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ABSTRACT

The contents of a requirements specification is presented in light of the consensus reached
by both theoreticians and practitioners. The desirable properties of a2 requirements specification
are justified from a lunctionalist viewpoint and it Is suggested that changes in the way one uses
the requirements may alter the relative significance of different properties. Finally, a classification
of requirements specification techniques is proposed and used as a backdrop against which current
issues in the requiremenis engineering field are examined. The emphasis Is on identifying general
problem areas rather than offering the reader a literature survey. The paper shows that, despite
significant growth, the requirements area still faces a number of important unresolved issues
including the need for: broader formal foundation for both functional and non-functional require-
ments, greater degree of formality and automation, new requirements development methods, and
higher level of integration in the overall design process.
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A Taxonomy of Current Issues in

Requirements Engineering

The growing area
of requirements
specification still
needs a broader formal
Sfoundation, more
automation, new
development methods,
and a higher level of
integration into the
overall design process.

Gruia-Catalin Roman
Washington University, St. Louis

In the simplest terms, the design
process consists of three activities:
the identification of a need, the devel-
opment of a solution, and the imple-
mentation of the solution. Require-
ments and design specifications de-
scribe the engineer’s perception of a
need and his understanding of the
solution. Requirements specifications
state the desired functional and per-
formance characteristics of some
component independent of any actual
realization, while design specifications
describe the component’s real internal
structure and behavior. While re-
quirements specifications facilitate
understanding, design specifications
faithfully render physical and logical
structures that implement the require-
ments.

A component’s design is not neces-
sarily an implicit statement of its re-
quirements. Even for simple and well
understocd functions, for example,
sorting, the design can turn out to be
unexpectedly complex when demand-
ing design constraints are applied, for
example, sorting in linear time, The
ensuing loss of requirements trace-
ability and separability can cause
serious maintenance problems—one

0018-9162/85/0400-0014501.00 © 1985 IEEE

cannot tell if a particular function is
essential or if it is simply a conse-
quence of some design constraint that
is no longer significant. Furthermore,
without the requirements specifica-
tion’s explicit statement of purpose
the designer may solve the wrong
problem, a state of affairs that often
leads to disastrous consequences.

The economic realities of large sys-
tems development, in particular, are
such that discrepancies between the
delivered system and the needs it must
fulfill may cost in excess of 100 times
what would have been required if the
errors were discovered during the ini-
tial problem definition; in some ex-
treme cases, discrepancies may make
the entire system useless.! For this
reason, recent years have been
marked by an increased general in-
terest in requirements specification.

The purpose of this article is to in-
crease awareness of several require-
ments specifications issues: (1) the
role they play in the full system
development life cycle, (2) the diversi-
ty of forms they assume, and (3) the
problems we continue to face. The ar-
ticle concentrates on ways of express-
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ing requirements rather than ways of
generating them. A discussion of vari-
ous classification criteria for existing
requiremenis specification technigues
follows a brief review of requirements
specification contents and concerns.

Requirements specification
contents

As shown by Yeh,” among others,
requirements fall into two general
categories: functional and non-fune-
tional (the latter are also called con-
straints). The functional requirements
capture the nature of the interaction

,between the component and its envi-

ronment, The non-functional require-
ments restrict the types of solutions
one might consider, Certain kinds of
information ought to be included in a
requirements specification document
independently of the nature of the
component for which the require-
ments are written. The component
may be a whole system, a software
package, or a hardware device.

Functional requirements. The con-
struction of the functional require-
ments involves modeling the relevant
internal states and behavior of both
the component and its environment.
Balzer and Goldman® have noted that
the model, often called a conceprual
model, must be cognitive in nature,
that is, its concepts are relevant to the
milieu in which the component is used
and not related to its design or imple-
mentation. Aside from defining the
functional validation criterion for the
component design, the conceptual
modet also helps designers commun-
icate among themselves and with
users.

The conceptual model is incom-
plete unless the environment with
which the component interacts is also
modeled. If the environment is not
well understood, it is unlikely that the
requirements, as specified, will reflect
the actual needs the component must
fulfill. Moreover, since the environ-
ment affects the complexity of the
component design, constraining the
environment can reduce component
complexity.
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Non.functional requirements. De-
sign complexity is also determined by
the nature of the non-functional re-
quirements. A constraint such ¢ ligh
reliability, for instance, may raise
significantly both the cost of the
system and the level of effort asso-
ciated with its design and testing. Un-
fortunately, formally specifying the
non-functional requirements is dif-
ficult. Some constraints (e.g.,
response to failure) are related to
design solutions that are not known at
the time the requirements are written.
Others (e.g., human factors) may be
determined only after complex em-
pirical evaluations. Many constraints
(e.g., maintainability) are not for-
malizable given the current state of
the art, and many others are not ex-
plicit. Finally, there is a great diversity
of types of non-functional require-
ments, as the following taxonomy
shows.

Interface constraints define the
ways the component and its environ-
ment interact. In some application
programs, for instance, the environ-
ment may consist of the system users,
the operating system, the hardware,
and the software packages. The func-
tional requirements for these pro-
grams must capture the demands and
services associated with each one of
these environmental entities, but not
the syntax of the procedure invoca-
tions, the interrupt addresses, or the
screen format. These latter details are
interface constraints that should not
affect what the program does, but the
way it does it.

Performance constraints cover a
broad range of issues dealing with
time/space bounds, reliability, securi-
ty, and survivability. The first cate-
gory covers response time, workload,
throughput, and available storage
space; we expect that user-oriented
measures such as productivity will
also become increasingly important in
the definition of requirements for
systems that provide direct produc-
tion support. Reliability constraints
deal with both the availability of
physical components and the integrity
of the information maintained or sup-

plied by some component. Similarly,
security constraints span physical con-
siderations such as emission standards
and logicai issucs such as permissible
information flows (e.g., for secure
operating systems) and information
inference (e.g., from statistical sum-
maries about the database contents).
Survivability is a requirement asso-
ciated not only with defense systems
but also with every day processing
where off-site copies of the database
prevent loss in case of fire.

Operating constraints include
physical constraints (e.g., size, weight,
power, etc.), personnel availability,
skill level considerations, accessibility
for maintenance, environmental con-
ditions (e.g., temperature, radiation,
etc.), and spatial distribution of com-
ponents.

Life-cycle constraints fall into two
broad categories: those that pertain to
qualities of the design and those that
limit the development, maintenance,
and enhancement process. In the first
group we include maintainability, en-
hanceability, portability, flexibility,
reusability of components, expected
market or production life span, up-
ward compatibility, integration into a
family of products, etc. Failure to
satisfy any of these constraints may
not compromise the initial, delivered

Even for simple and
well understood functions, the
design can turn out to be
unexpectedly complex.

component, but may result in in-
creased life cycle costs and an overall
shorter life for the component. In the
second group we place development
time limitations, resource availability,
and methodological standards. The
latter include design techniques, tool
usage, quality assurance programs,
programming standards, etc.
Economic constraints represent
considerations relating to immediate
and long term costs. They may be
limited in scope to the component at
hand {e.g., development cost}, but,
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most often, they involve global
marketing and production objectives.
A high life-cycle cost may be accepted
in exchange for some other tangible
or intangible benefits.

Political constraints deal with
policy and legal issues. A company’s
unwillingness to use a competitor’s
device or its obligation to use a certain
percentage of equipment indigenous
to some foreign country illustrate
issues falling in this category of non-
functional constraints.

Requirements specification
concerns

Growing interest in requirements
specification has been accompanied
by the emergence of general guide-
lines regarding the properties of a
good specification. Our own attempt
to organize and evaluate these guide-
lines led us to adopt a functionalist
viewpoint: a property of a require-
ments specification is desirable if it
satisfies some identifiable need of the
design process. This approach sug-
gests that the way requirements are
used determines the kind of proper-
ties they ought to have. Some proper-
ties are needed because the require-
ments must be read, others because
designs must be checked against the
requirements, yet others because re-
quirements change with time during
development and enhancement. As-
pects that contribute to having a good
requirements specification today may
lose their significance in the future if
the design process changes its charac-
ter due to increased levels of automa-
tion or other factors,

We provide below a list of desirable
requirements specification properties.
The list is compiled from several
sources™® and is annotated from a
functionalist perspective.

Appropriateness refers to the abili-
ty of the specification to capture, in a
manner that is straightforward and
free of implementation considera-
tions, those concepts that are ger-
mane to the component’s role in the
environment for which it is intended
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(business data processing, process
control, communication hardware,
etc.). An inappropriate specification
technique makes requirements opera-
tion cumbersome or impossible,

A related property is conceptual
cleanliness. It covers notions such as
simplicity, clarity, and ease of under-
standing. It is needed above all be-
cause people are involved in develop-
ing and using the requirements, When
the requirements are generated and
used by tools alone, conceptual
cleanliness is often sacrificed for the
sake of enhancing the computational
efficiency of the automation tools.

Constructability deals with the exis-
tence of a systematic (potentially
computer-assisted) approach to for-
mulating the requirements. This
property recognizes that the mere
availability of a requirements specifi-

not been left out and is consistent if
parts of the specification do not con-
tradict one another. Both complete-
ness and consistency require the exis-
tence of criteria against which one
may evaluate the specification. While
some of them may be included in the
semantics of the requirements specifi-
cation language, others may not. For-
mal definition of completeness and
consistency is especially difficult to
accomplish when multiple related
specifications such as a human inter-
face prototype and a dataflow model
of the functionality are involved.
Completeness and consistency
checks, the verification of the design
against requirements, and other anal-
ytic activities presuppose the analyza-
bility of the requirements by mechan-
ical or other means. The higher the
degree of formality the more likely it

When the requirements are generated and used by tools alone,
conceptual cleanliness is often sacrificed for the sake of enhancing the
compuiational efficiency of the automation tools.

cation formalism is not sufficient to
make it useful, particularly on large
problems.

Both humans and tools that have
to examine the requirements benefit
from structuring that emphasizes
separation of concerns and from ease
of access to frequently needed infor-
mation.

Precision, lack of ambiguity, com-
Pleteness, and consistency are impor-
tant because the requirements repre-
sent the criteria against which the
component acceptability is judged.
Lack of precision (e.g., ““large main
memory”’) is defined as the impos-
sibility to develop a procedure for
determining if some realization does
or does not meet some particular re-
quirement. Lack of ambiguity is pre-
sent whenever two or more inter-
pretations cannot be attached to a
particular requirement--—this is differ-
ent from the case when several possi-
ble realizations are equally accep-
table. A requirements specification is
complete if some relevant aspect has

is that requirements may be analyzed
by some mechanical means, thus
opening the way to the use of tools.

Testability is defined as the availa-
bility of cost-effective procedures that
allow one to verify if the design
and/or realization of some compo-
nent satisfies its functional and non-
functional requirements. This proper-
ty is probably the most important
one, and, at the same time, the most
difficult one to achieve. To illustrate
the complexity involved in guarantee-
ing testability, one may want to think
of the difficulties associated with pro-
gram verification where the code is
checked against a set of assertions
stated in predicate calculus.

Traceability of the requirements is
often used as a substitute for test-
ability. Traceability refers to the abili-
ty to cross-reference items in the re-
quirements specification with items in
the design specification. Without
assuring testability, some help is thus
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provided to the designer in his effort
to check that all requirements have
been corisidered.

Executability is the extent func-
tional simulations of the component
can be constructed from its require-
ments specification prior to starting
the design or implementation; it plays
an important role in requirements
validation.

Finally, in recognition that require-
ments are built gradually over long
periods of time and continue to
evolve throughout the component’s
life cycle, the specifications must be
tolerant of temporary incompleteness
and adaptable to changes in the
nature of the needs being satisfied by
the component; they must exhibit
economy of expression, and they
must be easily modifiable.

Classification criteria

The main objective of this section is
to identify the key issues facing the re-
quirements engineering field today. To
help organize the presentation, we
separate the discussion into five parts,
each corresponding to a criterion that
can be used to classify existing re-
quirements specification techniques.
The selected criteria have engineering
relevance leading to meaningful tech-
nical comparisons. We illustrate each
criterion by discussing how it might be
applied to current specification tech-
niques. For a complete survey of the
area, we recommend Ramamoorthy
and So’s paper on the subject.5 (The
classification criteria below are a
superset of those used by Ramamoor-
thy and So.)

(1) Formal foundation. The theory
that forms the basis for the particular
technique (e.g., dataflow, logic, etc.);

(2) Scope. The type of require-
ments addressed by the technique
(e.g., functionality, reliability con-
straints, etc.);

(3) Level of formality. The extent
to which the specification could be
understood by a machine without
need for human interpretation;
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{#) Degree of specialization. The
size of the class of problems for which
the application of the technique is ap-
propriate;

(5) Specialization area. The class
of components whose requirements
may be conveniently specified through
the use of the technique; and

(6) Development method. The ap-
proach used to construct the specifi-
cation.

We now discuss the relevance of
each criterion and the requirements
engineering issues pertaining to it.

Formal foundation. Significant ad-
vances in the requirements field are
determined by the strength of its
theoretical foundation, which is the
basis for subsequent automation, and
by the extent to which the theoretical
results make their way into engineer-
ing practice. Efforts to develop prac-
tical tools for the specification of
system-level requirements, for in-
stance, have exploited a number of
alternative formal foundations, in-
cluding the use of finite-state ma-
chines, dataflow, stimulus-response
paths, communicating concurrent pro-
cesses, functional composition, and
data-oriented models.

Finite-state machines. The use of
finite-state machines offers elegance
and a great degree of analyzability.
Requirements Language Processor,’
for example, treats system processing
as a mapping that takes the current
system state and an incoming stimulus
and produces a new system state and
a response. Redundancy, incomplete-
ness, and inconsistency in the defini-
tion of the finite-state machine are
related to corresponding problems in
the requirements specification.

Dataflow. Dataflow models are
among the most popular in use today.
The typical dataflow model consists
of processing activities and data arcs
showing the flow of data between the
activities. Processing is triggered by
the presence of data in the input
queues associated with each activity.
SADT’ and PSL/PSA" illustrate two

distinct uses of dataflow. SADT is a
requirements ‘‘blueprint language”
that stresses accurate communication
of ideas by graphical” mesns. whike
PSL/PSA stresses the use of a re-
quirements database and automated
tools for the development and analy-
sis of dataflow type requirements.
What makes dataflow attractive is
that it is very well suited for modeling
the structure and behavior of most
human organizations. For this
reason, new dataflow-based methods,
for example, CORE,’ are still being
proposed and evaluated.

Stimulus-response paths. Tech-
niques using stimulus-response paths
decompose the requirements with
respect to the processing that must be

Efforts to develop practical tools
for the specification of system-
Jevel requirements have relied on
a number of formal devices.

carried out subsequent to the receipt
of each stimulus. The approach,
rooted in the needs of the real-time
processing, is widely known primarily
due to the development of SREM."

Communicating concurrent pro-
cesses. The activities identified in
both dataflow and stimulus-response
models may be easily simulated by
using communicating concurrent pro-
cesses. Formally, a process is repre-
sented by a set of states and by a state
transition mapping. This view is
shared by all the techniques that use
communities of processes to model
requirements. Fundamental differ-
ences occur mostly in the manner in
which communication is being de-
fined. In PAISLey, asynchronous in-
teractions are specified by means of
function applications. (Pairs of “‘ex-
change functions’” return as values
each others arguments.) Jackson uses
unbounded queues defined such that
only one process may *‘write’’ to each
queue and only one process may
“read” from each queue.” IORL
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provides a set of eight communication
primitives that permit the establish-
ment of communication paths and
the exchange of data."

Functional composition. The func-
tional composition approach has been
promulgated by the Higher Order
Software methodology,” and is now
supported by a tool called USE.IT
that allows one to define (graphically)
the system’s functionality as a com-
position of mathematical functions.

Data-oriented models. Data-
oriented techniques concentrate on
the specification of the system state
represented by the data that needs to
be maintained. The Conceptual
Schema Definition Language for in-
stance, helps structure one’s knowl-
edge of the application area.'” Based
on semantic network modeling and
other techniques proven successful in
the artificial intelligence field, CSDL
provides highly abstract and intuitive
representations of knowledge. While
in CSDL the system functionality is
defined in terms of built-in data
manipulation primitives, other tech-
niques (e.g., see work by Greenspan
et al.") provide the means to define
system activities in a manner similar to
that of defining data objects.

Transferring techniques among dif-
ferent fields shows that important
benefits can be derived from evalu-
ating proven techniques in new con-
texts. There are other similar success
stories. Modular programming, for
instance, has benefited greatly from
the work on programming language
semantics.

Compilers and interpreters repre--

sent a class of components for which
formal functional requirements are
routinely built. Their requirements
are given by the syntax and semantics
of the language for which they are
constructed, Standard methods are
available today for the definition of
both syntax and semantics.'” Of par-
ticular interest to the broader area of
requirements specification are the
three types of semantic models cur-
rently in use: denotational (the mean-
ing of a program is stated as a mathe-
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matical function), axiomatic (the
meaning of a program is stated by
providing the axioms and inference
rules needed to prove programs cor-
rect}, and operational (the meaning of
the program is given by the result of
executing it on an abstract machine).

These models are expected to play
an increasingly important role in the
field. To date, they clearly influenced
the work on the specification of func-
tional requirements for individual
programs.'® For pure procedures,

There is a wealth of formal
models that have not yet made
their way into requirements
engineering practice.

axiomatic specifications take the form
of input/output assertions, and oper-
ational specifications are represented
by simple and clear algorithms that
perform the same function as the in-
tended program but ignore any per-
formance issues. (These algorithms
are not intended for use by the actual
program.) Abstract objects (appear-
ing in object-oriented design) may be
specified by sets of axioms relating the
operations permissible over each ob-
ject or, operationally, by showing
how each operation uses and modifies
some abstract representation of the
object.

New system requirements specifica-
tion techniques have been successful-
ly based on programming language se-
mantic models, but the full potential
of the new techniques has not yet
been established. However, a good
grasp of the principles behind the
semantic models for programming
languages is important in any type of
design activity that involves writing or
interpreting requirements. In general,
designers can benefit from being
trained how to exploit existing theo-
retical results in an engineering set-
ting. A designer documenting an Ada
package specification, for instance,
can benefit from some knowledge of
how to specify abstract objects. Simi-
larly, a designer, by not understand-

ing the operational specification con-
cept, will be more likely to misinter-
pret requirements written in a lan-
guage such as RSL {used by SREM3,
which has an operational nature.

The problem of applying existing
theory to practice is by no means sole-
ly an education issue. As past surveys
of the area show, there is a wealth of
formal models that have not yet made
their way into requirements engineer-
ing practice. It is clear, for instance,
that probabilistic concepts have not
received appropriate attention, that
logic-based models are just beginning
to be exploited, that most distributed
processing models are still a primarily
theoretical concern, etc. The single
most important reason why this situa-
tion continues to prevail is the high
investment required for developing
and evaluating a production-version
tool. Even for older tools, systematic
empirical evaluation such as the one
to which SREM was recently sub-
jected™ are more the exception than
the rule.

Finally, we must point out that de-
spite the broad body of formal
knowledge that is not being applied,
there is still a need to expand the for-
mal foundation of the requirements
area. No technique is equally appro-
priate for all applications or compre-
hensive in its coverage of the require-
ments issues. In our own work, for in-
stance, we are currently exploring the
use of formal logic in the specification
of geographic data-processing re-
quirements, a highly specialized area
that, by and large, has been ignored
as far as requirements specification
techniques are concerned,

Scope. Scope is defined by the type
of requirements the specification
technique attempts to express. Some
techniques limit themselves to func-
tional requirements, others are con-
cerned solely with particular non-
functional requirements (e.g., reliabil-
ity), while others cover functionality
and a selected subset of the non-func-
tional requirements. SREM, for in-
stance, falls in the last category., By
employing stimulus-response paths to

COMPUTER



model the system functionality,
SREM makes the formal specification
of processing time constraints
relatively easy.

There are two major difficulties in
attempting to expand the scope of
current specification techniques, First,
despite progress in the ability to ex-
press adequately the functionality,
there are still major difficulties with the
establishment of a formal foundation
for most of the non-functional re-
quirements. Second, broad integra-
tion of functional and non-functional
requirements has not been accom-
plished. We should remember that the
severity of the constraints determines
the complexity of the design and that
much of the design evaluation effort
is invested in checking whether the
constraints are met.

Level of formality. The level of for-
mality is the extent to which a specifi-
cation language may be understood
by some machine. The typical user
manual for a software package has a
certain degree of structure, but lacks
formality because it is written in a
natural language. PSL/PSA repre-
sents a next step toward formality.
Relationships between arbitrary en-
tities (e.g., “Inputs A and B generate
output C’’} may be formally captured
without any concern as to their mean-
ing. Interpreting the meaning of the
entities (e.g., 4, B, and C) and of the
relationships (e.g., ‘‘generate’’)
depends on some consensus among
designers. Completely formal specifi-
cation techniques do exist but they
are for highly specialized classes of
problems. We need to reach increas-
ing levels of formality., However,
without proper automated tools, the
designer’s ability to be more formal is
limited.

A dramatic illustration of the ad-
vantages of formal specifications
comes from the database area where a
number of models have been pro-
posed,™ with the relational model be-
ing the simplest and the cleanest
among them. These models are in fact
requirements specifications for the
class of components we call data-
bases; they describe the desired func-
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tionality and not the way the database
is implemented.

Degree of specialization. Speciliza-
tion of the requirements technique to
a particular type of component in-
creases the technique’s analyzability
and makes the designer’s concepts
more susceptible to direct representa-
tion. The former helps to increase the
potential for automation, while the
latter makes the technique easy to
use.

Broad integration of functional
and non-functional requirements
has not been accomplished.

Current technigques cover the entire
spectrum from domain specific, to
domain sensitive, and, finally, to do-
main independent. An extreme case
of specialization is represented by re-
quirements techniques that address
such a small class of components that
automatic generation of the compo-
nent from the requirements becomes
possible. Problem-oriented languages
can be viewed as part of this category.
Most system requirements specifica-
tion techniques tend to fall into the
category we call domain sensitive.
Both RSL and PSL, for instance, are
adequate for problems that fall out-
side their primary domains of applica-
bility and adapt to the specifics of
particular problems by means of
designer-defined extensions. The
SADT notation is representative of
the domain-independent techniques.
So is the use of formal logic in the
definition of requirements.

Because there are merits associated
with both specialization and general-
ity, the developer of a requirements
engineering environment must evalu-
ate carefully the tradeoffs between
the two. The ideal technique is gener-
al enough to be useful for a large
number of problems (e.g., real-time
control, data processing, databases,
etc.) and, at the same time, capable of
defining the problem-specific con-

cepts needed (or convenient to use) in
each case {e.g., internal and external
events, report formats, relations, etc.)
To achieve this, the environment
would have to provide the designer
with a user-expandable language suit-
able for the definition of problem-
specific concepts and semantic con-
straints and a tool set sharing a single
unified formal foundation and a
single human interface style.

Specialization area. To understand
fully the opportunities for specializa-
tion and the diversity of needs that re-
quirements specification technigues
must satisfy at different points in the
development life cycle, one simply has
to consider what is involved in the
development of a complete system,
that is, a software/hardware ag-
gregate. The Total System Design
framework proposed by Roman et
al.” separates the development of
such systems into six stages:

¢ Problem definition,
¢ System design,

® Software design,
Machine design,

* Circuit design, and
¢ Firmware design.

Among the stages of the TSD
framework the problem-definition
stage is distinguished in two ways: it is
application oriented and it involves
no design activities. Its sole purpose is
to assure that a clear understanding of
the problem has been achieved and a
statement of the system requirements
has been generated prior to the stast
of the system design, Because of the
large number of applications that are
exploiting the use of computer sys-
tems, specialized requirements specifi-
cation techniques have been devel-
oped for use with this stage. Some are
aimed at large classes of applications
sharing some common feature (e.g.,
real-time processing), while others ad-
dress the needs of specific application
domains (e.g., geographic data pro-
cessing). The growing interest in ex-
pert systems for requirements specifi-
cation will, most likely, increase the
pressure toward specialization,
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Requirements work is often as-
sumed to be limited to the problem-
definition stage. This kind of narrow
definition may be a convenient simpli-
fyiiig assumption if one is interested
in the problem-definition stage alone,
but, if taken seriously, it may suggest
2 fundamental lack of understanding
of the very essence of the design pro-
cess. The design of each component
entails the specification of both func-
tional and non-functional require-
ments for a set of subcomponents
from which the component will be
eventually assembled. Variability in

The key to across-life-cycle
integration of design activities
rests with the ability to relate

design and requirements
specifications.

the nature of the requirements tech-
niques occurs along the development
life cycle due to changes in the nature
of the components involved, Because
a distributed system may be viewed as
a set of processing nodes and com-
munication lines, the system-design
stage is tasked with the development
of the software and hardware require-
ments for each node and communica-
tion line. These requirements are
subsequently used by the software
and machine design stages, respective-
ly. The same paradigm occurs also
within a stage, even though (unfortu-
nately) the requirements for some
components (e.g., input/output as-
sertions for procedures) are not
always formally generated.

This state of affairs suggests that
any attempt to separate requirements
and design specifications is counter
productive when one deals with the
design stages., The key to across-life-
cycle integration of design activities
rests with the ability to relate design
and requirements specifications.
Since the design of a component
(e.g., system) must satisfy all the
functional and non-functional re-
guirements specified for it, this means
that, at design time, one needs to
show that the component’s require-
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ments are satisfied as long as the sub-
components {e.g., subsystems) will
meet their requirements. When the
subcomponent requirements are not
included as part of the design, this is
impossible to do.

Consequently, design languages
must have the ability to specify the re-
quirements for the types of subcom-
ponents they identify, and they must
overcome the current emphasis on
functionality alone by incorporating
formally an increasing number of
non-functional requirements. In the
case of a software design language,
for instance, it is not sufficient to
have the ability to state the logic of a
procedure using pseudo-code. One
must also be able to state its re-
quirements using pre- and post-asser-
tions, say. For, otherwise, little may
be said of the design’s correctness un-
til all procedures are designed, and,
for a large system, this is a major
drawback.

The TSD framework goes one step
further. It suggests that, for very high
performance systems where the design
of the software and of the hardware
must be tightly coordinated, the
designer must have the ability to
define the interdependency between
software and hardware requirements.
In a recently published paper, we pro-
vide an example of how this might be
accomplished.”

Development methed. Recent years
brought about a new distinguishing
factor among requirements specifica-
tion techniques: the development
method. While the prevailing ap-
proach is to state the requirements
completely before proceeding with
the design, rapid prototyping has
made significant gains in popularity.
As recent studies show, both methods
have advantages and disadvantages.”
Rapid prototyping seems to lead to
less code, less effort, and ease of use,
while the traditional approach is
characterized by better coherence,
more functionality, higher robust-
ness, and ease of integration. More
importantly, these resuits could be in-
terpreted as suggesting the need to use
a mixed approach where one uses a

subset of the requirements to develop
rapid prototypes that in turn lead to
further clarification and refinement
of the original requirements, (Note:
We consider that even pure rapid pro-
totyping does lead to a statement of
requirements. While written require-
ments specifications may never be
generated, product documentation is
still needed.)

Within these two broad categories
further distinctions may be con-
sidered. They would have to include
the type of human interface (e.g.,
linguistic versus graphic), the degree
of automation, the problem decom-
position or composition rules em-
ployed in order to control complexity,
etc. Although space limitations do
not permit us to discuss these issues in
any detail, it must be said that the in-
dustrial success of a specification
technique is heavily dependent upon
its.treatment of human factors, that
is, the concepts it makes available and
the interface style it supports.

Two more exotic methods are also
making their beginnings in the re-
quirements field. The first one is
represented by efforts to introduce
expert knowledge-based systems into
the process of developing the re-
quirements. (The Seventh Interna-
tional Conference on Software Engi-
neering in March 1984, for instance,
included one session on this topic.)
The second method defines require-
ments for situations where the prob-
lem is extremely ill specified {c.g., a
medical diagnosis system). This situa-
tion is very common in the artificial
intelligence community and the usual
solution is not to specify the *““func-
tionality’’ but an evaluation pro-
cedure and a set of related acceptance
criteria (e.g., 90 percent agreement
with some group of experts on a
predefined set of cases).

Many of the shortcomings we see in
today’s approaches are due to the
undcrlying assumptions being made
about how requirements ought to be
developed. While current strategics
tend to structure the requirements
specification  process,. future re-
quirements  development strategies
might provide instcad a milicu for
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reasoning about the problem at hand,
However, the systematic investigation
of new requirements development
strategies has just been'started; and its
full impact remains still to be deter-
mincd.

Despite significant growth, the
requirements area still faces a

number of important unresolved
issues and suffers from a lack of crys-
talization. The formal foundation of
the field must be broadened by evalu-
ating the capabilities of different
types of formalisms (e.g., logic, prob-
ability theory, etc.). A theoretical
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