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ABSTRACT

Parallel computing structures consisting of
large numbers of processors require
synchronization so that data communication among
processors 1is possible. Two basic methoda of
data synchronization, synchronous and
asynchronous, are considered. The synchronous
or c¢locked method uses a global clock for
synchronization. Clock skew and clock 1line
charge and discharge times both increase with
system size, This decreases the data rates
achievable and prevents the design of highly
modular systems,
global control structure and results imn  a
modular and expandable system with the data rate
being independent of system size. It is however
pin intensive. These two types of control
schemes are modelled and the data rates
achievable are determined and compared,

1.0 INTRODUCTION

The advent of VLSI has led to renewed
interest in processing structures which have
geometrically regular features and planar
topologies. Such structures, referred to as
regular array processors, are well suited to
VLSI implementation because they have few basic
modules and can be laid out easily on silicon.
Examples are the systolic array [KUNGS80I, the
wave front processor [KUNGS82A], and the CHiP
machine [SNYD82]. Regular processor arrays have
the desirable properties of being modular, oan
be pipelined, and have the potential for high
speed concurrrent progessing.

There are two principal methods which can be
used in controlling data movement in such
structures, These are referred to as
asynchronous (or self-timed) and synchronous (or
clocked) control schemes and while they are well
know as general and often opposing
methodologies, there have been few cases where a
quantitative comparison has been made between
them on the basis of a commmon system design
problem [WANNS3],

Although  there are nuperous papers
describing the applications of regular
structures, particularly in the signal

processing field {CAPP81, YENS81, KUNG82BI, most
of this literature is concerned with the
presentation of algorithms and there is only a
linited discussion of how such structures can be
controlled and on how one determines their
performance in terms of bandwidth or data rate.
This paper presents & ocomparison of the
asynchronous and ¢locked control schemes for a
particular linear structure and, although not

#This work was supported in part by NSF Grant
MC3-78-20731 and ONR Contract NOOO14-80-C-0761.

The asynchronous method has no

pursued here, the analysis presented extends to
other topologies as well, Included in the
analysis i3 a detailed specification of control
procedures using both Petri net diagrams and
timing precedence relationships.

In practice, clocked digital designs have
usually been preferred due to their relative
simplicity and generally lower hardware c¢osts.
When systems become physically large however,
when their size cannot be predicted in advance,
or when there are numerous system inputs which
operate independently (and on separate clocks),
then the advantages of asynchronous design begin
to mount. One example of this is 1in processor
bus design where asynchronous control schemes
are common [DIGI81, SUTHTY). Another is in
modular computer design where expandability and
arbitrary system restructuring are key system
features [CLAR67]. In such modular systems
determining the appropriate clock period and
estimating clock skew is difficult, if not
impossible, since the final gize and
configuration of the system is not known in
advance, Designing for a maximum size system,
o the other hand, would require such large
clock periods that system speed would be
inordinately slow, A similar type of problem
arises in the VLSI domain when designing
structures which are robust over a range of
features sizes [SEITT9]. The use of
asynchronous aontrol schenes in such
environments is a natural solution to designing
for system growth (or shrinkage). Design of
such control schemes are however, difficult and
in general engineers have shunned this approach
focusing instead on extending conventional
e¢locked schemes. An interesting tradeoff can be
seen here, On the one hand with clocked schemes
the design of the control logic is simple while
the clock distribution problem is difficult. On
the other hand with asynchronous schemes the
design of the control logic is difficult while
there is no clock distribution problem with
which to contend.

All of this relates directly to the control
problem encountered with  regular array
processors. The ideal network should be modular
and expandable so that it can be readily used to
support a wide range of computations. . This
points to the wuse of an asynchronous scheme.
But, asynchronous systems: are difficult to
design. Thus there is a subatantlal benefit to
be obtained if simple models can be developed to
predict performance of asynchronous and
synchronous controlled arrays prior to . detalled
design. In this paper we present. an analysis
aimed at determining accurate delay based models
for both types of control strategies.



2.0 CONTROL TECHNIQUES FOR REGULAR ARRAYS

Each of the two types of control schemes
will now be examined and data rates obtained as
a function of computational delay, intermodule
path delay, and clock line delay and skew.

2.1 Synchronous Control

Figure 1 illustrates a one dimensional
array. Each module in this array is coanfigured
to compute the relation

Yj = Yk + AMi {1

where Yj, Yk, and Xi are nx1 column matrices and
A 13 a square nxn matrix. A register/processor
model for module j of Figure 1 1is shown in
Figure 2. Notice that there are five registers
and one processor, whi.ch consista of a
multiplier and an adder. Module j accepts Xi
from module i on its left, accepts A4 from the
tep, and Yk from module k on its right. Module
J then computes a new Y, (Yj), according to (1)
and sends it to module i. Module j also takes
Xi, and passes it unchanged to module k as Xj.
The synchronization of these steps can be
accomplished by using a central clock in which
standard two-phase techniques are employed. A
typical clock waveform is shown in the top part
of Figure 4. The two phases are identifed as @1
and @2. The asserted time for phase-one is §i1
and for phase-two i3 2. The interphase times
are denoted as §12 and $21.

One array control procedure is to capture A,
Xi, and Yk on the assertion of phase one and
then during ¢1, to make the computation of Yj.
The length of ¢1 would be adjusted so that this
computation would be completed before the end of
¢1. Then, on the assertion of phase two, Xj and
Yj would be transferred to modules k and 1.
This is the control procedure depicted in Figure
2 and a model illustrating the delays 1in the
clock lines is illustrated in Figure 3. In
addition to the eight clock delays shown in this
figure, there are three other delays that are
important. Two of these are intermodule delays
associated with the tranafer of Yk from module k
to module j (dY¥kj), and the tranafer of Xi from
module i to module j (d¥ij), The third delay is
associated with the delay in obtaining the
coefficients from A and transferring them to
module j (dAj). These three delays will be
called intermodule delays.

In addition to these constraints, there are

constraints imposed by the time necessary to
charge and discharge the c¢lock 1line. For a
large array this time can be appreciable., We
now develop equations for the intermodule and
the clock line constraints.

2.1.1 Intermodule Constraints
The time necessary for module j to complete

its processing task is constrained by its
interactions with module i, module k and the
coefficients contained in A. Equations for
these three constrainta can be obtained by
constructing three timing diagrams corresponding
to the transfer of:

(1) Yk to module j

(2) Xi to module j

(3) A& to module j
A timing diagram for the first of these three
cases is depicted in Figure 4 which shows the
timing for transferring Yk to module j. Assume
that Xi, Yk and A are available and stable when
the phase-one clock 1s asserted. We can
determine the Trirst constraint on the value of
the clock peried, T, by tracing a path from one
assertion of the phase-cne clock through the
various signal paths that include both
processsing and propagation delays, and
concluding on the next assertion of the
phase-cne clogk. This path is depicted in
Figure 4 and yields the following relation:

T1 > ¢1 + 12 + dYkj + (de2k - de1j) (2)

This relation is found by starting at the
assertion of phase-one of the of the master
clock, proceeding through the delay {1 (the time
necessary to capture A, Xi, and Yk and to
perform the computation of the new Yj),
proceeding through the interphase delay $12,
then through the delay between the assertion of
phase-two of the master clock and the assertion
of phase=two of the clock at module k (equal to
de2k), then through the delay necessary to
transfer the new Yk to module J (this is related
to the assertion of the master phase-two clock
by the relation dYkj-de1j).

In a similar fashion the other two
constraints on the clock pericd that are
associated with the transfer of ¥Xi to module j
{T2), and with the transfer of A to module j
(T3), are given below.

T2 > §1 + §12 + dX¥ij + (de2i - de2j) (3)

T3 > ¢1 + (12 + dAj + (de2A - delj} (4)
Rewriting T1 in a slightly different form we
obtain:

T1 > §1 + $12 + d¥kj + (delk -del])

+ (de2k = detk) (5)
The last term of this equation is the difference
in delay of the two clock 1lines that reach
module k (alpha.kk), while the next to the last

‘term is the difference in the arrival of the

phase-cne clock at modules k and j. This last
term 1s commonly referred to as clock skew
(delta.k}). Note that alpha.kk is a result of
using a two phase clocking scheme and might not
be present with a single phase design. Thus
alpha.kk = de2k - detk (6a)
delta.kj = delk = deilj (6b)
T2 and T3 can now be rewritten as:
T2 > ¢1 + §12 + d¥ij + delta.ij + alpha.ii (7)
T3 > §1 + 012 + dAJ + delta.Aj + alpha.jj] (8)

where alpha.ii = de2i - deli {9a)
alpha.jj = de2j - de1lj (9b)
delta.ij = deii = delj (9¢)
delta.Aj = deld - delj (9d)

Now (¢1+¢12) represents the amount of time
necessary for the capture of the X, Y and A
values plus the time to compute the new value of
Y plus the interphase time, Let us represent
this as a single delay, dcompute,. Furthermore,
the terms da, dX, and dY represent intermcdule
path propagation delays, and we will identify
them as dpathA, dpathX and dpathi, respectively.
Then the three intermodule constraints on the
clock period can be rewritten as



T1 > dcompute+dpathY+delta.kj+alpha.kk (10)
T2 > deompute+dpathX+delta.ij+alpha.ii (11}
T3 > dcompute+dpathA+delta.Aj+alpha. jj (12)

2.1.2 Clock Path Constraints
The clock path consists of a conductor that

connects the central clock to each module. When
the clock is asserted and deasserted this entire
path must be charged to pass above the module
threshold voltage and discharged to pass below
the module threshold voltage. Since the path is
passive, the charge and discharge times can be
assumed to be equal and will be denoted as
tau.§t and tau.¢2 for the two phases
respectively, Then to guarantee that module
threshold requirements are satisfied the period
of the two clocks must be

T4 > 2tau.$1 (13)

5 > 2tau.¢2 (14)
As a consequence the constraint on the c¢lock
pericd can be specified as

T > max{T1,T2,73,T4,T5} over all modules. (15)
In addition to this constraint we must also
guarantee that the two clock phases do not
overlap at the input to any module. That is at
each module input:

$12 > 0 and §21 > 0 (16)
Figure 5 shows a timing diagram for module 3.
From this diagram

0214 = $21+de1j-de2j = §21-delta.3j > 0 (17a)
621 > delta, jj (17p)
$123 = P12+de1j-de2j = p12-delta.jj > 0 (18a)
$12 > delta.jj (18b)

Similar expressions for the interphase times at
other module inputs yield:

$12,¢21 > max{delta.ii,delta.j),delta,kk} (19)
Each of the parameters in the five c¢onstraints
(10,11,12,13,14) has a range of values which
depend on the variations in the fabrication
process, the computation time, and in the
interconnection pathways. Let us assume that we
have a large array, that the delays take on
their full range of values and, because the
array 1is large, there exists an adjacent set of
three moduies 1i,j, and k and a coefficient
array, A4, in which all the parameters have their
worst case values, Then the identifying
subseripts can be removed from the constraint
equations and they can be rewritten as

T > max{dcompute+dpaths+delta+alpha,2tan} (20a)

$12 > delta and $21 > delta (20b)
These equations show how clock skew, computation
time, intermodule path delays, and clock path
charging time, affect the clock pericd and
thereby the data rate. Thus the data rate for
the asynchronous array is
DRs <

1/max{dcompute+dpath+delta+al pha,2tau} (21a)
Usually the first term in the maximum expression
dominates and under this condition

DRs < 1/(decomput+dpath+delta+alpha) (21b)
This issue will be examined again in Section 5.

2.2 Asynchronous Control

The one dimensional array shown in Figure 1
can be adapted to incorporate the asynchronous
control structure. In a self-timed system

events can be thought of as having a fixed
position in the sequence domain with no event
having to occur at a particular or fixed time,
Self-timed systems are an interconnection of
components where each component performs a step
in the desired computation. To maintain the
order in the sequence domain necessary to
perform the computation, a signal 1is necessary
at the input of a component to initiate the
computation step, and a signal is necessary at
the output of the component to mark the
completion of the computation step.

Considering a particular module j in the one
dimensional array, the computation performed by
the module is the inner product step (1}, Each
module must have three data input lines, and two
data output lines., The control lines necessary
for each data input (output) line to achieve
self-timed operation are:

(i) An input (output) line which signals the
availability of data on the particular data
line, referred to as the data available
line, DA,
{ii) An output {input) 1line which signals
the completion of use of data on the data
line, referred to as the data acknowledge
line, A.
Figure 6 shows the asynchronous array module and
associated control signails.

2.2.1 A Petri Net Specification of the One
Dimensional Array Module
Because of the concurrency in the control
and data flow in the array medule, it is not
possible to formally specify the behaviour of
such a system by a state table. Instead a Petri
net is used since this can preserve all the
concurrency in the processing ateps and should
maximize the data rate through the module. The
following oharacteristies of the asynchronous
module (Figure 6) are important in order to
construct the Petri net:
(1) New data can be made available to the
module on the right on XDAR if the
acknowledge of the previous data 1is
avallable on XAR and data is available from
the medule on the left on XDAL.
(2) The computation process in the module
consista of two distinct steps, a
multiplication followed by an addition. The
multiplication step can begin as soon as
data on XDAL and ADAT are available and the
previous addition step is complete.
(3) The acknowledge signal AAT for ADAT can
be sent after the multiplication step is
complete. The acknowledge XAL for XDAL is
sent only after the multiplication step is
complete and the acknowledge to the data
available signal XDAR on XAR has been
received.
(4) The addition step can begin as soon as
the data required for this step is
available, That is, af'ter the
multiplication step is complete and data is
available on YDAR.
{5) New data can be made available to the
module on the left when the additioq~step is



complete and when the acknowledge to the

previous data on YDAL has been received on

YAL.

(6) The acknowledge signal on YAR is sent

af'ter the addition step is complete and the

aoknowledge signal YAL has been received,
Ordering YAR after YAL and XAL after XAR becomes
necessary to avoid generating a new output
before the old output has been used. For
example, 1f we send the YAR signal independent
of the YAL signal, new data will Dbecome
available for the addition step and a new result
could be generated before the old data has been
used, that is, the addition step could end
before the acknowledge signal is received on
YAL. Similar reasons necessitate the ordering
of XAL after XAR.

The Petri net for the array module j is
presented in Figure T and can be divided into
essentially identical upper and lower halves,
In the one dimensional array, the module k is
one step ahead in the computation process than
module j because module k starts the computation
process before module J. The Petri net
therefore represents the interaction between two
adjacent modules, and between two adjacent
computation steps. This results in the two
identical halves of the Petri net.

The delay between successive computations in
module Jj can be obtained by analyzing the paths
in the module and determining the maximum "loop™

delays. To be as general as possible, this
analysis should take into account the
concurrency within the module. Such an

analysis, however, becomes quite involved and is
not consistent with the derivations for the
synchronous control structure., If we remove the
concurrency from within module 3j, the path
having the largest delay is shown with its
associated delays by the dashed line in Figure
7. The path involves propagation delays that
are internal to the module (subseript 1), that
are external to the module, that is, intermodule
propagation delays (subseript e}, and the delay
due to the computation,

The intermodule path delays will, in
general, be much larger than the internal
propagation delays. We will therefore assume
that the internal delays have been included in
the intermodule path delays. The delay through
the module is then given by

dasync = dcompute + 2dpath (22)
where dpath is the intermodule path delay and
decompute is the delay in the computation. The
data rate for the one dimensional array is then

DRa = 1/(dcompute + 2dpath) (23)

3.0 DATA RATE COMPARISON

The data rates for the synchronous and
asynchronous control schemes can now be compared
by examining equations (21b) and (23). The
asynchronous data rate is greater than the
synchronous data rate when :

delta > dpath - alpha (24)

If the clock lines for both phases are laid out
on the chip parallel to sach other so that they
have equal length paths and drive identical

circuits, then delta will be approximately equal
to alpha and (24) becomes:
delta » dpath/2 (25)

The synchronous/asynchronous design decision can
now be presented as shown in Figure 8. Once
information about  specifie implementation
parameters is available, the designer can
calculate delta and dpath. Depending on the
region of the design space in which the proposed
implementation falls, the designer can then
determine whether a synchronous or asynchronous
design has a higher data rate, HNote that for a
given path delay, a 1larger clock skew will
result in asynchronous control being preferable,
while a smaller clock skew will result in the
synchronous scheme being preferable., The reason
for this i1s that a larger clock skew
requires longer c¢lock pericds for reliable
operation, and this in turn slows down the
operation of a synchronous system.

On the other hand, for a given clock skew,
longer path delays result in synchronous control
being faster. This is due to the fact that with
asynchronous control, signals must travel
twice along dpath ia a reguest/aclknowledge
fashion, while in the synchronous case only a
single dpath delay is necessary. Thus, long
path delays penalizes the asynchronous control

architecture more than synchronous one,

4.0 PATH DELAYS AND CLOCK SKEW

Let the linear array be implemented using
NMOS technology with a collection of N' modules,
Assume that the arrays of interest are
sufficiently large so that several chips, each
having N modules, will be reguired to implement
the entire N' network. Figure 9 illustrates
this for the case of N=2. The chips themselves
are assumed to be placed on a printed circuit
board and interconnected via printed ecircuit
wiring. In this section, the factors that
affect the path delays and clock skew are
examined and simple expressions for each of them
are developed.

4.1 Path Delay

There are three intermodule path delays of
concern, dX, dY and dA and these paths may be
between adjacent modules on the same integrated
chip, between adjacent modules on different
chips, or (in the case of dA) between the source
of the A coefficients and the modules.

Assume for the moment that modules within a
chip can be positioned so that adjacent
modules are in close physical proximity. In
such a situation, path delays between these
modiles will be very small compared to other
delays and can be ignored, These other delays
(i.e. dA and interchip dX and dY delays) are
determined by the resistance and capacitance of
the path involved. For the case of dX and dY
paths between chips, a chip/board layout can be
designed which results in chips containing
adjacent modules also being in close physical
proximity on the board. Since the
interconnection path in this case will be short
and will use metal conductors, its resistance is



small and can be neglected. Thus the
propagation delay in this case is determined by
the ratio of the capacitance of an elemental
gate, Cg, and the capacitance of the
interconnection line, Cl. If one wuses an
exponential buffer this delay is given by the
expression
dpath = d¥*e®n(Ci/Cg) {26)

where d is the delay associated with an
elemental transistor, and @ 1s the natural
logarithm base.

Determining the path delay associated with
dA 1s more complex since it involves the A
matrix elements., For simplicity we assume that
these elementa are loaded into local memories
before processing begins. If, for example, 4
represented the coefficients of a fixed digital
signal processing filter, read only memories
night be used. These memory chips are placed so
that they are physically adjacent and directly
above each systolic chip as shown in Figure 9.
The path delay, dA, in this case is similar to
the dX and dY delays between chips and is also
given by (26).

Once the coefficlent memories are loaded,
the processing can begin., If a new A matrix is
required, it is possible to overlap this loading
operation with ongoing processing, but the
details of this are not pursued here, Note that
another interesting deasign option is to place
these local memories within the chip itself.

4.2 Clock Skew

The clock skew and alpha parameter have been
defined earlier. With the appropriate clock
line layout the clock skew and alpha will be
about the same, hence we only discuss the clock
skew. The skew of concern here is generated
within the chip. That 1is, the assumption is
made that the clock is presented with zero skew
to each chip on the board.

Consider the simple model in which two
woduies M1 and M2 are on the same chip, are
adjacent, and are driven from a commeon

point P, with clock lines within the chip from
P of 1lengths L1 and L2. If the c¢lock is
asserted at t = 0, the clock skew is the

difference in time between when M1 and M2
respond to the clock assertion. This difference
in response is determined by four factors:
1. Differences in the line lengths L1
L2.
2. Differences in delays through any active
elements inserted in the lines (e.g. oclock
buffers).
3. Differences in the threshold voltages of
the two modules M1 and M2.
4, Differences in the line parameters (e.g.
resistivity, dielectric constant).
Factor 1 can be made negligible by making the
distances from the clock aignal entry
point on the chip to each module equal. One way
of achieving this dis by laying out the clock
signal paths using a binary tree distribution,
An example of a layout for a four module chip is
shown in Figure 10.

and

If one assumes that the asynchronous module
only requires unmodified phase-one
and phase-two eclock signals, then, given
sufficient off=chip drive capabilites, there is
no necessity to buffer the clock signals on the

chip. When module implementations are
non-pipelined, requiring only phase-one and
phase-two clock signals sSeems reasonable,

Factor 2 is thus eliminated.

A model for the eclock skew based on the last
two factors has been developed and reported on
previously for a full binary tree [WANNS83]. The
skew can be found in terms of the maximum and
ninimum time constants of the entire clock tree
(MAX[RC] and MIN[RC]), the maximum and mirimum
values of the threshold voltage of a typiecal
logic gate (MAX[Vt] and MIN[Vt]), and the supply
voltage Vdd. The results of that derivation
givea the clock skew as

delta = MIN[RC]#*1n(1 - MIN[Vt]/Vvdd)
= MAX[RCI®1ln(1 = MAX[Vt]/Vdd) (27)
4.3 Clock Distribution and Time Constant
Assume that the binary tree clock

distribution scheme shown in Figure 10b is used,
the minimum feature size is Lam (in microns),
and that modules are sqQuare. The time constant
for a full binary tree has been derived in
[KUNG82C] and verified by SPICE simulation to
be:

RC = 1.43(N#*3)(3 - 2/N)ROCO
where RO and C0 are the resistance and
capacitance of a leaf node level clock line and
N is the number of modules on the chip (N is a
perfect square equal to 2%%n, where n is an
integer).

Note that distribution of the two-phase
clock requires twe such binary trees - the
second tree can be constructed by merely
displacing the first tree in the vertical and
horizontal directions by the minimum 1line
separation. The clock should be distributed
using metal wherever possible. Some  short
sections of diffusion will be necessary,
however, in order to bridge intermodule
communication, power, ground and reset lines
(assuming only a single layer of metal is
available). Let 10% of the clock line be in
diffusion. Then R0 and CO can be expressed in
terms of Rd, the resistance of a diffusion line
expressed in ohms per square, Cm and ©€d, the
metal and diffusior line capacitances expressed
in terms of picofarads per sq. miecron and Wm
and Wd, the widths in microns of the clock line
implemented in metal and diffusion respectively.

RO = (Rd/sq)(Ld/Wd) (29a)

CO = (Cm/ar)WmLm + (Cd/ar)WdLd (29b)
Mead and Conway [MEAD80] show that the minimum
width of a diffusion conductor should be 2Lam
and that of a metal conductor should be 3Lam.
Typical values for the constants representative
of current fabrication technology are:

-4 -

Cn = 0.3 % 10" pt/um>, €d = 10~ pr/um?
Rd = 20 Ohms/sq

The time constant (R¥*C) of

then given by:

the clock line is



-4
RC = 1.158%10 (3 = 2/N)E2 M3

where E is the length of the leaf node, it is
assumed that the clock line i1s distributed
through the entire length of the module, and M
is the square root of N, Note the above
expression does not take into account the time
constant for charging and discharging that part
of the tree external to the chip. Cur
calculations indicate that when the entire
network is on a single board this time is less
than 10f of the on-chip charge/discharge time
and thus is not included in this development.

5.0 EXAMPLE

Consider a processor constructed on a single
printed eircuit board containing packaged chips
with copper printed circuit connections between
packages. The pin capacitance for this type of
construction is about 4 pf, the capacitance, Cg,
of an elemental NMOS gate is about 0.02 pf, and
the delay, d, associated with an elemental
transistor 1s about 2 nsec. Since the metal
data lines between chips are short, the
principal contribution to the load capacitance,
Cl, will be the pin capacitance. The
path delay, dpath, can then be calculated from
(26) as dpath = 28,8 nsec.

In order to determine the clock skew from
(27), RC must be evaluated wusing (30). To
determine E and M the area requirements for the
module, and the number of such modules which can
placed on a chip must be estimated. Currently
produced chips [MCDD82] require an area of about
2 square millimeters for implementation of a
parallel 16 bit multiplier (Lam about 2
microns). If we assume that another 2
square millimeters is needed for the adder,
registers, and associated control, then about
sixteen modules would fit on a2 1 cm square chip.
Taking E as 1/8 em, RC can be found from (30) %o
be 29 nsec. and thus 2tau is 58 nseo. The
¢lock skew can be found from (27). Take Vdd = 5
volts, the threshold voltage = 2.5 volts, and a
variation of +/- 204 due to Cfabrication. The
resulting clock skew iz 20 nsec.

In this example the clock skew (20 ns) is
greater than dpath/2 (14.4), and an asynchronous
architecture would be faster than a synchronous
one. To determine how much faster, the ratio
DRs/DRa can be evaluated from (2ib) and (23).
This can be done once the time for the
computation (multiplication and addition) 1is
known, Note that the larger the value for
deompute, the less the difference between the
two strategies, For instance if deompute =150ns
in the above example, the difference between the
two data rates is less than 10%. Note also that
2tau (58 ns) i3 a good deal less than dcompute
and the other terms in {21a). That is, the time
to charge the clock tree is not a limiting
factor in this case,

6.0 SUMMARY AND CONCLUSIONS

This paper has presented models for
comparison of  synchronous and asynchronous
control structures in a one dimensional regular

array enviromment. A detailed description of
the control architectures was given. The timing
3equences required for a two phase clocked
system were provided, and a Petri net
deseription of the asynchronous control
specified. From these models the data rate
expressions associated with each control scheme
were derived.

Both expressions indicate that the data rate
is inversely proportional to the computation
time. The asynchronous structure data rate is
also related to two times the path delay while
the synchronous data rate involves only a single
occurrence of the path delay. Thus large path
delays involving the movement of X, Y or 4 data
tend to reduce performance of the asynchronous
approach more than the synchroncus approach. On
the other hand, the syachronous control is
dependent on the clock skew and as the clock
skew increases, the performance of the
synchronous scheme falls. Given the importance
of path delay and clock skew, a module and clock
line layout was proposed which equalizes clock
line lengthas, Finally, the time to charge the
clock tree also limits the performance of the
synchronous design. For situations where large
trees and short compute times are present, this
may be the dominant factor limiting performance.
In a given situation, the performance of the two
control schemes is dependent on the relative
magnitudes of these parameters.

An example was presented where these
parameters were evaluated with the modules being
implemented in NMOS with a 2 micron feature
size, Assuming a computation time of 150 nsec,
it was found that while the asynchronous system
had the higher data rate, it was within 10 ¥ of
the synchronous rate. The reason for the olose
performance of both schemes is that computation
time plays a major role in determining the
overall rates, and that as long as this time is
significantly larger than skews, delays and tree
charging times, the relative performance of the
two schemes will be comparable.
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