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ABSTRACT

A& new approach to modelling distributed systems is presented. It
uses sequential processes and event synchronization as the major building
blocks and is able to capture the functionality, architecture, scheduling
policies, and performance attributes of a distributed system. The
approach is meant to provide the foundation for a uniform incremental
strategy for verifying both logical and performance properties of
distributed systems. In addition, this approach draws together work on
performance evaluation, resource allocation, and verification of
concurrent processes by reducing some problems from the first two areas to
equivalent problems in the third. A language called CSPS (an extension of
Hoare's CSP) is used in the illustration of the approach. Employing CSP
as a base allows modelled systems to be verified using techniques already

developed for verifying CSP programs,

Acknowledgments: The contributions of R. K. Israel and R. H. Lykins to
discussions of the language and proofs are gratefully acknowledged.
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INTRODUCTION

A distributed system is an aggregate of hardware and software
entities whose interactions and relationships may change with time.
During its development the designer must be able to formulate and answer
questions regarding its logical correctness, the impact of various faults
and failures, response time, communication delay, hardware selection and
utilization, scheduling policies, ete. This paper reports on a modelling
technique that-enhances the designer's ability to approach these issues.

Two main goals have influenced the nature of the models being
employed. The first goal is to establish a foundation for a uniform
incremental approach to verifying both logical and performance properties
of distributed systems. The second goal is to bring together work on
performance evaluation, resource allocation, and verification of
concurrent processes by reducing some problems from the first two areas to
equivalent problems in the third.

The following steps have been accomplished so far in the pursuit of
this research:

(1) the selection of a minimal set of modelling concepts,

(2) the definition of the modelling technique,

{3) the selection of a tentative notation scheme,

(4) the sketching of an incremental proof technique, and

(5) the exercising of modelling, notation and proof techniques on a

simple system.
Ongoing work will be outlined in the end of the paper.

We chose concurrent processes and event synchronization as the basic
concepts of the model. They are simple, intuitive and, as shown in this
paper, sufficient to carry out the modelling task. Furthermore, the
similarity of the concepts employed by Hoare in the definition of CSP
{process and I/0) [HCAR78] enables a wealth of formal results regarding
CSP to apply directly to the models being built using our approach.

The models are called virtual systems and represent either
abstractions of existing systems or definitions of proposed systems. A
virtual system captures the functionality, architecture, scheduling
policies and performance attributes of the system it models. This is
accomplished by structuring the virtual system in terms of four
communities of communicating processes that are related to each other via
event synchronization rules. Communication between processes within a
single community is also accomplished by a set of event synchronization

rules,

In this paper, the virtual system is specified by a means of a
language called CSPS (Communicating Sequential Processes with
Synchronization). An extension of Hoare's CSP [HOAR781, CSPS allows
synchronization between multiple processes in addition to the I/0
primitives of CSP. Because of the similarity between CSPS and CSP, the
verification techniques of [APT80, LEVI81) (with slight extensions) are
5till useful with CSPS, It should be noted, however, that we view CSPS
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only as an experimenta2l notation scheme that allows one to exercise the
modelling concepts prior to the development of a distributed system design
language. Clearly, in the design of such a language human engineering and
design automation would play a critical role. These issues, although
important in themselves, are ignored here in favor of presenting the

modelling approach.

The following sections provide definitions for the concepts involved
in the modelling process; review CSP; introduce the CSPS notation;
explain the structure of the virtual system and motivation for that
structure: and present in some detail the definition of functionality,
architecture, scheduling, and performance for a virtual system through a
simple ongoing example. The development of the example is accompanied by
an outline of the incremental proof strategy used to verify conformance to
various types of functional (e.g., logical correctness) and non-functional
(e.g., fault tolerance and communicaticn delay) system requirements.
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FORMAL FOUNDATION

This section introduces the fundamental concepts required for the
definition of a virtual system. They are processes, event
synchronization, communities of processes, composite processes, and
equivalence of processes. Each of these will be defined and tersely
described below.

Process

A process q is defined as a 5-tuple (V, VO, N, E, w) where V is a set
of states, VO is a set of initial states, N is a set of event labels, E is
a set of events (labelled transitions between states), and w is the null

event.

q=(V, vO, N, E, w)
E subset.of (N x V x V)

W member.of N
‘A e member.of N: € # w ==> 'E (e, vi, v2) member.of E

'A v member.of V: (w, v, v) member.of E

(NOTE: "™1A x:", "?E y:" and "'E z:" should be read "for 211 x", "there is
some y" and "there is a unigque z", respectively.)

Events are named pairs of states. The non-w event label e can be
used to refer to the unique event triplet (e, vi1, v2); alternately, e can
be considered to be a partial function over the set of states V where

ve for v = vi
undefined otherwise

e(v)

In contrast, the null event w, which marks that no event took place
at a particular point in time, is defined for all possible states. Its
usefulness will be apparent when event synchronization between processes
is considered.

Two processes are isomorphic if they are identical except for a
renaming of states and event labels,

Event Synchronization

We propose to use event synchronization as the sole means of defining
communication between concurrent processes. When two or more events (in
distinet processes) are synchronized, the effect is that of simultaneous
occurrence of all the synchronized events. The set of synchronization
rules for a set of processes

Q=f{qi = (Vi VOi Ni Ei w) for i=1, ..., n}
takes the form
C subset.of N1 x N2 x ... X Nn

In each synchronization rule ¢ in C, the non-w events named are
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synchronized. Here the need for the null event w is apparent: it serves
as a placeholder in the n-tuple for a process which has no event
synchronized with the non-w events within the n-tuple. Each rule ¢ can be

used as a vector function:

(el e2 ... en}[ (vl v2 ... vn)]
(e1(v1) e2(v2) ... en(vn))

e(vl v2 ... vn)

For the sake of a uniform treatment of both synchronized and
unsynchronized events, C includes rules for all unsynchronized events as
well., These rules take the form

(W, ooy Wy €, W, oo, W)

The consequence of this is that C must include each event of qi in at
least one rule. However, each event may appear in several rules,

Consider events (el, v1, v1'), (e2, v2, v2'), (e3, v3, v3') in
processes q1, q2, and g3 respectively. One set of synchronization rules C
over these processes might be:

C={{etw w)
(el e2 w )
(w e2 e3)
(el e2 e3)
(w w w)}

These particular rules allow event el to occur on its own, simultaneously
with e2, or simultanecusly with both e2 and e3. On the other hand, the
rules do not allow event e2 to occur on its own: it must be synchronized
with e1, e3, or both. The last rule is the null vector, which is a
synchronization rule of little practical use since its effect is that
nothing happens in the group of processes.

Community of Processes

A community of processes K is a set of processes
Q = {g1, 92, ..., qn} and a set of synchronization rules C over Q.

K = (QIC)

The community has an overall state which is the cross product of the
state of all the processes in Q. For each process in Q, the events which
can take place from the current state (i.e. for which the current state
is the first element of the ordered pair of states) are called enabled. A
rule ¢ member .of C for which all non-w everits are enabled is called
applicable. To change the state of the community, a single applicable
rule is chosen and all the non-w events in that rule take place

simultaneocusly.

The community of processes can be regarded as a group of
communicating processes with the communication protocol determined by the
rules in C. Hoare's CSP [HOAR78] describes such a community of processes.
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(For the reader unfamiliar with CSP, the next section outlines the syntax
and semantics of the language.) In CSP, the parallel execution of defined
processes has implicit synchronization at the beginning of execution, the
end of execution, and for each matching I/0 pair. For example:

[INPUT ! OUTPUT]
INPUT:: *[c: character; true —-> get(e) OUTPUT!ec]
OUTPUT:: ¥[d: character; INPUT?d --> put(d)]

The process INPUT continually uses the function 'get' to produce
characters which are sent, one at a time, to OUTPUT, which then uses the
function 'put' to get rid of each character.

get(e)
Instart , OUTPUT!c l Inend
() +—» (B) < + {C) —+—» (D)

- .
. . .
- » -
.

e (F)
Outstart T INPUT?d

+—P (G )—+—>(H)
Cutend

(E)

put(d)

The CSP program can be described as the community of two processes
shown above. 'A' through 'D' are states of the process INPUT, 'E' through
'H' are states of the process OUTPUT. Arrows connecting states are
events;: vertical lines connecting events indicate that those events are
synchronized.

Composite Process

Given a community of processes K, the construction K' (defined below)
or any process isomorphic to K' is called a composite process of K. Given
the community of processes K = (Q,C), Q = {g1,7q2, ..., qn} with
gqi = (vi, voi, Ni, Ei, w), K' is defined as follows:

K' = (V, VO, N, E, w)
Vi x V2 x ... x Vn
Vo1 x V02 x ... x VOn
N1 x N2 x ... x Nn
E subset.of (N x V x V)
(el e2 ... en) (v1 v2 ... vn) (v1' v2' ... vyn')) member.of E
iff (el e2 ... en) member.of C
&
(el e2 ... en)[(v1 v2 ... vn}] = (v1' v2' ... vn')

0

= o =S

The notion of composite process is required in order to understand the
concept of functional equivalence between two alternate system designs.
Other uses for it will become apparent later.
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Equivalence

Equivalence of two processes is a weaker relationship than
isomorphism: only a portion of the states of each process need map
one-to-one to states in the other process.

Two processes ql1 = (V1, V01, N1, Et, w), q2 = (V2, V02, N2, E2, W)
are called equivalent with respect to some mapping ZETA iff

1) ZETA: V1 —=> V2 is a partial one-to-one function

2) tA (v1, v2) with ZETA(v1) = v2:
v1! immediately reachable from v1
==> IE v2' immediately reachable from v2 & ZETA(v1') = v2!

In this definition, the phrase "v' immediately reachable from v"
means that there is some finite sequence of events in the process starting

from state v and ending in state v' where ZETA is defined for v and v',
but for no intervening state.

( A)—p(B)—=>( C)})—=>(D)

| I

ZETA ZETA

(P) »( Q) »( R )

In the example sbove, ZETA maps one-to-one between states A and P,
and between states D and R, State D is immediately reachable from state
A, and state R is immediately reachable from state P. By applying the
definition, we can see that the top process is equivalent to the bottom
process under the function ZETA,

CSP may be shown to have the same expressive power as CSP3 under this
particular definition of equivalence but not under stricter ones.
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CSP REVIEW

CSP is a language expressing concurrency of processes and
communication between them. Heoare's original paper [HOART8] gives a full
grammar for the language; this section will simply present an outline of

the subset used in this paper.
The command
[PV P2I1 ... 11 Pl

expresses concurrent execution of processes P1, P2, ..., Pn. As described
by the syntax

PiL :: S1; S2; ...: Sm

each process Pi consists of some sequence of statements S1, 32, ..., Sm.
No statement in process Pi contains variables subject to change in process
Pj for i#j. The assignment operator is ':='; input/output primitives

are '!' (send) and '?' (receive), as in P5!x ('send x to process P5') and
FOO?A(z,k) ('receive A(z,k) from process FOO'). For both assignment and
I/0, the 'target' variable into which data is being transfered must
'match' the value being transferred in. A simple variable is a name with
no list following, and matches any value of its type. A structured
variable is a name (called a constructor) followed by a list of variable
names in parentheses. A structured variable matches a structured value if
they have the same constructor and each simple variable in the list
matches its corresponding simple value,

I/0 transfers only take place when one process names another as its
destination for output, and that process names the first as its source for
input. Such a situation is called 'matching', but is different from the
variable-to-value matching previously described., If one process is ready
to send or receive before its target is ready, it waits for the other

process,

Guarded commands control execution of statements. When a guard
evaluates to 'true', the guarded statement may be executed. If it is
'false', the guarded statement will not be executed. Guarded commands are

used to describe non-deterministic selection of one of several
alternatives. The symbol [ separates these guarded commands, each of

which takes the form
b -->3

with b a Boolean expression and S some sequence of statements. 1In a
guarded alternative command such as

[ b1 —> S1 [ b2 —=> S2 | b3 —=> 53 ]

any one of the statements Si may be executed if its guard bi is true. If
all the bi are false, the statement fails. A guarded repetitive command

is similar,
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#[ b1 —=> S1 1 b2 —> S2 ] b3 «=> 83 ]

but the effect is that of repetitively executing a guarded zlternative
command until all the guards are false, which causes the command to

terminate.

One of the most important features of CSP is that the last element of
a guard can be an I/0 statement such as Pj?x or Pj!x. This primitive
evaluates to 'true' if the I/0 exchange takes place, and 'false' if the
target process has terminated. OCtherwise, the guard waits: if another
guard is entirely true, its guarded command may be executed; but if all
other guards are entirely false, the overall command does not terminate
until the status of the I/0 command is resolved.
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EXTENDING CSP TO CSPS

Throughout the paper, communities of processes used in examples are
defined in a language called CSPS, 'CSP with synchronization.' CSPS
includes primitives that allow definition of synchronization between
events (i.e, statements) in multiple sequential processes. This explicit
synchronization is in addition to the I/0 primitives of C3P.

This section introduces the notation for explicit synchronization
between processes (implicit synchronization occures between the matching
I/0 statements). CSPS provides for synchronization between two or more
processes, which is needed since the I/0 primitives of CSP only
synchronize two processes (sender and receiver) at a time. Throughout the
paper, the I/0 primitives will be used to define communication among the
processes within one of several process communities making up the virtual
system, while synchronization primitives will define interactions between

these communities.

Statements of CSP correspond to events in the state-event model; the
extension of CSP is a way of showing the synchronization of these
statements. As defined in the previous section, event synchronization is
controlled by a set of rules., To show that a particular statement or
guard is synchronized by a particular rule, the statement is written as a
synchronized command or synchronized guard, as specified by the grammar
below:

<simple command> '$' <rule>
{guard> '$' <rule>

<synchronized command>
<{synchronized guard>

s e @
an

<{rule> = <rulename> | '{' <rulelist> ')'
<rulelist> ::= <compoundrule> | <{compoundrule> <OR> <rulelist>
<compoundrule> ::= <rulename> | <rulename> <AND> <compoundrule>
<OR> ::= '}
<AND> ::= '.?

Both <simple command> and <guard> are defined in the grammar for CSP
[HOARTS].

Events which are synchronized will all be synchronized by the same
name. For example, the statements s1, s2, s3 shown (each belonging to a
different process) are synchronized by rule A:

s1
+—P
: A
s2
N [ s1$A || s2%A || s3%A ]
s3 ¢
—

An alternate representation of the previous example might use the two
rules B and C instead of the single rule A:
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—p [ s1$B ! s28(B.C) !! s3$C J

4]
w
[

+—P

This is identical to the example using only rule A, There is no 'choice’
for e2 as to its synchronization: it takes place synchronized to e1 and

el3.

A 'choice'! can be represented by joining rules by 'OR':

81
—_—————)
: B
s2 +
— — [ s1$B {] s2$(BiC) }i s33%C ]

53 ; C

2
-

5
-

In the example above, only two out of the three events may be synchronized
at one time. If rule B is applied, events s1 and s2 take place; if rule
C is applied, events s2 and s3 take place. Only one rule is applied at a
time, so it is impossible for all 3 events to take place even if they are
all enabled. The notation and diagram are not intended to imply any
preference or ordering of the two rules if all 3 events are enabled at the
same time: the choice of rule is non-deterministie.

It is possible for an event to be subject to some synchronization
rule, but also be free to proceed on its own. Since this means that it is
*synchronized to nothing else', the special rulename '~' is used to
express this. For example,

s1
—_

. A [ s1$(A]-) |} s2$A 1
s2 .
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VIRTUAL SYSTEM

We view a distributed system as a collection of application software
modules, allocated over hardware components. This allocation, generally
the responsibility of some operating system, may be static or dynamic: in
a dynamic allocation, the mapping between software and hardware changes
with time; in a static allocation, this mapping is constant. In this
view, the system behavior is determined primarily by the software. Parts
of the system other than software can affect its performance, however.

For example, faults in the hardware may limit system capabilities, or the
interaction of software and hardware in a particular allocation may
degrade system performance. The workload, which is determined by the
environment with which the system interacts, also affects system behavior,
A designer must consider all these factors when proposing or analyzing a
distributed system and the model he employs ought to have the expressive

and analytical power needed to address them.

The modelling approach proposed here involves the building of a
virtual system, a model whose scope covers, to a very large extent, the
issues listed above. A virtual system consists of six components each
abstracting some aspect of a distributed system. The funectionality is an
abstraction of the processes which carry out the system function (e.g.
the applications software). The architecture captures the overall
hardware organization distribution of the system. The scheduler, together
with the allocation, defines the relationship between functicnality and
architecture, and the changes which the relationship undergoes with time.
This concept, while related to the notion of partition present in [ESTR78]
and [MARI79], is much more general covering static .and dynamic allocation
of functions (in the functionality) to processors (in the architecture) as
well as the allocation of time and space on an individual processor to the
functions associated with it, The performance specification is an
abstraction of both workload characteristics (the environment model is an
integral part of the virtual system) and measurement probes. The
performance specification may be used to explicitly state the assumptions
made by designers regarding the characteristics of the enviromment and of
the system components to be utilized in the realization of the system.

The performance specification is cocordinated with the rest of the model

via the instrumentation.

Formally, the virtual system is defined in terms of processes and
synchronization rules. The definition is given below,

VS = (FUNC, ARCH, SCHED, ALC, PERF, INS)

FUNC = (FQ, FC)
the functionality is defined as a community of processes
where the processes in FQ are called functions and the
synchronization rules set FC states the coordination

taking place between the functions in FQ.
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ARCH = (AQ, AC)
the architecture is defined as a community of processes

where the processes in AQ are called processors and the
synchronization rules set AC states the coordination

taking place between the processors in AQ.

SCHED = (5Q, SC)
the scheduler consists of a community of processes

where the processes in 8Q are called schedules and the
synchronization rules set 3C states the coordination
taking place between the schedules in SQ. Together with
ALC these define the association between processes in the
functionality and processors in the architecture.

ALC
the allocation is defined as a set of synchronization rules

over FQ, AQ and 35Q, whose purpose is to capture the relation
between functions and processors and the changes it exhibits.

PERF = (PQ, PC)
the performance specification consists of a community

of processes where the processes in PQ are called actors

and the synchronization rules set PC states the coordination
taking place between the actors in PQ. Together with INS,
these define the performance measurement and behavior
modification due to performance aspects for the virtual system.

INS
the instrumentation is defined as a set of synchronization

rules over FQ, AQ, SQ and PQ, whose purpose is to exercise
control over the degree of non-determinism present in the
virtual system and to define the computation rules for
relevant performance attributes,

The next four sections will expand on the motivation behind the
structural components of the virtual system model and will demonstrate how
questions of logical correctness, fault tolerance, and performance may be
addressed in a systematic manner through the use of program verification
techniques. This approach promises to reduce resource allocation and
performance problems to equivalent program correctness problems,
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FUNCTIONALITY

This section continues the discussion of system functionality and
starts the development of a simple example of a virtuval system--an
expanded producer/consumer type problem. Its functionality is stated in
CSPS and its logical correctness is formally demonstrated. The result
will be used in subsequent proofs of the virtual system.

The functionality is a closed community of functions that communicate
with each other. It models the system, its operating environment and the
interactions between them. (This particular work makes no distinetion
between system functions and environment functions, but such a distinetion
could be made.) The functionality represents the requirements for the
application software. They are given by means of an operational model
whose structural properties are relevant only when considered in relation
to a particular architecture and scheduler, as shown two sections later.
If, for instance, the functionality is defined in terms of three functions
(f1, f2. £3) but the whole system runs on a single processor, any piece of
software that exhibits the same input/output behavior as the functionality
would be acceptable. If, however, f1 resides on processor pl while f2 and
3 reside on p2, 1 represents the requirements for the software running
on pl and f2 together with f3 for the software on p2. Furthermore, any
other equivalent group of functions may be substituted for the combination
f2/f3 (or f1, respectively) without actually changing the requirements.
This is not the case if the functionality is reformulated by replacing f1
and f2 with some new function fi2—the separation between f1 and f2/f3 is
a relevant structural property that must be also present in the software
while the separation of f2 and f3 is only for purposes of presentation or

analysis.

Although the designer choses to break down the functionality in one
particular way in order to take best advantage of the available or
postulated processors, there are many aspects of the functionality that
may be evaluated by considering the functionality alone., We can use the
methods of [APT80)] to prove logical correctness with respect to some
externally stated criteria, freedom from behavior anomalies such as
deadlock, and some primitive performance characteristics (e.g., relative
frequency of execution of certain functions for some class of
environmental inputs). Such proofs may be used later to incrementally
prove certain properties of the system as a whole,

While the use of concurrent processes (i.e., functions) is clearly
adequate for defining the functionality of a distributed system, the use
of event synchronization as the only mechanism for modelling communication
may be gquestioned by some of the readers. Preliminary results indicate,
however, that event synchronization suffices to model a large spectrum of
communication protocols. Moreover, it enables the designer to encapsulate
the communication protocol into functions dedicated to this purpese thus
limiting the number of places where changes are required when altering the

protocol definition.

To start the example let us consider a producer P which produces a
value and passes it to a link L; the link L forwards the value to a
consumer C: the consumer C receives the value from link L and consumes
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it. This functionality can be described as
{PilL I C]
*[ true --> produce(x); L!x ]

#[ true -=> P?y; Cl'y ]
: *[ true -=> L7?7z: consume(z) ]

P:
L:
C:

In this example, logical correctness is expressed by the fact that
the value consumed by C is the same as the value produced by P, i.e. that
values are consumed in the same order as they are produced, To express
this formally, we associate auxiliary variables i and X(i) with the
sending of the produced value, and associate j and Z(j) with the receipt
of a value to be consumed. P and C then become

P:: 1:=0; *[ true -~> produce(x)
< Lix: dis=i+1; X(i):=z=x >
: ]
Ci: j:=0; *[ true -=> < L?z; j:=j+1; Z(j):=z >
consume(z)

]

The auxiliary variables are associated with I/0 statements and will be
used to prove cooperation between the proofs associated with the
individual processes. (Note: auxiliary variables are variables added to
concurrent programs in order to assist in the development of proofs--they
are not allowed to alter the computation carried out by the programs;
bracketed sections, i.e., "<,..>", are introduced for the purpose of
treating a program statement and several assignments to auxiliary
variables as a single atomic action as far as the proof is concerned.)

The logical correctness of the functionality may be expressed now by
formulating the following global invariant in terms of the auxiliary
variables introduced earlier:

'A n: né=j ==> X(n) = Z(n)

(Note: a global invariant is a predicate that holds true in between any

two atomic actions—-statement or bracketed section--of any of the
processes considered.) Unfortunately, there has been no relationship
established between x and z; this version of the invariant cannot be
proven as a postassertion of L, which contains neither x nor z. To build
a provable invariant, the auxiliary variables k, 1, and Y(k) are

introduced into L.

L:: k:=0; 1:=0; ¥[ true —--> < P?y; k:i=k+1; Y(k):=y >
< Cly; 1:=141 >
]

With these new variables, the invariant can be specified as
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Y(n)
Z(m)

n: (0 <n <= k) ==
m: (0 <m<= §) ==

e
_—
=]
L
won

The first line specifies that P sends a value to L simultaneously with L
receiving a value from P, and that the value received is identical to the
value sent. The second line places similar constraints on the
transmission from L to C, The third line specifies that transmission from
L to C always lags behind transmission from P to L. This invariant
implies the simpler one devised before.

The verification technique, borrowed from [APT80], is one of
ineremental proofs: the preassertions and postassertions of individual
processes are verified separately, then for each matching I/0 pair a proof
of cooperation is carried out for assertions and the invariant.

The proofs for the individual processes requires the establishment of
an appropriate set of assertions. The assertions for the processes P, L
and C are shown in braces in the annotated program below. The proofs of
these assertions for the separate processes are omitted; they are quite

simple.

P:: i:=0 *[ {true}
true -~> produce(x)
{true}
<Lix; i:=i+1; X(i):=x>
{X(i)=x}
]

L:s k:=0 1:=0 *¥[ {1=k}
true —=> <P?y; k:izk+1; Y(k):=y>
{Y(k)=y & k=1+1}
Cly: 1:=1+1>
{Y(k)=y & 1=k}

C:: j:=0 * {true}
true —~> <L?z; Ji=j+1; Z(j):=2>
{Z(j3)=2}
consume(z)
{true}

To finish the proof, cooperaticn must be shown between P and L, and
between L and C. For cooperation, the postassertions of matching
bracketed sections and the global invariant must be proven, given the
preassertions of matching bracketed sections and the global invariant.

For cooperation between P and L, the sections are
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P:: ... {true} < LM'x; i:=i+1; X(i}:=x > {X{i)=x} ...
L:: ... {2=k} < P?y: kizk+1; Y(K):=y > {Y(K)zy & k=1+1}

So the proof can be summarized as

PREMISES
Preassertion: 1=k
Invariant: i=k & !4 n: (0<n<=k) ==> X(n)=Y(n)
& 1=j & 'Am: (0<m<=j) ==> Y(m)=Z(m)
& <=k
CONCLUSIONS

Postassertion: 1=k'=1 & X(i')=x & Y(k')=y
Invariant: i'=k' & !4 n: (0<n<=k') ==> X(n)=Y(n)
& 1=j & 'A m: (0<m¢=]) ==> Y(m)=Z(m)
& j<=k'

The second version of the invariant has been written in terms of
i'=1+1 and k'=k+1, the values of the auxiliary variables after the
communication has taken place. The invariants {1:zj} and {!A m: (0<m<=J)
==> Y(m)=Z(m)} are unaffected by the statements within the matching
section and are trivially true. The postassertions {1=zk'-1}, {Y(k')=y},
{X(i")=x} and the invariants {i'=k'}, {j<=k'} are 2ll clearly true. Proof

of
tA n: (0<n<=k') ==> X(n)=Y{(n)

requires proof only for nzk', since it is given that it is true for
(0<n<=k) or (0<n<=k'-1). The communication axiom [APT80] states that the

target variables of each side of a matching pair are equal:

{true} P?x || Lly {xzy}
(for P?x a statement in L, L!y a statement in P)

By this axiom, x=y. Since X(i')=x and i'=k', X(k')=x. Taken together
with Y(k')=y, clearly X(k')=Y(k').

The same method can be used to prove cooperation between L and C.
With these cooperation proofs completed, it is proven that the value
consumed is the same as the value produced.
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ARCHITECTURE

This section continues the producer/consumer example by giving the
CSPS specification for a possible underlying architecture and by
discussing some of its behavior characteristics. Formal proofs are
omitted due to their similarity to earlier ones but the path they follow
is outlined. A discussion of the role the architecture plays in the
overall context of the virtual system is provided in the beginning of the

next section.

The example for this section is communication via failing lines. An
originator O selects a value to be sent to destination D, and sends it on
one of the unreliable interconnections I1, I2. This architecture may be

modelled as
[Oo il I1 il I2{iD]

O:: ¥*[ true —> select(a)
: [ T1ta —=> skip |} I2ta --> skip 1

I1:: *[ true --> [ 0?b1 —> D!b1 ] 1
true —> ¥[ true --> skip ]

I2:: *[ trve «-> [ 0?b2 ~-> DI!b2 1 |
true —-> #*[ true --> skip 1]

D:: ¥*[ I1?c -=> discard(ec) ] I2?c¢ -=> discard(e) ]

{Note: U"skip" denotes a null statement.) The unreliable nature of the
lines has been expressed in each as two alternative commands. Execution
of the first alternative results in transmission of a value from O to D,
Execution of the second alternative results in permanent (non-recoverable)

failure,

The model of the originator 0 (also the destination D) indicates that
the status of the line is checked prior to selecting it. If this were not
so, the model of the originator might take the form:

0:: *[ true —-> select(a); [ true --> Ila ]
true --> I21a
]
]

The change is that the I/0 statements are guarded by 'true', rather than
being the guards. This corresponds to selecting z line for transmission
before testing it to determine if it is functioning, and ecan result in
deadlock: if the first guarded command is taken and I1 has failed, I1
will never ask for input from O and the originator will walt forever to

send.

With the first specification, it can be proven that so long as at
least one of the lines has not failed, messages sent by O will be received
at D and the ordering of these messages will be preserved. Further, when
both lines have failed, no further message traffic will ever take place.
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This is most easily shown by breaking the parallel lines apart and
separating the proofs for [ i1 I1 11 D ] where 0 and D can only use Il
and [ 0 !! I2 !' D ] where O and D can only use I2, When separated, the
proof of message passing and ordering follows the method used in the
previous section for proving the properties of the functionality.

Once these origin-line-destination triplets have been separately
proven correct, the messages must be shown to be interleaved, i.e. that
if a message goes on one line, then no message goes on the other line, and
all messages go on one line or the other. Consider adding the auxiliary
variables k1, k2, X1, X2, and X into the process O:

O:: k1:=0; k2:=0 *[ true —--> select(a)

[ <I11a -~> k1:=max(kt,k2)+1;

X1(k1):=a> |}
<I2ta =-> k2:=max(k?1,k2)+1;

X2(k2):=a>

]

X(max(k1,k2)):=a

]

Then this interleaving can be expressed as
(A n) 0 < n < max(k1,k2) ==> X1(n)=X{(n) XOR X2(n)} = X(n)

The last step of the proof is to show that after failure of both
links, no further communication takes place. Consider introducing several
boolean variables to indicate the status of the links and the originator:

O:: ¥[ true —-> select(a); waitl:ztrue; wait2:=true;
[ <I1'a ==> waiti1:=false> |
I2'a --> walt2:=false>
]
]

I1:: faill:=false; downl:=false;
%[ true -=> [ O?b1 —> DIb1 1 |
true ==> faill:=true;
#[ true --> downl:=(failtl & wait1)]

]

I2:: fail2:=false; down2:=false;
®[ true ——> [ 0?b2 —> DI1b2 ] 1

true —=> fail2:=true:
B[ true —-> down2:=(fail2 & wait2)]

1

When waitt or wait2 is true, the originator 0O has selected a value and is
waiting for one of the lines to be available. When down1 or down2 is
true, the corresponding line I1 or I2 has failed. Faill and failZ2 are
used to flag the line as unavailable: the line is not failed until the
line is unavailable and O is walting to use that line. When both lines
have failed, no further message transmission takes place. This can be
expressed as
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"IF downl1 AND down2 BOTH BECOME TRUE THEN
wait1 AND wzit2 BOTH REMAIN TRUE FOREVER"

An array with steadily incremented index can serve as a type of diary for
the state of the system, and the proof must demonstrate that for values of
the index above the point where the links have failed, the system remains
tfailed'. Alternately, the proof can be carried out using temporal logic,



Page 20

SCHEDULER AND ALLOCATION

This section elaborates the definition of the scheduler concept: its
origin, its ability to model static and dynamic allccation of functions to
processors as well as time and space allocation between the functions
assigned to the same processor. Further clarification of the part played
by architecture in the specification and analysis of a virtual system is
also provided. The example is expanded to cover the scheduler,

The scheduler defines the relationship (i.e. state dependencies}
between the functionality and architecture of a system by defining
synchronizations between them. To show how these synchronizations are
determined, consider an APL function as a realization of funectionality,
and an APL machine (hardware interpreter) as a realization of
architecture, Both functionality and architecture have states: for the
function, the state depends on the value of local data and and the line
nunber of the statement being interpreted; for the interpreter, the state
depends on the program being interpreted, the interpreter's local data,
and the program counter of the APL machine. 1In this common situation, the
states of the function are mapped onto the states of the machine so that
for every state of the function, there is a corresponding distinet state
of the machine. There may be unmapped intervening states in the machine,
but not in the funection. This mapping of functionality and architecture

is shown below:

FUNC —»(1) - (2) P (3)—p (U )

. - . -

ARCH  —b (A) b (B) ecd ( C) e (D)o (E }—d (F) ——b (G )—

This work describes the architecture in terms of abstractions of the
states of the machines involved, so some of these states are lumped
together. Such an abstraction is shown below:

FUNC »(1) »(2) —»(3) & (4)—P

. - .

ARCH 3 (ABC) ——d (D )b (EF) > (C)—b

Next, the unmapped states of the abstract architecture are dropped from
the deseription, and the state mappings are replaced by synchronization on
the transitions.

FUNC ———3 (1)t (2) o tmemecp (3 ) et (U ) et —p

. . - .

- . L] *

ARCH —— (ABC)—t—# (ABC) —t———p (EF) —+— (G )t

This last transformation changes the view of the problem to one easily
expressed in CSPS. (We may further simplify this description by dropping
synchronizations that are irrelevant to a particular discussion.) The
process of abstraction that was followed up to this point generalizes to
the case where one deals with multiple functions and processors. These
kind of models are of interest during system design and analysis when low
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level architectural details are being ignored.

Next we will show how system level static and dynamic allocation and
single processor time/space sharing may be modelled using the scheduler
concept.

The static allocation of functions to processors does not require
schedules. - Thus, if no dynamic reallocation can occur in the system, the
set of schedules is empty. Static allocation of a function to a processor
can be determined from the synchronization of an event in the function to
an event in the processor. In the example below, F1 and F2 are allocated
to P1, while F3 is allocated to P2,

F1 F2 F3
~p Ob Ot — bes—p0—p0— --—-—)O—DO-T—FO—J
l—-po-:—»o :-ro-—- —$0 »0 eo_]
' P1 P2

If an event in F3 were synchronized to an event in P1 as well, then the
allocation would not be well-formed. All functions must be allocated to
only one processor; i.e.,

(tA F) 'E P to which F is allocated.

As an example, consider the static allocation of the the
producer-consumer functionality to the origin-destination architecture,
allocating link L to interconnection I1. The overall process set is
written as

fpPilLilCcito il 114112141 D]
#{ true —-> produce(x)$h LIx ]

%[ true$el > P?y Cly 1]
¥[ true --» L%z consume(z)$(glig2) ]

Qo
e o0 a8

“e o8 e

0:: *[ generate(a)$h [ I1la --> skip I I2ta --> skip 1]

I1;: *[ true$el —> [ 0?b1 —> D!b1] [ true --> ¥[ true --> skip 1]
I2:: *[ true —-> [ 0?b1 —> DIb1 1 I true -=> *[ true --> skip 1]]
D:: *¥[ I1?7¢c —-> use(c)$g? I I2%¢c —-> use(c)$g? ]

The production of x in P is synchronized to the generation of a in 0, s0o P
is allocated to O. Similarly, L is allocated to I1 and C is allocated to
D. Note that this static scheduling does not allow I2 to be used at all.

Dynamic allocation can be introduced to allow the link L to use I
until I1 fails, when it changes to using I2. For dynamic allocation, the
synchronization of events in functions and processors is indirect, using
the schedules. For example, a schedule can allow 3 function to be
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synchronized to one of two different processes, as below:

FUNCTION LDO

+

v

(@)
L}

($a ! $B)  :

t A : B
) —+1 r—
SCHEDULE 0 (om0

S I—-{--.

T A : B

o P ¥ Ot PO
PROCESSORS —l _]

An alternate model that employs two schedules that are being
coordinated is the following:

FUNCTION L — r#O—I

. ($A | $B) :
: A : B
e o —
B [_
+ PO B B IR O N BN R NN BN NN A M .T
SCHEDULES ——
+- L BN I BN NN B B R B BN N +
_l .
e - i -
: A :t B
o O e PO Y, MR ¥
PROCESSORS -l -l

In both cases the function has two separate synchronizations to
schedules in the scheduler.

The dynamic nature of scheduling complicates the issue of allocation.
In fact, in the most general case, allocation of functions to processors
can only be determined at instants of synchronization, and the concept of
an allocation as something spanning a period of time becomes useless.
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However, the schedules can be wrlitten in such a way as to partition the
allocation based on the states of the schedule, and this is desirable for
system design. For example, the diagram given previously for a function
scheduled on one of two processors clearly shows that when the scheduler
is in the left subgraph, the function is allocated to the left processor;
when the scheduler is in the right subgraph, the function is allocated to
the right processor.

Consider a schedule S which will use connection I1 for link L until
I1 fails, and will then use I2:

S:: [ Lviall := true
#[ LviaIl$e.e? —> skip B LviaIlg$el' ——> Lviall := false ]
Lvial2 := true
[ Lvial2$e.e2 —> skip | Lvial2$e2' --> Lvial2 := false ]

]

e1 synchronizes to successful transmission via I1, while e1' synchronizeé
to failure of I1; e2 and e2' perform similar synchronizations on the
actions of I2; e synchronizes L via S to I1 and I2. L, I? and I2 become

now
L:: *¥[ true$e --> P?y Cly ]

I1:: *[ true$el —> [ 0%b1 —> DIb1 ] 1
true$el! —> ¥[ true —-> skip ]

]
I2:: #*[ true$e2 —> [ 0%b2 —> Dib2 1 1
truege2' —> ¥[ true --> skip ]

]

The synchronizations in P, C, 0, and D are the same as in the previous
listing of these processes.

It may now seem that the second portion of I1 and I2 is redundant:
since the schedule ensures that a failed link is never usable again, need
this permanent failure be included in the architecture description? The
answer depends on the particular use of the model. If an architecture is
belng designed to a particular set of specifications, the statements
modelling it may be partitioned arbitrarily. On the other hand, if an
architecture has been given to the designer, clearly it is not modifiable.
Since this architecture has been considered in some detail in the previous
section, it will be taken as given,

It can be shown that with this particular scheduler, the x produced
by P will get through to C to be consumed as z so long as at least one
interconnection I has not failed. The formal methods have been presented
in previous sections, so this proof outline will be informal and emphasize
the incremental nature of these proofs.

1. A property of the scheduler itself can be proven. If the first
guarded command with Lviall true is called send1 and the second such
guarded command is called gquit?, and similarly the sections with Lvial2
true are called send? and quit2, it can be shown that the behavior of the
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schedule is
(send1)¥* quit1 (send2)¥* quit2.

2. Independent of the scheduler and based on the static part of the
allocation, proofs of the functionality and architecture from previous
sections demonstrate that if a message generated by O reaches D and is
used (i.e. provided there is some functioning interconnection) then a
corresponding message is produced by P and reaches C to be consumed there.
This is based on the synchronization h between 0 and P and the
synchronizations g1 and g2 between D and C.

3. With the scheduler in place it is quite simple to see that, based
on synchronizations el and e2, for every usage of L there i3 a
corresponding usage of I1 or I2.

Y4, By combining the proofs of scheduler behavior and interconnection
usage (the first and third proofs above), it can be shown that the process
L is synchronized to I1 until I1 fails; then it is synchronized to I2
until I2 fails,

5. By combining the proofs of message passing and sequence of
interconnection usage (the second and fourth proofs above), it can be
shown that so long as I1 or I2 is functioning, messages will get from P to

C.

The sharing of one processor by several functions may be illustrated
by the figure below in which the functions F1 and F2 take orderly turns to
the use of the processor P.

F1 F2

| I Jo B (0N Jg BRI ——4~)0—+—)0-+-00—-J

F—#O-+—DO-+—)O—+——-}O-——+—)O-+-)0-+q00-—-

P

No intervening schedule is required here due to the simple nature of the
scheduling policy. In general, however, schedules are used to model more

complex policies involving priorities and preemption.
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PERFORMANCE AND INSTRUMENTATION

This section discusses and illustrates the dual role played by the
performance specification. First, it controls non-determinism in the
functionality, architecture, and scheduler, Second, it records the
assumptions made by the designer about the characteristics of the existing
or envisioned system components. This is accomplished by stating the
rules by which various relevant performance attributes are being computed.

Non—-determinism may enter the model because of modelling a
non~deterministic activity in the system or its environment (e.g., entry
of jobs intc a system) or a deterministic process whose original
deterministic nature has been lost in the process of abstraction into the
model, In many cases, something is known about the statistical nature of
the non-determinism present. Actors may be defined so as to have a
probabilistic behavior which, through instrumentation (i.e,,
synchronization), may be imposed on functions, processors and schedules.

Let us consider, for instance, that probabilities of failure for the
interconnections I1 and I2 are known to be p?! and p2, respectively. Two
actors, A1 and A2, may be constructed and synchronized with I1 and I2 (via
instrumentation rules al, al', a2 and a2') so as to force them to exhibit
the desired probabilistic behavior:

I1:: %[ true$al —> [ 0?1 —> Dbl J 1

true$al' —> *[ true -=> skip ] ]
I2:: *[  true$a2 -—> [ 0?2 ——> D!b2 11
true$a2' —> *[ true --> skip ] ]

A1:: [ z1:boolean
®[  z1:=random(p1)
[ ~z1 --> skipsal I
z1 —> skip$al’ ] 1l ]
A2:: [ z2:boolean
*[  z2:=random(p?2)
[ ~z2 —> skip$a2 |
z2 —> skip$a2! ] 1 )

{Note: "random(x)" is a mathematical function which returns true with the
probability x and false with the probability (1-x).)

Actors may be also employed in a information gathering capacity
similar to the reporting components of simulation languages. Events in
the functionality, architecture, scheduler and even performance
specification may trigger predefined actions in the information recording
actors. Take, for instance, the computation of the average delay on the
link L. 1Its value depends on the delays on the interconnections I1 and I2
and the way in which L is allocated between the two. Actor A3 could be
used to carry out the computation. By properly synchronizing it with the
instrumentation rules al and a2, A3 is able to compute the average delay
time given the assumptions about the delays on I1 and IZ2:
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A3:: [ n:integer: delay:integer;
n:=0 delay:=0
* true$al —> delay:=delay+dl; n:zn+1;
average(n):=delay/n ]
true$a2 --> delay:=delay+d2: ni=n+1;
average(n):=delay/n } 1

It should be pointed out that fundamental to obtaining correct
results is to assure that a recording actor does not actually interfere
with with the behavior of the processes with which it is synchronized.
Proving this for A3 is trivial: A3 is always ready to synchronize with al
and a2 without imposing any restrictions in their ordering. Ald is
provided below as a counterexample.

Ad:: [ n:integer; delay:integer;
n:=0 delay:=
a skip$al: delay:=delay+d1; n:=n+1;
average(n) :=delay/n
skip$a2; delay:zdelay+d2; n:i=n+1;
average(n) :=delay/n ] ]

This actor forces alternate use of I1 and I2 in addition to computing the
average delay--the result is deadlock after the first use of the
interconnection It by the link L. A sufficient condition for
non-interference is to assure that the synchronized statements in a
recording actor can be executed in arbitrary order, e.g., A3 permits the
behavior {a1, a2}* while AY is limited to the behavior {al.a2}*., (Note:
the period is used here to denote concatenation of symbols in a sequence.)

Existing discrete event simulation languages such as SIMULA [BIRT73}
already provide the means by which one may define random distributions for
event arrival and processing time as well as reporting features. The fact
that event synchronization can offer the same capability is of some merit.
Beyond this, however, event synchronization should be given serious
consideration as s potential mechanism for integrating discrete event
simulation in design specification languages. The analogy to actual
instrumentation of system components has a certain intuitive appeal. The
ability to integrate the performance and functional issues while still
maintaining a strong separation of concerns is desirable and has been
attempted already by others (e.g., SREM [BELL771]).
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CONCLUSIONS

The way the virtual system is structured presents several significant
advantages:

Coverage of key technical considerations. Broad and
integrated coverage of key technical considerations facing the
distributed system designer is provided, including software and
hardware organization, static and dynamic allocation, and
performance modelling.

Total system design perspective. Distributed systems are
complex hardware/software aggregates whose design reguires
careful consideration of the relationship between functionality
and architecture in order to meet highly demanding constraints.
The virtual system has the ability to capture precisely the
essence of this relationship.

Separation of concerns. The components of the virtual
system correspond to well established areas of design expertise
(e.g., software design, architecture design, resource
allocation, performance modelling). The process communities
used to model them capture design decisions that may be
evaluated (up to a certain point) independent of the overall
design or in a limited context. Dependencies between these
components are expressed via sets of synchronization rules that
tie them together: e.g. functionality, architecture and
scheduling policies (all having independent existence) are
brought together by the allocation (i.e., ALC).

Complexity control. The model permits independent
elaboration, analysis and modification of its components while
allowing easy identification of the entities affected by
particular changes, when present. For instance, the
architecture can be modified without changing the functionality,
to determine how best to implement a required set of funections.
Alternatively, the functionality can be restructured without
changing the architecture, to determine how best to take
advantage of a particular architecture or feature of the system
hardware. In either case, the definition of the allocation may
be used to determine the consequences of that change for the

other components,

Design flexibility. There are systems whose software or
hardware are given and others for which both must be selected by
the designer. 1In the latter case, sometimes the architecture
and other times the software becomes the dominant concern with
its design turning into a constraint for the other. All these
cases and combinations thereof are accommodated by the structure

of the virtual system.

Aside from its structure, the primitives employed by the model
(process and event synchronization) provide a high degree of analyzability
of proposed or modelled systems. It is out intent to use CSPS and the
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associated incremental proof strategy as a stepping stone in the
development of a distributed systems specification language. While CSPS

will provide the means for defining the semantics of the language, the
form of the language will be determined primarily by human factors.
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