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System inadequacies may be the fault of designers who didn’t look at the
whole picture. To be successful, a design must merge hardware and
software concerns into a single, unified perspective.

A Total System Design Framework

Gruia-Catalin Roman, Mishell J. Stucki, William E. Ball, and Will D. Gillett
Washington University in Saint Louis

Successful computer systems are usually the result of
many months of careful planning and development. Such
an intense planning effort requires integrated design
methodologies that cover the entire system development
life cycle—from problem definition to final testing—and
span the traditional hardware/software boundaries. Fur-
thermore, to be effective, these methodologies must be
specialized to the particular application, technology, and
orgarnization.

When developing such methodologies, we need to con-
sider a number of issues. The first is that the application
drives the methodology. For example, designers must deal
with response-time requirements in real-time systems, the
validation of security kernels in information systems, and
special test procedures for systems that do not allow
“fixes’’ during deployment (such as spacecraft, satellites,
and certain weapons). Second, methodologies must ex-
ploit available technology to enhance both design produc-
tivity and quality. Program generators and microproces-
sor-based architectures are examples of such exploitation
for business data processing and industrial control. Final-
ly, we must remember that if corporate resources such as
available manpower, the training and experience of per-
sonnel, available support tools, and project management
practices are not taken into account during design, the
resulting methodology will be severely limited.

In this article we discuss a total system design (TSD)
framework that supports the development of integrated
system design methodologies. Issues that must be ad-
dressed during system development are identified and pre-
sented in a helpful structure (1) to aid in our understanding
of the design process, (2) to serve as a foundation for the
development of new methodologies, and (3) 1o provide a
means for methodology analysis and selection. The TSD
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framework’s broad scope makes it useful in establishing
company-wide system-development standards, even for
organizations whose concerns span several application
areas. The framework is compatible with Department of
Defense standards! and with research results described in
various sources of professional literature,

Our presentation of the TSD framework begins with an
overview of its stages, phases and steps, foliowed by a
discussion of hardware-software trade-offs. We then show
the development of a system design methodology for a
particular type of company and a particular application
area. This exampie serves to identify the key issues facing
the methodology developer and to outline a strategy useful
for developing custom methodologies and for establishing
standard system design practices at the company level.

Stages and phases

In the TSD framework, system development is parti-
tioned into stages and phases as shown in Figure 1. The
stages constitute a natural structuring based on major dif-
ferences in applied technology. The phases, which make
up a stage, impose an ordered, layered approach to design,
reducing the risk of error and producing systems that are
easier 1o understand and maintain.

Problem definition stage. During this stage the func-
tional and the nonfunctional requirements of the com-
puter system are determined. We believe that successful
system design proceeds from a ciear understanding of the
problem being addressed and, therefore, consider this
stage to be of supreme importance. Two phases of
development occur during this stage to ensure the accurate

0018-9162/84/0500-0015501.00 £/ 1984 IEEE



System design stage. During this stage the hardware and
software requirements are established for each component
of the system. Requirements for the functional and non-
functional capabilities of the components are specified, in-
cluding the interfaces between these components (such as
communication protocol, programming language sup-
port, and operating system primitives). These require-
ments are closely followed (1) during the procurement
and/or design of the individual system components (such
as computers, operating systems, and peripherals) and (2)
during the subsequent integration of these components
into the final system.

The system design stage includes two phases: system ar-
chitecture design and system binding. The main concern of
the developer during the system architecture design phase
is to investigate system design alternatives and their poten-
tial impact on the various system configurations being
considered. In the case of a distributed database system,
for instance, the developer may use this phase to identify
data and processing distribution and the number of nodes
present in the network. Particular software or hardware
components are not selected during this phase, but the
system-level components are evaluated to assure that a set
of reasonable binding options exists.

During the system binding phase, the actual mix of
hardware and software is selected. The hardware and soft-
ware requirements generated during this phase may com-
bine off-the-shelf and custom-built hardware and soft-
ware componenis. How these components are selected is
determined by the design constraints to be met and the
available technology. Binding options are identified in the
system architecture design phase, but the selection of
specific components is done in the binding phase. The
system designer may postulate, for instance, the use of
minicomputers having certain capabilities, price range,
and software support. The actual selection, however,
would occur in this phase, which is also charged with speci-
fying the requirements for the software that would still
need to be produced.

Software design stage. There are three phases involved
in this stage. During the first phase, software configura-
tion design, off-the-shelf software is procured and the
overall high-level software system design for each pro-
grammable system component is established. This involves
(1) the structuring of the software into such divisions as
subsystems, virtual layers, and tasks, (2) the definition ot
interfaces between components; and (3) the generation of
requirements for each component. The program design
phase takes these requirements and produces the program
design (data and processing structures), which, together
with all pertinent assumptions and constraints, makes up
the implementation requirements. These are used by the
coding phase 10 build the actual programs.

Machine design stage. This stage is similar to the first
two phases of the software design stage. During this first
phase of machine design, the hardware configuration de-
sign phase, off-the-shelf machines are procured and the
high-level architecture of custom hardware is designed.
Component requirements are developed for all entities
that are part of the custom hardware and passed on to the
component design phase. A register-transfer level machine

May 1984

description, which is used to determine the circuit design
requirements and the firmware requirements, is generated
during this stage.

Circuit design stage. Three phases of system develop-
ment occur during this stage: switching circuit design, elec-
trical circuit design, and solid state design. During each
phase, design requirements are generated for the phase im-
mediately following. In this article, we are concerned
mainly with system design. Since this area deals with issues
traditionally faced by the electrical engineer, we will not go
into further detail,

Firmware design stage. This stage consists of three
phases that are an analog to program design, coding, and
compilation. These phases are microcode design, micro-
programming, and microcode generation. Like the circuit
design stage, this area is of limited concern to us here.

* *® *

Table 1 summarizes the results of comparing the TSD
framework with the DoD sysiem development review stan-
dard,! a distributed system design methodology,? and
two software development methodologies, >* The follow-
ing are distinguishing features of the TSD framework:

Table 1. The correspondence of system development phases pro-

posed by varicus authors.

TSD (Assuming | DoD-USAF
ofi-the-shelf (based on BOEHM 2 METZGER® | FREEMANY
hardware) MIL-5TD-1521A7)
IDENTIFICATION| SYSTEM %/// DEFINITION |NEEDS
REQUIREMENTS % ANALYSIS
SYSTEM
REQUIRE-
MENTS
CONCEPTU- SOFTWARE SPECIFI-
ALIZATION REQUIRE- CATION
MENTS
SYSTEM PRELIM- / /
ARCHITEC- INARY
TURE DESIGN
DESIGN SYSTEM DESIGN
BINDING / /
SOFTWARE PRELIMINARY | pesiGn ARCHITEC-
CONFIGURATION| DESIGN TURAL
DESIGN DESIGN
PROGRAM DETAILED DETAILED DETAILED
DESIGN DESIGN DESIGN DESIGN
CODING CODE PRODUCTION{ CODE AND | PROGRAM- |IMPLE-
DEBUG MING MENTA-
TION
INTEGRATION AND | TEST AND
VALIDATION PREQPERA-
. SYSTEM
TIONS .
AGCEPTANGE

"The TSD equivalent of these phases falls in the integration step, which is outside the framework

proper (see p. 21).
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Formalism selection. This step encompasses the ac-
tivities involved in selecting a formalism for a particular
problem domain. Each phase may involve one or more
different formalisms: programming languages for coding;
pseudocode for program design; logic diagrams for
switching circuit design; and stimuius-response graphs and
logic models for conceptualization. Candidate formalisms
are chosen on the basis of their expressive power in that
domain and their ease of use, lack of ambiguity, ease of
analysis, and potential for automation. This selection step
often occurs long before the other steps, sometimes
because the methodology used is based on a particular for-
malism, but more often because of policy or the availabili-
1ty of tools tailored to that formalism.

Formalism validation. In this step, we determine
whether a formalism has the expressive power needed for a
particular task. We also evaluate how easy formalisms are
to use. These tasks may involve both theoretical and ex-
perimental evaluations. Theoretical results may indicate
the power and the fundamental limitations of the for-
malism; experience gained from similar projects may pro-
vide insight into the formalism’s appropriateness and ease
of use. One project may reject Fortran because it does not
support recursion, while another may consider it a source
of potential maintenance problems because it has limited
support of structured programming. Finite-state machines
may be employed in defining some communication proto-
cols but are inappropriate when unbounded queues are
present and prove cumbersome when the number of states
is large. The validation step also includes evaluations of
the formalism’s potential for design automation (as a way
to increase productivity) and its ability to support hierar-
chical specifications (as an aid to controlling complexity).

Exploration., This step encompasses the mental ac-
tivities involved in synthesizing a design. These activities
are creative in nature and depend on experience and
natural talent. They cannot be formalized or automated
unless the problem domain is significantly restricted.

Elaboration. In this step, ideas produced in the explora-
tion step are given form through the use of various for-
malisms. Coding, specification writing, and circuit layout
drawing are typical activities associated with this step, but
its scope extends to the building of a concrete object such
as a piece of hardware. The effectiveness of this step may
be greatly increased through the use of a variety of design
and manufacturing aids.

Consistency checking. This step encompasses activities
such as checking for incorrect uses of formalisms; for con-
tradictions, conflicts, and incompleteness in specifica-
tions; and for semantic errors. Checking includes verifying
consistency between different levels of abstraction in a
hierarchical specification and reconciling muitiple view-
points. Two examples of the types of problems addressed
in this step are a subroutine that is never called and a
mismatch between the number of input lines for two in-
stances of the same device on a logic diagram.

Verification. In this step, we demonstrate that a design
has the functional properties cailed for in its requirements
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specification. Since each phase has a requirements
specification and produces a design, this step is equally im-
portant for all phases. A common exampile of this type of
activity js verifying program correctness. The well-known
difficulty of this task is representative of the difficulty of
the verification step in general.

Evaluation, In this step, we determine if a design meets
a given set of constraints. Constraints include both those
that are part of the requirements specification for the
phase and those that result from design decisions. The
nature of the evaluation activities depends on the type of
constraints being analyzed, They include classical system
performance evaluation of response time and workload by
means of analytical or simulation methods; deductive
reasoning for investigating certain qualitative aspects iike
fault tolerance or survivability; and construction of pre-
dictive models for properties such as cost and reliability.

Inference. In this step, the potential impact of design
decisions is assessed. Questions are addressed such as (1)
How will the system impact the application environment?
Can we afford the implementation? Is personnel retrain-
ing too expensive?; (2) Can subsequent phases accom-
modate the decisions made in this phase? Is the bandwidth
choice reasonable?; (3) How does the design affect our
ability to maintain and upgrade the system? Will parts be
available five years from now?; and (4) How does the
design affect implementation options? Is there a good
reason for ruling out mainframes? These issues must be
considered in every phase, but they are particularly critical
in stages that define architectures.

Moreover, the inference step forces a review of the im-
plications of current design decisions on the hardware
technology and the supporiing computational techniques
that subsequent phases will use. This approach aliows top-
down design with minimum risk of having 1o backtrack,
and at the same time, reguires that the capabilities of cur-
rent technology be reviewed from both the computational
and cost standpoints.

Invocation. This step encompasses the activities
associated with releasing the results of the phase. It in-
cludes quality control activities involving tangible prod-
ucts and review activities that lead to the formal release of
output specifications. The release of output gives the step
its name, since this release in effect ““invokes” subsequent
phases.

Integration. In this step, the portion of the total system
designed in the phase is configured and tested. Tradi-
tionally integration is considered a design area, and would
therefore qualify as a stage in the framework. However,
we have chosen to distribute integration activities among
the phases because (1) the expertise needed to test a por-
tion of the system is similar to the expertise needed to
create its requirements, (2) the assumptions made in a
phase about the nature of the products that could be
delivered by subsequent phases must be checked once the
subsequent phases complete their tasks, (3) all models used
to make these assumptions must be validated, and (4) er-
rors found during integration must be resolved in the
phase that created the requirements.
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“and an adequate database management system is usually
preferred over a faster and cheaper machine that lacks
software support—even if the choice means greater invest-
ment.

In the system architecture design phase of the TSD
framework, we systematically reduce binding options so
that when we enter the binding phase we can concentrate
on selecting components from a few feasible aliernatives.
Every decision about system architecture design impacts
the type of technology needed to realize the system. Fur-
thermore, hardware and software need to be partitioned as
part of this phase because all performance models used in
the evaluation and inference steps dermand, as a minimum,
information about how the system’s functions are to be
distributed among various processors and how much delay
is incurred due to interprocessor communication. All such
design decisions are actually subject 1o explicit review and
analysis in the inference step. Of particular concern is the
rejection of any design solutions that unncecessarily limit
the range of feasible binding options.

Although this perspective on hardware-software trade-
offs is new, we are not implying that hardware-software
trade-offs have been ignored. More often, authors have
simply failed to make this issue explicit in their
methodology definitions. Let us consider again SREM2
and SARAS,

Central to using SREM is the process of breaking down
and allocating system functions. Although a function may
have many workable decompositions, the designer selects
one over the other to exploit the performance oppor-
tunities offered by one or another system support struc-
ture, that is, the hardware/software mix that might
ultimately be part of the system. SREM even provides the
means for evaluating the choice relative to the assumptions
made about the system support structure. (Bear in mind
that unless we consider the nature of the underlying sup-
poTrt system, we can say very little about the potential per-
formance of the system—for example, the time required to
execute two potentially parallel computations may be either
(g + b), if a single machine is available, or max(a, b} if two
machines are used.)

SARA goes one step further. When building blocks with
known characteristics are available, SARA explicitly ad-
dresses the issue of biasing the design toward a particular
hardware/software mix. Furthermore, when building
blocks are not available, one system design task is to
generate a set of appropriate building blocks—hardware
and software components. The composition/partition
evaluations have many elements of the TSD inference step
built into thern.

Since the range of binding options has been significantly
reduced in the previous phase, system binding is primarily
selecting specific components among those still eligible.
(Timmreck? gives a survey of available techniques.) The
selection of individual components must be in the context
of the entire system; it shouid not be simply the optimiza-
tion of decisions about a certain part of the system. The
focus thus remains on the performance objectives of the
system as a whole (cost included)—where it belongs.

Neither option reduction nor component selection is a
simple task. The former requires significant experience
with systern design and a good grasp of existing techinology
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and current technological trends, issues that are difficult
to formalize. Appropriate performance models that can
be used for both performance evaluation and in making
technological inferences can be of significant assistance.
{They could become part of libraries such as the one con-
taining the available building blocks in SARA.) Granted,
the number of conceivable binding options may be over-
whelming, but we can still develop reduction strategies and
performance models for a few of the more common op-
tions, although the process is complex. Similar challenges
face us in component selection during the binding phase.
We need to develop adequate selection strategies for both
software and hardware components, and we must estab-
lish meaningful mappings between the performance at-
tributes of the modeis and those recognized in actual com-
ponent candidates.

From framework to methodology

The TSD framework can be used in generating
company-wide system development standards and in
developing custom methodologies. The strategy described
here is rooted in our experience with the development of
custom methodologies for several organizations, but we
can use it to identify the types of issues faced by all
methodology developers and evaluators.

The strategy consists of the following steps:

¢ Context identification. Establishment of the context
in which the methodology will be used.

s Framework pruning. Removal of stages and phases
that are not required by the situation at hand, and the
redefinition of the remaining ones.

¢ Selection and validation of the specification
language, Selection of specification and program-
ming languages that suit the class of systems to be
developed and the abilities of the designers.

¢ Selection of design/analysis technigues. Selection of
techniques that are cost-effective and meet the overall
constraints of the class of applications.

* Sequencing of design/analysis activities. Determina-
tion of how activities will be interleaved to optimize
design productivity.

» Addition of project management components. Addi-
tion of management activities that support system
design.

Of course, methodology development has to be fol-
lowed by the even greater effort of methodology integra-
tion. Introducing the methodology into the organization
involves tasks such as retraining, retooling, using ex-
perimenta) pilot projects, and gradually introducing the
methodology in production. These issues, however, are
outside the scope of this article.

The foliowing example is used to illustrate the concepts
discussed in this section: A vendor employs 10 software
designers and programmers and produces turn-key finan-
cial data processing systems. The systems are hard-
ware/software packages and are intended for use by small
organizations. They are maintained by the vendor and
should not be modified or expanded by the customer.
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" various phases must generally adhere to certain standards
of presentation, which vary in formality. At one extreme,
there are no standards, or the standards that do exist are
concerned with the general form and content of the docu-
ment, which otherwise is written in natural language. At
the other extreme is the use of formally defined specifica-
tion languages, and all specifications are maintained on
line and checked mechanically for adherence 1o language
symtax and semantics—through compilers and inter-
preters, for example. Most methodologies fall somewhere
in the middie of these two extremes. Furthermore, the
specification language used by a methodology is con-
sidered its cornerstone—so much so, that peopie oftentalk
about a specification language as if it were 2 methodoiogy,
when in actuality the specification language is independent
of the methodology.

There are several important reasons that specification
languages occupy such a central role in methodology
development. First, they establish the basis for precise
communication among designers. Second, they greatly in-
fluence the way a designer approaches a problem because
they define a certain point of view and the concepts used 10
present a model of the system. Third, specification
languages determine the nature of available design and
analysis tools and thus affect the productivity of those in-
volved in the design proper and in the review process. If
various design/analysis tasks are highly mechanized, and
the interaction with the language processor is engineered
with careful attention to human concerns, many solutions
can be explored and the level of confidence in design quali-
ty increases.

Given the major influence of specification languages
and the investment required in making them available, we
usually seiect them a priori rather than according to the in-
dividual project. (A project-by-project selection is more
common when there is a lack of commitment to or ex-
perience with specification languages, or when individual
projects have a high degree of independence, such as in
large and diversified organizations.) The selection is af-
fected by (1) the nature of the application, (2) the
background of the available personnel, and (3) the
availability of supporting tools. Because no language is
equally adeguate from all three poinis of view, the choice
is usually a compromise favoring one need over the others.
One example is the selection of a single specification
language over the use of several languages, even though
each language is better suited for a particular subclass of
projects than the single one chosen. The rationale for this
decision may be a desire to facilitate personnel transfer be-
tween projects, to limit retooling and training costs, 10
establish a common base for the interpretation of collected
statistical data, or any combination of these,

In our example, the use of identical formalisms on all
system design projects has obvious advantages. Therefore,
we could adopt several specification languages as com-
pany standards. The formalism selection and validation
steps are thus eliminated from the methodology. Our sam-
ple organization coulc decide, for instance, in favor of

¢ English text for the identification report;

e PSL/PSA,' which could provide computer-aided
assistance in the development of data-flow specifica-
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tions for system requirements (conceptualization
phase);

* a modified use of PSL for both the system architec-
ture and software configuration design phases;

¢ some form of pseudocode (syntactically checked by a
locally developed tool) for the program design phase;
and

* one or more standard programming languages for
coding.

Sejection of design/analysis techniques. The language
selection depends on the design/analysis techniques being
contemplated. A language that does not support the devel-
opment of hierarchical specifications can hardly be ex-
pected to work well with a technique that emphasizes top-
down design, for instance. The language is usually selected
with a view toward particular design/analysis techniques.
Nevertheless, the language must be chosen before we can
attempt to select and tune such techniques. Design tech-
niques generally help the designer avoid dead-end paths in
the design process. The techniques are more guidelines for
the designer rather than algorithms, providing tools that
assist in the rapid development of design specifications.
The analytic techniques used to evaluate design properties
also provide feedback with regard to potential problems,
weaknesses, and strengths of particular design alter-
natives.
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steps are abstractions over classes of design activities and
not specific actions to be carried out by the designer in
some prescribed order. These differences stem from the
fundamenta! distinction between frameworks and meth-
odologies.

The criteria used in selecting stages and phases directly
reflect the principle of separation of concerns. For exam-
pie, the separateness of hardware and software design is
preserved by identifying the distinct stages associated with
each. However, when we partition sysiem functions be-
tween hardware and software, we need to consider the two
together. The system design stage provides for this view by
separating the selection and specification of the hardware
and software from the design of the hardware and soft-
ware.

We envision the TSD framework as a means by which
existing methodologies may be rigorously evaluated
against each other before empirical experiments are set up.
It is also the basis for a systematic approach to the devel-
opment and evaluation of design methodologies tuned to
the needs of particular application area. %
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