in Tetrahymena cells 

[201]. Here we investigated the reasons for that reduction and found that while average and 

maximum powerstroke forces are reduced in disA-1 mutants, those reductions alone are not 
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sufficient to account for the overall reduction in output. In addition, disA-1 cilia sweep a shorter 

trajectory and spend a smaller fraction of the beat cycle in the power stroke phase. This 

combination of reduced force and reduced power stroke duration greatly diminishes the impulse 

created during the disA-1 power stroke. Because force is proportional to velocity in RFT, the 

impulse produced during each ciliary beat cycle is proportional to the distance the cell is pushed 

forward (in this linear model). By multiplying this distance by the beat frequency and the total 

number of cilia we get an estimate of the swimming speed.  

A possible explanation for both the reduced propulsive force and shorter angular trajectory of disA-

1 cilia is greater rotational compliance of the BB within the power stroke plane due to the lack of 

SF support, which is consistent with the modeling results shown in Chapter 4 [34]. The estimated 

average bending moment at disA-1 BBs during the ciliary power stroke is reduced by 33% 

compared to WT (Table 6.1; WT: 2.86±0.87 pN·μm; disA-1: 1.93±1.44 pN·μm; P < 0.0001). If 

the BB has rotational compliance, the moment due to viscous forces on the cilium will tend to 

rotate it in the opposite direction of the cilium during the power stroke. We expect that the BB 

rotation predicted for WT cells would increase in disA-1 cells where BBs are no longer connected. 

BB rotation will have the effect of reducing the sweep angle for a given ciliary deformation cycle. 

Reducing the sweep angle alone would reduce the sweep rate for a given ciliary deformation 

thereby reducing the applied forces. This complex interaction requires further experimental and 

modeling work. Recovery stroke parameters are largely unaffected in disA-1 cells, perhaps because 

the recovery stroke occurs in a plane orthogonal to the BB axis and structural connections other 

than the SF, such as the post-ciliary microtubules (pcMTs), transverse microtubules (tMTs), and 

the cellular cortex, are sufficient to stabilize it against moments about its axis. 
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6.5 Conclusion 
While forces produced by disA-1 cilia are reduced, the shortened powerstroke sweep duration is 

responsible for the majority of the reduction in impulse. Loss of SF stabilization may lower the 

ability of disA-1 basal bodies to resist bending moments, shortening the power stroke angle and 

duration. Other structures such as the pcMTs, tMTs, and the cortical attachments may stabilize 

BB to rotations about its axis, hence the recovery stroke remains unaffected.  
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Chapter 7: Conclusions and Future Work 

 

While the study of ciliary beating is a long standing endeavor dating back to the 1950s [21, 107], 

there is still much to be learned about how cilia beat, how internal ciliary structures deform and 

resist deformation, and how cilia interact within arrays to produce metachronal waves and steer 

multiciliated microswimmers.  

The idea of mechanical-instability-driven ciliary beating is a novel one in terms of the history of 

ciliary research [32]. The idea has gained traction since it was first proposed, but there is still 

much investigation to be done both experimentally and computationally. Previous modeling 

studies have applied linear stability analysis to two-filament PDE models and time-stepping 

simulation of simple multi-filament models [32]. Hu advanced the multi-filament model by 

adding a sliding nonlinearity in the radial spokes [33]. Many other models of instability driven 

oscillations are simple single-filament models [46, 47, 257]. In Chapter 3, I confirm previous 

results that oscillations arise under steady dynein force in models of the axoneme that are 

consistent with physical laws. I also advance previous work through a custom finite-element 

code that enforces exact balance of internal forces and moments and allows efficient stability 

analysis of multi-filament models. The current work includes a “6+1” model of the axoneme but 

extending the software to a “9+2” model would be straightforward, as the code was designed to 

be versatile in this way. 

There is still progress to be made in advancing the sophistication of geometrically nonlinear 

multifilament models to better represent our understanding of the underlying structure of the 

axoneme. An intended application for the efficient stability analysis model created in Chapter 3 
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is the prediction of the behavior of large deformation multi-filament models. Through the 

creation of a 9-outer-filament computer model of the axoneme and BB in Chapter 4, I have 

learned a lot about modeling these structures and hope to apply these techniques to advance the 

study of instability driven beating. Combining newly learned techniques such as the use of 

mapping functions to model nonlinear sliding and dynein force interactions between filaments 

would allow us to represent the axoneme and model large deformations in ways that are not 

possible without the use of these tools. These modeling advances informed by the predictions of 

multi-filament stability analysis would allow us to break new ground in the simulation study of 

ciliary beating.  

To further establish the plausibity of the steady dynein force model, a future goal is to create a 

physical model of the axoneme, informed by computational models, that beats under steady 

“dynein” force. This is a challenging and ongoing project. 

In Chapter 4, I recapitulate important aspects of observed BB bending in an elaborate finite-

element model of the BB and axoneme. This work predicts that temperature-dependent 

deformations observed in the BB are related to forces transmitted between adjacent BBs by the 

SF, which is known to develop differently at different temperatures. The role of BB accessory 

structures (SF, tMT, and pcMT) are predicted by perturbing those structures in the model. The 

prediction that the SF plays a large role in stabilizing the BB against rocking during the 

powerstroke informs and agrees with dynamic analysis of WT and disA-1 beating performed in 

Chapter 6, where it was found that disA-1 cilia have slower, shorter-in-angle power strokes that 

produce lower impulse per beat. I hypothesize that this is due to the inability of disA-1 cilia to 

resist high bending moments (for which maximum and average values were calculated to be 

significantly lower over the course of the power stroke). 
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The model used in Chapter 4 is a step forward, but it is not perfect. Deformation sizes are 

limited, and internal forces are not completely balanced due to necessary simplifications used in 

the model. A possible future project would be the improvement of the model to allow for larger 

deformations and the incorporation of established models of ciliary beating. This would allow us 

to study ciliary beating and BB deformation in tandem and would drop the necessity for 

commonly applied assumptions in modeling of beating such as the fixing of MTDs at their base. 

Future work should also include experiments to test the predictions of computational models. In 

Chapter 3, I made predictions about axonemal twist and torsion by analyzing the displacements 

of the individual filaments in the model. In Chapter 4, collaborators in the Pearson lab used 

electron tomograms of rapidly frozen Tetrahymena cells to determine deformations of BBs and 

cilia at various stages of the beat stroke. A combination of these types of approaches would 

allow us to make predictions about the filament level deformations in beating cilia and 

investigate them experimentally. 

Current ongoing work includes a collaboration with members of the Santi Lab – Celia Santi and 

Juan Ferreira – to apply dynamic analysis of sperm imaging to quantify the relevant changes in 

beat shape that would allow us to determine capacitation of sperm cells and possibly help 

clinicians to diagnose fertility issues.  

Other ongoing work involves a collaboration with members of the Meacham Lab – Mark 

Meacham and Advaith Narayan – to track beating Chlamydomonas cells as they interact in an 

acoustic trap to uncover mechanisms of cell-cell interactions and hydrodynamic coupling of 

ciliary beating. We plan to extend this analysis to Tetrahymena cells with the help of the Pearson 

lab. Future projects may study the interactions of many microswimmers, emergent behavior in 
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swarms of these organisms, and control of these swarms through the manipulation of the 

phototaxis, gravitaxis, and chemotaxis of the individual microswimmers. 
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Appendix A: Derivation of Finite Element Matrices 

Work and Energy in the Finite Element Model 

Finite Element Representation 

In the finite element formulation, transverse displacements of a doublet are represented as a sum 

of the products of spatially dependent shape functions and temporally-dependent generalized 

(modal) coordinates. Here 𝜙𝑖 is the 𝑖𝑡ℎ shape function, expressed in terms of the local axial 

coordinate, 𝑥, and 𝑞𝑖 is the 𝑖𝑡ℎ generalized (modal) displacement, which depends only on time, 𝑡. 

Using the Einstein summation convention for repeated indices, the displacement can be 

represented as 

 𝑦(𝑥, 𝑡) = 𝜙𝑖(𝑥)𝑞𝑖(𝑡). (A1) 

Cubic Hermite polynomials were used for element-level shape functions. Element-level shape 

functions were combined into filament-level shape functions by assuming that elements are 

continuous in displacement and slope at the nodes. Results were compared with different 

numbers of elements to check convergence; 10 elements per filament were found to be sufficient 

to capture system behavior. 

To derive the finite element matrices, kinetic energy, potential energy, and non-conservative 

work terms were derived for the physical forces and phenomena to be represented in the system. 

Lagrange’s equations were used to find element-level matrices, which were then combined into 

filament-level matrices. Filament-level matrices are then combined in block matrices to represent 

the deflections of multiple filaments in two transverse directions. 
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Potential Energy 

The potential energy due to elastic bending in a differential element of length 𝑑𝑥 of an Euler-

Bernoulli beam is: 

 𝑑𝑉𝐸 =
1

2
𝐸𝐼 (

𝜕2𝑦

𝜕𝑥2)
2

𝑑𝑥. (A2) 

In addition, the potential energy arising from the work done by axial tension during rotation of 

that differential element is [258]: 

 𝑑𝑉𝑇 =
1

2
𝑁 (

𝜕𝑦

𝜕𝑥
)

2

𝑑𝑥, (A3) 

where 𝑁 is the internal axial tension in the beam (positive in tension, negative in compression). 

Kinetic Energy 

The kinetic energy of a differential element of an Euler-Bernoulli beam is: 

 𝑑𝑇 =
1

2
𝜌𝐴𝑑𝑥 (

𝜕𝑦

𝜕𝑡
)

2

=
1

2
𝑚̅ (

𝜕𝑦

𝜕𝑡
)

2

𝑑𝑥, (A4) 

where 𝜌 is the density, 𝐴 is the cross-sectional area, 𝑚̅ is the mass per unit length. 

Total potential and kinetic energy in a finite element of length 𝐿 are obtained by integrating over 

the length of the element: 

 𝑉 = ∫ 𝑑𝑉
𝐿

0
, 𝑇 = ∫ 𝑑𝑇

𝐿

0
 (A5) 

Virtual Work of Non-Conservative Forces 

The virtual work done by non-conservative forces external to the finite element is: 

 𝛿𝑊𝑛𝑐 = ∫ 𝐹(𝑥)𝛿𝑦
𝐿

0
𝑑𝑥 = ∫ 𝐹(𝑥) (

𝜕𝑦

𝜕𝑞𝑖
𝛿𝑞𝑖)

𝐿

0
𝑑𝑥 = (∫ 𝐹(𝑥)

𝜕𝑦

𝜕𝑞𝑖

𝐿

0
𝑑𝑥) 𝛿𝑞𝑖 = 𝑄𝑖𝛿𝑞𝑖. (A6) 

Here 𝐹(𝑥) is the transverse (y-directed) component of externally applied loads acting on the 

element. If the externally applied load is a follower load, the 𝑦-component is proportional to the 

sine of the tangent angle of the beam, which for small angles may be approximated by the slope: 
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 𝐹(𝑥) = −𝑝(𝑥)
𝜕𝑦(𝑥,𝑡)

𝜕𝑥
= −𝑝(𝑥)

𝜕𝜙𝑖(𝑥)

𝜕𝑥
𝑞𝑖(𝑡). (A7) 

Here 𝑝(𝑥) is a baseward-oriented follower load applied to the element. The corresponding 

generalized force, 𝑄𝑖, is 

𝑄𝑖 = ∫ 𝐹(𝑥)
𝜕𝑦(𝑥,𝑡)

𝜕𝑞𝑖

𝐿

0
𝑑𝑥 = ∫ (−𝑝

𝜕𝜙𝑗(𝑥)

𝜕𝑥
𝑞𝑗(𝑡)) 𝜙𝑖(𝑥)

𝐿

0
𝑑𝑥 = 𝑞𝑗(𝑡) ∫ −𝑝𝜙𝑖(𝑥)𝜙𝑗

′(𝑥)
𝐿

0
𝑑𝑥 (A8) 

Lagrange’s Equations 
Using Lagrange’s equations [258, 259], we may derive a system of equations from the potential 

and kinetic energies as well as the work done by non-conservative forces on the system. 

 
𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝑞𝑖̇
) −

𝜕𝑇

𝜕𝑞𝑖
+

𝜕𝑉

𝜕𝑞𝑖
= 𝑄𝑖

𝑛𝑐 (A9) 

Terms from Kinetic Energy 

 𝑇 =
1

2
∫ 𝑚̅𝑦̇2𝑑𝑥

𝐿

0
=

1

2
∫ 𝑚̅(𝜙𝑖𝑞̇𝑖)

2𝑑𝑥
𝐿

0
 (A10) 

Eq. A9 term 1: 

 (
𝜕𝑇

𝜕𝑞𝑖̇
) = ∫ 𝑚̅(𝜙𝑗𝑞̇𝑗)𝜙𝑖𝑑𝑥

𝐿

0
 (A11) 

 
𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝑞𝑖̇
) = ∫ 𝑚̅(𝜙𝑗𝑞̈𝑗)𝜙𝑖𝑑𝑥

𝐿

0
= 𝑞̈𝑗 ∫ 𝑚̅𝜙𝑖𝜙𝑗𝑑𝑥

𝐿

0
 (A12) 

Eq. A9 term 2: 

 
𝜕𝑇

𝜕𝑞𝑖
= 0 (A13) 

Terms from Potential Energy 

 𝑉 =
1

2
∫ 𝐸𝐼(𝑦′′)2𝑑𝑥

𝐿

0
+

1

2
∫ 𝑁(𝑦′)2𝑑𝑥

𝐿

0
=

1

2
∫ 𝐸𝐼(𝜙𝑖

′′𝑞𝑖)
2𝑑𝑥

𝐿

0
+

1

2
∫ 𝑁(𝜙𝑖

′𝑞𝑖)
2𝑑𝑥

𝐿

0
 (A14) 

Eq. A9 term 3: 

 
𝜕𝑉

𝜕𝑞𝑖
= ∫ 𝐸𝐼(𝜙𝑗

′′𝑞𝑗)𝜙𝑖
′′𝑑𝑥

𝐿

0
+ ∫ 𝑁(𝜙𝑗

′𝑞𝑗)𝜙𝑖
′𝑑𝑥

𝐿

0
= 𝑞𝑗 ∫ 𝐸𝐼𝜙𝑖

′′𝜙𝑗
′′𝑑𝑥

𝐿

0
+ 𝑞𝑗 ∫ 𝑁𝜙𝑖

′𝜙𝑗
′𝑑𝑥

𝐿

0
 (A15) 
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Terms from Non-Conservative Forces 

Non-conservative work due to generalized displacements: 

 𝑄𝑖 = ∫ −𝑝𝑦′𝜙𝑖
𝐿

0
𝑑𝑥 (A16) 

 𝑄𝑖 = ∫ −𝑝𝜙𝑗
′𝑞𝑗𝜙𝑖

𝐿

0
𝑑𝑥 = 𝑞𝑗 ∫ −𝑝𝜙𝑖𝜙𝑗

′𝐿

0
𝑑𝑥 (A17) 

Local Equations of Motion in Matrix Form 
Combining the terms above in Lagrange’s equations leads to a set of equations for each finite 

element. 

 
𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝑞𝑖̇
) −

𝜕𝑇

𝜕𝑞𝑖
+

𝜕𝑉

𝜕𝑞𝑖
= 𝑄𝑖

𝑛𝑐 (A18) 

 𝑞̈𝑗 ∫ 𝑚̅𝜙𝑖𝜙𝑗𝑑𝑥
𝐿

0
+ 𝑞𝑗 ∫ 𝐸𝐼𝜙𝑖

′′𝜙𝑗
′′𝑑𝑥

𝐿

0
+ 𝑞𝑗 ∫ 𝑁𝜙𝑖

′𝜙𝑗
′𝑑𝑥

𝐿

0
= 𝑞𝑗 ∫ −𝑝𝜙𝑖𝜙𝑗

′𝐿

0
𝑑𝑥 (A19) 

 𝑞̈𝑗 ∫ 𝑚̅𝜙𝑖𝜙𝑗𝑑𝑥
𝐿

0
+ 𝑞𝑗 [∫ 𝐸𝐼𝜙𝑖

′′𝜙𝑗
′′𝑑𝑥

𝐿

0
+ ∫ 𝑁𝜙𝑖

′𝜙𝑗
′𝑑𝑥

𝐿

0
− ∫ −𝑝𝜙𝑖𝜙𝑗

′𝐿

0
𝑑𝑥] = 0 (A20) 

The individual terms of the equation above can be written using local system matrices.  

Mass matrix: 

 𝑀𝑖𝑗 = ∫ 𝑚̅𝜙𝑖𝜙𝑗𝑑𝑥
𝐿

0
 (A21) 

Stiffness matrix: 

 𝐾𝑖𝑗 = ∫ 𝐸𝐼𝜙𝑖
′′𝜙𝑗

′′𝑑𝑥
𝐿

0
 (A22) 

“Geometric stiffness” matrix: 

 𝐾𝐺𝑖𝑗 = ∫ 𝑁𝜙𝑖
′𝜙𝑗

′𝑑𝑥
𝐿

0
 (A23) 

“Geometric loading” matrix: 

 𝑃𝑖𝑗 = ∫ −𝑝𝜙𝑖𝜙𝑗
′𝐿

0
𝑑𝑥 (A24) 

The term “geometric stiffness“ follows the nomenclature of [258, 260]. The term “geometric 

loading” is introduced here (we are not aware of another name for this matrix). 
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The set of local equations governing each finite element (in generalized coordinates) is then 

given by: 

 𝑀𝑖𝑗𝑞̈𝑗 + (𝐾𝑖𝑗 + 𝐾𝐺𝑖𝑗 − 𝑃𝑖𝑗)𝑞𝑗 = 0 (A25) 

Non-conservative transverse forces from external viscous loading are modeled by resistive force 

theory [107]:   

𝛿𝑊𝑣
𝑁𝐶 = ∫ −𝑐𝑁𝑦̇𝛿𝑦𝑑𝑥 =

𝐿

0

∫ −𝑐𝑁(𝜙𝑗𝑞̇𝑗) (
𝜕𝑦

𝜕𝑞𝑖
𝛿𝑞𝑖) 𝑑𝑥 =

𝐿

0

 

 − (𝑞̇𝑗 ∫ 𝑐𝑁𝜙𝑖𝜙𝑗𝑑𝑥
𝐿

0
) 𝛿𝑞𝑖 = 𝑄𝑣

𝑁𝐶𝛿𝑞𝑖 (A26) 

where 𝑄𝑣
𝑁𝐶 = 𝐶𝑖𝑗𝑞̇𝑗 (note the damping matrix differs from the mass matrix only by a constant 

factor): 

 𝐶𝑖𝑗 = ∫ 𝑐𝑁𝜙𝑖𝜙𝑗𝑑𝑥
𝐿

0
= 𝛼𝑀𝑖𝑗 (A27) 

The final form of the equation is then: 

 𝑀𝑖𝑗𝑞̈𝑗 + 𝐶𝑖𝑗𝑞̇𝑗 + (𝐾𝑖𝑗 + 𝐾𝐺𝑖𝑗 − 𝑃𝑖𝑗)𝑞𝑗 = 0 (A28) 

Or in matrix notation: 

 𝐌𝒒̈ + 𝐂𝒒̇ + [𝐊 + 𝐊𝑮 − 𝐏]𝒒 = 𝟎 (A29) 
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Shear Stiffness 

Shear stiffness may be modeled as a distributed spring stiffness that resists rotation. Let 𝑘𝑇 be a 

distributed elastic resistance to tangential displacement between two filaments spaced a distance 

𝑑 apart. If the filaments remain approximately parallel under deformation, then the shear 

stiffness, 𝑘𝜏, provides a distributed moment in response to rotation [30]: 

 𝑘𝜏 = 𝑘𝑇𝑑2 (A30) 

 𝑚(𝑥) = −𝑘𝜏𝜃(𝑥) = −𝑘𝜏
𝜕𝑦

𝜕𝑥
(𝑥) (A31) 

To derive the FE matrix: 

 𝑑𝑉 =
1

2
𝑘𝜏𝜃2𝑑𝑥 (A32) 

 𝑉 =
1

2
∫ 𝑘𝜏𝜃2𝑑𝑥

𝐿

0
=

1

2
∫ 𝑘𝜏(𝑦′)2𝑑𝑥

𝐿

0
=

1

2
∫ 𝑘𝜏(𝜙𝑗

′𝑞𝑗)
2
𝑑𝑥

𝐿

0
 (A33) 

 
𝜕𝑉

𝜕𝑞𝑖
= ∫ 𝑘𝜏(𝜙𝑗

′𝑞𝑗)𝜙𝑖
′𝑑𝑥

𝐿

0
= 𝑞𝑗 ∫ 𝑘𝜏𝜙𝑖

′𝜙𝑗
′𝑑𝑥

𝐿

0
 (A34) 
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Coupling between doublets 

In actively coupled pairs, the first beam has a baseward applied load (−𝑝) and the second beam 

has a tipward applied load (𝑝). The applied moment (𝑚) is proportional to the distance between 

the beams (Fig. A1A). In both actively coupled and passively coupled pairs, there is a distributed 

viscoelastic coupling (Fig. A1B). 

 

 

Figure A1:  Two coupled filaments with active and passive coupling. (A) Dynein forces and moments are applied to 

filament 1. Reaction forces on dynein motors are shown for illustration. Dynein forces on filament 2 are equal and 

opposite to those applied to filament 1. (B) Filaments are coupled by a distributed spring with constant 

𝑘𝑑  [𝑝𝑁𝜇𝑚−2] and stiffness proportional damping with constant 𝐶𝐿𝑘𝑑[𝑝𝑁𝑠𝜇𝑚−2]. The active coupling in (A) 

applies only to the active pairs of doublets, but the passive coupling in (B) represents doublet couples with NDRC 

stiffness 𝑘𝐿 or CPC-MTD couples with stiffness 𝑘𝑆. 

 

The transverse displacements of the two filaments are, as usual, represented by summation of 

filament-level shape functions, but now the first 𝑛 coefficients correspond to filament 1, and 

coefficients 𝑛 + 1 to 2𝑛 correspond to filament 2. Here 𝑛 is the number of shape functions 

(degrees of freedom) per filament, which in the case of fixed-free filaments with cubic shape 
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functions is simply twice the number of elements used per filament. This can then be generalized 

to create block matrix coupling between any number of filaments. 

 𝑦1(𝑥, 𝑡) = ∑ 𝑞𝑖𝜙𝑖
𝑛
𝑖=1 , 𝑦2(𝑥, 𝑡) = ∑ 𝑞𝑛+𝑖𝜙𝑛+𝑖

𝑛
𝑖=1  (A35) 

Distributed elastic coupling: 

Potential energy stored in a distributed elastic coupling is given in the following equation where 

𝑘𝑑 is a distributed elastic coupling stiffness with units 
pN

μm2. 

 𝑑𝑉𝑒 =
1

2
𝑘𝑑(𝑦2(𝑥) − 𝑦1(𝑥))

2
𝑑𝑥 (A36) 

 𝑉𝑒 =
1

2
∫ 𝑘𝑑(𝑦2(𝑥) − 𝑦1(𝑥))

2
𝑑𝑥

𝐿

0
=

1

2
∫ 𝑘𝑑(𝜙𝑛+𝑖𝑞𝑛+𝑖 − 𝜙𝑖𝑞𝑖)

2𝑑𝑥
𝐿

0
 (A37) 

 
𝜕𝑉𝑒

𝜕𝑞𝑖
= ∫ 𝑘𝑑(𝜙𝑛+𝑗𝑞𝑛+𝑗 − 𝜙𝑗𝑞𝑗)(𝜙𝑛+𝑖 − 𝜙𝑖)𝑑𝑥

𝐿

0
 (A38) 

 = 𝑘𝑑 [𝑞𝑗 ∫ (𝜙𝑖𝜙𝑗 − 𝜙𝑛+𝑖𝜙𝑗)𝑑𝑥
𝐿

0
+ 𝑞𝑛+𝑗 ∫ (𝜙𝑛+𝑖𝜙𝑛+𝑗 − 𝜙𝑖𝜙𝑛+𝑗)𝑑𝑥

𝐿

0
] (A39) 

Here we have used the subscripts 𝑛 + 𝑖, and 𝑛 + 𝑗 to indicate the degrees of freedom of the 

second of two coupled beams (where 𝑛 is the number of degrees of freedom per filament). This 

yields a 2 x 2 block matrix of 𝑛 𝑥 𝑛 matrices with the same form as the consistent mass matrix. 

 =
𝑘𝑑

𝑚̅
[

𝑀 −𝑀
−𝑀 𝑀

] (A40) 

Distributed rotational coupling 

This coupling mechanism maintains spacing between a pair of filaments by creating resistance to 

the difference between their tangent angles. 

 𝑚1(𝑥) = 𝑘𝜃(𝜃2(𝑥) − 𝜃1(𝑥)) (A41) 

 𝑚2(𝑥) = −𝑘𝜃(𝜃2(𝑥) − 𝜃1(𝑥)) (A42) 

 𝑑𝑉𝜃 =
1

2
𝑘𝜃(𝑦2

′(𝑥) − 𝑦1
′(𝑥))

2
𝑑𝑥 (A43) 
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 𝑉𝜃 =
1

2
∫ 𝑘𝜃(𝑦2

′(𝑥) − 𝑦1
′(𝑥))

2
𝑑𝑥

𝐿

0
=

1

2
∫ 𝑘𝜃(𝜙𝑛+𝑖

′ 𝑞𝑛+𝑖 − 𝜙𝑖
′𝑞𝑖)

2𝑑𝑥
𝐿

0
 (A44) 

 
𝜕𝑉𝜃

𝜕𝑞𝑖
= ∫ 𝑘𝜃(𝜙𝑛+𝑗

′ 𝑞𝑛+𝑗 − 𝜙𝑗
′𝑞𝑗)(𝜙𝑛+𝑖

′ − 𝜙𝑖
′)𝑑𝑥

𝐿

0
 (A45) 

 = 𝑘𝑑 [𝑞𝑗 ∫ (𝜙𝑖
′𝜙𝑗

′ − 𝜙𝑛+𝑖
′ 𝜙𝑗

′)𝑑𝑥
𝐿

0
+ 𝑞𝑛+𝑗 ∫ (𝜙𝑛+𝑖

′ 𝜙𝑛+𝑗
′ − 𝜙𝑖

′𝜙𝑛+𝑗
′ )𝑑𝑥

𝐿

0
] (A46) 

This has the same form as a block matrix of 𝑛 𝑥 𝑛 geometric stiffness matrices without the 

internal axial force (denoted 𝐾𝐺̃): 

 = 𝑘𝑑 [
𝐾𝐺̃ −𝐾𝐺̃

−𝐾𝐺̃ 𝐾𝐺̃
] (A47) 

Alignment of Non-Conservative Forces to Ensure Internal Equilibrium  

The non-conservative work due to a distributed follower load was given above as: 

 𝑄𝑖 = ∫ −𝑝𝑦′𝜙𝑖
𝐿

0
𝑑𝑥 (A48) 

To ensure that the vector sum of all non-conservative applied loads acting on the two-doublet 

system is zero, the average of the tangent angles of the two doublets is used to obtain the angle of 

the internal load, and the load applied to one of the doublets is simply opposite in direction to the 

other. 

 𝑦𝑎𝑣𝑔
′ =

𝑦1
′+𝑦2

′

2
≈ 𝜓𝑎𝑣𝑔 =

𝜓1+𝜓2

2
 (A49) 

 𝑝2 = −𝑝1 (A50) 

 𝑄𝑖
𝑎𝑣𝑔

= ∫ −𝑝
𝜙𝑗

′𝑞𝑗+𝜙𝑗+𝑛
′ 𝑞𝑗+𝑛

2
𝜙𝑖

𝐿

0
𝑑𝑥 (A51) 

 𝑄𝑖
𝑎𝑣𝑔

=
1

2
𝑞𝑗 ∫ −𝑝𝜙𝑖𝜙𝑗

′𝐿

0
𝑑𝑥 +

1

2
𝑞𝑗+𝑛 ∫ −𝑝𝜙𝑖𝜙𝑗+𝑛

′𝐿

0
𝑑𝑥 (A52) 

Negating the sign for the non-conservative work done on the second doublet, we have: 

 𝑄𝑖+𝑛
𝑎𝑣𝑔

= −
1

2
𝑞𝑗 ∫ −𝑝𝜙𝑖𝜙𝑗

′𝐿

0
𝑑𝑥 −

1

2
𝑞𝑗+𝑛 ∫ −𝑝𝜙𝑖𝜙𝑗+𝑛

′𝐿

0
𝑑𝑥 (A53) 

This gives a two-doublet system coupling matrix of the following form: 
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 =
1

2
[

𝑃𝑔 𝑃𝑔

−𝑃𝑔 −𝑃𝑔
] (A54) 

Virtual work of applied moments 

The applied distributed moment can be treated as a nonconservative external load on the 

filament. The work done by this load under deformation of the filament is given by: 

 𝛿𝑊 = ∫ 𝑚(𝑥, 𝑡)𝛿𝜃𝑑𝑥
𝐿

0
= ∫ 𝑚(𝑥, 𝑡)

𝜕𝑦′

𝜕𝑞𝑖
𝛿𝑞𝑖𝑑𝑥

𝐿

0
= 𝛿𝑞𝑖 ∫ 𝑚(𝑥, 𝑡)𝜙𝑖

′𝑑𝑥
𝐿

0
= 𝑄𝑖𝛿𝑞𝑖 (A55) 

 𝑄𝑖 = ∫ 𝑚(𝑥, 𝑡)𝜙𝑖
′𝑑𝑥

𝐿

0
 (A56) 

If the moment, 𝑚(𝑥, 𝑡), in this term is not a function of the displacement of the filament, it can 

be represented by a ‘load vector’ on the right-hand side of our matrix equations. This term may 

be included in time-domain simulations, but it does not play a role in the eigenvalue-based 

stability analysis of the system about an undeformed configuration. 
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Variation of the moment with interdoublet spacing 

If the distributed moment is a function of the interdoublet spacing (for example, if the tangential 

component of force remains constant), the variation of the moment with transverse displacement 

leads to a matrix term in the equation of motion. In the case where the moment is directly 

proportional to interdoublet spacing, the moment gain is equal to 1: 

 𝑚(𝑥, 𝑡) = −𝑝(𝑎 + 𝑦2(𝑥, 𝑡) − 𝑦1(𝑥, 𝑡)) (A57) 

 𝛿𝑊𝑖 = ∫ −𝑝(𝑎 − 𝑞𝑗𝜙𝑗 + 𝑞𝑛+𝑗𝜙𝑛+𝑗)𝛿(−𝑞𝑖𝜙𝑖
′)𝑑𝑥

𝐿

0
 (A58) 

 𝛿𝑊𝑖 = ∫ 𝑝(𝑎 − 𝑞𝑗𝜙𝑗 + 𝑞𝑛+𝑗𝜙𝑛+𝑗)
𝜕

𝜕𝑞𝑖
(𝑞𝑖𝜙𝑖

′)𝛿𝑞𝑖𝑑𝑥
𝐿

0
= 𝑄𝑖𝛿𝑞𝑖 (A59) 

 𝑄𝑖 = ∫ 𝑝𝑎𝜙𝑖
′𝑑𝑥

𝐿

0
+ 𝑞𝑗 ∫ −𝑝𝜙𝑖

′𝜙𝑗𝑑𝑥
𝐿

0
+ 𝑞𝑛+𝑗 ∫ 𝑝𝜙𝑖

′𝜙𝑛+𝑗𝑑𝑥
𝐿

0
 (A60) 

The term with only one index is the load vector term described in the previous section 4.4. The 

other two terms form a coupling matrix that is a block matrix of 𝑛 𝑥 𝑛 matrices with the form of 

the transpose of the geometric loading matrix. This geometric coupling may be applied to a 

single filament with the following matrix: 

 = [𝑃𝐺
𝑇 −𝑃𝐺

𝑇

0 0
] (A61) 

or it may be distributed between the two filaments to represent a model where the moment is 

equally applied at the dynein MTBD. 

 =
1

2
[
𝑃𝐺

𝑇 −𝑃𝐺
𝑇

𝑃𝐺
𝑇 −𝑃𝐺

𝑇] (A62) 

In either case, the matrix is multiplied by a ‘moment gain’ coefficient that represents the 

variation of the moment with interdoublet spacing.  This concept is discussed further below. 
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Nondimensionalization of system 
When the system is nondimensionalized by a characteristic length 𝐿𝑐 and characteristic time 𝜏, 

the following set of equations is obtained in terms of the dimensionless shape functions 𝜙̃𝑖: 

𝑞̈𝑗

𝑚̅𝐿𝑐
3

𝜏2
∫ 𝜙̃𝑖𝜙̃𝑗𝑑𝑥̃

1

0

+𝑞̇𝑗

𝑐𝑁𝐿𝑐
3

𝜏
∫ 𝜙̃𝑖𝜙̃𝑗𝑑𝑥̃

1

0

+ 𝑞𝑗

𝐸𝐼

𝐿𝑐
∫ 𝜙̃𝑖

′′
𝜙̃𝑗

′′
𝑑𝑥̃

1

0

+ 𝑞𝑗𝐹𝑐𝐿𝑐 ∫ 𝑁̃(𝐿𝑐𝑥̃)𝜙̃𝑖
′
𝜙̃𝑗

′
𝑑𝑥̃

1

0

= 

 𝑞𝑗
𝐸𝐼

𝐿𝑐
∫ −𝑝̅(𝐿𝑐𝑥̃)𝜙̃𝑖𝜙̃𝑗

′1

0
𝑑𝑥̃ (A63) 

Defining the characteristic time, 𝜏 =
𝐶𝑁𝐿𝑐

4

𝐸𝐼
, and letting 𝐹𝑐 =

𝐸𝐼

𝐿𝑐
2 , the coefficient of the second term 

(the damping matrix) reduces to unity and first term (the mass matrix) becomes negligibly small 

for physical parameters of cilia. The matrix representation of this system is then given as: 

 𝑪̃𝒒̇ + (𝑲̃ + 𝑲̃𝑮 − 𝑷̃)𝒒 = 𝟎 (A64) 

where the tildes indicate that the matrices are now dimensionless. 

Dynein Kinematics and Moment Gain 
In Eq. 3.2 of the manuscript, we show that the variation in the applied moment with interdoublet 

spacing (the moment gain) for the constant-force winch model shown in Fig. 3.4 is given by the 

nondimensional term (1 −
𝑎0(𝑎0−𝑑)

𝑏2 ). Here 𝑎0 is the interdoublet spacing, 𝑑 is the length of the 

stem, and 𝑏 is the distance along the filaments from the stem attachment to the binding domain. 

All values are given in the undeformed configuration. If the length of the stem, 𝑑, equals the full 

distance between the doublets, 𝑎0, the moment gain is 1. However, many plausible values for the 

dynein dimensions lead to moment gains that are less than 1 including negative values. For 

instance, if 𝑎0 = 33nm, 𝑑 = 10nm, 𝑏 = 16nm (reasonable values given imaging from [143]), 

the moment gain is −2.  
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Appendix B: Finite Element Code 

Some sample code for Chapter 3 is given here. Full code may be downloaded on Zenodo: 

https://doi.org/10.5281/zenodo.6762934 

Set system parameters 
% Parameters 
Par.n = 10;             % number of elements per beam 
Par.fix_vec = [1 2];    % vector of fixed nodes ([1,2] means cantilever) 
 
% apply follower load according to 'indep' or 'avg' tan angle 
Par.tangentAngle = 'avg'; 
Par.L_total = 12e-6;         % [m] Length of beam 
Par.d = 200e-9;              % [m] axoneme diameter 
Par.EI = (800e-24)/nBeams;   % [N*m^2] flexural rigidity / filament 
Par.m_bar = 1;               % [Kg/M] mass per unit length (leave 1 for viscous only) 
Par.kLinks =  1e4;           % [N/m/m] distributed coupling links 
Par.kSpokes =  1e4;          % [N/m/m] distributed coupling spokes 
Par.k_Sg = 0;                % [N/rad] shear stiff = k_T * d^2 (consistent ver) 
Par.k_th = 1e-9;             % [N/rad] theta coupling 
Par.massDamp = 0.003;        % [1/s] mass damping (c_N) (alpha) 
Par.stiffDamp = 0;           % [s] stiffness damping    (beta) 
 
Par.tc = Par.massDamp*Par.L_total^4/Par.EI; % Characteristic time of system 
Par.linkDamp = Par.tc/200;   % [s] link damping 
Par.F_tip = 0;               % [N] tip load 
Par.P_dist = 200e-6;         % [N/m] distributed load 
Par.distMoment = Par.P_dist*Par.d; % distributed moment on baseward force beams 
 
% 3D only 
Par.geoMom = 0;              % geometric moment 
Par.yStiffnessRatio = 2;     % ratio of y beam stiffness to default 
Par.DNL_ratio = 0.1;         % ratio of NL stiffness at dynein pairs 
 
% Time domain only: 
Par.structNonLin = 0;        % coefficient of structural nonlinearity 
Par.linkNonLin = 0.1;        % coefficient of linking nonlinearity 

  

https://doi.org/10.5281/zenodo.6762934
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Create single filament matrices 

Consistent mass matrix 

function M = matConsistentMass(Par) 
n = Par.n; 
m_bar = Par.m_bar; 
L_total = Par.L_total; 
fix_vec = Par.fix_vec; 
 
% Calculated values 
L = L_total/n;           % length per element 
 
Mi = m_bar*L/420*[ ... 
      156,    22*L,    54,    -13*L;... 
     22*L,   4*L^2,  13*L,   -3*L^2;... 
       54,    13*L,   156,    -22*L;... 
    -13*L,  -3*L^2, -22*L,    4*L^2]; 
 
% Combine into System Mass matrix 
M = zeros(2+2*n); 
for i = 1:n         % for all elements 
    ul = 2*i-1;     % this is the diagonal coordinate of upper left corner 
    M(ul:ul+3,ul:ul+3) = M(ul:ul+3,ul:ul+3) + Mi; 
end 
 
% eliminate first two dof 
M(:,fix_vec)=[];    % eliminate dof fixed columns 
M(fix_vec,:)=[];    % eliminate dof fixed rows 

Create stiffness matrix 

% Per element stiffness matrix 
Ki = 2*EI/L^3*[ ... 
      6,      3*L,      -6,       3*L;  ... 
    3*L,    2*L^2,    -3*L,       L^2;  ... 
     -6,     -3*L,       6,      -3*L;  ... 
    3*L,      L^2,    -3*L,     2*L^2]; 

Create geometric stiffness and load matrices 

% geometric stiffness due to a constant internal force 
Kgc = -P_dist*L/(30*L)*[... 
         36,      3*L,    -36,    3*L; 
        3*L,    4*L^2,   -3*L,   -L^2; 
        -36,     -3*L,     36,   -3*L; 
        3*L,     -L^2,   -3*L,  4*L^2]; 
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% geometric stiffness due to a sloped internal force (1-x/L) 
Kgs = -P_dist*L*[ ... 
       3/(5*L),      0,  -3/(5*L),    1/10;... 
             0,   L/10,         0,   -L/60;... 
      -3/(5*L),      0,   3/(5*L),   -1/10;... 
          1/10,  -L/60,     -1/10,    L/30]; 
 
    KgD = zeros(2+2*n); 
 
for i = 1:n         % for all elements 
    ul = 2*i-1;     % this is the diagonal coordinate of upper left corner 
    KgD(ul:ul+3,ul:ul+3) = KgD(ul:ul+3,ul:ul+3) + Kgc*(n-i)+Kgs; 
end 
 
%% Geometric Load Matrix - Distributed load 
Pgi = -P_dist*[... 
         -1/2,    L/10,     1/2,    -L/10;  ... 
        -L/10,       0,    L/10,  -L^2/60;... 
         -1/2,   -L/10,     1/2,     L/10;  ... 
         L/10,  L^2/60,   -L/10,        0]; 
 
PgD = zeros(2+2*n); 
for i = 1:n         % for all elements 
    ul = 2*i-1;     % this is the diagonal coordinate of upper left corner 
    PgD(ul:ul+3,ul:ul+3) = PgD(ul:ul+3,ul:ul+3) + Pgi; 
end 
 
%% Geometric Stiffness Matrix - tip load 
Kgi = -F_tip/(30*L)*[... 
         36,      3*L,    -36,     3*L; 
        3*L,    4*L^2,   -3*L,    -L^2; 
        -36,     -3*L,     36,    -3*L; 
        3*L,     -L^2,   -3*L,   4*L^2]; 
 
KgT = zeros(2+2*n); 
for i = 1:n         % for all elements 
    ul = 2*i-1;     % this is the diagonal coordinate of upper left corner 
    KgT(ul:ul+3,ul:ul+3) = KgT(ul:ul+3,ul:ul+3) + Kgi; 
end 
 
%% Geometric Load matrix - follower tip load 
PgT = zeros(2+2*n); 
PgT(end-1, end) = -F_tip; 
 
% combine distributed and tip load matrices 
Kg = KgD + KgT; 
Pg = PgD + PgT; 
% eliminate first two dof 
Kg(:,fix_vec)=[];    % eliminate dof 1 and 2 columns 
Kg(fix_vec,:)=[];    % eliminate dof 1 and 2 rows 
Pg(:,fix_vec)=[];    % eliminate dof 1 and 2 columns 
Pg(fix_vec,:)=[];    % eliminate dof 1 and 2 rows 
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Create ‘6+1’ filament coupling matrices 
function [Geo] = setGeometry6p1(Par) 
% set geometry parameters of model 
% input parameters 
kLinks  = Par.kLinks;   % nexin links stiffness 
kSpokes = Par.kSpokes;  % radial spoke stiffness 
r = Par.d/2;            % axoneme radius 
 
% initial position of x,y points 
%     1   2 
%   6   7   3 
%     5   4 
s30 = sind(30); c30 = cosd(30); 
x0 = r*[-s30, s30,  1,  s30, -s30, -1, 0]; 
y0 = r*[ c30, c30,  0, -c30, -c30,  0, 0]; 
 
% axial load application vector: 1 is tipward, -1 is baseward 
%    -1  +2 
%   6   7   3 
%    +5  -4 
axLoadVec = [-1 1 0 -1 1 0 0]; 
 
% doublet coupling for tangent angle averaging in geometric load 
%     1---2 
%   6   7   3 
%     5---4 
dynCouples = [1 2; 5 4]; 
 
% connections between nodes 
links  = [1 2; 2 3; 3 4; 4 5; 5 6; 6 1]; 
spokes = [7 1; 7 2; 7 3; 7 4; 7 5; 7 6]; 
 
% theta coupling between central and outer filaments 
%     1   2 
%   6   7   3 
%     5   4 
% use spokes and links 
 
numLinks = length(links);  
numSpokes = length(spokes); 
linksSpokes = [links; spokes]; 
xydof = numel(x0)+numel(y0); 
if numel(x0) ~= numel(y0), error('x,y vectors not same length'), end 
 
% For each link, generate element stiffness matrix in global coordinates 
% using the direction cosines. This is following from Chapter 2 of 
% 'Finite Element Analysis Using SOLIDWORKS Simulation 2020' by Shih 
% The matrix is then broken up and added to appropriate blocks of the 
% global stiffness matrix. 
KNL = zeros(2*length(x0)); % just the nexin links 
KRS = zeros(2*length(x0)); % just the radial spokes 
KSNL = KNL; % simple coupling 
KSRS = KRS;  
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for n = 1:(numLinks + numSpokes)    
    n1 = linksSpokes(n,1); n2 = linksSpokes(n,2); 
    x1 = x0(n1); x2 = x0(n2); 
    y1 = y0(n1); y2 = y0(n2); 
    dx = x2 - x1; dy = y2 - y1; 
    L = sqrt(dx^2 + dy^2); 
    c = dx/L; s = dy/L; 
     
    % Truss element matrix in x1y1x2y2 
    Kn = [c^2   c*s  -c^2  -c*s 
          c*s   s^2  -c*s  -s^2 
         -c^2  -c*s   c^2   c*s 
         -c*s  -s^2   c*s   s^2]; 
     
    % simple coupling in x1y1x2y2 
    Ksimple = [1  0 -1  0 
               0  1  0 -1 
              -1  0  1  0 
               0 -1  0  1]; 
     
    idx = [2*n1-1, 2*n1, 2*n2-1, 2*n2]; 
     
    if n <= numLinks 
        % k = kLinks; 
        % ****LINKS AT DYNEIN PAIR LESS STIFF********* 
        if (n==1 || n==4) 
            Kn = Kn*Par.DNL_ratio; 
        end 
        KNL(idx,idx) = KNL(idx, idx) + Kn;  
        KSNL(idx,idx) = KSNL(idx, idx) + Ksimple;  
    else 
        % k = kSpokes; 
        KRS(idx,idx) = KRS(idx, idx) + Kn;  
        KSRS(idx,idx) = KSRS(idx, idx) + Ksimple;  
    end 
end 
 
K = kLinks*KNL + kSpokes*KRS; 
 
% the method above uses (x1,y1,x2,y2...) coordinates. Below I reorder the 
% matrix into (x1,x2...y1,y2...) coordinates. 
xxyyIdx = [1:2:xydof,2:2:xydof]; 
Kxxyy = K(xxyyIdx,xxyyIdx); 
KNLxxyy = KNL(xxyyIdx,xxyyIdx); 
KRSxxyy = KRS(xxyyIdx,xxyyIdx); 
KSNLxxyy = KSNL(xxyyIdx,xxyyIdx); 
KSRSxxyy = KSRS(xxyyIdx,xxyyIdx); 
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Combine filament-level matrices into global matrices 
function [MatND] = makeNBeamMatrices(Mat1,Par,Geo) 
 
% beam coupling matrix (links and spokes) 
Kc = kron(Geo.KTruss, Mat1.M/Par.m_bar); 
 
% system mass matrix 
M = kron(eye(Geo.numBeams*2),Mat1.M); 
 
% system beam stiffness matrix: y-stiffness is modified here 
coeffK = blkdiag(eye(Geo.numBeams), eye(Geo.numBeams)*Par.yStiffnessRatio); 
K = kron(coeffK, Mat1.K); 
 
% system shear stiffness: applied to all beams, so divided by nBeams 
Ks = kron(eye(Geo.numBeams*2), Mat1.Ks)/Geo.numBeams; 
 
% geometric stiffness matrix applies to axially loaded beams 
Kg = kron(-diag([Geo.axLoadVec; Geo.axLoadVec]),Mat1.Kg); 
 
C = Par.massDamp*M + Par.stiffDamp*K + Par.linkDamp*Kc; 
 
% System geometric load matrix 
if strcmp(Par.tangentAngle,'avg') 
    Pg2 = [Mat1.Pg, Mat1.Pg; -Mat1.Pg, -Mat1.Pg]/2; 
elseif strcmp(Par.tangentAngle,'indep') 
    Pg2 = blkdiag(Mat1.Pg, -Mat1.Pg); 
else 
    error('must set tangentAngle parameter') 
end 
 
% geometric load matrix for changing moment due to changing 
% doublet spacing 
Pm2 = [Mat1.Pg', -Mat1.Pg'; Mat1.Pg', -Mat1.Pg']/2; 
 
Pg = zeros(size(M)); 
Pm = zeros(size(M)); 
for n = 1:size(Geo.dynCouples,1) 
    d1 = Geo.dynCouples(n,1); 
    d2 = Geo.dynCouples(n,2); 
    % need to get orientation of the geometric load matrix 
    % this is based on orientation of applied load 
    flipBeams = sign(Geo.axLoadVec(d2)-Geo.axLoadVec(d1)); 
    numDofBeam = Mat1.dim(1); 
    ind1 = 1:numDofBeam; 
    ind2 = [(d1-1)*numDofBeam+ind1, (d2-1)*numDofBeam+ind1]; 
    % This is x only  
    Pg(ind2, ind2) = Pg(ind2, ind2) + Pg2*flipBeams; 
    Pm(ind2, ind2) = Pm(ind2, ind2) + Pm2*flipBeams; 
    % This is y only  
    ind2y = ind2 + size(M,1)/2; 
    Pg(ind2y, ind2y) = Pg(ind2y, ind2y) + Pg2*flipBeams; 
end 
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% Distributed torsional coupling between beams 
KthetaRS = kron(Geo.KSRS_0, Mat1.Kth)*Par.k_th; 
KthetaNL = kron(Geo.KSNL_0, Mat1.Kth)*Par.k_th; 
Ktheta = 0*KthetaRS + 1*KthetaNL; % torsional couple in NL only 
 
MatND.Kc = Kc + Ktheta; % stiffness coupling 
MatND.C  = C;            % damping 
MatND.K  = K + Ks;      % flexural and shear stiffness 
MatND.M  = M;           % mass 
MatND.Kg = Kg;          % geometric stiffness 
% geometric loading matrix (including moment gain effects) 
if Geo.numBeams == 1 
    MatND.Pg = blkdiag(Mat1.Pg, Mat1.Pg); 
else 
    MatND.Pg = Pg + Pm * Par.geoMom; 
end 
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Appendix C: Supporting information for Chapter 4 

 

Figure C1: BB MTs display bending consistent with ciliary bending. (A) The A and B tubules of cilia are 

structurally continuous with the A and B tubules of the BB. The left image is a maximum-projected EM tomogram 

image showing BB triplet MTs continuous with its associated ciliary doublet MTs. The cortical cytoskeleton and 

plasma membrane flanks the cilium. Scale bar, 100 nm. Middle image is an inset from the tomogram defined by red 

box, the model to the right of the inset indicates the continuity of A- and B-tubules between the BB and the cilium. 

Schematic model on the right highlights structural continuity between ciliary doublet MTs and BB A-B tubules (B) 

Representative thin section EM images of unciliated and ciliated BBs and their respective bending profiles. Scale 

bar, 200 nm. n=37 BBs. (C) Schematized images show the process used to obtain curvature values from BBs and 

cilia in thin section EM images quantified in Fig. 4.1B. (D) Schematized images of the process used to obtain 

curvature values from BBs and cilia in 3-dimentional EM tomograms (Fig. 4.1C) quantified in Fig. 4.2. (E) The 

scatter plot graphs the distribution of BB and proximal cilium lengths contained within the EM thin sections (Fig. 

4.1B) and EM tomogram volumes (Figs. 4.2-4.6). (F) Analysis compares MT curvature of BBs between two 

independent modelers Author 1 (A. Junker) and Author 3 (A. Soh). Left panels show side views and top views of the 
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same BB modeled independently. The graph on the right compares mean curvature values for each triplet obtained 

from each model, curvatures are consistently most prominent at triplets 5 and 6. Asterisk denotes p-value <0.05. 

Heat maps below show distribution of curvature between independent models. Curvature is consistently most 

prominent near the base-middle of triplets 5-6.  

 

Figure C2: BBs bend consistent with ciliary beat stroke at 37°C. BBs display different bending patterns 

depending on where the cilium is in the beat stroke. Left panels are 8.6 nm max-projected images of EM 

tomograms. Scale bar, 200 nm. The two middle panels on the left are model views (side view and top view) of BB 

triplet MTs from corresponding BBs in EM tomogram. Colors indicate curvature of the modeled triplet MTs where 

cold colors (purple-blue) indicate low curvature and warm colors indicate high curvature (red-magenta) (range= 0.3 

to 3 rad/µm). The two middle panels on the right are graphs showing BB curvature for the BB proximal to distal axis 

(left) or for each triplet MT (right). The maximum value for each bin (1/10 th the length of the BB) along the BB 

proximal-distal axis is normalized by subtracting the lowest maximum value of all bins in each BB. The graph 

represents the means and standard deviations of these normalized maximum values for each proximal to distal bin 

(left) or each triplet MT (right). BBs exhibit different bending profiles depending on the cilium’s position on the 
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beat cycle. Grey dots represent curvature values from individual bins, black lines indicate means, and error bars 

indicate the standard deviation. Right panels show curvature heatmaps of the positive and negative curvature for 

each proximal-distal bin in each triplet MT. Black “X’s” indicate missing bins due to incomplete EM tomogram 

volumes. The blue and red colors indicate the direction of curvature relative to the cell’s anterior-posterior axis (axis 

of the ciliary power stroke). Blue indicates negative bending which is towards the cell anterior. Red indicates 

positive bending which is towards the cell posterior (range= -3.3 to +3.3 rad/µm). n=8 tomograms, 5 BBs analyzed. 
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Figure C3: Computational model of BB bending. (A) A computational (finite-element) model of the cilium, BB, 

SF, BB-appendage MTs, and cell cortex was generated in COMSOL Multiphysics using the Beam interface within 

the Structural Mechanics module. EM tomogram BB mode (left) matched for the angle of their cilium is compared 

to this computational model (right) and show consistent MT bending direction and similarly increased bending at 

tubule 5-6. Model colors indicate curvature of the modeled triplet MTs where cold colors (purple-blue) indicate low 
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curvature and warm colors indicate high curvature (red-magenta) (EM tomogram range= 0.3 to 3 rad/µm, COMSOL 

model 0.1 to 0.9 rad/µm ). (B) Representative images of computational model at the beginning, middle and end of 

the power stroke (left panels). The panels on the left are model views (side view and top view) of BB triplet MTs. 

The two panels on the right are graphs showing BB curvature for the BB proximal to distal axis (left) or for each 

triplet MT (right). The maximum value for each bin (1/10th the length of the BB) along the BB proximal-distal axis 

is normalized by subtracting the lowest maximum value of all bins in each BB. The graph represents the means and 

standard deviations of these normalized maximum values for each proximal to distal bin (left) or each triplet MT 

(right). (C) Computational model components are depicted by the scaffolded model (left) and red inset shows the 

elements which represent structures present within and around T. thermophila cilia and BBs. Modeled structures 

include ciliary doublet MTs (cyan), central pair MTs (magenta), radial spokes (red), BB triplet MTs (blue), 

cartwheel (yellow), A-C linkers (grey), and BB-appendage MTs and SF (green) (Table 2&3). Representative image 

in the middle shows the computational model with the axial forces within the cilium and the cortical anchor points 

(magenta circles) of the BB, BB-appendage MTs (post-ciliary MTs) and SF. Scale bar, 200 nm. Representative 

image (right) of the separately added helical inner scaffold structure is shown in cyan, this structure is not included 

in any other computational models and its effect on BB MT curvature is quantified in Fig. C3D with 4nm and 8nm 

beams. (D) Heatmaps show baseline model (left) at the end of the power stroke (Figs. 4.3, C3A-B) and several 

perturbations to this model. In each model curvature is consistently increased at triplets 5-6 above the SF attachment 

point. SF pulling (60nm) is the inverse of the manipulations made in later figures (Fig. 4.4) and A-C linker and 

helical inner scaffold manipulations identify potential differences in curvature when BB triplet interconnectivity is 

disrupted. Additional perturbations to this baseline model are shown in Table 4.4 and Movies 3-10. 
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Figure C4: BB display reversed bending patterns at 30°C. (A) 30°C BBs display different bending patterns 

depending on where the cilium is in the beat stroke. Left panels are 8.6 nm max-projected images of EM 

tomograms. Scale bar, 200 nm. The two middle panels on the left are model views (side view and top view) of BB 

triplet MTs from corresponding BBs in EM tomogram. White asterisks indicate incomplete structures of triplet MTs 

that extended outside the imaged EM tomogram volume. Red asterisk indicates a BB with a cilium that displays 
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outwardly distended MTs. Colors indicate curvature of the modeled triplet MTs where cold colors (purple-blue) 

indicate low curvature and warm colors indicate high curvature (red-magenta) (range= 0.3 to 3 rad/µm). The two 

middle panels on the right are graphs showing BB curvature for the BB proximal to distal axis (left) or for each 

triplet MT (right). The maximum value for each bin (1/10th the length of the BB) along the BB proximal-distal axis 

is normalized by subtracting the lowest maximum value of all bins in each BB. The graph represents the means and 

standard deviations of these normalized maximum values for each proximal to distal bin (left) or each triplet MT 

(right). BBs show differences in whether they have significantly different bending between triplet MTs or along the 

BB proximal-distal axis (ANOVA p-values) or whether they have significantly different distribution of curvatures as 

indicated by variance (Bartlett’s test p-values). Grey dots represent curvature values from individual bins, black 

lines indicate means, and error bars indicate the standard deviation. The right panels show heatmaps of the positive 

and negative curvature for each proximal-distal bin in each triplet MT. Black “X’s” indicate missing bins from 

incomplete structures of triplet MTs that extended outside the imaged EM tomogram volume. The blue and red 

colors indicate the direction of curvature relative to the cell’s anterior-posterior axis (axis of the ciliary power 

stroke). Blue indicates negative bending which is towards the cell anterior. Red indicates positive bending which is 

towards the cell posterior (range= -5 to +5 rad/µm). n= 15 tomograms, 9 BBs analyzed. (B) WT BBs predominantly 

bend in opposite directions between 30°C and 37°C BBs at all phases of the beat stroke. The color of lines indicates 

the position of each corresponding BB’s cilium in the analyzed parts of the beat stroke. n= 15 tomograms, 9 BBs 

analyzed. (C) BB curvature is more variable at 30°C than 37°C. 30°C BBs bend more in the negative direction and 

display wider range in distribution of positive or negative curvature in individual BBs (Mann-Whitney test: 

p=<0.01, F-test: p=<0.01). Data is represented as individual maximum and minimum values from triplet MTs (dots), 

mean and quartiles of maximum values (boxes) and standard deviation (error bars). n= 15 tomograms, 9 BBs 

analyzed. 
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Figure C5: The striated fiber promotes focal bending in BBs. (A) disA-1 BBs at 30°C display inconsistent 

bending patterns at the end of the power stroke. Left panels are 8.6 nm max-projected images of EM tomograms. 

Scale bar, 200 nm. The two middle panels on the left are model views (side view and top view) of BB triplet MTs 

from corresponding BBs in EM tomogram. Colors indicate curvature of the modeled triplet MTs where cold colors 

(purple-blue) indicate low curvature and warm colors indicate high curvature (red-magenta) (range= 0.3 to 3 

rad/µm). The two middle panels on the right are graphs showing BB curvature for the BB proximal to distal axis 

(left) or for each triplet MT (right). The maximum value for each bin (1/10th the length of the BB) along the BB 

proximal-distal axis is normalized by subtracting the lowest maximum value of all bins in each BB. The graph 

represents the means and standard deviations of these normalized maximum values for each proximal to distal bin 

(left) or each triplet MT (right). BBs show differences in whether they have significantly different bending between 

triplets or along the BB proximal-distal axis (ANOVA p-values) or whether they have significantly different 

distribution of curvatures as indicated by variance (Bartlett’s test p-values). Grey dots represent curvature values 

from individual bins, black lines indicate means, and error bars indicate the standard deviation. n=7 tomograms, 3 

BBs analyzed. (B) WT and disA-1 BB bending display difference at the end of the power stroke. The top panel 

heatmaps compare the disA-1 BB shown in the middle panel of S5A to a matched WT BB. The heatmap on the left 
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shows BB bending in a matched WT BB with the most similar cilia angle to the cilia of disA-1 BBs being analyzed. 

The heatmap in the middle shows disA-1 BB bending. The heatmap on the right quantifies the difference between 

the corresponding WT and disA-1 BBs. Prominent differences between WT and disA-1 BB bending are observed 

scattered across the BB (indicated by black boxes; p=>0.05; >75% highest difference from other bins). (C) 

Heatmaps compare the disA-1 BB shown at the bottom panel of S5A to a matched WT BB. The heatmap on the left 

shows BB bending in a matched WT BB with the most similar cilia angle to the cilia of disA-1 BBs being analyzed. 

The heatmap in the middle shows disA-1 BB bending. The heatmap on the right quantifies the difference between 

the corresponding WT and disA-1 BBs. Prominent differences between WT and disA-1 BB bending are observed 

scattered across the BB (indicated by black boxes; p=>0.05; >75% highest difference from other bins). The blue and 

red colors indicate the direction of curvature relative to the cell’s anterior-posterior axis (axis of the ciliary power 

stroke). Blue indicates negative bending which is towards the cell anterior. Red indicates positive bending which is 

towards the cell posterior (range= -4 to +4 rad/µm). (D) disA-1 BBs bend inconsistently at the end of the beat 

stroke. The heatmap indicates that the average curvatures for the disA-1 shown above (Fig 5A and S5A). Purple 

indicates negative bending and orange indicates positive bending (range= -1 to +1 rad/µm). (E) disA-1 BBs exhibit 

variable BB curvature. Heatmap indicates the standard deviation of BB curvature in disA-1 cells. Black indicates 

low standard deviation and magenta indicates high standard deviation (range= 0 to 2.5 rad/µm). 
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Figure C6: Poc1 promotes the distribution of bending within BBs. (A) Poc1Δ BBs display inconsistent focal 

triplet MT bending at the end of the power stroke. Left panels are 8.6 nm max-projected images of EM tomograms. 

Scale bar, 200 nm. The two middle panels on the left are model views (side view and top view) of BB triplet MTs 

from corresponding BBs in EM tomogram. Colors indicate curvature of the modeled triplet MTs where cold colors 
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(purple-blue) indicate low curvature and warm colors indicate high curvature (red-magenta) (range= 0.3 to 3 

rad/µm). The two middle panels on the right are graphs showing BB curvature for the BB proximal to distal axis 

(left) or for each triplet MT (right). The maximum value for each bin (1/10 th the length of the BB) along the BB 

proximal-distal axis is normalized by subtracting the lowest maximum value of all bins in each BB. The graph 

represents the means and standard deviations of these normalized maximum values for each proximal to distal bin 

(left) or each triplet MT (right). BBs show differences in whether they have significantly different bending between 

triplets or along the BB proximal-distal axis (ANOVA p-values) or whether they have significantly different 

distribution of curvatures as indicated by variance (Bartlett’s test p-values). Grey dots represent curvature values 

from individual bins, black lines indicate means, and error bars indicate the standard deviation. n=12 tomograms, 3 

BBs analyzed. (B) WT and poc1Δ BBs display difference at the beginning of the recovery stroke. Top panel 

heatmaps compare the poc1Δ BB shown in the middle panel of (A) to a matched WT BB. The heatmap on the left 

shows BB bending in a matched WT BB with the most similar cilia angle to the cilia of poc1Δ BB s being analyzed. 

The heatmap in the middle shows poc1Δ BB bending. The heatmap on the right quantifies the difference between 

the corresponding WT and poc1Δ BBs. Prominent differences between WT and poc1Δ BB bending at the bottoms 

of triplet MTs 2,6 and 7 (indicated by black boxes; p=>0.05; >75% highest difference from other bins). (C) 

Heatmaps compare the poc1Δ BB shown in the bottom panel of S6A to a matched WT BB. The heatmap on the left 

shows BB bending in a matched WT BB with the most similar cilia angle to the cilia of poc1Δ BB s being analyzed. 

The heatmap in the middle shows poc1Δ BB bending. The heatmap on the right quantifies the difference between 

the corresponding WT and poc1Δ BBs. Prominent differences between WT and poc1Δ BB bending at the middle of 

triplet 5 and top of triplet 8 (indicated by black boxes; p=>0.05; >75% highest difference from other bins). The blue 

and red colors indicate the direction of curvature relative to the cell’s anterior-posterior axis (axis of the ciliary 

power stroke). Blue indicates negative bending which is towards the cell anterior. Red indicates positive bending 

which towards the cell posterior (range= -4.5 to +4.5 rad/µm). (D) poc1Δ BBs do not distribute bending well at the 

end of the power stroke and the beginning of the recovery stroke. The heatmap indicates that the average curvatures 

for the poc1Δ shown above in (A). Curvature is most prominent on triplet MT 5. (E) poc1Δ BBs bend have high 

standard deviation in curvature across the BB. The heatmap indicates the standard deviation in the poc1Δ BBs. The 

standard deviation is most prominent on triplet MT 5. (F) poc1Δ BBs asymmetrically lose triplet MTs [181]. A 

section through a tomogram of the proximal region of a poc1Δ BB show the loss of triplet MTs 7-8. This is modeled 

in the right two panels showing that these triplet MTs are lost from the whole BB. This is consistent with the very 

high and inconsistent bending in triplet MTs 7-9 of the bottom BB shown in (A). (G) Graph shows the mean and 

standard deviation of triplet MT loss from poc1Δ BBs re-analyzed from tomograms used in Meehl et al., 2016 [181]. 

Triplet MTs 1,2,7,8, and 9 are most frequently lost. These triplet MTs face the cell posterior and lack connections to 

the SF. (H) Selected thin section images (~450 acquired BBs) of poc1Δ BBs from cells grown at 38 °C. BBs show 

damage to MTs or an abnormal or wavy MT curvature. Scale bar, 200nm. 

 
Table C1. Sample size and quality. Table contains data on sample size, type, acquisition status, genotype, and 

structural parameters. 
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Table C2. Modeled structures. Tables compares the structures present and/or modeled in EM tomograms vs 

computational models. 
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Table C3. MT parameters and sliding in computational model. Table contains computational model parameters and 

data for the relative sliding between adjacent tubules in both the cilium and BB. 

Parameter Value Description References 

𝐸𝐼 73 pN μm2 Flexural rigidity per 
doublet 

[64, 66, 121] 

𝑘𝑁 105 pN μm-2 Inter-doublet normal 
stiffness 

[66, 90, 122] 

𝑘𝑁𝑅𝑆 105 pN μm-2 Radial spoke normal 
stiffness 

Estimate found to sufficiently maintain axoneme 
cross-sectional shape without creating convergence 
issues 

𝑘𝑇𝑅𝑆  00 pN μm-2 Radial spoke shear 
stiffness 

Estimate found to allow sufficient range of motion 

𝑘𝑁𝐴𝐶 106 pN μm-2 AC linker normal stiffness Estimate found to give triplet separation and 
curvature independence consistent with data 

𝑘𝑇𝐴𝐶 105 pN μm-2 AC linker shear stiffness Estimate found to give triplet translocations 
consistent with data 

𝑘𝐶𝑜𝑟𝑡𝑒𝑥    pN μm-1 Cortical attachment 
stiffness per filament 

Estimate found to allow BB bending consistent with 
data 

𝐿𝑐 5.6μm Cilium length [261] 

𝐿𝑏𝑏 500nm Basal body length [206] 

𝑟 100nm Axoneme radius [115, 124] 

𝑝 500 pN μm-1 Distributed dynein force [123] 

𝑓 25 Hz Beat frequency [36] 

 
 

Table C4. Perturbations to computational model. Table contains the quantifications of BB parameters when 

structural elements are perturbed in the computational model. 
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Movies will be made available online upon publication of this manuscript 

 

Movie 1 Baseline side. Side view movie of a computational model representing 37°C T. 

thermophila BB and ciliary movements (Fig. 4.3 and C3). 

 

Movie 2 Baseline top. Top view movie of a computational model representing 37°C T. 

thermophila BB and ciliary movements (Fig. 4.3 and C3). 

 

Movie 3 No SF connection side. Side view movie of a computational model representing 37°C 

T. thermophila BB and ciliary movements when SF connections to the anterior BB and the cell 

cortex are lost (Figs. 4.3 and C3).  

 

Movie 4 No SF connection top. Top view movie of a computational model representing 37°C T. 

thermophila BB and ciliary movements when SF connections to the anterior BB and the cell 

cortex are lost (Figs. 4.3 and C3). 

 

Movie 5 No pcMT side. Side view movie of a computational model representing 37°C T. 

thermophila BB and ciliary movements when pcMTs are lost (Figs. 4.3 and C3). 

 

Movie 6 No pcMT top. Top view movie of a computational model representing 37°C T. 

thermophila BB and ciliary movements when pcMTs are lost (Figs. 4.3 and C3). 

 

Movie 7 No tMT side. Side view movie of a computational model representing 37°C T. 

thermophila BB and ciliary movements when tMTs are lost (Figs. 4.3 and C3). 

 

Movie 8 No tMT top. Top view movie of a computational model representing 37°C T. 

thermophila BB and ciliary movements when tMTs are lost (Figs. 4.3 and C3). 

 

Movie 9 30°C model side. Side view of a computational model representing 30°C T. 

thermophila BB and ciliary movements when forces are produced through the SF and cell cortex 

(Figs. 4.3, 4.4, and C3). 

 

Movie 10 30°C model top. Top view of a computational model representing 30°C T. 

thermophila BB and ciliary movements when forces are produced through the SF and cell cortex 

(Figs. 4.3, 4.4, and C3).  
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Appendix D: Autotrace and body tracking code 

Some sample code for Chapter 5 is given here. Full autotrace code is on Zenodo: 

https://doi.org/10.5281/zenodo.6687921  

Autotrace code 
see link above for complete version 

function [Out, FileInfo] = autotrace_fun3(FileInfo) 
% Autotrace function for cilia and flagella 
%  
% Run this function initially with no input and it will open a dialog that 
% will allow you to select a video file. Trace several points along the 
% cilium (base to tip) by left-clicking with the mouse.  Double-click when 
% you have traced the entire length. To run the analysis again with 
% different parameters on the same video, feed the 'FileInfo' structure 
% back to the function as an input. 
% 
% Inputs: 
%   Dialog box will open to select video on first run (no input) 
%   FileInfo - this struct is generated as an output after initial run 
% 
% Outputs: 
%   Out - struct with the following fields: 
%       Data: angle and position data from trace 
%       Stats: cost function values of trace 
%       PP: values from post-processing and polynomial fit 
  
% Louis Woodhams 09/2020, last modified 07/2022 
% 
% This software is made available under the CC BY NC license: 
% https://creativecommons.org/licenses/by-nc/4.0/ 
  
%******************* USER PARAMETERS ************************************** 
umpp = 0.194;   % [um/pixel] spatial resolution of image 
fps = 2000;     % [frames/sec] 
  
n = 12;     % number of segments along length to use 
nT = 50;    % number of theta values to try 
dd = 2;     % rod width in pixels 
sd = 0.8;   % standard deviation of gaussian dist (normalized) 
  
sweepWidthRatio = 5; % if this is too low, angles may be out of range 
a1 = 1;        % weight of correlation value 
a2 = 0.0005;   % penalty for curvature along length (dTheta/ds) 
a3 = 0.0002;   % penalty for change in position from last frame (dX/dt) 
a4 = 0.001;    % penalty for change in angle from last frame(dTheta/dt) 
a5 = 0.001;    % penalty for change in curvature from last frame(dKappa/dt) 
  
interpType = 'cubic'; % type of image interpolation to use 
  
step = 0; % step through points 

https://doi.org/10.5281/zenodo.6687921
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ndp = 5; % number of points in disk diameter (keep odd) 
%******************END USER PARAMETERS************************************* 
if nargin == 0 
    [file,path] = uigetfile({'*.avi;*.mp4;*.mpg;*.mpeg','Videos';... 
        '*.*','All Files'}, 'Select a video'); 
    fileName = fullfile(path,file); 
else 
    fileName = FileInfo.fileName; 
end 
dt = 1/fps;     % time step 
  
v = VideoReader(fileName); numFrames = v.NumFrames; 
  
% get start and end frames 
if nargin == 0 
    prompt = {'first frame','last frame'}; 
    dlgtitle = 'Input'; 
    dims = [1 20]; 
    definput = {'1',num2str(numFrames)}; 
    answer = inputdlg(prompt,dlgtitle,dims,definput); 
    firstFrame = str2double(answer{1});  
    lastFrame  = str2double(answer{2}); 
    numFrames = lastFrame - firstFrame +1; 
else 
    firstFrame = FileInfo.firstFrame;  
    lastFrame  = FileInfo.lastFrame; 
end 
nFrame = read(v,firstFrame); 
nFrame = im2double(nFrame); 
if size(nFrame,3)==3, nFrame = rgb2gray(nFrame); end 
  
% this is for visual interpolation of the image.  
interpFactor = 4; 
[rows,cols] = size(nFrame); 
[Xint, Yint] = ndgrid(1:1/interpFactor:rows,1:1/interpFactor:cols); 
  
costArray = zeros(numFrames,5); % compare cost terms 
totalCost = zeros(numFrames,1); % see if there are any high frames here 
  
thetaSweepVec = linspace(-pi,pi,nT)*sweepWidthRatio/n; % angles to sweep 
pointArray = zeros(n+1,2,numFrames); 
thetaArray = zeros(n+1, numFrames); 
c3 = 0; c4 = 0; c5 = 0; 
  
%% get an initial line trace from base to tip then double click 
% this gets us length, initial position, and initial angle 
if nargin == 0 
    imshow(nFrame) 
    roi = drawpolygon('FaceAlpha',0); 
    % roi = drawassisted; % this is another possible option 
    % roi.Closed = 0; 
     
    % find arclength 
    line1 = roi.Position; 
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    close,    delete(roi) 
else 
    line1 = FileInfo.line1; 
end 
  
disp = line1(2:end,:)-line1(1:end-1,:); 
    dist = sqrt(disp(:,1).^2 + disp(:,2).^2); 
    arcLenPix = sum(dist); 
    r = arcLenPix/n;   % individual segment length 
    r_um = r*umpp; r_m = 1e-6*r_um; % in umints of um 
    rs = ceil(r); % rounding segment length up for sweeper 
     
d = gaussRod(ndp,rs,sd); % this is the 'rod' we will sweep across the cilium 
dSum = sum(d(:)); 
dVec = linspace(-dd/2,dd/2,ndp); % points around zero to evaluate for corr 
Y0 = repmat(dVec',[1, rs+1]); 
X0 = repmat(0:rs,[ndp, 1]); 
XY0 = [X0(:), Y0(:)]'; 
  
ind = 1; 
for iFrame = firstFrame:lastFrame 
    nFrame = read(v,iFrame); 
    nFrame = im2double(nFrame); 
    if size(nFrame,3)==3, nFrame = rgb2gray(nFrame); end 
    I = griddedInterpolant(nFrame,interpType,'none'); 
    nFrameInt = I(Xint, Yint); 
     
    %% initial pos and angle 
    x = NaN(n+1,2); 
    x(1,:) = line1(1,:); 
    theta = zeros(n+1,1); 
    if ind == 1 
        theta(1) = atan2(disp(1,2), disp(1,1)); 
        if ~showTrace, w1 = waitbar(1,'Finding paths'); end 
    else 
        theta(1) = thetaBaseLast; 
    end 
    
    for iStep = 1:n 
        %initialize cost and position arrays 
        c = zeros(nT,5); 
        xVec = zeros(nT,2); 
         
        for iTheta = 1:length(thetaSweepVec) 
            nTheta = (thetaSweepVec(iTheta) + theta(iStep)); 
            iX = x(iStep,:)+[r*cos(nTheta), r*sin(nTheta)]; 
             
            % create rotation matrix with current trial angle nTheta 
            ROTMAT = [cos(nTheta), -sin(nTheta); 
                      sin(nTheta),  cos(nTheta)]; 
            % rotate and translate 'rod' of evaluation points 
            XYRot = ROTMAT*XY0+x(iStep,:)'; 
            % evaluate intensities at these coordinates 
            blockVal = I(XYRot(2,:),XYRot(1,:)); 



[224] 

 

            % take weighted average using weights in 'd' 
             
            c1 = a1*dot(d(:),blockVal(:))/dSum; % weighted average pixel vals 
            if isnan(c1) % assign penalty for going out of image bounds 
                c1 = a1*10; 
            end 
            % curvature cost ~(dTheta/ds)^2 
            c2 = a2*(thetaSweepVec(iTheta)/r_um)^2; 
            if ind > 1 
                % c3 is cost due to (dX/dt)^2, dXdt in um/s 
                dXdt = norm(iX - pointArray(iStep+1,:,ind-1))*umpp/dt; 
                c3 = a3*dXdt^2*(1-iStep/(n+1))/1e6; % diminishes along length 
                % c4 is cost due to dTheta/dt 
                dThetadt = (nTheta - thetaArray(iStep+1,ind-1))/dt; 
                c4 = a4*dThetadt^2/1e6; 
                % c4 = c4*(1-iStep/(n+1))/arcLen; % diminishes along length 
                % c5 is cost due to d(dTheta/ds)/dt 
                c5 = a5*(thetaSweepVec(iTheta)-... 
                    (thetaArray(iStep+1,ind-1)-... 
                    thetaArray(iStep,ind-1)))^2/r_um^2/dt^2/1e6 ; 
            end 
            c(iTheta,:) = [c1, c2, c3, c4, c5]; 
            xVec(iTheta,:) = iX; 
        end 
         
        [minVal, minInd] = min(sum(c,2)); 
        totalCost(ind) = totalCost(ind) + minVal/n; 
        c = c - min(c,[],1); 
        costArray(ind,:) = costArray(ind,:) + c(minInd,:)/n; 
        theta(iStep+1) = theta(iStep)+thetaSweepVec(minInd); 
        x(iStep+1,:) = xVec(minInd,:); 
        if iStep == 1 
            thetaBaseLast = theta(iStep)+thetaSweepVec(minInd); 
        end 
    end 
    pointArray(:,:,ind) = x; 
    thetaArray(:,ind) = theta(:); 
    ind = ind + 1; 
end 
thetaArray(1,:) = []; % discard first row - JUNK 
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Autotrack code 
function Out = autotrack 
% autotrack cell body motion 
% Louis Woodhams 07/2022 
 
%% *******************User parameters************************************** 
% Do we want to minimize SSRs or maximize correlation 
% objective = 'sumofsquares'; 
objective = 'correlation'; 
 
fps = 2000;  % fps of recording for kinematic analysis 
umpp = 0.194; % um per pixel for kinematic analysis 
drawShape = 'ellipse'; % 'ellipse' or 'circle' 
framesToRead = inf;    % set to inf for all frames 
plotWhileRunning = true; % show tracking as it is happening? 
keepWarpedImages = true; % do you want to save these? 
smearTemplate = true; % average the template image as stracking runs 
numToSmear = 700; % how many template frames to smear? inf for all 
trackFrameToFrame = false; % EXPERIMENTAL may lead to 'drift' of tracking 
pixSize = 0.5; % make less than 1 for sub-pixel sampling [default 1] 
reduceSize = true; % save stabilized images as uint8 
nfpsAvg = 60; % just for showing fps while running NBD 
% *********************End User Parameters********************************* 
 
%% get a filename 
[file,path] = uigetfile({'*.avi;*.mp4;*.mpg;*.mpeg','Videos';... 
    '*.*','All Files'}, 'Select a video'); 
fileName = fullfile(path,file); 
 
% read video and convert frame to grayscale if necessary 
v = VideoReader(fileName); 
numFrames = v.NumFrames; 
if numFrames > framesToRead, numFrames = framesToRead; end 
frame1 = read(v,1); 
[numRows,numCols,numColors] = size(frame1); 
frame1 = im2double(frame1); 
if numColors==3, frame1 = rgb2gray(frame1); end 
frame1 = flipud(frame1); 
 
% get our region of interest 
hIm = imshow(frame1); 
axis xy 
ttl = title('Frame 1'); 
switch drawShape 
    case 'circle' 
        roi = drawcircle; 
        disp('press any key to continue') 
        pause 
        center0 = roi.Center; 
        R0 = roi.Radius; 
        delete(roi) 
        [XC, YC, mask] = makeCircle(R0, pixSize); 
        theta0 = 0; 
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        crossXC = [-R0, R0,   0,  0]; 
        crossYC = [  0,  0, -R0, R0]; 
    case 'ellipse' 
        roi = drawellipse; 
        disp('press any key to continue') 
        pause 
        center0 = roi.Center; 
        ab = roi.SemiAxes; 
        theta0 = 2*pi*(1 - roi.RotationAngle/360); 
        delete(roi) 
        % create evaluation elipse points and rotate 
        [XC, YC, mask] = makeEllipse(ab(1),ab(2),pixSize); 
        [XC,YC] = simpleWarp([0 0 theta0],XC,YC);  
        % create crosshairs and rotate 
        crossXC = [-ab(1), ab(1),      0,     0]; 
        crossYC = [     0,     0, -ab(2), ab(2)]; 
        [crossXC, crossYC] = simpleWarp([0 0 theta0],crossXC,crossYC); 
end 
 
% shift coordinates for initial interpolation 
X = XC + center0(1); 
Y = YC + center0(2); 
% get template image 
iFInterp = griddedInterpolant(frame1,'cubic'); 
Template = iFInterp(Y, X); % 
T = Template - mean(Template(:)); 
T2 = T*T'; 
template0 = Template; 
 
if keepWarpedImages 
    IMWarp = zeros(size(Template)); % initialize for global use 
    unwarped = zeros([size(mask), numFrames]); 
    im_ =  zeros(size(mask)); 
    im_(mask) = Template; 
    unwarped(:,:,1) = im_; 
end 
 
% Crosshairs for display 
crossX =  crossXC + center0(1); 
crossY =  crossYC + center0(2); 
hold on 
hCross = plot(crossX([1,2]),crossY([1,2]),'r--', ... 
              crossX([3,4]),crossY([3,4]),'b--', ... 
              crossX(1),    crossY(1),    'w.'); 
hCross(4) = plot (center0(1),center0(2),'g-'); 
hold off 
hCross(1).LineWidth = 2; hCross(2).LineWidth = 2; 
drawnow 
pause(1) 
 
if ~plotWhileRunning 
    close 
    hwait = waitbar(0,'Progress'); 
end 
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%% 
opts = optimset('TolFun',1e-6,'TolX',1e-6); 
p = zeros(3,numFrames); 
resid = nan(1, numFrames); 
iterations = zeros(1, numFrames); 
funcCount = zeros(1, numFrames); 
exitflag = zeros(1,numFrames); 
im_ =  zeros(size(mask)); 
dtVec = nan(nfpsAvg,1); 
for ii = 2:numFrames 
    tic 
    p0 = p(:,ii-1); 
    iFrame = read(v,ii); 
    iFrame = im2double(iFrame); 
    if numColors==3, iFrame = rgb2gray(iFrame); end 
    iFrame = flipud(iFrame); 
 
    iFInterp = griddedInterpolant(iFrame,'cubic'); 
    [p_, resid_, exitflag_, fmsOut] = fminsearch(@sumSQR,p0, opts); 
    p(:,ii) = p_; 
    resid(ii) = resid_; 
    exitflag(ii) = exitflag_; 
    iterations(ii) = fmsOut.iterations; 
    funcCount(ii) = fmsOut.funcCount; 
 
 
    if keepWarpedImages 
        im_(mask) = IMWarp; 
        unwarped(:,:,ii) = im_; 
    end 
 
    if smearTemplate && (ii < numToSmear) 
        % could check that correlation is above some threshhold? 
        Template = (1-1/ii)*Template + (1/ii)*IMWarp; 
        T = Template - mean(Template(:)); 
        T2 = dot(T,T); 
    end 
 
    if trackFrameToFrame 
        Template = IMWarp; 
        T = Template - mean(Template(:)); 
        T2 = dot(T,T); 
    end 
 
    prog = round(ii/numFrames * 100); 
    if plotWhileRunning 
        try 
            hIm.CData = iFrame; % update the images 
            % trace the path of the centroid 
            hCross(4).XData = [hCross(4).XData, center0(1) + p_(1)]; 
            hCross(4).YData = [hCross(4).YData, center0(2) + p_(2)]; 
 
            % display crosshairs 



[228] 

 

            [crossWXC, crossWYC] = simpleWarp(p_,crossXC,crossYC); 
            crossWX = crossWXC + center0(1); 
            crossWY = crossWYC + center0(2); 
            hCross(1).XData = crossWX([1,2]); 
            hCross(2).XData = crossWX([3,4]); 
            hCross(3).XData = crossWX(1); 
            hCross(1).YData = crossWY([1,2]); 
            hCross(2).YData = crossWY([3,4]); 
            hCross(3).YData = crossWY(1); 
 
            % stuff for monitoring progress during analysis 
            dtVec(mod(ii,nfpsAvg)+1) = toc; 
            dt = mean(dtVec,'omitnan'); 
 
            ttl.String = sprintf('Frame %d, %d%%, fps %0.1f',ii, prog, 1/dt); 
            drawnow limitrate 
            % pause(0.01) 
        catch 
            break 
        end 
    else 
        try 
            waitbar(prog/100, hwait,'Progress') 
        catch 
            break 
        end 
    end 
end 
 
Out.p = p; 
Out.theta0 = theta0; % theta in radians 
Out.fps = fps; 
Out.umpp = umpp; 
Out.Stats.resid = resid; 
Out.Stats.iterations = iterations; 
Out.Stats.funcCount = funcCount; 
Out.Stats.totalIterations = sum(iterations); 
Out.Stats.totalFuncEvals = sum(funcCount); 
 
 
if smearTemplate 
    im_(mask) = Template; 
    Out.template = im_; 
    im_(mask) = template0; 
    Out.template0 = im_; 
    figure 
    imshow([Out.template0, Out.template]) 
end 
 
if keepWarpedImages 
    % normalize just in case 
    unwarped = unwarped - min(unwarped(:)); 
    unwarped = unwarped/max(unwarped(:)); 
    Out.unwarped = unwarped; 
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    Out.mask = mask; 
    try 
        Out = bodyKinematics(Out); 
    end 
end 
 
if reduceSize 
    Out.unwarped = im2uint8(Out.unwarped); 
end 
 
%% plot 
figure 
subplot(3,1,1) 
plot(p([1,2],:)'), grid on 
ylabel('displacement (pix)') 
legend('x','y','Location','best') 
 
subplot(3,1,2) 
plot(p(3,:)), grid on 
ylabel('theta (rad)') 
 
subplot(3,1,3) 
plot(-resid), grid on 
xlabel('frame #') 
ylabel('correlation coeff to frame1') 
 
%% objective function 
    function SSr = sumSQR(p) 
        [wXC, wYC] = simpleWarp(p,XC,YC); 
        IMWarp = iFInterp(wYC+center0(2),wXC+center0(1)); 
        switch objective 
            case 'sumofsquares' 
                eResidual = Template - IMWarp; 
                SSr = dot(eResidual,eResidual); 
            case 'correlation' 
                I = IMWarp - mean(IMWarp); 
                correl = (T*I')/sqrt(T2*(I*I')); 
                SSr = -correl; 
        end 
    end 
end 
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Appendix E: Dynamic analysis code 

 

Representative code for obtaining dynamic quantities from position data. In the code below, X is 

an array of x-positions where row indices represent position along the cilium length and column 

indices represent frame number in the time sequence (each column of X is a vector of positions 

along the cilium length at a given frame). Y is an array of y-positions and dt is the time delay 

between frames. cN and cT are resistive force coefficients. 

 

% Get velocities [um/s] 
[Vx, dxds] = gradient(X); 
[Vy, dyds] = gradient(Y); 
Vx = Vx/dt; Vy = Vy/dt; 
 
% Tangent angle [rad] 
Theta = atan2(dyds,dxds); 
Theta = unwrap(Theta'); 
 
% segment lengths [um] 
dL = sqrt(dxds.^2 + dyds.^2); 
L_cilia = trapz(dL); 
L = mean(L_cilia); % average length from plots 
 
% Tangent and Normal Vectors 
Tx = dxds./dL; 
Ty = dyds./dL; 
Nx = -Ty; 
Ny =  Tx; 
 
% Tangent velocity is dot product of velocity and tangent vector 
% Normal  velocity is dot product of velocity and normal vector 
Vt = Vx.*Tx + Vy.*Ty; 
Vn = Vx.*Nx + Vy.*Ny; 
 
% tangent and normal force (Positive - power applied by cilium) 
Ft = Vt * cT; % [pN/um] 
Fn = Vn * cN; 
 
% x and y force 
Fx = Ft.*Tx + Fn.*Nx; 
Fy = Ft.*Ty + Fn.*Ny; 
 
% Moment (Check on final sign convention!!!) 
Mz = Fy.*X - Fx.*Y;  
 
% power 
P = Fx.*Vx + Fy.*Vy; 
 
% Integrate forces and moments along length 
F_total_x = trapz(Fx.*dL);      % [pN] 
F_total_y = trapz(Fy.*dL); 
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M_total_z = trapz(Mz.*dL);      % [pN-um] 
P_total   = trapz( P.*dL)/1000; % [fW] 
 
% integrate over time: 
Work = trapz(P_total)*dt*1000;          % [atto Joules] 
Work_y = trapz(trapz( Fy.*Vy.*dL))*dt;  % [atto Joules] 
Impulse_y = trapz(F_total_y)*dt*1000;   % [pN-ms] 
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