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Abstract

We describe a non-parametric Bayesian model using genotype data to clas-

sify individuals among populations where the total number of populations is

unknown. The model assumes that a population is characterized by a set of

allele frequencies that follow multinomial distributions. The Dirichlet Process

is applied as the prior distribution. The method estimates the number of popu-

lations together with the allele frequencies and the ancestry coefficients of each

individual. Distance matrices and bootstrap support numbers based on MCMC

runs are generated to create a phylogeny of the ancestral populations.
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1 Introduction

In a statistical study, the clustering of samples is often the question of interest. Group-

ing samples in a sensible manner is a common way to study a population. In such

a study, the data set typically consists of traits of individuals measured for various

attributes. For example, in population genetics, we are interested in inferring charac-

teristics of different populations from those of a few representative individuals. With

the original populations unknown, the most reasonable method is to group individuals

with similar traits together. This is the context and starting point of our study.

The data will consist of the genotypes of N individuals at L loci. We are inter-

ested in the population structure available in such data. Pritchard et al. (2000) [23]

proposed a model to detect cryptic populations. In this model, the number of pop-

ulations K is pre-specified, and each population is assumed to be associated with a

unique set of allele frequencies. In one version of the model, each individual is as-

signed to one ancestral population as a pure descendent. In a second version, each

individual is assigned to multiple populations as a hybrid. The inference of the pop-

ulation number K is based on an estimation of the posterior probability: namely, the

K with the highest posterior probability. The analysis is repeated for several different

K values.

We will here consider models for a mixture of probability distributions for L types

of counts amongN individuals. For definiteness, assume we have dataX = {m(i, a, j)}

corresponding to observations for N individuals (1 ≤ i ≤ N) for A observations

(1 ≤ a ≤ A) in each of L categories (1 ≤ j ≤ L). Each observation for the jth

category is one of nj types. In a genetic context, categories are genetic loci and ob-

servations are alleles at one locus. That is, the data X = {m(i, a, j)} can be written
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as

m(i, a, j) = b for 1 ≤ i ≤ N, 1 ≤ a ≤ A, (1.1)

1 ≤ j ≤ L, 1 ≤ b ≤ nj

For simplicity, we assume that there are no missing data. If A = 1, the data has the

simpler form

m(i, j) = b for 1 ≤ i ≤ N, 1 ≤ j ≤ N, 1 ≤ b ≤ nj (1.2)

The N individuals do not necessarily come from a homogeneous background. The

simplest model assumes that each individual (1 ≤ i ≤ N) comes from exactly one of

M cryptic source populations (1 ≤ c ≤ M), with probability q(c) of coming from the

cth background population. The choices of background population are independent for

different individuals. For the cth background population, p(c, j, b) is the proportion of

the population that shares the bth type of the jth attribute, with independent choices

of type for the L attributes. In particular

nj∑
b=1

p(c, j, b) = 1 for each pair (c, j)

Thus the probability of observing X = {m(i, j)} in (1.2) is

L0(X | q, p) =
N∏
i=1

( M∑
c=1

q(c)
L∏

j=1

p(c, j,m(i, j))
)
. (1.3)

Note that q(c) and p(c, j, b) are not individually identifiable if L = 1. The analog of
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(1.3) for the A-multiple data (1.1) includes the product over a, given by

L0(X | q, p) =
N∏
i=1

( M∑
c=1

q(c)
L∏

j=1

A∏
a=1

p(c, j,m(i, a, j))
)
. (1.4)

The estimation algorithms for q(c) and p(c, j, b) (in our notation) in Sections 4 and

5 below are derived from Pritchard, Stephens, and Donnelly (2000)[23]. Some of the

following material is also taken from unpublished lecture notes of S. Sawyer and from

X. Ruibin et al.(2010)[30]. Section 8 and 10 are due to X. Huang. Section 9 s mostly

from X. Ruibin et al. (2010)[30], of which X. Huang is a co-author.
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2 Biological Background

Our motivation is the study of data from marker loci in population genetics. Marker

loci are genetic loci in a species that are subject to mutation but not to Darwinian

selection. These can be used to trace relatedness of individuals and to find the

chromosomal locations of disease genes. In this case, the models above correspond to

alleles or allelic values (1 ≤ b ≤ nj) at L unlinked loci.

Here we consider the ploidy of the individual. More specifically, if A = 1 the

data X = {m(i, j)} in (1.2) correspond to marker data from N haploid individuals.

If A > 1, the population is A - ploid rather than haploid, and the individuals have

matching groups of A chromosomes. Most plants and animals (including humans)

are diploid, corresponding to A = 2. Many animals also have sex chromosomes that

may have different ploidy between sexes. For example, mammals typically have an X

chromosome that is diploid in females but haploid in males. For simplicity, we assume

that our marker loci are from autosomal chromosomes (i.e. non-sexual chromosomes).

Viruses and bacteria are generally haploid (A = 1), bacteria often possessing a single

circular chromosome. Although most higher plants and animals are diploid (except

perhaps at sex chromosomes), there are a number of exceptions: several domestic

plants have higher ploidy (A = 4 tetraploid, or A = 6 hexaploid) and a few non-

domestic plants have higher ploidy as well (e.g., A = 6 for California redwoods).

The majority of higher plants and animals (A = 2) receive one allele at each locus

from each of two parents. If A = 6, each offspring can receive one of two linked

sets of three alleles from each parent, or else can receive two sets of three alleles, each

randomly chosen from the genes at that locus in one parent. In particular, hexaploidy

does not mean that each individual has six parents. Tetraploidy or hexaploidy usually

results from a doubling or tripling of the number of chromosomes at some point in
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the ancestry of the species. There are mechanisms for keeping the corresponding sets

of two or three loci similar.

For A > 1, choices of allelic values at the same locus for the same individual are

independent, corresponding to the Hardy-Weinberg law in population genetics. The

likelihoods (1.3) and (1.4) say that each individual comes from one of M source popu-

lations, but that, given the source population for the ith individual, all of its L alleles

(or LA alleles if A > 1) are chosen independently from the same source population.

Nothing is known about the M populations, or even how many populations there are.

Information about the populations are to be inferred from inhomogeneities in genetic

data from a sample at those loci.

As in (1.1) and (1.2), we assume that there are nj distinct alleles out of a total

number of NA alleles at the jth locus. An example data set from Pritchard et al.

(2000) [23] has N = 200 diploid (A = 2) individuals with data for L = 5 loci. Thus

there are 400 possible allelic values at each locus. The number of distinct allelic values

nj ranges between 9 and 15 for 1 ≤ j ≤ 5.
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3 Bayesian Statistics and Hidden Variables

In general, suppose that we have independent data X = (X1, · · · , Xn), and that each

Xi has the same probability distribution that depends on a parameter θ. Both Xi and

θ can be vector-valued. Specially, assume

P (X | θ) = L0(X | θ). (3.1)

Bayesian methods in general, and the Metropolis-Hastings (MH) and Markov chain

Monte Carlo (MCMC) method in particular, depend on our ability to treat both θ

and X as random variables on the same probability space. The first step is to specify

an arbitrary marginal density π0(θ) for θ, which is called the prior density or prior

distribution for θ. The second step is to specify a joint probability density

L(X, θ) = L0(X | θ)π0(θ) (3.2)

for (X, θ) together. We assume that L(X, θ) and π0(θ) are densities with respect

to natural measures on x or θ respectively, for example combinations of Lebesgue

measure (perhaps of high dimension) and/or counting measures. The natural measure

on (x, θ) is assumed to be the product measure. Since
∫
x
L(x | θ)dθ = 1 by (3.1),

∫
θ

∫
x

L(x, θ)dθ =

∫
θ

π0(θ)dθ = 1 (3.3i)

∫
x

L(x, θ)dx =

∫
x

L0(x | θ)π0(θ)dx = π0(θ) (3.3ii)

∫
θ

L(x, θ)dθ =

∫
x

L0(x | θ)π0(θ)dθ = L(x) (3.3iii)

L(X | θ) = L(X, θ)

L(θ)
=

L0(X, θ)π0(θ)

π0(θ)
= L0(X | θ) (3.3iv)
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Conditions (3.3i) and (3.3ii) say that L(x, θ) is a normalized joint probability density

for x and θ with respect to which the marginal distribution of θ is π0(θ), and conditions

(3.3iii) and (3.3iv) say that the marginal distribution of X depends only on X, while

the conditional density of X given θ is the same as L0(X | θ) in (3.1).

Given a joint probability density of X and θ, and observed data X, it is natural

to base inferences about an unknown value of θ on the conditional distribution of θ

given X. This called the posterior density of θ given X, which is

π1(θ | X) = P (θ | X) = L(θ | X) =
L(X, θ)

L(X)
=

L0(X | θ)π0(θ)

L(X)

or

P (θ | X) = CXL0(X | θ)π0(θ) (3.4)

where CX depends only on the known data X. Basing inferences about θ on the

posterior density is called Bayesian statistics , and (3.4) is Bayes’s rule.

The goal of MCMC methods in Bayesian statistics is to marginalize a large joint

distribution. We achieve the goal by finding an ergodic Markov chain that has the

posterior density P (θ | X) in (3.4) as a stationary measure. If the chain is ergodic, we

can use the mean or median of a long chain to estimate components of the parameter

θ in (3.4).

The likelihood times prior in (3.1) is often sufficiently complicated that determin-

ing the distribution of the chain is prohibitively difficult. However, it may happen

that L0(x | θ) can be written in terms of a simpler expression L(x, z | θ) such that

L0(x | θ) =
∫
z

L0(x, z | θ)dz (3.5)
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where L(x, z | θ) ≥ 0. In this case

∫
x

∫
z

L0(x, z | θ)dzdx =

∫
x

L0(x | θ)dx = 1,

so the expression L0(x, z | θ) in (3.5) can be viewed as a joint probability density for

two random variables X and Z depending on the parameter θ. The newly-created

random variable Z is called a hidden variable for L0(X, θ). The process of introducing

Z is called data augmentation[28]. Since Z may be multidimensional, more than one

hidden variable can exist. In practice, X, Z, and theta are often highly multidimen-

sional, but such that the corresponding Markov chains can be broken up into a series

of lower-dimensional componentwise Markov steps.

As in (3.2), the expression

L(x, z, θ) = L0(x, z | θ)π0(θ) (3.6)

defines a joint density of three random variables X, Z and θ. The relations (3.3) hold

as before with x replaced by (x, z). Thus, by (2.6), the conditional distribution of Z

given θ is

P (Z | θ) =
L(Z, θ)

L(θ)
=

∫
x

L(x, Z, θ)

L(θ)
dx =

∫
x

L0(x, Z, θ)π0(θ)

π0(θ)
dx

=

∫
x

L0(x, Z, θ)dx (3.7)

The posterior density of (θ, Z) (with Z now viewed as additional parameters) is

π1(θ, Z | X) = P (θ, Z | X) =
P (θ, Z,X)

P (X)
=

P (X | Z, θ)
P (X)

=
P (X, | Z, θ)P (Z | θ)P (θ)

P (X)

8



This leads to the useful identity

P (θ, Z | X) = CXP (X | Z, θ)P (Z | θ)P (Z | θ)π0(θ) (3.8)

where CX does not depend on θ. The right-hand side of (3.8) (except for CX) can

usually be obtained from (3.5) and (3.7) very easily. The left-hand side of (3.8) is the

analog of a posterior density for (θ, Z) together conditional on X, allowing MCMC

methods to be used to estimate both θ and Z.
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4 Mixtures of Multivariate Bernoulli Data

4.1 A Basic Haploid Model.

If A = 1, the haploid data (1.2) in Section 1 is

m(i, j) = b for 1 ≤ i ≤ N, 1 ≤ j ≤ L, 1 ≤ b ≤ nj (4.1)

If X = {m(i, j)}, the density

L0(X | q, p) =
N∏
i=1

( M∑
c=1

q(c)
L∏

j=1

p(c, j,m(i, j))
)

(4.2)

is fairly complex, but becomes simpler if we introduce hidden variables

Z(i) = c, 1 ≤ c ≤ M (4.3)

that denote the (unobserved) source population of the ith individual. By the basic

model assumptions, the Z(i) are independent and

L0(X,Z | q, p) =
N∏
i=1

q(Z(i))
L∏

j=1

p(Z(i), j,m(i, j)). (4.4)

In particular, ∫
Z

L0(X,Z | q, p)dZ = L0(X | q, p)

where dZ is counting measure on part of an N -dimensional lattice. Thus the marginal

distribution of X given (q, p) is (4.2). Similarly, the marginal distribution of Z is

L0(Z | q, p) =
∫
m

L0(m,Z | q, p)dm =
N∏
i=1

q(Z(i)) (4.5)
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with respect to counting measures on the values of m(i, j), so that the Z(i) are

conditionally independent given q. Most importantly, (4.4) replaces the complicated

product of sums in (4.2) by a simpler product in terms of Z. This represents an

instance of data augmentation in the sense of Section 3.

Given any prior density π0(q, p) for (q, p), it follows as in (3.8) that the posterior

density of (q, p, Z) given X is

P (q, p, Z | X) = CXP (X,Z | q, p)π0(q, p) (4.6)

= CX

( N∏
i=1

q(Z(i))
L∏

j=1

p(Z(i), j,m(i, j))
)
π0(p, q).

This is the same as

CX

( M∏
c=1

q(c)N3(c)
)( M∏

c=1

L∏
j=1

nj∏
b=1

p(c, j, b)N2(c,j,b)
)
π0(q, p), (4.7)

where

N2(c, j, b) = #{i : Z(i) = c and m(i, j) = b}, (4.8)

N3(c) = #{i : Z(i) = c}.

Inference about the parameters (q, p, Z) in (4.6) or (4.7) by MCMC depends on finding

a Markov chain Wn = (q, p, Z) for which (4.6) or (4.7) is a stationary measure. The

most efficient Markov chains use Gibbs sampling of individual parameters [3, 11], for

which we need to be able to identify the full conditional probability distributions from

factors in (4.6) or (4.7). The likelihood (4.7) shows q(c) and p(c, j, b) for fixed (c, j)

follow Dirichlet distribution, therefore we pick Dirichlet priors that are conjugate

priors for q and p .
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Dirichlet priors. We choose prior Dirichlet distributions for q(c) and p(c, j, b) that

are relatively “uninformative.” Specifically, we assume as priors

q(c) ∼ DM(α, α, · · · , α), (4.9)

p(c, j, b) ∼ Dnj
(λ, λ, · · · , λ) for each (c, j),

where λ > 0 and α > 0. According to Section 3, the posterior density (4.7) is now

L(q, p, Z | X) = CXCM(α)
( M∏
c=1

q(c)
N3(c)+α−1

)
(4.10)

×
M∏
c=1

L∏
j=1

Cnj
(λ)

nj∏
b=1

p(c, j, b)N2(c,j,b)+λ−1,

where Cd(λ) = Γ(dλ)/Γ(λ)d. We now describe the step distribution of a Markov chain

Wn = (q, p, Z)n that is ergodic and leaves the posterior density (4.10) invariant.

Initializing Variables in Wn = (q, p, Z)n. The variables Zi can be set, for exam-

ple, by choosing Z(i) independently with a uniform distribution for 1 ≤ Z(i) ≤ M.

Initial values of p and q can be set arbitrarily since their initial values will be imme-

diately overwritten in the first step of the Markov chain by updates that depend only

on Z(i) and m(i, j).

Each step of the Markov chain consists of a number of substeps. The first substep

updates p(c, j, b) for all p(c, j, b), the second updates q(c) for all c, and third updates

Z(i) for all i. If desired, updating of λ and/or α can be included as well.

Updating p(c, j, b). From (4.10), the conditional distribution of p(c, j, b) given the

other variables and parameters is

L(p | Z, q, λ, α,m) = C(X,Z, λ)
M∏
c=1

L∏
j=1

( nj∏
b=1

p(c, j, b)N2(c,j,b)+λ−1
)

12



for N2(c, j, b) in (4.8). This is a product of Dirichlet densities

Lcj(p | Z, q, λ) ∼ Dnj
(N2(c, j) + λ)

where N2(c, j) = (N2(c, j, 1), · · · , N2(c, j, nj)). Thus, for each pair (c, j) in sequence,

the relation

p(c, j, b) ∼ Dnj
(N2(c, j) + λ) (4.11)

defines a Gibbs-sampler update for p(c, j, b).

Updating q(c). Also from (4.10), the conditional distribution of q(c) given the other

variables and parameter is

L(q | Z, p, λ, α,m) = C(X,Z, α)
N∏
c=1

q(c)N3(c)+α−1

for N3 in (4.8). Thus q(c) has the Gibbs-sampler update

q(c) ∼ DM(N3 + α) (4.12)

for N3 = (N3(1), · · · , N3(M)).

Updating Z(i). From the density L(q, p, Z | X) in (4.6) and the prior π0(q, p) in

(4.9), the conditional distribution of Z given the other variables and other parameters

is

L(Z | q, p, λ, α,X) = C(p, q,X)
N∏
i=1

q(Z(i))
L∏

j=1

p(Z(i), j,m(i, j)).

It follows that the Z(i) are conditionally independent given the other parameters and

13



variables, and

P (Z(i) = c | p, λ,X) = Ciq(c)
L∏

j=1

p(c, j,m(i, j)). (4.13)

Thus we conclude that, for each i, Z(i) has a multinomial Gibbs-sampler update for

the discrete probabilities defined by the right-hand side of (4.13).

Updating λ. If desired, the parameter λ can be updated as well. Metropolis updates

for λ can be used based on the posterior density (4.10) with a uniform prior for λ

[19]. The “update proposals” can be either a symmetric uniform or a standard normal

distribution with reflect at λ = 0 [19, 29, 3] . In either case, they are scaled by a

parameter h > 0 that is adjusted so that the acceptance probabilities fall within the

range of 25-40%.

By (4.10), the conditional distribution of λ given the other parameters and vari-

ables is

L(λ | Z, p, q, α,X) = C(p)
M∏
c=1

L∏
j=1

Γ(njλ)

Γ(λ)nj

nj∏
b=1

p(c, j, b)λ. (4.14)

The gamma function Γ(x) takes on both very large and very small values on its

domain, and there are numerically good algorithms for calculating log Γ(x). It is

easier to calculate

logL(λ | Z, p, q, α,X) = M
( L∑

j=1

log Γ(njλ− nL log Γ(λ))
)
+ λ

M∑
c=1

L∑
j=1

nj∑
b=1

log p(c, j, b)

within a positive additive constant, where nL =
∑L

j=1 nj.

Updating α. The parameter α in the prior distribution for q(c) in (4.9) can also

be updated if necessary. By (4.10), the conditional distribution of α given the other

14



parameters and variables is

L(α | Z, q, p, λ) = Cq
Γ(Mα)

Γ(α)M

M∏
c=1

q(c)α (4.15)

within a positive additive constant. Metropolis updates for α can be carried out in

the same way as for λ.

4.2 Higher Ploidy (A > 1).

The basic data X is now

m(i, a, j) = b for 1 ≤ i ≤ N, 1 ≤ a ≤ A, (4.16)

1 ≤ j ≤ L, 1 ≤ b ≤ nj.

As before, we assume that individuals belong to one of M ancestral populations and

mate only within those populations. The model likelihood is now

L0(X | q, p) =
N∏
i=1

( M∑
c=1

q(c)
L∏

j=1

A∏
a=1

p(c, j,m(i, a, j))
)

15



by (1.4). For the hidden variables Z(i) in (4.3) and the prior for (q, p) in (4.9), the

posterior density is

P (q, p, Z | X) = CXP (X,Z | q, p)π0(q, p) (4.17)

= CX

( N∏
i=1

q(Z(i))
)( N∏

i=1

L∏
j=1

A∏
a=1

p(Z(i), j,m(i, a, j))
)
π0(q, p)

= CX

( M∏
c=1

q(c)N3(c)
)( M∏

c=1

L∏
j=1

nj∏
b=1

p(c, j, b)
)
π0(q, p)

= CXCM(α)
( M∏
c=1

q(c)N3(c)+α−1
)

×
M∏
c=1

L∏
j=1

Cnj
(λ)

nj∏
b=1

p(c, j, b)N2(c,j,b)+λ−1.

This is formally identical to (4.10), where CX depends on neither q nor p and Cd(λ) =

Γ(dλ)/Γ(λ)d, but now

N2(c, j, b) = #{(i, a) : Z(i) = c and m(i, a, j) = b} (4.18)

N3(c) = #{i : Z(i) = c}

instead of (4.6). It follows that p(c, j, b) and q(c) have the same Dirichlet updates as

in (4.11) and (4.12), and the only difference is between (4.8) and (4.18).

By the joint posterior density of q, p and Z in (4.17), the conditional distribution

of Z given the other parameters and variables is

L(Z | q, p, λ, α,X) = C(p, q,X)
N∏
i=1

q(Z(i))
L∏

j=1

A∏
a=1

p(Z(i), j,m(i, a, j)).
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It follows that the Z(i) are conditionally independent given the other variables and

P (Z(i) = c | q, p, λ, α,X) = Ciq(c)
L∏

j=1

A∏
a=1

p(c, j,m(i, a, j)). (4.19)

For each i, Z(i) has a multinomial Bernoulli Gibbs-sampler update for the discrete

probabilities defined by the right-hand side of (4.19). Updates for λ and/ or α are

the same for A = 1.

An alternative mixture model that is more realistic for diploid populatons is de-

scribed by the following.
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5 Admixtures of Multivariate Bernoulli Data

We now assume that the individuals in a population of interest have interbred among

M source or background populations, where the amount of interbreeding depends

on the individual. Specifically, we assume that the ith individual (1 ≤ i ≤ N) has

ancestral mixture proportions

q(i, c) (1 ≤ c ≤ M) with
M∑
c=1

q(i, c) = 1 for each i. (5.1)

As before, the basic data X with ploidy A > 1 is

m(i, a, j) = b for 1 ≤ i ≤ N, 1 ≤ a ≤ A, (5.2)

1 ≤ j ≤ L, 1 ≤ b ≤ nj

as in (1.1), where m(i, a, j) is the allelic value of the ath allele in the ith individual at

the jth locus.

We assume that, for each allele in the ith individual, the ancestral population

of the allele is chosen with distribution q(i, c), and the specific allelic value is cho-

sen with probability p(c, j, b). Thus the JA alleles for the ith individual are chosen

independently with probabilities

p2(i, j, b) =
M∑
c=1

q(i, c)p(c, j, b)

for each j (1 ≤ j ≤ L) and a (1 ≤ a ≤ A). This differs from the basic ploidy model,

in which the alleles for the ith individual are not chosen independently, since they

are conditioned to come from the same ancestral population. The model likelihood
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is now

L0(X | q, p) =
N∏
i=1

A∏
a=1

L∏
j=1

p2(i, j,m(i, a, j)) (5.3)

=
N∏
i=1

A∏
a=1

L∏
j=1

( M∑
c=1

q(i, c)p(c, j,m(i, a, j))
)
.

We introduce the hidden variables

Z(i, a, j) = c, 1 ≤ c ≤ M (5.4)

which give the ancestral population of the ath allele in the ith individual at the jth

locus, which we assume are chosen independently with probabilities q(i, c) for all

NAL alleles. The augmented data model likelihood is then

L0(X,Z | q, p) =
N∏
i=1

A∏
a=1

L∏
j=1

q(i, Z(i, a, j))p(Z(i, a, j), j,m(i, a, j)). (5.5)

As in the previous section,

∫
Z

L0(X, z | q, p) dz = L0(X | q, p)

for L0(X | q, p) in (5.3), where “dz” denotes counting measure on an NAL− dimen-

sional lattice. Note that (5.5) can also be written

L0(X,Z | q, p) =
( N∏
i=1

M∏
c=1

q(i, c)N3(i,c)
)( M∏

c=1

L∏
j=1

nj∏
b=1

p(c, j, b)N2(c,j,b)
)
,
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where

N2(c, j, b) = #{(i, a) : Z(i, a, j) = c, and m(i, a, j) = b} (5.6)

N3(i, c) = #{(a, j) : Z(i, a, j) = c}.

We assume the prior distributions

q(i, c) ∼ DM(α, α, · · · , α) for each i, (5.7)

P (c, j, b) ∼ Dnj
(λ, λ, · · · , λ) for each (c, j),

where Dd is the Dirichlet distribution for α > 0, λ > 0. The posterior density is then

L(q, p, Z | X) = CX

( N∏
i=1

CM(α)
M∏
c=1

q(i, c)N3(i,c)+α−1
)

(5.8)

×
M∏
c=1

L∏
j=1

Cnj
(λ)

nj∏
b=1

p(c, j, b)N2(c, j, b) + λ− 1,

where Cd(λ) = Γ(dλ)/Γ(λ)d.

As before, we estimate the model parameters using MCMC.

The Markov Chain: Initializing Variables. As in the previous section we ini-

tialized the Markov chain Wn = (q, p, Z)n by assigning arbitrary initial values to the

hidden values Z(i, a, j) in (5.4), for example, independently and uniformly distributed

for 1 ≤ Z ≤ M for all triples (i, a, j). If it is desirable to vary λ and/or α, they can

also be assigned arbitrary positive initial values. Note that the initial values of q and

p are irrelevant since any initial values will be overwritten at the first step of the

following Gibbs-sampler updates.

Each step of the Markov chain will involve the following substeps.

Updating p(c, j, b). It follows from (5.8) that the conditional distribution of
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p(c, j, b) given the other parameters and variables is

L(p | Z, q, λ, α) = C(X,Z, λ)
M∏
c=1

L∏
j=1

( nj∏
b=1

p(c, j, b)N2(c,j,b)+λ−1
)

(5.9)

for N2(c, j, b) in (5.6). This is the distribution of ML independent Dirichlet distribu-

tions

Lcj(p | Z, q, λ, α) ∼ Dnj
(N2(c, j) + λ),

where N2(c, j) = (N2(c, j, 1), · · · , N2(c, j, nj). For each (c, j) in sequence, p(c, j, b) has

the Dirichlet Gibbs-sampler update

p(c, j, b) ∼ Dnj
(N2(c, j) + λ) (5.10)

Updating q(i, c). It follows from (5.8) that the conditional distribution of q(i, c)

given the other parameters and variables is

L0(q | Z, p, λ, α) = C(X,Z, α)
N∏
i=1

M∏
c=1

q(i, c)N3(i,c)+α−1 (5.11)

for N3 in (5.6). This leads to the Gibbs-sampler updates

q(i, c) ∼ DM(N3(i) + α) (5.12)

for 1 ≤ i ≤ N where N3(i) = (N3(i, 1), · · · , N3(i,M)).

Updating Z(i, a, j). It follows from (5.5) that

P (Z | q, p,X) =
P (Z, q, p,X)

P (q, p,X)
= C1P (X,Z | q, p)

= C1

N∏
i=1

A∏
a=1

L∏
j=1

(
q(i, Z(i, a, j))p(Z(i, a, j), j,m(i, a, j))

)
, (5.13)
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where C1 depends only on q, p andX. This implies that the Z(i, a, j) are conditionally

independent given q, p, X, and that

P (Z(i, a, j) = c | q, p,X) = C2q(i, c)p(c, j,m(i, a, j)). (5.14)

As in the non-admixture case (4.19), each Z(i, a, j) can be updated in sequence by

a multinomial Bernoulli random variate. This is a discrete Gibbs-sampler update for

the probabilities for 1 ≤ c ≤ M on the right-hand side of (5.14).

Updating α. If α is also to be estimated (for example, with a uniform prior on α)

we consider the distribution of α conditional on the other parameters and variables.

This is

L(α | q, p, Z, λ,X) = C0CM(α)N
N∏
i=1

M∏
c=1

q(i, c)α (5.15)

for CM(α) = Γ(Mα)/Γ(α)M . We use Metropolis updates for α, as opposed to the

Gibbs-sampler updates of q, p and Z [19]. The proposal distribution is a symmetric

uniform distribution of length h about α. The parameter h is chosen so that the

proportion of time that the new value is accepted in the range 25-40%.

When comparing the likelihood of the newly proposed α to that of the old α, it

is often easier to compute logL(α) instead of L(α). Here

logL(α) = N logCM(α) + α
N∑
i=1

M∑
c=1

log(q(i, c)) (5.16)

= N(log Γ(Mα)−M log Γ(α)) + αQ(q), Q(q) =
N∑
i=1

M∑
c=1

log(q(i, c))

On one hand, logL(α) is easier to compute. But on the other, the standard algorithm

for generating Dirichlet random variables using gamma distributions can underflow

to zero. Attempting to compute log(q(i, c)) in (5.16) with q(i, c) = 0 may cause the
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computer to crash. Usually, this only happens if α is small, for example α < 0.005.

The solution is to either replace q(i, c) = 0 by the smallest positive number that can

be handled by the computer, or to put a lower bound on the prior of α.

Updating λ. If λ is also to be estimated (for example, using a uniform prior) we

consider the distribution of λ from the likelihood (5.8) conditional on q, p, Z and α.

By (5.8), the conditional distribution is a constant times

L(λ) =
(
(

L∏
j=1

Cnj
(λ))M

) M∏
c=1

L∏
j=1

nj∏
b=1

p(c, j, b)λ (5.17)

for Cd(λ) = Γ(dα)/Γ(α)d. Thus

logL(λ) = M
L∑

j=1

log(Cnj
(λ)) + λ

M∑
c=1

L∑
j=1

nj∑
b=1

log(p(c, j, b)),

where logCd(λ) = log Γ(dα) − d log Γ(α). The same considerations about the possi-

bility of small values of λ or p(c, j, b) apply here as in the previous steps.
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6 Dirichlet Process Priors

This section introduces a different approach to mixture models. Rather than assum-

ing a fixed number of M of mixture components as in Section 4 and Section 5 and

estimating mixture coefficients q(c) and within-component parameters p(c, j, b) for

those fixed numbers of components, we initially associate multidimensional parame-

ters θi = {p(i, j, b)} to individuals. The parameters θi will be updated in a way that

causes them to form clusters of identical values. The mixture components will then be

the unique values of θc, or equivalently individual atoms or tie groups in the sample

distribution of the θi. In principle, this allows the data to determine the number of

clusters as well as the cluster parameters.

Suppose Ω is a set and A is a σ-algebra of subsets of Ω. Assume G0 is a probability

measure on the space (Ω, A ) and µ ∈ R is a positive number. The DP (Dirichlet pro-

cess) G with parameter µG0 is a random probability on the space (Ω, A ) such that for

any measurable partition (B1, · · · , Bk) the joint distribution of (G(B1), · · · , G(Bk)) is

the Dirichlet distribution D(µG0(B1), · · · , µG0(Bk)). G can be viewed as distribution

on the set of distributions on (Ω, A ) and it has the following important properties [7]:

(1) For any measurable set A ∈ A , we have E[G(A)] = G0(A).

(2) If X1, · · · , Xn is a sample of size n from a single realization of G, then the condi-

tional distribution of G given X1, · · · , Xn is a Dirichlet process with parameter

µG0 +
∑n

i=1 δXi
.

(3) G is, with probability one, a discrete distribution on (Ω, A ) with a finite

number of atoms.

The DP can also be defined equivalently as a stick breaking process [27], or as a

Chinese restaurant process, or through Polya urn schemes [2].
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It is often helpful to model an unknown complicated distribution as a mixture

of simpler ones. However, making inference on the number of mixing components is

challenging since the definition of clusters is subjective and vague under most circum-

stances. In this scenario, we can avoid specifying the number of mixing components

by using the Dirichlet process prior [4, 21]. For example, suppose the data set consists

of n data points x1, . . . , xn and each has the distribution of the form F (θ) with the

parameter θ mixed over the distribution G. Then the model has the form

xi | θi ∼ F (θi)

θi ∼ G

G ∼ DP(αG0)

where θi and θj are not necessarily distinct for i ̸= j. (For general reference for

Dirichlet processes in probability and statistics, see Ferguson 1973 [7] , Ferguson

1974 [8], Antoniak 1974 [1]; see also Blackwell and MacQueen 1973 [2] ; Kingman

1975 [16]; Sawyer and Hartl 1985 [26]; Ibrahim et al. 2001 [15]; Gill 2008 [12])
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7 A Mixture Model with Dirichlet Process Prior

Let i denote the individual, a the ploidy, j the locus and b the genotype. Assume

that we have allelic value data for N individuals in the form of

m(i, a, j) = b for 1 ≤ i ≤ N, 1 ≤ a ≤ A, 1 ≤ j ≤ L, 1 ≤ b ≤ nj. (7.1)

The ancestral population c is characterized by a set of allele frequencies

θc = {p(c, j, b) : 1 ≤ j ≤ L, 1 ≤ b ≤ nj}.

Suppose the observed data for the ith individual is

Xi = m(i, a, j) with 1 ≤ a ≤ A, 1 ≤ j ≤ L.

In the non-admixture model, every individual is considered as an entirely pure de-

scendent from one ancestral population. We let θi denote the allele frequencies for

the ith individual’s ancestral population. Then

Pr(Xi,a,j | θi) = p(i, j,m(i, a, j)).

Recall that we assume all loci are unlinked and linkage equilibrium is achieved within

populations. Otherwise said,by the Hardy-Weinberg law the genotypes of an indi-

vidual are sampled independently according to the allele frequencies of its ancestral

population. Then the model has the form

Pr(Xi | θi) =
A∏

a=1

L∏
j=1

p(i, j,m(i, a, j)) =
L∏

j=1

nj∏
b=1

p(i, j, b)N2(i,j,b), (7.2)
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where

N2(i, j, b) = #{a : m(i, a, j) = b}.

Thus
nj∑
b=1

N2(i, j, b) = A and 0 ≤ N2(i, j, b) ≤ A.

Our goal is to find a suitable prior distribution for the parameters θi for 1 ≤ i ≤ N

and estimate the number of ancestral populations, i.e. the number of distinct values

of the θi. Here we introduce some more notation to streamline the model. Let X =

{X1, . . . , XN} and θ−i = {θ1, · · · , θi−1, θi+1, · · · , θN}. The full conditional likelihood

of θi can be written as

π(θi | θ−i, X) =
f(θi, X | θ−i)

f(X | θ−i)

∝ f(X | θ1, · · · , θN)f(θi | θ−i)

=
N∏
k=1

f(Xk | θk)f(θi | θ−i)

∝ f(Xi | θi)f(θi | θ−i),

where the first factor is written out explicitly as the product of corresponding fre-

quencies (7.2) and the second factor is derived as below.

Suppose we observe N independent samples θ = {θ1, · · · , θN} from a single re-

alization of Dirichlet distribution G ∼ DP(µG0). Let G∗ denote the conditional

distribution of G given θ−N , the first N − 1 samples. The new process G∗ is still

a Dirichlet process with a new base probability measure parameter
µG0+

∑N−1
i=1 δθi

µ+N−1
by

property (2) of DP, namely

G∗ ∼ DP(µG0 +
N−1∑
i=1

δθi) = DP((µ+N − 1)
µG0 +

∑N−1
i=1 δθi

µ+N − 1
).
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By property (1) of DP, the second factor now can be written as

Pr(θN ∈ dθ | θ−N) = E(G∗(dθ))

=
µG0 +

∑N−1
i=1 δθi

µ+N − 1
(dθ)

=
µG0(dθ) +

∑N−1
i=1 δθi(dθ)

µ+N − 1

Since the θi are allele frequencies, we let G0 be D(λ), the Dirichlet distribution

with parameter λ and g0 = dG0, the corresponding p.d.f. of G0. That is,

g0(θi) =
L∏

j=1

Dnj
(λ)(θij)

=
L∏

j=1

Γ(λnj)

(Γ(λ))nj

nj∏
j=1

p(i, j, b)λ−1.

Thus the Gibbs sampler for θi is a mixture distribution of a Dirichlet distribution

and Dirac functions, from which it is convenient to sample.

π(θi | θ−i, X)

∝ µg0(θi)f(Xi | θi) +
N∑

k=1,k ̸=i

f(Xi | θk)δθk(dθi)

= µC(λ,Xi)
L∏

j=1

Dnj
(N2(i, j) + λ)(θij) +

N∑
k=1,k ̸=i

f(Xi | θk)δθk(dθi),

where N2(i, j) =
(
N2(i, j, 1), · · · , N2(i, j, nj)

)

C(λ,Xi) =
L∏

j=1

(∏nj

b=1 λ
(N2ν(i,j,b))

(njλ)(A)

)

28



and

λ(n) = λ(λ+ 1) · · · (λ+ n− 1)

is the increasing factorial power.
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8 M-Component Mixture Model with a Dirichlet

Process Prior

In the non-admixed mixture model of Section 7, the ancestral population of the ith

individual is implicitly indicated by the corresponding allele frequencies θi. The θi are

updated in sequence. In effect the individuals is assigned to the group whose members

share the same allele frequencies. The maximum possible number of populations is

the total number of individuals. On one hand, this allows for variety in the number

of populations, but on the other, it can markedly slow the convergence rate of the

MCMC procedure and, in practice, tends to lead to many small classes that are

difficult to interpret. We will introduce a few intermediate steps into the model to

control the number of populations and improve the mixing of the MCMC.

As in previous models, suppose X is the genotype data of N individuals at L

loci with ploidy A and the ath allele of the ith individual at jth locus has value b.

Then X takes the form X = {m(i, a, j) = b} where i = 1, . . . , N , a = 1, . . . , A,

j = 1, . . . , L and b = 1, . . . , nj. In addition, there are M unknown background

populations. Each individual is assumed to be a pure descendant from one of them.

Let Z(i) = c for 1 ≤ c ≤ M denote the origin population for the ith individual. The

background population c is characterized by the allele frequencies θc = (p1, . . . , pL)

at L loci, where pj = (p(j, 1), . . . , p(j, nj)). The set θ = (θ1, . . . , θM) constitutes the

allele frequencies of all populations. The likelihood of X given the hidden variable Z

and the parameter θ is

P (X | Z, θ) =
N∏
i=1

A∏
a=1

L∏
j=1

p
(
Z(i), j,m(i, a, j)

)
(8.1)

=
M∏
c=1

L∏
j=1

nj∏
b=1

p(c, j, b)N2(c,j,b). (8.2)
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where

N2(c, j, b) = #{(i, a) : Z(i) = c and m(i, a, j) = b}. (8.3)

The posterior distribution of θ and Z can be estimated by MCMC method through

Gibbs-sampler updates in a fashion similar to that used in the simple pure mixture

models. Let θ−c = (θ1, . . . , θc−1, θc+1, . . . , θM) denote the allele frequencies omitting

the cth population. The full conditional distribution of θc is

P (θc | X,Z, θ−c) =
P (θc, θ−c, X, Z)

P (X,Z, θ−c)

∝ P (θ,X, Z)

∝ P (X | θ, Z)P (θ, Z)

∝ P (X | θ, Z)P (θ)P (Z)

∝ P (X | θ, Z)P (θ) (8.4)

since by (3.6) one can assume that the hidden variable Z have a prior that is inde-

pendent of the prior of θ.

The first factor in (8.4)is

P (X | θ, Z) =
M∏
d=1

L∏
j=1

nj∏
b=1

p(d, j, b)N2(d,j,b)

∝
L∏

j=1

nj∏
b=1

p(c, j, b)N2(c,j,b) conditional onθc

, ϕc(θc)

for N2(c, j, b) in (8.3). The second factor (8.4) has the same form as in the simple
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pure mixture model

P (θ) ∝ P (θc | θ−c)

∝
µg0(θc) +

∑M
d=1,d̸=c δθd(dθc)

µ+M − 1
.

The product of these factors then gives the Gibbs-sampler for θi

P (θc | X,Z, θ−c) ∝ µϕc(θc)g0(θc) +
M∑

d=1,d̸=c

ϕc(θd)δθd(dθc), (8.5)

where ϕc(θd) =
∏L

j=1

∏nj

b=1 p(d, j, b)
N2(c,j,b) and µg0 is the scale measure of the Dirichlet

process prior. To put the Gibbs-sampler in a more transparent form, we rewrite the

first part as a Dirichlet distribution multiplied by constants that only depend on some
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allele counts.

ϕc(θc)g0(θc) (8.6)

=
L∏

j=1

nj∏
b=1

p(c, j, b)N2(c,j,b)

L∏
j=1

Γ(njλ)

(Γ(λ))nj

nj∏
b=1

p(c, j, b)λ−1

=
L∏

j=1

Γ(njλ)

(Γ(λ))nj

L∏
j=1

nj∏
b=1

p(c, j, b)N2(c,j,b)+λ−1

=
L∏

j=1

Γ(njλ)

(Γ(λ))nj

L∏
j=1

∏nj

b=1 Γ(N2(c, j, b) + λ)

Γ(N2s(c, j) + njλ)
×

L∏
j=1

Γ(N2s(c, j) + njλ)∏nj

b=1 Γ(N2(c, j, b) + λ)

nj∏
b=1

p(c, j, b)N2(c,j,b)+λ−1

=
L∏

j=1

Γ(njλ)

(Γ(λ))nj

∏nj

b=1 Γ(N2(c, j, b) + λ)

Γ(N2s(c, j) + njλ)
×

D(N2(c, j, 1) + λ− 1, . . . , N2(c, j, nj) + λ− 1)(p(c, j, 1), . . . , p(c, j, nj))

=
L∏

j=1

(
λ(λ+ 1) . . . (λ+N2(c, j, 1)− 1)

)
. . .

(
λ(λ+ 1) . . . (λ+N2(c, j, nj)− 1)

)
njλ(njλ+ 1) . . . (njλ+N2s(c, j)− 1)

×

D(N2(c, j, 1) + λ− 1, . . . , N2(c, j, nj) + λ− 1)(p(c, j, 1), . . . , p(c, j, nj))

where

N2s(c, j) =

nj∑
b=1

N2(c, j, b) =

nj∑
b=1

#{(i, a) : Z(i) = c and m(i, a, j) = b}

= A×#{i : Z(i) = c}. (8.7)
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Finally, the posterior distribution of the hidden variable Z is

P (Z | θ,X) =
P (Z, θ,X)

P (θ,X)

= P (X | θ, Z)P (θ, Z)

P (θ,X)

= P (X | θ, Z)P (θ)P (Z)

P (θ,X)

∝ P (X | θ, Z)

Since by (3.6) we can assume Z has the non-informative prior P (Z(i) = c) = 1/M,

independent of θ. Here the hidden variable Z is updated as a multinomial variable

according to

P (Z(i) = c | θ,X) ∝
L∏

j=1

A∏
a=1

p
(
c, j,m(i, a, j)

)
(8.8)

To summarize, we first initialize θc = (p1, . . . , pL), 1 ≤ c ≤ M , by sampling from

Dirichlet distributions. That is, pj ∼ D(αj1, . . . , αjnj
) where the parameter αjb is any

positive constant or can be updated also through a Metropolis-Hastings update. Z

is initialized from a uniform distribution, and then θ and Z are updated iteratively

as described above in (8.5) and (8.8).

8.1 Three-step update

We can add one more step to the model to assist the update of the hidden variable Z.

Assume that the ith individual has probability q(i, c) of being from the cth population:

P (Z(i) = c | θ, q) = q(i, c), 1 ≤ c ≤ M.

Naturally the sum of these probabilities over all the populations is 1:
∑M

c=1 q(i, c) = 1.

Let us use the short-hand notations qi = (q(i, 1), . . . , q(i,M)), i = 1, . . . , N and
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q = (q1, . . . , qN). The likelihood of the data X given Z, q and θ can be written as

P (X | θ, q, Z) = P (X | θ, Z)

=
N∏
i=1

A∏
a=1

L∏
j=1

p
(
Z(i), j,m(i, a, j)

)
=

M∏
c=1

L∏
j=1

nj∏
b=1

p(c, j, b)N2(c,j,b),

where N2(c, j, b) is defined as in (8.3). The variable θc has the same Gibbs-sampler

(8.5) as in the two-step update model

P (θc | X,Z, θ−c, q) =
P (θc, X, Z, θ−c, q)

P (X,Z, θ−c, q)

=
P (θ,X, Z, q)

P (X,Z, θ−c, q)

∝ P (X | θ, Z, q)P (θ, Z, q)

∝ P (X | θ, Z, q)P (Z | θ, q)P (θ | q)π0(q)

= P (X | θ, Z, q)P (Z | q)P (θ | q)π0(q)

∝ P (X | θ, Z, q)P (θ | q)

∝ P (X | θ, Z, q)P (θ).
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The posterior probability of Z has the form

P (Z(i) = c | θ, q,X) =
P (Z(i) = c, θ, q,X)

P (θ, q,X)

= C1(θ, q,X)P (Z(i) = c, θ, q,X)

= C1(θ, q,X)P (X | Z(i) = c, θ, q)P (Z(i) = c, θ, q)

= C1(θ, q,X)P (X | Z(i) = c, θ, q)P (Z(i) = c | θ, q)P (θ, q)

= C2(θ, q,X)P (X | Z(i) = c, θ, q)P (Z(i) = c | θ, q)

= C2(θ, q,X)
( L∏
j=1

A∏
a=1

p(c, j,m(i, a, j))
)
q(i, c).

Since C2(θ, q,X) is independent of i, the full conditional distribution for Z is

P (Z(i) = c | θ, q,X) =
q(i, c)

(∏L
j=1

∏A
a=1 p(c, j,m(i, a, j))

)∑M
d=1 q(i, d)

(∏L
j=1

∏A
a=1 p(d, j,m(i, a, j))

) .
The full conditional distribution for q is given by

P (q | θ, Z,X) ∝ P (q, θ, Z,X)

= P (X | q, θ, Z)P (q, θ, Z)

= P (X | θ, Z)P (q, θ, Z)

∝ P (Z | q, θ)P (q, θ)

∝ P (Z | q, θ)P (q)

∝ P (Z | q)π0(q)π0(θ)

∝
N∏
i=1

q(i, Z(i))
N∏
i=1

π0(qi).
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We assume qi has the Dirichlet prior distribution D(α, . . . , α). The Gibbs-sampler

for qi is qi ∼ D(α, . . . , α+ 1, . . . , α) with the cth parameter equal to α+ 1 if Z(i) = c

i.e. the ith individual is assigned to the cth population.

In practice, a larger value of M (the initial number of components) yields more

clusters for the same data. Those clusters could be combined, using methods like

hierarchical clustering to form larger groups using the pairwise distance between the

smaller clusters. For example, Medvedovic et al. 2002 [18] suggested using a complete

linkage clustering. Clusters were generated by separating the profiles in groups with

the maximum possible complete linkage distance. That is, for any pair of clusters

formed, there was at least one profile in the first cluster that had a zero posterior

pairwise probability and at least one profile in the second cluster [18].

Alternatively, we have found that setting M at a reasonable upper bound for the

expected number of clusters often leads to a stable estimate for the number of clusters.

We will discuss this further in Chapter 10 when we describe our simulations.
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9 An Admixture Model with a Dirichlet Process

Prior

We now give an account of the Gibbs-sampler for q and θ, and again indicate the

updating procedures as in the previous section. The data we have consists the allelic

values of N individuals

m(i, a, j) = b for 1 ≤ i ≤ N, 1 ≤ a ≤ A,

1 ≤ j ≤ L, 1 ≤ b ≤ nj.

Assume that the sample data come from a possible maximum of M cryptic popu-

lations or mixture components. For example, we could set M = N . However, a

choice of M which is closer to the correct value helps with the convergence of MCMC

procedure and provides better clustering. In the admixed model, each allele of the

individual is chosen independently from the cth population 1 ≤ c ≤ M with probabil-

ity q(i, c), as opposed to all alleles being chosen from the same cth population, with

probability q(i, c). As in previous sections, each of the M populations has parameters

θc = {p(c, j, b)}, where p(c, j, b) is the probability that the bth allele is observed at the

jth locus.

As before, the allele frequencies θ1, . . . , θM are M independent samples from the

same realization of a Dirichlet process G with the base measure G0 which follows a

Dirichlet distribution. We also assume as part of the prior that

q(i, c) ∼ DM(α, · · · , α) for each i.
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Here we introduce hidden variables

Z(i, a, j) = c (1 ≤ c ≤ M)

for the ancestral population associated with the allele (i, a, j). The joint likelihood of

the data X and the hidden variables Z conditional on θ = (θ1, . . . , θM) and q is

P (X,Z | θ, q) =
N∏
i=1

A∏
a=1

L∏
j=1

q(i, Z(i, a, j))p(Z(i, a, j), j,m(i, a, j))

=
N∏
i=1

M∏
c=1

q(i, c)N3(i,c)

M∏
c=1

L∏
j=1

nj∏
b=1

p(c, j, b)N2(c,j,b),

where

N2(c, j, b) = #{(i, a) : Z(i, a, j) = c and m(i, a, j) = b} (9.1)

N3 = #{(a, j) : Z(i, a, j) = c}, (9.2)

and the joint posterior probability is

f(θ, q, Z | X) = CXP (X,Z | θ, q)π0(θ)π0(q). (9.3)

The parameters q(i, c), θc and the hidden variables Z(i, a, j) can be estimated by

a Markov chain with Gibbs-sampler updates. In principle the parameters α, µ and

λ could be also updated by a Metropolis-Hastings step. We initialized the hidden

variable Z(i, a, j) as uniform in 1, 2, . . . ,M independently for all triples (i, a, j). The

variables θ = (θ1, . . . , θM) can be initialized by, for instance, independent uniforms

normalized so that
∑nj

b=1 θ(c, j, b) = 1 for all (c, j). The initializations for q(i, c) are
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not important since the initial values will be immediately overwritten by a Gibbs-

sampler update.

Gibbs sampler for q. It follows from (9.3) that the full conditional distribution of

q(i, c) is

f(q | θ, Z,X) = C(X,Z, α)
N∏
i=1

M∏
c=1

q(i, c)N3(i,c)+α−1

for N3(i, c) in (9.2). This leads to the Gibbs-sampler for q(i, c)

q(i, c) ∼ DM(N3(i) + α)

for 1 ≤ i ≤ N , where N3(i) = (N3(i, 1), . . . , N3(i,M)) for N3(i, c) in (9.2).

Gibbs sampler for θ. Following previous models, we update the parameter θc =

{p(c, j, b)} in sequence. The full conditional distribution of θc given the other param-

eters (including those in θ−c = {θd : d ̸= c}) is

f(θc | X, q, Z, θ−c) =
f(θc, θ−c, q,X, Z)

f(θ−c, q,X, Z)
= C1f(θ, q,X, Z)

= C2f(X,Z | θ, q)f(θ, q) (9.4)

where we have combined factors that depend only on q, X, Z, and θ−c into constants

C1 and C2. Recall that the θc are not independent for different c. The last factor

above is

P (θc | θ−c, q) =
(
µg0(θc) +

M∑
d=1,d̸=c

δθd(dθc)
)
/(µ+M − 1).
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By (9.1), the other main factor in (9.4) is

P (X,Z | θ, q) =
( N∏
i=1

M∏
c=1

q(i, c)N3(i,c)
)( M∏

c=1

L∏
j=1

nj∏
b=1

p(c, j, b)N2(c,j,b)
)

= C3(θ−c, q)ϕc(θc)

where

ϕc(θd) =
L∏

j=1

nj∏
b=1

p(d, j, b)N2(c,j,b). (9.5)

Thus by (9.4) we have that

P (θc | q,X, Z, θ−c) = C4

(
µϕc(θc)g0(θc) +

M∑
d=1,d̸=c

ϕc(θd)δθd(dθc)
)
. (9.6)

Since θc = {p(c, j, b)},

ϕc(θc)g0(θc) =
L∏

j=1

Γ(njλ)

Γ(λ)nj

nj∏
b=1

p(c, j, b)N2(c,j,b)+λ−1

=
( L∏
j=1

Γ(njλ)

Γ(λ)nj

)( L∏
j=1

∏nj

b=1 Γ(N2(c, j, b) + λ)

Γ(N2s(c, j) + njλ)

)
×

L∏
j=1

Γ(N2s(c, j) + njλ)∏nj

b=1 Γ(N2(c, j, b) + λ)

nj∏
b=1

p(c, j, b)N2(c,j,b)+λ−1

= C(c, λ,X, Z)
L∏

j=1

Dnj
(N2v(c, j) + λ)(p(c, j))

where Dn(λ1, · · · , λn)(x1, · · · , xn) is the Dirichlet density and

C(c, λ) = C(c, λ,X, Z) =
L∏

j=1

(∏nj

b=1 λ
(N2(c,j,b))

(njλ)(N2s(c,j))

)
N2v(c, j) = (N2(c, j, 1), · · · , N2(c, j, nj))

N2s(c, j) =

nj∑
b=1

N2(c, j, b) = #{(i, a) : Z(i, a, j) = c}
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where λ(n) = λ(λ+ 1) · · · (λ+ n− 1) denotes the factorial power. Thus by (9.6)

P (θc | q,X, Z, θ−c) = C4 ·
(
µC(c, λ)

L∏
j=1

Dnj
(N2v(c, j)+λ)(θc)+

M∑
d=1,d̸=c

ϕc(θd)δθd(dθc)
)
.

Gibbs-sampler updates can be carried out in sequence for θc by sampling from a

mixture, one of which is a product of Dirichlet densities, in a similar manner as in

previous section.

Updating Z(i, a, j). It follows from (9.1) that the conditional density of Z given

all of the other parameters and variables is

P (Z | θ, q,X) =
P (Z, θ, q,X)

P (θ, q,X)
= C1(θ, q,X)P (X,Z | θ, q)

= C1

N∏
i=1

A∏
a=1

L∏
j=1

(
q(i, Z(i, a, j))p(Z(i, a, j), j,m(i, a, j))

)

Thus the Z(i, a, j) are conditionally independent given (θ, q,X), and

P (Z(i, a, j) = c | θ, q,X) = C2q(i, c)p(c, j,m(i, a, j)) (9.7)

This implies that Z(i, a, j) has a Gibbs-sampler multinomial Bernoulli update with

discrete probabilities given by the right-hand side of (9.7).

Updating α. If desired, α can also be updated. We assume as a prior that α is

uniformly distributed in the range 0 < A1 ≤ α ≤ A2. The posterior densities of the

parameters (9.3) can be extended to

P (θ, q, Z, α | X) = CXP (X,Z | θ, q, α)π0(θ)π0(q)I[A1,A2](α). (9.8)

It follows from (9.1) and (9) that the distribution of α conditional on the other
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parameters and the variance can be expressed

L(α | q, p, Z, λ,X) = C0π0(q) = C1CM(α)N
N∏
i=1

M∏
c=1

q(i, c)αI[A1,A2](α) (9.9)

within the bounds on α, where CM(α) = Γ(Mα)/Γ(α)M . We use Metropolis updates

for α. Note that logL(α) will be is easier to work with than L(α) for computing

acceptance probabilities. Here

logL(α) = N logCM(α)+α
N∑
i=1

M∑
c=1

log(q(i, c)) = N(log Γ(Mα)−M log Γ(α))+αQ(q)

(9.10)

where Q(q) =
∑N

i=1

∑M
c=1 log(q(i, c)).
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10 Applications to Data

The simulation study is done on data sets generated from a probability model either

with or without admixture using standard coalescent techniques, and then the sim-

ulation is performed again on a real data set. Although strictly speaking data sets

generated from coalescents are not equivalent to those generated from the the non-

admixture or admixture model (in the sense that they are from different probability

models), nevertheless coalescent techniques are widely used for generating data sets

in simulation studies. Data set Testdata1 from Pritchard’s paper [23], for example,

is used to test their non-admixture probability model.

The Number of Components. In clustering analysis, determining an appropri-

ate value for the number of components K, is a formidable problem. Pritchard et

al addressed this problem in [23] as an important issue. They examined the perfor-

mance of the harmonic mean estimator method, but this is computationally infeasible

when estimating K because of the high dimension of the data[23]. However, once K

is fixed, the rest of the parameter sets of interest can be estimated using MCMC

method. The Bayesian paradigm has helped the development of several new model-

based parametric methods, the most representative of which can be implemented in

the computer program STRUCTURE, whose the algorithm is explained in [23]. The

algorithm is implemented as follows. First, all the possible values of K should be

specified, together with a prior distribution, usually a non-informative one, such that

each population is equally likely to occur, with probability 1/K. Second, the Gibbs

samplers are run independently for each value of K. The posterior distribution of

K is calculated using a normal distribution approximation of the Bayesian deviance.

The K value with the highest posterior probability is then chosen, and the estimation

of other parameters from that particular MCMC run is reported.
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A couple of strategies have been proposed to determine K automatically in the

non-admixture scenario. Stephens et al. (2000) introduced a method using birth-

death process to model the number of populations. Although computationally feasi-

ble, it is not as efficient as Pritchard’s ad hoc approach. Huelsenbeck and Andolfatto

2007 [14] describe an algorithm in Neal(2000)[21] which involves sampling the number

of populations K and the allocations Z jointly under the Dirichlet process prior. At

one iteration of the Gibbs sampling, each individual has certain probability to join

one of the existing populations and certain probability to form a new population.

Despite its great success in application, this method of STRUCTURE has some

drawbacks. First, an independent run is required for each value of K, second, the

estimation of the posterior probability of K is ad hoc [23], and a common feature

of both STRUCTURE and our methods is that the estimation of the key parameter

of q (the ancestral population coefficient) depends on the “poor mixing” [23] of the

MCMC sampler. Otherwise the elements of q should give identical proportions of

the origin populations due to the non-identifiability inherent in the problem using

MCMC clustering method.

Our method requires no pre-specified value of K, although our simulation study

shows that the number of components yielded by the models with Dirichlet process

prior highly depends on the choice of the initial number of initial components (source

populations). A large number of components suggests that the model should look into

deeper branches of the coalescent structure, and therefore will give a finer partition

of the sample.One can apply other methods to combine smaller subpopulations into

larger ones, depending on which level one wished to study the populations.

Summarizing output from MCMC. Huelsenbeck and Andolfatto (2007) [14] sug-

gested to find the mean partition with the minimum square distance to all partitions

sampled from MCMC. The algorithm was first applied to find the mean partition

45



as an application of Kuhn’s ”Hungarian method” in combinatorial optimization [17]

by Gusfield [13]. In practice, there usually exists a unique partition with minimum

squared distance. Therefore the average of multiple partitions is well defined. Practi-

cally, the method is implemented using an greedy algorithm[14]: that is any proposed

change that reduces the squared distance of the mean partition is immediately ac-

cepted. The convergency of the algorithm depends on whether we observe no updates

for ”sufficiently long” [14]. Our simulation study shows that time to convergence

varies dramatically with partition length and the sample size. Generally speaking,

it takes more iterations to possibly converge if the partition is long. For example,

it took ∼ 133,000 iterations (∼ 144 hours on a computer with Intel i7 processor) to

find the mean of 5,000 partitions of length ∼ 2,100 and ∼ 7,5000 iterations (∼ 350

seconds) of 5 partitions of the same length.

Results for the Taita thrush. We now present results from applying our method

to genotype data from an endangered bird species, the Taita thrush, Turdus helleri.

Individual birds were sampled at four locations in southeast Kenya [Chawia (17 in-

dividuals), Ngangao (54), Mbololo (80) and Yale (4)], and each individual was geno-

typed at seven microsatellite loci [10]. The neighbor joining tree method is used to

display the Thrush data as in Figure 10 from Pritchard (2000) [23] which is repro-

duced as Figure 1 here.

The use of distance-based clustering methods to visualize this sort of genotype

data is quite common. The disadvantage is that the method is not based on a prob-

ability model, and thus it is difficult to make inference on the population structure.

A crude, but still useful, way of summarizing the thrush data is the following.

(Figure 5 below will give a cleaner picture.) Define a distance metric dq(i, j) by sum-

ming the differences of ancestry population proportionsQ for all iterations. Otherwise
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Figure 1: Neighbor-joining tree of individuals in the thrush data set. Each tip repre-
sents a single individual. C, M, N and Y indicate the populations of origin. Individuals
who appear to be misclassified are marked ∗. The tree was constructed using the pro-
gram Neighbor included in Phylip by Felsenstein [6]. The pairwise distance matrix
was computed as follows: for each pair of individuals, we added 1/L for each locus
at which they had no alleles in common, 1/2L for each locus at which they had one
allele in common( e.g., AA:AB or AB:AC)and 0 for each locus at which they had two
alleles in common (e.g., AA:AA or AB:AB), where L is the number of loci compared.
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said,

dq(i, j) =
T∑
t=1

M∑
c=1

|q(t, i, c)− q(t, j, c)|
T

where T is the number of sampled iterations. Figure 2 shows a neighbor-joining tree,

constructed based on dq(i, c) with the program VTSD by S. Sawyer [20] implementing

the neighbor joining method by Saitou and Nei (1987) [25]. The tree in Figure 2 visibly

separates three distinct populations. The seven individuals shown as possible outliers

in Figure 1 are logically placed in the plot. The long branch lengths before the tips

in Figure 2 are due to MCMC noise in q(t, i, c).

The individual thrush are better distinguished by

q̄(i, c) =
1

T

T∑
t=1

q(t, i, c)

where T is the total number of iterations (See Figure 3). Now the initial number of

components is M = 7 for this run. The number of clusters converges at K = 3, and

the plot shows a separation of clusters reasonably consistent with the output from

the neighbor-joining tree on genotype data and STRUCTURE.

The distance matrix of each pair of individuals can also be calculated using q̄(i, c).

Specifically, let

dq̄(i, j) =
1

M

M∑
c=1

|q̄(i, c)− q̄(j, c)|.

The corresponding phylogeny using dq̄ is shown in Figure 4.

We also apply the neighbor joining tree method to build the phylogeny of the

starting components (Figure 5). Figure 5 also has bootstrap support numbers on

several links. These are the number of estimated phylogenies for 1000 bootstrap

replications of the thrush data (that is, the list of thrush is resampled) that contain

that link. It strongly suggests that the number of population K should be 3, which
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Figure 2: The neighbor-joining tree of individuals in the thrush data. X, A and B
indicate the populations of origin: X for Chawia, A for Mbololo, and B for Ngangao
and Yale, instead of using ”C”, ”M”, ”N” and ”Y” for a clearer display. The long
branches are due to the MCMC noise. The pairwise distance matrix is computed as
follows: for each pair of individuals, add the abusolute difference in their ancestry
proportions over populations and MCMC iterations. The initial number of compo-
nents is set to M = 7 for this run. The tree was constructed using the program
V TSD by S. Sawyer [20] implementing the neighbor joining method by Saitou and
Nei [25].
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Figure 3: Summary of the clustering results for Taita thrush data set using Dirichlet
prior admixture model. For each individual, the mean value of q(i, c) (the proportion
of ancestry) is computed over a single run of the MCMC. The points are labeled
according to the sampling location. The location information is not used to estimate
ancestry.
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Figure 4: The neighbor-joining tree of individuals in the thrush data. X, A and B
indicate the populations of origin: X for Chawia, A for Mbololo, and B for Ngangao
and Yale, instead of using ”C”, ”M”, ”N” and ”Y” for a clearer display. The pairwise
distance matrix is computed as follows: for each pair of individuals, add the difference
in their ancestry proportions over populations and MCMC iterations. The initial
number of components is set to M = 8 for this run. The tree was constructed using
the program V TSD by S. Sawyer [20] implementing the neighbor joining method by
Saitou and Nei [25].
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is more difficult to see directly from Figure 1.

The no-admixture model with DP prior. Testdata1 from the simulation study in

Pritchard et al. (2000) [23], is available on STRUCTURE homepage [22]. It consists

of microsatellite-length data for 2 populations with 100 individuals each at 5 loci.

Distinct allelic values for data read from testdata1.txt

Locus 01: (n= 9) -5 -4 -3 -2 -1 0 1 2 3

Locus 02: (n=12) -4 -3 -2 -1 0 1 2 3 4 5 6 7

Locus 03: (n=11) -3 -2 -1 0 1 2 3 4 5 6 7

Locus 04: (n=14) 2 3 4 5 6 7 8 9 10 13 14 15 16 17

Locus 05: (n=15) -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

We use the Dirichlet process prior model with no admixture (that is, no inter-breeding

occurs among populations) and first set the starting number of components equal to

the number of individuals (200). After 10k burn-ins and 500k iterations, the number

of components K oscillates around 10. Medvedovic and Sivaganesan (2002) [18] and

Rodriguez and Papaspiliopoulos (2009) [24] suggest calculating the proportion p(i, j)

of pairwise joint classification defined in (10.1) of (θi, θj) for all 1 ≤ i, j ≤ N and

applying a hierarchical clustering analysis method on p(i, j). We call the matrix with

entries p(i, j) the pairwise posterior probability, and the matrix with entries 1−p(i, j)

the MCMC distance matrix.

p(i, j) =
# of iterations with θi and θj in the same cluster

# of iterations
. (10.1)

Usually the hierarchical clustering method requires a criterion to aggregate smaller

clusters into bigger ones, or a partition of larger clusters into smaller ones [5]. This

data set contains a great deal of information about the population origin, as illustrated

in [23]. As a result, the clustering result is robust to the choice of different criterion
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Figure 5: The neighbor joining tree of ancestral populations with the initial number
of component M = 7. The labels IC01-IC07 refer to the initial components. The
pairwise distance matrix is computed as follows: for each pair of starting components,
add 1/T at each iteration for which it is not in the cluster, and add 0 if it is. The
tree was constructed using the program V TSD by S. Sawyer [20] which implementing
the neighbor joining method by Saitou and Nei [25] together with bootstrap support
number based on 1000 bootstrap replications to show the strength with which the
data supports the existence of the branch.
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(that is, the clustering results should not be sensitive to the choice of method).

The clustering method is applied on the MCMC distance matrix for two reasons.

The first is that, with a large number of initial components, say M = 20 for 200

individuals, the clustering result from a particular iteration of MCMC is unstable,

in the sense that very different clustering could result within the next few iterations.

The second is that it tends to produce small clusters. For example, on Testdata1 [23]

setting M = 200, if the MCMC is stopped after 10k burn-in and 500k post burn-in

iterations, the individuals form 10 clusters with a misclassifying rate of 13.5% (27 out

of 200). A hierarchical clustering method based on the pairwise posterior probability

strongly suggests two clusters with a 4% (8/200) misclassifying rate.

As mentioned earlier in this section, we also did a simulation study based on

data sets generated from the non-admixed probability model. Three sets of allele

frequencies for three background populations at 5 loci are generated from a Dirichlet

distribution with the parameter λ set to 1. This data set is denoted by Testdata2A.

The genotypes of 100 individuals are sampled according to each set of allele frequencies

and the analysis is performed. We then repeat this for another data set with λ = 0.1,

denoted Testdata2. As expected, Figure 6 shows that a data set providing strong

information on origin population gives cleaner separation of clusters when using the

no-admixture model with DP prior.

The Admixture Model with DP Prior. We now apply the model with admixture

to the data sets Testdata1, Testdata2A and Testdata2B analyzed by the un-admixed

model above. We expect to see that, like other programs analyzing population struc-

ture, the model with admixture should uncover the no-admixture population structure

but the opposite is often not true [9]. Setting M > 2 for Testdata1 [23], the model

yields more than two clusters and often recognizes the hybrid of two ancestral popu-

lation as the third population as shown in Figure 7. However, with M = 2, the model
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Figure 6: Summary of analyzing two data sets each with 300 individuals from three
populations (100 individual for each population). Each data set is generated as fol-
lowing: the allele frequencies for each population is a vector of length 10 generated
from D10(λ, . . . , λ). Left: Testdata2A, λ = 1. Right : Testdata2B, λ = 0.1. The
heatmap with the probabilities of pairwise joint classification. Pixiel(i,j) represents
the posterior probability, defined in 10.1, of the individual i and j being clustered
together. The dendrogram shows hierarchical clustering.

can easily separate the two background populations as shown in Figure 8.

We repeat the analysis to the data sets representing individuals from no admixture

populations. We apply a similar analysis to Testdata2A and Testdata2B, setting the

initial number of ancestral populations to 30.
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Figure 7: Summary of analyzing Testdata1 using the admixture model with DPprior.
Testdata1 is the microsatellite data consists of 2 cryptic populations with 100 individ-
uals each at five loci. The initial number of components is set at M = 20. Left: the
heat-map plot of the MCMC distance matrix. Right: The plot of ancestry coefficients
of each individual for each population.
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Figure 8: Summary of analyzing Testdata1 using the admixture model with DP prior.
Testdata1 is the microsatellite data consists of 2 cryptic populations with 100 indi-
viduals each at five loci. The initial number of components is set at M = 2. Left: the
heat-map plot of the MCMC distance matrix. Right: The plot of ancestry coefficients
of each individual for each population.
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Figure 9: Summary of analyzing Testdata2A using the admixture model with
DP prior. Testdata2A is the generated from no admixture model with 3 cryptic
populations with 100 individuals each at five loci with the parameter λ = 1. The ini-
tial number of components is set at M = 30. Left: the heat-map plot of the MCMC
distance matrix with dendrogram display. Right: The plot of ancestry coefficients of
each individual for each population.
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Figure 10: Summary of analyzing Testdata 2B using the admixture model with
DPprior. Testdata 2B is the generated from no admixture model with 3 cryptic
populations with 100 individuals each at five loci with the parameter λ = 0.1. The
initial number of components is set atM = 30. Left: the heat-map plot of the MCMC
distance matrix with dendrogram display. Right: The plot of ancestry coefficients of
each individual for each population.
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