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Abstract

We present an exceptionally accurate spin-glass-type Potts model for the graph the-

oretic problem of community detection. With a simple algorithm, we find that our

approach is exceptionally accurate, robust to the effects of noise, and competitive

with the best currently available algorithms in terms of speed and the size of solvable

systems. Being a “local” measure of community structure, our Potts model is free

from a “resolution limit” that hinders community solutions for some popular commu-

nity detection models. It further remains a local measure on weighted and directed

graphs. We apply our community detection method to accurately and quantitatively

evaluate the multi-scale (“multiresolution”) structure of a graph. Our multiresolu-

tion algorithm calculates correlations among multiple copies (“replicas”) of the same

graph over a range of resolutions. Significant multiresolution structures are identi-

fied by strongly correlated replicas. The average normalized mutual information and

variation of information give a quantitative estimate of the “best” resolutions and

indicate the relative strength of the structures in the graph. We further investigate

a “phase transition” effect in community detection, and we elaborate on its relation

to analogous physical phase transitions. Finally, we apply our community detection
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methods to ascertain the most “natural” complex amorphous structures in two model

glasses in an unbiased manner. We construct a model graph for the physical systems

using the potential energy to generate weighted edge relationships for all pairs of

atoms. We then solve for the communities within the model network and associate

the best communities with the natural structures in the physical systems.
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Chapter 1

Introduction

1.1 Background

The data in networks can often be cast as a graph consisting of members represented

by nodes with pair-wise relationships between the nodes represented by edges. In

general, these relationships can be specified in one direction along an edge, and they

can be weighted or unweighted. Figure 1.1, depicts such a network where the “nat-

ural” communities are identified by distinct node shapes and colors. “Community

detection” describes the problem of finding these closely related sub-groups within a

general network. Regardless of the particular approach used to solve the problem,

the goal is to efficiently separate clusters of closely related nodes from each other.

Each cluster will have a proportionally higher number of internal edges compared its

external connections to each other community in the partition.

Applications of the problem are wide since an extremely broad array of applica-
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Figure 1.1: The two panels show a small network with 4 natural communities, depicted as

distinct node shapes, that are strongly connected. Panel (a) depicts an unweighted version,

and panel (b) shows the weighted network. In general, the edges could also be assigned in a

particular direction between nodes. Regardless of the approach used, the goal in community

detection is to identify any such strongly related clusters of nodes based on their defined

edge relationships. In either panel, solid lines depict links corresponding to complimentary

or attractive relationships where aij > 0 and bij = 0 in Eq. (2.2). In panel (b), gray dashed

lines depict missing, adversarial, or repulsive relationships where aij = 0 and bij > 0.

The relative link weight is indicated by the respective line thicknesses. For presentation

purposes, missing intercommunity relationships are not depicted.

tion may be cast into this network representation. Examples include the World Wide

Web [1, 2], food webs [3], social networks [3], protein interactions [4], consumer pur-

chasing patterns [5], mobile phone networks [6], criminal networks [7], epidemiology

[8], biological networks [3, 9], and other areas. A recent introduction to the “physics

2
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of networks” can be found in Ref. [10]. Reviews of the field are found in Refs. [11, 12],

and the most recent thorough review is found in Ref. [13].

One method of quantitatively assessing community structure is through the use of

a “quality function.” A quality function essentially provides an objective measure of

how “clustered” or “modular” a network is. Examples include the prominent modu-

larity measure defined by Newman and Girvan [14], a Potts model originally proposed

by Reichardt and Bornholdt (RB) [15, 16], our Potts model [17] that eliminates the

random partition applied by RB, an application of a Potts model utilizing a mean-

field approximation with “belief propagation” [18], and another measure “fitness” [2].

Other approaches to community detection include clique percolation [4, 19], spectral

[20], information theoretic [21, 22] “label propagation” [23, 24], dynamical [25, 26],

and maximum likelihood [27]. Karrer et al. [28] defined a measure of robustness of

community structure based on random perturbations. Some efforts enhance or expand

applications to more general systems such as weighted networks [29, 16, 17], hetero-

geneous systems [1, 17], bipartite graphs [30, 31], overlapping nodes [32, 4, 2, 31, 15],

and multiresolution methods [33, 34, 35, 2, 36, 37, 38, 39, 40].

1.2 Challenges

As summarized above, there are many approaches and areas of investigation for com-

munity detection. Our community detection methods provides a strong, exceptionally

accuarate, solution for the community detection problem, and they answer two par-

3
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ticular challenges in the field. First, certain very popular models have been shown to

have an implicit limitation in the smallest communities that can be resolved in a large

system. Second, a more recent focus in the field is the question of how to determine

the “best” scale(s) at which to solve a system.

The most popular quantitative community measure is that of “modularity” which

was originally introduced by Newman and Girvan [14]. This measure constituted a

work that transformed the field. Modularity measures the deviation of a proposed

community structure compared to what is expected from an “average” case based on

a particular random distribution (a “null model”).

Our approach is a physics-inspired method that casts community detection as a

Potts model spin glass. Communities correspond to Potts model spin states, and

the associated system energy indicates the quality of a candidate partition. Some

earlier approaches utilizing Potts models are in [41] and [15]. Our particular model

was originally inspired by a minimal cut method by Djidjev [42] which is equivalent

to modularity. The resulting generalized Hamiltonian was previously presented by

Reichardt and Bornholdt (RB) [16]. In their specific implementation, RB general-

ized null model based approaches to community detection, including modularity as a

special case, and elaborated on the connection between physics and community de-

tection. Other Potts model approaches are by Hastings [18], which casts community

detection as an inference problem, and Ispolatov et al. [43], which extends the Potts

models in [41, 15].

Modularity and the RB Potts model (RBPM) utilize a random null model selected

4
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to evaluate the strength of a proposed community partition. Larger deviations (more

intracommunity links and fewer intercommunity links) from the random case indicate

better community structure. A null model is usually based on parameters of the

graph being examined which allows the measure to “scale” to arbitrary graphs in an

objective manner (see Sec. 2.5.1). Typical null models for the RBPM are: (i) an

Erdős-Rényi null model (RBER) in which all edges are equally likely to be connected

and (ii) the configuration null model (RBCM) in which edge connection probabilities

are based on the current graph’s degree distribution. For modularity, the dependence

on the null model is inherent to the definition of the measure. Within the RB scheme,

the dependence on a null model is introduced by design.

One challenge in the field is that Fortunato and Barthélemy [44] later determined

that modularity optimization can result in incorrect community divisions due to a

resolution limit. The resolution limit is an inherent scaling in the expected number of

communities q which roughly scales as
√

L where L is the total number of edges in the

graph. The RBPM model is also subject to a resolution limit [45] due to how it is cast

by design, analogous to modularity, in terms of an arbitrary null model comparison.

The number of communities roughly scales as
√

γ
RB

L, where γ
RB

is a weight applied

to the null model comparison. Optimizing either measure (maximizing modularity or

minimizing the Potts model energy) tends to merge small clusters in large systems,

or it may incorrectly partition large communities. Although the RBPM allows for an

arbitrary choice of null model, the resolution limit was shown to persist [45] regardless

of the null model that is used.

5
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An additional challenge is that the most natural organized community structure

can depend on the scale at which the system is examined. Different scales correspond

to distinct community divisions at different internal community edge densities. For

many systems, including those with hierarchical organization, a “multiresolution”

approach [46] is needed to capture the overall structure and the relationships between

the elements at different resolutions. Examples of such systems can include biological

processes [47, 48], food webs [49], air transportation networks [48], and communication

networks [6]. Thus, multiresolution methods are an important extension of problems

in community detection.

Hierarchical organization is the most obvious type of multiresolution structure.

Some earlier work on hierarchies in graphs can be found in [50, 47]. Examples of

more recent efforts in analyzing hierarchical structures in graphs are [51, 6, 2, 48, 33].

Arenas et al. [33] defined a multiresolution method using modularity that makes

novel use of the resolution limit [52]. Reichardt and Bornholdt [15], Arenas et al.

[33], Kumpula and co-workers [34], Heimo et al. [35], and Fenn et al. [36] also study

multiresolution applications of an RB Potts model.

We present an improvement to the Potts model as applied to community detec-

tion, and we demonstrate that it is extremely accurate, robust to noise, and com-

petitive with the best available methods in terms of computational speed and the

size of solvable systems. Our approach also corrects known resolution limit problems

encountered in some models by avoiding a null model comparison [17]. Instead, it

penalizes for missing edges directly in the energy sum [53]. In effect, a community

6
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is defined by its edge density as opposed to allowing each graph to independently

define a community through the use of a relative null model. One consequence of

our approach is that it removes the ability of the model to automatically scale the

solution based on global properties of a graph (see Sec. 2.5.1), but the change re-

sults in a robust model with significant improvements to several desirable properties.

Further, the multiresolution algorithm presented here quantitatively determines the

“best” network scale(s) by evaluating the strength of correlations among independent

partitions (“replicas”) of the same graph over a range of resolutions.

1.3 Overview of thesis

This dissertation contains information related to the following publications or manuscripts

in preparation roughly arranged into chapter divisions as indicated:

• Chapters 1 and 2: P. Ronhovde and Z. Nussinov, Local resolution-limit-free

Potts model for community detection, Phys. Rev. E 81, 046114 (2010).

• Chapters 1 and 3: P. Ronhovde and Z. Nussinov, Multiresolution community de-

tection for megascale networks by information-based replica correlations, Phys.

Rev. E 80, 016109 (2009).

• Chapter 4: D. Hu, P. Ronhovde and Z. Nussinov, Phase transition in the com-

munity detection problem: spin-glass type and dynamic perspectives, e-print

arXiv:1008.2699 (2010).
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• Chapter 5: P. Ronhovde, S. Chakrabarty, M. Sahu, K. K. Sahu, K. F. Kel-

ton, and Z. Nussinov, Detecting hidden spatial and spatio-temporal structures

in glasses and complex systems by multiresolution network clustering, (in prepa-

ration, 2010).

In Chapter 2, we demonstrate a simple but effective implementation of the q-state

Potts model to community detection. In Sec. 2.1, we discuss our Potts model and

some of its properties along with the RBPM and its main variants. We also explain

the concept of the resolution of a partition. In Sec. 2.2, we present our algorithm,

and Sec. 2.3 illustrates its accuracy compared to several other approaches. Our Potts

model and the RBCM model are directly compared in Sec. 2.4. Issues regarding local

and global measures and the resolution limit for general graphs are addressed in Sec.

2.5. We solve two examples in Sec. 2.6 and conclude the chapter in Sec. 2.7.

In Chapter 3 we show how information theory based measures may be used to sys-

tematically and quantitatively extract the best community partitions on all scales.

This will enable us to methodically determine the hierarchical or multiresolution

structure of arbitrary networks. In Sec. 3.1, we discuss the application of our Potts

model and community detection algorithm to multiresolution analysis. We then

present several examples in Sec. 3.2. The exceptional accuracy of the multiresolu-

tion algorithm is addressed in Sec. 3.3, and we conclude the chapter in Secs. 3.4 –

3.6.

Chapter 4 relates details regarding a community detection transition which elab-

orates on how certain physically motivated features of our Potts model manifest
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themselves in terms of the community detection problem. We present the heat bath

algorithm in Sec. 4.2. Static transitions are discussed for temperatures T = 0 in Sec.

4.3 and for T > 0 in Sec. 4.4. A closely related “dynamic” transition is shown in

Sec. 4.5, and the chapter concludes in Sec. 4.6. In this chapter, the author’s main

contributions consist of specifically identifying the existence of a phase transition

(particularly in the noise test benchmark in Sec. 4.3.1), developing the base commu-

nity detection model and computer code along with Zohar Nussinov, working closely

with Dandan Hu in the writing the heat bath algorithm that is used to further analyze

phase transition in community detection, and collaboration in the resulting analyses

of this aspect of the problem.

Chapter 5 illustrates a concrete application of these community detection meth-

ods to identify structures in amorphous systems, using a model metallic glass and

a binary Lennard-Jones systems, in particular. In Secs. 5.1 and 5.2, we introduce a

number of concepts in glasses and amorphous systems and how we will relate them to

our community detection problem. We explain the simulation details in Sec. 5.3. The

corresponding results are given in Sec. 5.4, and we conclude in Sec. 5.5. In this chap-

ter the author’s contributions include the multiresolution network and visualizaton

analysis applied to the problem. M. Sahu and K. K. Sahu contributed to the initial

stages of the multiresolution analysis. S. Chakrabarty was responsible for molecular

dynamics simulations and configurations. S. Chakrabarty and M. Widom contributed

to the potential models that were used for the set of potentials applied to one model

glass former. K. F. Kelton oversaw experimental work on a metallic glass that is

9
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related to our model glass former.

In Appendix A, we explain the variation of information (VI) metric, the normal-

ized mutual information (NMI) measure, and other information measures which we

use in several sections of the thesis. Appendix B argues that the unweighted variant

of the RBER model can be strengthened to eliminate the resolution limit. Appen-

dices C and D elaborate on some details related to comparing different Potts model

approaches in the proposed noise test benchmark in Sec. 2.4.2. Appendix E explains

a generalization of our replica method for other, non-graph theoretic, optimization

problems. Appendix F elaborates on some details related to the benchmark accuracy

test discussed in Sec. 3.3. Appendix G explains the overlapping dynamics which we

use in Chapter 5. Appendices H – K present several additional test cases for the mul-

tiresolution method in Chapter 3 specifically relating to its application to complex

amorphous materials in Chapter 5.

10



Chapter 2

Community detection

2.1 Potts model Hamiltonians

One of the most popular approaches in community detection is to define and objective

quality function that will indicate the “best” community divisions when it is opti-

mized over competing divisions of a graph. Such quality functions evaluate the best

community divisions based on at least two criteria: The first obvious contribution is

that edges inside a community strengthen the community. In order to consistently

avoid a trivial solution (a single community) in general, a quality function must also

apply a “penalty function” in some form. The most common penalty function method

compares the community edge distributions to an “expected” value based on how a

candidate division compares to a selected null model (a particular randomized rep-

resentation of the graph). This particular penalty method has the unintended side

effect of introducing an inherent limitation, a resolution limit, in the smallest size
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communities that may be properly resolved in large networks. We elaborate on a

different simple, yet powerful, approach.

2.1.1 Absolute Potts model

Our Potts model directly penalizes for missing edges within a community. The result

is a robust model that is highly accurate, a local model for general graphs (weighted,

unweighted, and directed), and free of the resolution limit. We also connect the

introduced model weight γ to the resolution of a system and relate the interaction

energies to the stability of communities.

Hamiltonian

We construct the Potts model with the following considerations. Edges inside com-

munities and missing edges outside communities are both favorable for a well-defined

community structure, so the energy of the system is lowered by these arrangements.

The opposite holds for edges outside communities and missing edges inside commu-

nities. This generalized Potts Hamiltonian is [16]

H({σ}) = −1

2

∑
i�=j

(
aijAij − bijJij

)[
2δ(σi, σj) − 1

]
(2.1)

where {Aij} is the set of adjacency matrix elements: Aij = 1 if nodes i and j are

connected and is 0 if they are unconnected, and Jij ≡ (1 − Aij). The edge weights

({aij} and {bij}) and connection matrices ({Aij} and {Jij}) are defined by the system.

The Potts spin variable σi takes an integer value in the range 1 ≤ σi ≤ q which

12
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designates the community membership of node i (node i is in community k if σi = k).

The number of communities q can be set as a constraint, or it can be determined

from the lowest energy configuration. The Kroneker delta δ(σi, σj) = 1 if σi = σj and

0 if σi �= σj.

The spin glass type Potts model of Eq. (2.1) can be reduced, up to an additive con-

stant, to a form that greatly simplifies implementation. For comparison, we introduce

a form similar in appearance to the notation used by RB

H({σ}) = −1

2

∑
i�=j

(
aijAij − γbijJij

)
δ(σi, σj). (2.2)

Spins interact only with other spins in the same community (σi = σj). The generality

of the weights ({aij} and {bij}) [54, 37] enables the study of directed graphs, weighted

graphs, and graphs with missing link weights (i.e., levels of “repulsion”). Traag and

Bruggeman [55] also presented a generalization of the RBCM that similarly allows

for “negative” link weights. Unweighted graphs use edge weights of aij = bij = 1.

The Hamiltonian of Eq. (2.2) describes a system wherein spins in the same com-

munity interact ferromagnetically if they are connected and antiferromagnetically if

they are not connected. We split the “attractive” (ferromagnetic) and “repulsive”

(anti-ferromagnetic) contributions into two separate weighted matrices so that we

can insert the model weight γ that adjusts the energy trade-off between the two

types of interactions. The new parameter γ has the effect that it allows the model to

adjust the scale or resolution of the community solution. We identify communities by

minimizing Eq. (2.2), and despite a global energy sum, our model is a local measure
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of community structure (see Sec. 2.5). We refer to Eq. (2.2) as an “absolute” Potts

model (APM) as it is not defined relative to a null model. Although our analysis

here will focus on the static APM, it is defined for both static systems and dynamic

networks with time-dependent weights and adjacency matrices.

Resolution

Intuitively, the resolution of a community partition is set, on average, by the strength

of intra-community connections. That is, the resolution of the partition may be speci-

fied by the typical edge density of the communities within the partition. Communities

with substantially different edge densities have different qualitative features.

In social networks for example, a partition intending to convey the “close friends”

within a network would intuitively have a higher typical edge density than a partition

that includes all “acquaintances” since the disparate acquaintances are much less

likely to know each other. Ideally, a partition should contain communities that convey

similar qualitative information (i.e., similar “levels” of association). In practice, it

will contain communities with different edge densities, but intuitively the differences

would not be drastic for a given resolution.

For unweighted graphs, the edge density ps of community s is ps = �s/�
max
s where

�s is the number of edges in the community. �max
s = ns(ns − 1)/2 where ns is the

number of nodes. The model weight γ in Eq. (2.2) is related to the minimum edge

density of each community,

pmin ≥ γ

γ + 1
, (2.3)
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which is determined by calculating the minimum community density that gives an

energy of zero or less. Alternately, we can use an inductive argument based on

the maximum intercommunity edge density that causes two arbitrary communities

to merge. For weighted graphs, we define a “weight density” ps ≡ ws/w
max
s where

ws is the sum of all weighted edges in community s and the “maximum weight”

wmax
s ≡ ws�

max
s where ws is the average edge weight. The minimum density is pmin ≥

γ/(γ + ws/us) where us is the average weight of the missing links. Without γ, the

model is restricted to solving one particular resolution of a system. This relation

between γ and the community density is distinctly different from a resolution limit

because the communities are determined through only local constraints (see Sec. 2.5).

Community and node stability

From Eq. (2.2), the interaction energy Ers between communities r and s is

Ers = −wrs + γurs (2.4)

where wrs is the energy sum over all edges and urs is the energy sum over all missing

links strictly between the two communities. Ess ≡ Es is the internal energy of com-

munity s where the energy sum is over all internal edges and missing links. When

Es � 0, the assignment of community s is more sensitive to local perturbations.

Similarly, the interaction energy Eri of node i with community r is given by Eq.

(2.4). If Esi − Eri � 0 for node i in community s, then the node is susceptible to

displacement by system perturbations. When a node contributes a large fraction of

the energy Es of its own community, the community is susceptible to disruption if
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the node is moved. Equation (2.4) indicates the strong local behavior of the APM

(see Sec. 2.5). For general graphs, the interaction energy of node i or community s is

measured only by its own edges or missing links with each community.

2.1.2 RB Potts models

We compare the APM to the RBPM in order to demonstrate improvements in accu-

racy and locality despite the apparent similarity in the models. The RBPM, using

an arbitrary null model, is defined as [16]

HRB({σ}) = −1

2

∑
i�=j

(Aij − γ
RB

pij) δ(σi, σj) (2.5)

where we include the overcounting scale factor of 1/2. The term pij is the probability

that nodes i and j are connected, and it incorporates the dependence on the arbitrary

null model. γ
RB

is the weight applied to the null model. The most frequently used

null models are an Erdős-Rényi null model and the configuration null model (see Sec.

1.1). For later reference, they are explicitly given by pij = p for the Erdős-Rényi null

model

HER
RB({σ}) = −1

2

∑
i�=j

(Aij − γ
RB

p) δ(σi, σj) (2.6)

and by pij = kikj/(2L) for the configuration null model

HCM
RB ({σ}) = −1

2

∑
i�=j

(
Aij − γ

RB

kikj

2L

)
δ(σi, σj), (2.7)

where ki is the degree of node i. Equation (2.7) appears to be the more preferred

model since the configuration null model incorporates information about the degree

distribution of the graph under consideration.
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When γ
RB

= 1, the RBCM of Eq. (2.7) is equivalent to modularity [16] up to

a scale factor of −1/L. The APM can be made equivalent to the RBER model for

unweighted graphs [56] (see also Appendix B). We address weighted generalizations of

both models and their effect on model locality in Sec. 2.5.5. Despite the similar forms

of the Hamiltonians of Eqs. (2.2) and (2.5), the model weights γ and γ
RB

perform

distinctly different roles in the two models. In the APM, γ directly adjusts the weight

applied to missing edges. In the RBCM, γ
RB

adjusts the weight applied to the null

model. We contrast the accuracy of the APM and the RBCM in Sec. 2.4.

2.2 Algorithm

Our algorithm moves nodes by identifying which community they may be moved into

so that the system energy is lowered. The algorithm proceeds until no more node

moves are possible. This “orthogonal steepest descent” algorithm (selecting the path

of steepest descent for only one spin σi at a time) is extremely fast. We introduced our

initial implementation of the algorithm in [54]. A summary of the efficiency of several

algorithms appears in [57]. A number of algorithms were compared in [58] and [59]

where algorithms similar to ours performed very well when optimizing modularity.

Combined with the APM, it is exceptionally accurate. The steps of the algorithm

are:

(1) Initialize the system. Initialize the connection matrices (Aij and Jij) and edge

weights (aij and bij). The system begins in a “symmetric” state wherein each node
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forms its own individual community (q0 = N). If the number of communities q is

constrained (e.g., Figs. 2.1 and 2.9), we randomly initialize the system into q0 = q

communities.

(2) Optimize the node memberships. Sequentially “pick up” each node and scan

its neighbor list. Calculate the energy change as if it were moved to each connected

cluster. Immediately place it in the community with the lowest energy (optionally

allowing zero energy changes). Each iteration through all nodes is O(L).

(3) Iterate until convergence. Repeat step (2) until an energy minimum is reached

where no node moves will further lower the system energy.

(4) Test for a local energy minimum. Manually merge any connected communities

if the merge(s) will further lower the energy of the system. If any merges are found,

return to step (2) for any additional node-level refinements. We estimate that the

computational cost is O(L log q) which is generally smaller than the node optimization

cost in steps (2) and (3).

(5) Repeat for several trials. Repeat steps (1) – (4) for t independent “trials” and

select the lowest energy result as the best solution. By a trial, we refer to a copy of

the network in which the initial system is randomized.

The symmetric initialization for the nodes in step (1) is not uncommon in the

literature [6, 60, 23, 25]. Steps (2) and (3) are the fundamental elements of the

algorithm which are similar to portions of algorithms used elsewhere [6, 23]. The

number of iterations is generally O(10) for large systems, but it can be higher for

“hard” problems. In step (4), the community merge test is sometimes necessary
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because certain configurations, particularly heavily weighted graphs with γ 	 1, more

easily trap the node-level refinements [steps (2) and (3)] in local energy minima. The

merge test is not generally a major concern for γ ≥ 1.

The order of node moves is significant, so the additional trials in step (5) sample

different regions of the energy landscape and can yield different solutions even with the

symmetric initialization in step (1). We optimize solutions by increasing the number

of trials where the greatest benefit occurs for problems of “intermediate” difficulty

(e.g., see the data for the APM in Fig. 2.1). The number of trials t is generally O(10)

or less.

Empirically, the overall solution cost often scales as O(tL1.3 log k) where k is the

average node degree. The factor of log k applies for large sparse matrix systems.

The algorithm can accurately scale to at least O(107) nodes and O(109) edges with a

calculation time of several hours [61] (see Sec. 2.6).

2.3 Accuracy compared to other algorithms

We test the accuracy of our method compared to several other algorithms using a

common benchmark [62]. The benchmark is very small by current standards with

an unrealistically symmetric community structure, but its frequent use provides a

means of comparing the accuracy of various algorithms that have been presented in

the literature over time. The problem defines a system of N = 128 nodes in q = 4

clusters of n = 32 nodes each. Each node is assigned an average of k = 16 edges of
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Figure 2.1: Plot of the percentage of correctly identified nodes p versus the average

external degree kout [62]. The average node degree is k = 16. The data for the APM of Eq.

(2.2) and the RBCM of Eq. (2.7) both use γ = γRB = 1. Both models use the algorithm

in Sec. 2.2 with q = 4 by constraint (see text regarding the RBCM/Symmetric data). The

APM is at least as accurate as SA (error bars are for t = 10 optimization trials), and the

RBCM performs excellently also. Each point is an average over 500 runs.

which kin are randomly assigned inside its own community. kout edges are randomly

assigned to nodes in other communities such that k = kin + kout. We then attempt

to verify the defined community structure.

In Fig. 2.1, we plot the “percentage” of correctly identified nodes p as a function

of kout. For consistency with other data in Fig. 2.1, we use the same measure of

percentage accuracy as Newman [62]. We use q = 4 communities by constraint and

test several levels of optimization (t = 5, 10, and 40). At t = 10, our method
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maintains an accuracy rate of 95% or better up to kout = 7.5.

Several sets of data were assimilated by Boccaletti et al. [26] where the most

accurate algorithm was simulated annealing (SA) although it is computationally de-

manding [57]. Other accurate data are by Hastings [18], Gudkov et al. [25], and our

algorithm in Sec. 2.2 applied to the RBCM with γ
RB

= 1 (modularity) and t = 10.

Our algorithm is as accurate as SA when used with the APM.

The APM, one set of our data for the RBCM, and the data by Hastings impose

q = 4 as a constraint; so using a constrained q may affect the accuracy rate in this

problem. The initial state of the system substantially influences the accuracy of

our algorithm for the RBCM when q is unconstrained and when starting from an

initial state of one node per cluster (symmetric) or a random state (not depicted)

[63]. A recent analysis [59] showed our multiresolution algorithm [37] applied to this

benchmark using the APM with unconstrained q where it was also very accurate,

among the best of tested algorithms.

2.4 Accuracy comparison of Potts models

We compare the APM of Eq. (2.2) to the RBCM of Eq. (2.7) with two test systems.

First, we solve for the different levels of the synthetic hierarchy depicted in Fig. 2.2

with the results given in Fig. 2.3. Second, we create a set of strongly defined systems

with high community edge densities and increasing levels of noise. A sample graph

is depicted in Fig. 2.4 with the results given in Figs. 2.5 and 2.6. The APM proves
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Figure 2.2: The figure depicts a simulated three-level heterogeneously-sized hierarchy with

N = 256 nodes [37, 64]. The innermost level 3 has q3 = 16 communities with a randomly

assigned average density of p3 = 0.90. The intermediate level 2 has q2 = 5 communities

and an average density of p2 = 0.47 that is constructed by connecting the constituent level

3 sub-groups at an intercommunity edge density of p2 = 0.3. Level 1 is the completely

merged system with an average density of p1 = 0.18, and it is constructed by connecting

nodes in different level 2 communities with an intercommunity edge density of p1 = 0.1.

to be very robust to noise in the system. We use the VI information metric V (see

Appendix A) to compare solved partitions with the constructed networks.

2.4.1 Three-level hierarchy

We identify two levels of a constructed hierarchy [64, 37] using both the APM and

RBCM models. The three-level hierarchy is depicted in Fig. 2.2, and the results are
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Figure 2.3: Plot of VI V vs model weights γ or γRB for the APM of Eq. (2.2) and the

RBCM (configuration null model) of Eq. (2.7), respectively. The plots illustrate how the

model weights operate in the respective models. We use the algorithm in Sec. 2.2 for both

models to identify the hierarchy depicted in Fig. 2.2 using t = 1 and 4 trials. We calculate

VI with respect to level 2 of the hierarchy in panel (a) and level 3 in panel (b). Both models

exactly identify both levels of the hierarchy at t = 4. The APM perfectly identifies both

levels at t = 1 which is slightly better on average than the RBCM, and it has a more stable

solution for level 3. Each point is an average over 100 solutions.
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given in Fig. 2.3. The system has N = 256 nodes divided into q3 = 16 communities at

level 3 with sizes as noted in Fig. 2.2. Edges in each community are randomly assigned

with a probability of p3 = 0.90. These communities are grouped as shown into q2 = 5

communities that define level 2 of the hierarchy. The average internal density of level

2 communities is p2 = 0.47 which are defined by randomly connecting nodes in the

respective sub-groups of level 3 at an intercommunity edge density of p2 = 0.3. Level

1 is the completely merged system which is defined by randomly connecting nodes in

sub-groups of level 2 at an intercommunity edge density of p1 = 0.1.

We apply the algorithm of Sec. 2.2 to both models and solve a large range of

model weights γ or γ
RB

, respectively, in order to illustrate the differences in the two

models. In Fig. 2.3, we plot VI V as a function γ or γ
RB

[65] using t = 1 and 4 trials.

VI is calculated between the respective solutions and the level 2 or 3 partitions of

the hierarchy. These data are then plotted in panels (a) and (b), respectively. Both

models exactly identify both levels of the hierarchy at t = 4. The APM is slightly

better in accurately identifying them with t = 1, and it has a more “stable” solution

in panel (b).

2.4.2 Noise test

The concept of “noise” in community detection corresponds to “extra” edges that

connect a node to communities other than its best assignment(s). In general, we

cannot initially distinguish between edges contributing to noise and those constituting

edges within communities of the best partition(s). Community detection methods

24



Community detection

Figure 2.4: A sample graph with N = 512 nodes for the noise test in Sec. 2.4.2. In this

sample, the node degrees are initially defined in a power-law distribution with an average

〈k〉α = 5.4, maximum kmax = 100, and exponent α = −2. Communities have a power-law

distribution of sizes with a minimum nmin = 4, maximum nmax = 50, and exponent β = −1.

These communities are then strongly defined by connecting all internal community edges

(pin = 1).

experience the effects of noise in at least two distinct ways: (1) The edges due to

noise act to obscure the best partition(s) in an algorithm by creating “confusion” for

early community assignments (a dynamical effect). (2) The extra edges influence the

quantitative evaluation of the best community assignments (a “metric” effect). In

some models, this second effect can negatively impact the contribution of edges that

comprise the best communities.
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Figure 2.5: Plot of VI V between solved and known test systems in Sec. 2.4.2 as a function

of the average external node degree kout. The system sizes are Na,b = 512 in panels (a) and

(b) (with a sample system depicted in Fig. 2.4) and Nc,d = 4096 nodes in panels (c) and (d).

The graphs are solved with the APM and the RBCM using the algorithm in Sec. 2.2 with

t = 1 and 4 trials. We use γ = 1 for the APM on all solutions, and we subjectively select

the best γRB for the RBCM independently for each kout (see Appendix C). For comparison,

we also solve the system at this best γRB using SA. System noise is randomly assigned in

an approximate power-law degree distribution [66] with an exponent α = −2, an average

degree 〈k〉α, and maximum degrees of kmax
a,b = 100 or kmax

c,d = 1000, respectively. Constructed

communities are randomly assigned in a power-law size distribution [67] specified by an

exponent βa,c = −1 or βb,d = −2, minimum size nmin = 4, and maximum size nmax = 50.

Communities are then maximally connected with pin = 1. Even with t = 1, the APM

is almost perfectly accurate for most tested parameters in this problem. See Sec. 4.3.1

regarding the accuracy transitions in panel (d). Data are averaged over 100 graphs in

panels (a) and (b) and 25 graphs in panels (c) and (d).
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Figure 2.6: Plot of VI V between solved and known test systems in Sec. 2.4.2 vs the

average external node degree kout. In panels (a) through (d), system sizes are Na,b = 512

and Nc,d = 4096 nodes, respectively. The graphs are solved with the APM and the RBCM

using the algorithm in Sec. 2.2 with t = 4 trials. The constructed configurations are identical

to those used in Fig. 2.5. In this plot, we test two different initial states for the solutions:

a symmetric initial state and a random power-law distribution (see text). We use γ = 1

for the APM on all solutions, and we subjectively choose the best γRB for the RBCM for

each kout (see Appendix C). For comparison, the results for SA with t = 4 are also depicted

and are solved using this best value of γRB . The APM and SA with the RBCM show

no difference in accuracy between the symmetric and random initial states. A symmetric

state appears to be the favored starting configuration for the RBCM when using a greedy

algorithm in this benchmark. In fact, this symmetric initial state allows the RBCM to

slightly outperform SA in accuracy (see text). We average over 100 graphs in panels (a)

and (b) and 25 graphs in panels (c) and (d).
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Benchmark

We test the accuracy of APM and RBCM models with high levels of noise in a series

of strongly defined systems with “realistic” distributions of community sizes. Specif-

ically, we define a set of communities with a power-law distribution of community

sizes specified by an exponent β, minimum size nmin, and maximum size nmax. We

add random edges to the system, largely defining the intercommunity noise, based on

a power-law distribution of node degrees given by an exponent α, average power-law

degree 〈k〉α (or minimum degree kmin), and maximum degree kmax [66]. This initial

framework is similar to a benchmark by Lancichinetti et al. [67, 59]. We then connect

internal community edges at a high density pin.

The strongly defined communities provide unambiguous partitions where the large

level of noise does not significantly alter the optimal solutions (see Sec. 2.4.2). This

density-based definition of community structure is consistent with concepts proposed

for community identification by Palla et al. [4]. We solve for the systems using the

algorithm in Sec. 2.2 for both models with t = 1 and 4 trials and using SA for the

RBCM with t = 4.

Accuracy results

Figures 2.4 and 2.5 show a sample system and the first test results, respectively. We

use two system sizes of Na,b = 512 and Nc,d = 4096 nodes, respectively. The initial

power-law degree distribution uses α = −2; and the maximum degree constraints

are kmax
a,b = 100 and kmax

c,d = 1000, respectively. We increment the average power-law
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degree 〈k〉α to vary the system noise (the average external degree kout � 〈k〉α for

large systems). Community sizes range from nmin = 4 to nmax = 50 nodes and are

distributed according to βa,c = −1 or βb,d = −2, respectively. The internal community

edges are maximally connected at a density of pin = 1.

We plot VI V versus kout for both Potts models where VI is calculated between

the solved partition and the generated graph (V max
a,b = 9 and V max

c,d = 12). For the

APM, we use γ = 1 for every solution, and we allow zero energy moves after the

system reaches an initially converged state. For the RBCM, we subjectively select

the best solution corresponding to the highest accuracy γ
RB

independently determined

for each kout given the known answer (see Appendix C). We further solve the system

via SA at this best value of γ
RB

for comparison. We average over 100 graphs for each

point in panels (a) and (b) and 25 graphs in panels (c) and (d).

In panels (a) and (c), the advantage in accuracy for the APM is modest. The

accuracy of the RBCM increases in panels (a) and (b) at higher levels of noise due in

part to the fact that the degree distribution is becoming more uniform as we increase

〈k〉α but keep kmax constant. While the RBCM performs excellently in many cases,

the APM outperforms it to varying degrees for most tested parameters and levels of

noise. Moreover, the APM is often able to almost perfectly solve the system.

The rapid increases in VI for both models in Fig. 2.5(d) are due to transition

effects described in Chapter 4. We subjectively select the best γ
RB

here, but note also

that our algorithm can slightly outperform SA in accuracy in many cases for either

Potts model (see Sec. 2.4.2 and Appendix D). See Sec. 2.5.4 regarding how the high
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levels of noise in this test actually mitigate the effect of the resolution limit for the

RBCM.

Dependence on initial condition and SA accuracy

A community detection algorithm should ideally be robust with respect to the initial

state that is used to solve the system. We show that APM displays this feature, and

we contrast the result with the RBCM when using the greedy algorithm in Sec. 2.2.

We further elaborate on the accuracy of SA compared to this greedy algorithm.

In Fig. 2.6, we plot VI V vs kout where increasing kout corresponds to higher levels

of system noise. We measure V between the solved and constructed systems where

the defined systems are identical to the previous subsection. We test both models

beginning from two different initial states: a symmetric initial state of one node per

cluster with q0 = N and a random power-law configuration with q0 � q which is

different than the defined answer. For simplicity, this random initial state uses the

same distribution parameters (βa,c = −1 or βb,d = −2, nmin = 4, and nmax = 50) that

are used to generate the answers.

The best solutions for the APM are robust to the initial state of the system in this

benchmark, including during the major accuracy transition in panel (d), despite using

a greedy algorithm. The symmetric initial state performs very well for the RBCM and

is the favored starting configuration compared to the random power-law state. The

situation is reversed for the RBCM on the benchmark in Fig. 2.1 in Sec. 2.3 where

the symmetric initialization performs worse than a random initial state with q0 = 4
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communities (with or without constraining q in the dynamics [63]) although that

benchmark has an unrealistically symmetric community structure. While optimizing

the RBCM often provides excellent partitions, this difference in accuracy between

initial states indicates that it is more easily trapped in unfavorable regions of the

energy landscape than the APM when using a greedy algorithm.

As expected, SA with the RBCM shows no difference in accuracy for either initial

state, but the greedy algorithm outperforms SA in terms of accuracy when using a

symmetric initial state (see also Appendix D). This reduced accuracy for SA compared

to a greedy algorithm is not isolated to this benchmark. Lancichinetti and Fortunato

[59] compared the accuracy of several algorithms using their benchmark [67]. One

result in [59] showed that a similar greedy algorithm optimizing modularity [equivalent

to γ
RB

= 1 in Eq. (2.7)] by Blondel et al. [6] also outperformed SA in accuracy on that

benchmark. See also Good et al. [68] regarding difficulties associated with modularity

optimization in practical problems.

Noise tolerance discussion

Even at low levels of noise, these benchmark graphs exceed the proposed definition

of so-called “weak” communities [69], but the communities are not ill-defined from

an intuitive standpoint within the tested range of noise. In panel (d) for example, at

kout � 370 the average number of edges connecting a given node to another community

is � � 1 because the kout edges are randomly spread over (qb − 1) � 370 communities.

This value is small compared to the average internal degree kin � 10 and the average
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number of missing links with an external community (〈m〉 − �) � 10 where 〈m〉 is

the average community size. Thus, the communities remain well-defined particularly

given their high edge density pin = 1.

The two Potts models respond to the noise in the system in distinctly different

ways in terms of how the community measure is calculated. Noise complicates com-

munity assignment decisions for the RBCM because the configuration null model [the

second term in Eq. (2.7)] incorporates the contribution of all edges, including noise,

for every node assignment evaluation even after a reliable solution “kernel” is located

during early stages of the solution dynamics (the metric effect of noise).

The APM evaluates all edges for community assignment decisions through relative

energy calculations, but Figs. 2.5 and 2.6 demonstrate that the best solution is often

completely unaffected by the system noise if the algorithm can navigate sufficiently

close to the solution. Once an initial solution kernel evolves during the early stages

of the algorithm dynamics, confusion caused by random system noise is often easily

mitigated by the missing edge energy penalty [the second term in Eq. (2.2)]. That

is, the metric effect of noise on the APM is very favorable so that the main challenge

caused by noise in the network is often due to the dynamical effect of noise (early

incorrect assignments) that affects both models.

We could further improve the accuracy of the APM using a more robust, but

much slower, algorithm such as SA. Nevertheless, this benchmark illustrates that the

energy landscape of the APM is more easily navigated, particularly for γ = 1, than

the RBCM. The energy landscape of the APM is more difficult to navigate for γ 	 1
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as compared to γ ≥ 1 or when communities are not as strongly defined as they are

in this test, but the model maintains an exceptional accuracy [37, 59].

2.5 Resolution limit

The quantitative approaches of modularity [14] and the RBPM [15, 16] in Sec. 2.1.2

were implemented by incorporating global graph parameters into the models. Both

models marked important progress in the field of community detection, but Refs. [44]

and [45] noted an unintended consequence of using global community measures —

an imposed resolution limit. The resolution limit restricts the solutions of affected

models so that they cannot correctly resolve all communities of a system in certain

non-pathological cases. For modularity and the RBCM, the number of communities

in a system tends toward
√

L [44] and
√

γ
RB

L [45], respectively. The models have

difficulty properly resolving small communities in large systems and may incorrectly

divide large communities.

We first discuss local versus global measures, and we then illustrate the resolution

limit for the RB Potts models, including modularity as a special case. We also

show that the APM is free of resolution-limit effects because it is a local measure of

community structure.
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2.5.1 Local vs global measures

Including global dependences in quantitative community detection models was ap-

parently rooted in the need to objectively determine the community structure of

arbitrary graphs. The assumption is that the global properties of the graph should

imply its local community structure. Global dependences make the partition solution

objective since it allows the same quantitative model to automatically rescale to any

graph, but they also became the central element that caused a resolution limit.

One suggested solution [44, 45] to the resolution limit is to define a local measure

of community structure. That is, community evaluations are made based only on local

features of the graph in the neighborhood of the involved nodes and communities.

Some approaches that provide local community detection methods include clique

percolation [4, 19], analyzing random walks [21, 39], “label propagation” [23] (and

one variant in [24]), and local variants of modularity [5, 70]. See Sec. 2.5.5 and

Appendix B regarding the RBER model. The APM is also a strongly local measure

of community structure.

Local models possess beneficial properties for solving some networks such as: large

networks that are “defined” as the network is explored (e.g., the World Wide Web),

incompletely known networks (e.g., social interactions), coarse partitioning and re-

finement algorithms, and dynamic networks. Communities sufficiently isolated from

graph changes do not have to be repetitively updated as the network is modified.

There exists work for modularity [71] that preserves the measure as the system is
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scaled, but a local model does not require this extra buttressing. Further, several

of the most accurate community detection methods [59, 39] are based on essentially

local methods or models of community detection [21, 37, 39].

However, using a local measure of community structure returns to the subjectivity

problem. How does the model objectively determine the community structure of

arbitrary graphs? Stated specifically for the APM, how does one choose the “correct”

resolution(s) [i.e., value(s) of γ in Eq. (2.2)] that will best solve the system? Several

answers to this problem are as follows although the concepts are not restricted to

local models.

One approach is to define a community independent of the graph being solved.

For example, we might seek to identify all communities of “close friends” in a social

network regardless of the size of the graph. For the APM, Eq. (2.3) relates the model

weight γ to the minimum community edge density for all communities in a partition.

Some other methods, which are beyond the scope of this paper, define an algorithm

or measure that can determine which resolutions (see Sec. 2.1.1) are the best partitions

for the network. Arenas et al. [33] varied a weight parameter with modularity and

tracked stable partitions. Kumpula and co-workers [34, 35] as well as Fenn et al.

[36] also explored stability approaches for the RBCM. Our multiresolution method

[37] utilized information comparisons among independent solutions to quantitatively

evaluate the best resolutions. Zhang et al. [38] used a topological weighting strategy.

Cheng and Shen [39] used the stability of random walker diffusion dynamics to identify

the most relevant resolutions.
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Figure 2.7: Each graph is a circle of cliques with N total nodes and L total edges. (a) A

set of q cliques with m nodes each are connected in a circle by q links. (b) r consecutive

cliques are each grouped together. Intuitively, one would expect that any measure should

resist merging these communities on any system scale (e.g., N , L, or q) if m ≥ 3.

2.5.2 Circle of cliques

Fortunato and Barthélemy [44] and Kumpula et al. [45] identified a resolution limit in

the respective models in part by considering the unweighted system shown in Fig. 2.7,

a set of q cliques (maximally connected communities) connected in a circle by single

edges. In Fig. 2.7(a), each clique is a separate community. The total number of links

is L and the number of nodes in the system is N . The total number of links between

the cliques is q. The number of nodes in each clique m can be varied independently

of q. From Eq. (2.2), the APM energy is

Ea = −1

2
qm(m − 1). (2.8)

This energy Ea has no finite extremum with respect to any global parameters of

the graph. The analogue to Eq. (2.8) for modularity and the RBCM is where the
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resolution limit was demonstrated. That is, those models have minima, q∗mod =
√

L

and q∗
RB

=
√

γ
RB

L, respectively, in the expected number of communities. Neither

of these values correspond to the intuitive partition (q clique communities) for all

system sizes.

Figure 2.7(b) depicts sets of r cliques grouped together. The specific conditions,

based on γ
RB

, for r neighboring cliques to merge are given by the following relations.

The RBCM of Eq. (2.7), using the configuration null model, includes modularity as

a special case when γ
RB

= 1. Two neighboring cliques (r = 2) [45] will merge if

γ
RB

<
q

m(m − 1) + 2
. (2.9)

The dependence on the number of cliques q is a problem since this condition for γ
RB

can always be satisfied if q is large enough (see also Sec. 2.5.4). For example, if m = 3

and γ
RB

= 1, the cliques merge if q > 8.

When using the RBER model with an Erdős-Rényi null model in Eq. (2.6), neigh-

boring cliques merge if

γ
RB

<
q − 1/m

m(m − 1) + 2
. (2.10)

We can always choose q large enough to induce a merger of neighboring cliques for

any γ
RB

(see also Appendix B). These results generalize so that a resolution limit can

be found to apply for an arbitrary choice of null model [45] when using the RBPM

of Eq. (2.5). The APM energy Eb of the configuration in Fig. 2.7(b) with r merged

cliques is

Eb = −γ + 1

2
qm(m − 1)

[
1 − γ

γ + 1

rm − 1

m − 1
+

2(r − 1)

rm(m − 1)

]
. (2.11)
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We compare the energies in Eqs. (2.8) and (2.11) and find that r = 2 cliques merge if

γ <
1

m2 − 1
. (2.12)

This merge condition depends only on the local variable m. Solving the system with

γ = 1 will ensure that neighboring cliques will not merge on any global scale (e.g.,

N , L, or q) of the system. Since γ adjusts the weight applied to missing links, we

can force a merger of neighboring cliques if we reduce γ to a sufficiently low value.

At m = 3 for example, we can force a merger if γ < 1/8.

2.5.3 Heterogeneous communities

Resolution-limit effects can be exacerbated when communities of substantially differ-

ent sizes are present. Danon et al. addressed improvements for modularity to better

resolve heterogeneous structures [1] with Newman’s algorithm in [62]. The APM deals

with heterogeneous communities naturally.

Figure 2.8(a) depicts a large graph G with three divisions. Communities A and

B have n and m nodes, respectively, and are connected by l edges. Sub-graph G′ has

N ′ nodes with an unspecified structure. For the RBPM of Eq. (2.5), using a generic

null model, the number of edges l that causes communities A and B to merge is of

the order [45]

l � γ
RB

nm

N
. (2.13)

The RBER model yields a merge condition of

l >
2L

N(N − 1)
γ

RB
nm. (2.14)
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Figure 2.8: A large graph G has N nodes and three sub-divisions depicted, one potentially

large sub-graph G′ with N ′ nodes and two distinct communities A and B with n and m

nodes, respectively. In panel (a), G is unweighted, and communities A and B are joined by

l edges. In panel (b), G is a weighted graph. For visualization purposes, solid lines depict

weighted edges, dashed lines depict weighted missing links, and the link thickness depicts

a relative link weight. Communities A and B are joined by weighted edges with a summed

weight of w. Weighted missing links have a summed weight of u. All other graph features

are left unspecified but are consistent with the community designations.

In Eqs. (2.13) and (2.14), even for l = 1 the merge conditions can be readily satisfied

in large graphs for any reasonable value of γ
RB

due to the dependences on global

graph parameters L or N (see also Sec. 2.5.4 and Appendix B).

Our APM model merges communities A and B if

l >
γ

γ + 1
nm. (2.15)

The merge condition is based only on γ and the local community sizes n and m. For

γ = 1, even small communities merge with large ones only if there are many inter-

connections. The dependence on γ is consistent with the purpose of its introduction
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in Eq. (2.2) — to allow the model to vary the system resolution.

2.5.4 Mitigated resolution limit

We return to the unweighted system of q cliques in Fig. 2.7 and Sec. 2.5.2 to show

that certain conditions will mitigate resolution-limit effects. By design, this circle of

cliques was constructed to have an unambiguous intuitive answer. Communities are

not so clearly defined in practice, so we convert the cliques to communities with �in

edges each, not necessarily maximally connected. We also increase the number of

intercommunity edges so that each community has an average of �out edges connected

to s other communities (qs�out/2 total external edges). The original condition for the

RBCM for neighboring cliques to merge [with lin = m(m − 1)/2, lout = 1, and s = 2]

is given by Eq. (2.9). The new merge condition is

γ
RB

<
q�out

(2�in + s�out)
. (2.16)

High levels of noise [s � O(q) and �out � O(1)] tend to reduce the effect of the

resolution limit because the ratio is asymptotic to γ
RB

� 1.

For the benchmark in Sec. 2.4.2, Eq. (2.16) explains how the RBCM can perform

very well, despite a resolution limit, even when a large number of communities q

are present (we also subjectively evaluate many values of γ
RB

). On the other hand,

more weakly defined communities [�in < m(m−1)/2] tend to increase resolution-limit

effects, but system noise can substantially and positively influence the effects of the

resolution limit.
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2.5.5 Locality of weighted Potts models

When considering weighted graphs, the introduction of (additional) global depen-

dences should be a “warning flag” because global dependences are the source of the

resolution limit. We show that the APM is remains a local model for weighted and

directed graphs.

Absolute Potts model

We generalize results from Sec. 2.5.3 for the APM with an emphasis on weighted

graphs including those with weighted missing links. Missing link weights correspond

to levels of adversarial relations between nodes. “Neutral” relations use a weight

bij = 1 since a weight of 0 is an inconsistent community detection model in general.

The following result also applies to directed graphs. Represented as a sum over

communities, Eq. (2.2) becomes

Hs({σ}) =
∑

s

( − ws + γ us

)
(2.17)

where ws and us are the energy sums of connected and missing edges of community

s, respectively. For reference in Sec. 2.5.5, the unweighted version of Eq. (2.17) is

Hs({σ}) =
∑

s

[ − (γ + 1) ls + γlmax
s

]
(2.18)

where ls is the number of edges and lmax
s is the maximum number of possible edges

in community s.

In Fig. 2.8(b), we use Eq. (2.17) to calculate the condition for two arbitrary

communities A and B to merge in a general graph. A and B are connected by edges
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with a total weight of w and a total missing link weight of u. The merge condition is

almost trivially given by

w > γu. (2.19)

Note that this merge condition is based only on γ and the connected or missing

edges between A and B. The APM remains a local measure for general graphs in the

strongest sense because node assignments are independent of the internal structure of

the communities (see also Sec. 2.5.5).

Weighted configuration RB Potts model

A weighted generalization of the RBCM model is

Hw
CM({σ}) =

∑
s

(
−ws + γ

RB

W 2
s

4W

)
(2.20)

where we express it as a sum over all communities. W is the total weight of all edges

in the system and Ws is the total weight of all edges in community s (including edges

connected to other communities). As with the unweighted variant, this weighted

model is necessarily already a global measure due to W in the sum over W 2
s .

Weighted Erdős-Rényi RB Potts model

The weighted generalization of the RBER model of Eq. (2.6) increases the global

dependence of the model as it is proposed in [15]. We rewrite the unweighted RBER

model as a sum over communities

HER({σ}) =
∑

s

(−ls + γ
RB

p lmax
s ). (2.21)
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Equations (2.18) and (2.21) show that in the special but important case of unweighted

graphs, the APM and RBER models are coincidentally equivalent if we rescale the

null model weight by γ
ER

≡ γ
RB

p to explicitly remove the global density dependence

(see Appendix B).

We write a conceptual generalization of Eq. (2.21) for weighted graphs which we

use again in Sec. 2.5.5,

Hw
ER({σ}) =

∑
s

(−ws + γ
RB

pwmax
s ). (2.22)

Analogous to lmax
s , wmax

s is the “maximum weight sum” of community s which must

be defined. RB used one natural definition of (i) wmax
s ≡ Wlmax

s to obtain [15]

Hw
ER({σ}) =

∑
s

(−ws + γ
RB

pW lmax
s

)
(2.23)

where W is the average weight over all edges.

In Fig. 2.8(b), an arbitrary graph G has three parts: two communities A and B,

and an arbitrary sub-graph G′. Communities A and B are connected by a summed

edge weight w. We ignore the missing link weight sum (u = 0) since the model does

not account for them. Using Eq. (2.23), the merge condition is

w > γ
RB

pWnm. (2.24)

The dependence on W allows arbitrary changes to independent parts of a graph to

unintuitively affect each other. For example, if we alter the edge weights in sub-

graph G′, we change the average edge weight W . As a result, we indirectly change

the condition for communities A and B to merge even though there are no local
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changes that affect A, B, or the links between them. This type of indirect effect

caused by global parameters of the graph is at the heart of the resolution limit.

Local “Erdős-Rényi” Potts model and “weak” locality

One can modify the weighted RBER model of Eq. (2.22) to create a local variant.

We briefly introduce our own variant since the comparison illustrates how “strongly”

the APM defines a local measure of community structure.

Another natural interpretation of wmax
s in Eq. (2.22) is (ii) wmax

s ≡ ws lmax
s where

ws is the average edge weight in the local community s. We also define γ
ER

≡ γ
RB

p

to explicitly remove any dependence on the global density of the system. (This was

the initial form of the RBER model [15]. See also Appendix B.) In removing the

density dependence p, the model is technically no longer an “Erdős-Rényi” Potts

model; however, in this interpretation, Eq. (2.22) simplifies to

Hlocal
ER ({σ}) =

∑
s

ws (−ls + γ
ER

lmax
s ). (2.25)

This variant uses almost the same energy sum as the unweighted RBER model in Eq.

(2.6) except that total energy of community s is weighted by ws. Equation (2.25) is

a local model in the sense that only parameters in the “neighborhood” of the local

communities contribute to the energy, but it is a local model in a “weaker” sense than

the APM because node assignments depend on the internal structure (edge weights

in this case) of the communities.

One can devise applications for such weakly local quality functions when influences

within a graph need to be abstracted for efficiency or due to limited knowledge of
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the full details of the network (e.g., social networks with influential personalities).

However, despite being a local model, using these indirect dependences for community

assignments (without associated edges between nodes) should elicit some caution

because similar indirect effects on a global level are the source of the resolution limit

for modularity and the RBPM.

2.6 Examples

We demonstrate the Potts model with (A) one real-world example and (B) a very

large constructed system of 40 × 106 nodes and over 1 × 109 edges.

2.6.1 Zachary karate club

A common test is the Zachary karate club [72]. It provides a small and real example of

a social division that occurred while the group was under study. The graph consists of

34 people with 78 recognized relationships between them that are weighted according

to the strength of the friendships (depicted by the relative line thickness). We use the

weighted relations in Eq. (2.2) with bij = 1 and divide the graph into two parts by

constraint as shown in Fig. 2.9. Our algorithm correctly identifies the communities

except for node 10 which appears frequently in both groups because there is no energy

difference between the two assignments at γ = 1. (This is a rudimentary identification

of an overlapping node using a method such as in [15].) In the actual division, node

10 associated with the group depicted by circles. A more complete multiresolution
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Figure 2.9: Graph depicts the Zachary karate club [72] solved with the APM using

weighted edges (relative line thickness), γ = 1, and q = 2 communities by constraint.

All nodes except 10 are correctly assigned. By our analysis, this node appears frequently

in both groups (see text).

analysis in [37] would correctly place node 10.

2.6.2 Very large system

We also construct a very large system similar to those defined in Sec. 2.4.2. The

system has 40 × 106 nodes and L = 1 157 634 899 edges assigned in a power-law

distribution of node degrees with an exponent α = −2. We specify the minimum and

maximum degrees as kmin = 20 and kmax = 500, respectively. The system is randomly

partitioned into q = 2443782 communities in a power-law distribution of community

sizes with an exponent β = −1 with sizes ranging from nmin = 10 to nmax = 25

nodes. The average internal community density is set to pin = 0.95. The average
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graph density is p = 1.45 × 10−6.

We solve the system with γ = 1/2 in Eq. (2.2) with the algorithm in Sec. 2.2 using

t = 1 trial. (Random community edge assignments allow some nodes to be weakly

connected to their intended communities. Using γ = 1/2 ensures that all but the

extreme outliers are properly assigned.) The system was solved very accurately with

V = 1.17 × 10−7 in 3.9 hours on a single processor [61].

2.7 Conclusion

We present an exceptionally accurate local spin-glass-type Potts model for commu-

nity detection: (1) our approach employs an absolute energy evaluation as opposed

to a null model comparison. (2) Its accuracy, even when using a greedy algorithm, is

among the best of currently available algorithms. (3) The model is robust to system

noise. (4) It is a local measure in a strong sense for unweighted, weighted (including

weighted “adversarial” relationships), and directed graphs. As such, it corrects a

resolution-limit problem that affects other popular measures [44, 45]. (5) Heteroge-

neous community sizes are naturally resolved. (6) The computational demand often

scales as O(tL1.3) where t is the number of optimization trials [generally O(10) or

less] and L is the number of edges in the network. We have accurately solved syn-

thetic systems as large as 40 × 106 nodes and over 109 edges [61]. In Ref. [37], we

illustrated in detail how this core community detection method may be extended to

systematically, accurately, and rapidly identify general multiresolution structures.
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Chapter 3

Multiresolution community

detection

3.1 Multiresolution approach

One challenge in developing a multiresolution community detection algorithm is that

of selecting the best resolution(s) for the system. A straight-forward method that

avoids the choice of the best resolution is to iteratively solve the system (with a

necessary change in γ for our model) and collapse the communities into “supernodes”

until the system is organized into a forced hierarchical structure. This approach is

viable; but even when the system is hierarchical in nature, there is the question of

whether the best resolutions were resolved at each stage. Our algorithm enables a

quantitative analysis that determines the best resolutions and applies to general types

of multiresolution structure.
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Figure 3.1: A depiction of several replicas, represented as “marbles,” in an energy land-

scape. “Interactions” between replicas are depicted by springs which represent information

correlations among the replicas (with only a few shown for presentation purposes).

3.1.1 Motivation

Ideally, we desire an algorithm that allows the system to communicate what the best

resolutions are; but without a priori information, the correct weights for these res-

olutions are not obvious in general. In order to identify the proper resolutions, we

examine information-based correlations among independent replicas (independent so-

lutions) via NMI or VI over a range of resolutions as depicted in Fig. 3.1. Rather

than using the replicas to simply identify a unique optimized solution for each res-

olution, we examine correlations among the entire set. We then select the strongest

correlations as the best resolutions.
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From a global perspective, the average NMI (between all pairs of replicas) indicates

how strongly a given structure dominates the energy landscape by measuring how

well the replicas agree with each other. High values of the NMI (often manifested as

peaks) correspond to more dominant, and thus more significant, structures. From a

local perspective, at resolutions where the system has well-defined structure, a set of

independent replicas should be highly correlated because the individual nodes have

strongly preferred community memberships. Conversely, for resolutions “in-between”

two strongly defined configurations, one might expect that independent replicas will

be less correlated due to “mixing” between competing divisions of the graph. Random

effects will usually reduce the correlations between independent solutions.

A similar argument applies to VI where, as an information distance, low values

of VI correspond to better agreement among replicas. With these information-based

correlations, we obtain a set of multiresolution partitions of the graph, but we also

obtain an estimate of the relative strength of the structures at each resolution. Note

that this argument does not distinguish between unrelated multiresolution structures

or those that are strictly hierarchical in nature although nothing prevents the impo-

sition of additional hierarchical constraints if desired.

Implicit in this argument is the idea that local minima in the energy landscape

represent meaningful, even if perhaps incomplete, information about the graph. The

same assertion was made in [48, 15] for modularity and the RB Potts model. Mod-

erate levels of “confusion” caused by random or competing effects within a graph do

not destroy information contained in the global energy landscape, and the replica
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correlations of our algorithm are a measure of the “complexity” of that landscape.

As the noise in the system is increased we expect that the transition to incoherence

(where replicas are weakly correlated) to occur rapidly (see end of Sec. 3.4 and two

brief examples of accuracy transitions in Sec. 4.3. If an algorithm can verifiably solve

for the global minima of a system in most cases, the problem of community detection

is solved in principle. Since this is difficult to do in practice, the replica correlations

in our algorithm take advantage of the fact that we cannot always locate the optimal

ground state(s).

In principle, one can also include in Eq. (2.2) interactions between each of the r

replicas to produce a “free energy” type functional of the form

F =
∑

i

Hi({σ}) − T
∑
i�=j

S(i, j). (3.1)

where S(i, j) is an information-based measure (e.g., IN , V , etc.) between all replica

pairs and T is a scale for this information measure. S(i, j) is maximized when the

community partitions are identical in all replicas. This information theory measure

formally plays a role analogous to entropy in a free energy functional. T then plays

the role of a “temperature.” Sans the first term, the minima of F in Eq. (3.1) produce

highly correlated random configurations (a “random high temperature configuration”

of the system which appears without change in all replicas). Our algorithm in this

work will amount to initially minimizing the first term in F , i.e.,
∑

i Hi({σ}), for a

set of fixed {γi}. Out of this set of replica configurations, we then ask for which γi

do we find a maximum of the correlations,
∑

i�=j S(i, j), when this information theory
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measure is plotted as a function of γ. A more sophisticated version of our algorithm

minimizes F directly with both terms included in each step as depicted in Fig. 3.1.

The information theory measures that we employ may also be written for other (non-

graph theoretic) optimization problems with general Hamiltonians, or cost functions,

H (see Appendix E).

3.1.2 Algorithm

We start the algorithm with a weighted or unweighted graph. In Eq. (2.3), pin is the

minimum internal edge density for each community, and it is equivalent to the resolu-

tion of the system when we minimize Eq. (2.2). The algorithm uses Eq. (2.2) to solve

a range of resolutions {pi} = [p0, pf ] (decrementing pi) corresponding to a particular

set of model weights {γi} = [γ0, γf ] as determined by Eq. (2.3). It is almost always

sufficient to have γ0 � 19 since it corresponds to a minimum community edge density

of p0 ≥ 0.95. The final weight γf is found when the system is completely reduced. A

completely reduced system is one that is fully collapsed into one community or one

where disjoint sub-graphs will not allow the system to collapse any further.

Each iteration, we decrement the density pi by a small value Δp = 0.05 (or 0.025

for smaller graphs) and calculate the corresponding γi. After a threshold value (say

pt = 0.1), we scale pi by a factor of 1/2 (or 3/4 for smaller graphs) in order to take

sizable steps towards a fully reduced system (necessary for large systems). One could

readily implement an adaptable step or “fill-in” process since the order of trials is

irrelevant for the result.
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The algorithm takes three input parameters: the number of independent replicas

r that will be solved at each tested resolution, the number of trials per replica t, and

the starting density which we set to be p0 � 0.95 corresponding to γ0 = 19. The

number of replicas is typically 8 ≤ r ≤ 12 and is selected based upon how much

averaging (over all replica pairs) is needed or desired. The number of trials t per

replica is generally 2 ≤ t ≤ 20. For each replica, we select the lowest energy solution

among the t trials as was discussed in Sec. 2.2. The value of t is chosen based on how

much optimization is necessary to identify a strong low-energy configuration [73].

The r replicas (and t optimization trials) are generated by reordering the “symmet-

ric” initialized state of one node per community. That is, even though the initialized

state is symmetric, the order that we traverse the list also affects the answer that

we obtain. This occurs because the node-level dynamics of the underlying commu-

nity detection algorithm in Sec. 2.2 moves a node immediately upon identifying the

best community membership given the current state of the system. Utilizing the

r replicas, we then use the information-based measures of Sec. A to determine the

multiresolution structure. Our algorithm is given by the following steps:

(1) Initialize the system. Initialize adjacency matrices (Aij and Jij) and weights

(aij and bij) based on the system definition. Use Eq. (2.3) and p0 to calculate the

initial model weight γ0.

(2) Solve all replicas at this resolution pi. Initialize the current replica to a sym-

metric state of one node per community. Use Eq. (2.2) to solve each replica with

model weight γi at a cost of O(N1+βZ1+βt log Z) per replica [73, 74]. Repeat the
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process independently for all r replicas. Each trial and replica randomly permutes

the order in which nodes are initially traversed in the respective solutions.

(3) Calculate the replica IN , V , I, and H information measures. Use Eq. (A-1) to

calculate H for all replicas and Eqs. (A-2) – (A-4) to calculate I, IN , and V between

all pairs of replicas for this resolution pi [75]. Calculate the average (see Eqs. (A-5)

and (A-6)) and the standard deviation for each measure.

(4) Decrement to the next resolution pi+1. If pi > 0.1, decrement pi+1 = pi − 0.05

or 0.025 for smaller graphs. If pi ≤ 0.1, pi+1 = pi/2 or 3pi/4 for smaller graphs.

Calculate the model weight γi+1 by Eq. (2.3). Return to step (2) until the system is

not further reducible (fully collapsed or disjoint sub-graphs will not collapse).

(5) Evaluate results. For the range of model weights {γi}, plot each average IN,i,

Vi, Ii, and Hi versus γi. Determine the strongest correlations (IN high or V low) in

these plots (see Figs. 3.3 – 3.5, 3.7, 3.9, and 3.11). These strongly correlated regions

correspond to the best multiresolution structure(s) in the graph. If the correlation

is less than “perfect” (IN < 1 and V > 0), we choose the lowest energy replica to

be the partition solution. One could also choose to construct a “consensus” partition

between all of the replicas [23, 76] at each notable resolution.

We estimate that the number of resolutions {pi} required to adequately specify an

arbitrary system scales as O(log N). The dominant scaling of the algorithm is almost

always step (2), so we estimate that the overall scaling is O(N1+βZ1+βrt log N log Z)

for some small β [74, 77].

Structures identified by this algorithm are not necessarily hierarchical; however,
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one can augment the algorithm by imposing an additional hierarchical constraint on

some fraction of the replicas. Comparisons would then be made strictly between all

pairs with and without this additional constraint. We applied this variation in both

divisive and agglomerative approaches, but in our testing it only resulted in a modest

improvement to the algorithm’s ability to identify the best resolutions. Therefore,

we use the above algorithm in order to take advantage of its generality and relative

simplicity.

3.2 Examples

3.2.1 Three-level hierarchy

The system in Fig. 3.2(a) depicts a set of 256 nodes for a constructed three-level

heterogeneously-sized hierarchy. The results are seen in Fig. 3.3. The unweighted

edge connection probabilities are pk for k = 1, 2, 3. Level 3 has a density p3 = 0.9

between nodes in the same community with community sizes from 5 to 22 (average

16) nodes. Level 2 has a density p2 = 0.3 between nodes in different constituent sub-

communities and is divided into five groups with merged sizes from 33 to 76 nodes.

Level 1 is the completely merged system that has a density p1 = 0.1 between nodes

in different sub-communities. These edges provide some system noise. The average

densities of communities at levels 1 and 2 are p = p1 = 0.182 and p2 = 0.470. We use

eight replicas and four trials per replica at a total run time of 6.1 s [78].
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Figure 3.2: Heterogeneous hierarchical systems corresponding to the plots in Fig. 3.3 for

panel (a) and the plots in Fig. 3.5 for panel (b). In panel (a), the 256 node system is

divided into a three-level hierarchy where the unweighted edge connection probabilities at

each level are the following: level 3 has p3 = 0.9 between nodes in the same community

with community sizes from 5 to 22 nodes (average 16). Level 2 has p2 = 0.3 between

nodes in different constituent sub-communities with merged community sizes from 33 to 76

nodes. Level 1 is the completely merged system of 256 nodes with p1 = 0.1 between nodes

in different sub-communities. The average edge density is p = p1 = 0.182. In panel (b),

we increase the system size to 200 000 nodes. Level 3 has 10 000 communities with sizes

from 6 to 37 nodes (average 20). Level 2 has 2500 communities with sizes from 27 to 180

nodes which are formed by merging two to eight communities from level 3. The density p1

is changed from panel (a) to p1 = 0.00031, and the average edge density is p = p1 � 0.0005.

This larger system has over ten million edges with approximately 62% of the edges being

random noise between level 2 communities.
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Figure 3.3: Plot of information measures IN , V , H, and I in panels (a) and (b) vs. the

Potts model weight γ in Eq. (2.2) for the three-level heterogeneous hierarchy depicted in

Fig. 3.2(a). In panel (a), the squares represent the average replica NMI IN (left axis), and

the inverted triangles represent the average mutual information I (right axis). In panel (b),

the triangles represent the average VI V (left axis), and the diamonds represent the average

Shannon entropy H (right axis). Circles in both panels represent the average number of

clusters q (right-offset axes). In each panel, the peak IN values at (ia) and (iia) and the

corresponding minimum V values at (ib) and (iib) accurately correspond to levels 2 and 3,

respectively, of the hierarchy depicted in Fig. 3.2(a). In panels (a) and (b), both the mutual

information I and Shannon entropy H display a “plateau” behavior corresponding to the

correct solutions. Plateaus in q [79] also indicate important structures as in [33].
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We show the results of the multiresolution algorithm of Sec. 3.1 applied to several

test cases [64]. In Secs. 3.2.1 and 3.2.3, we illustrate a small 256 node and a larger

200 000 node hierarchy respectively with both systems depicted in Fig. 3.2. In Sec.

3.2.2, we examine the structure of an Erdős-Rényi random graph for comparison to

graphs with known internal structure. We then analyze two real social networks in

Secs. 3.2.4 and 3.2.5 where the respective systems are depicted in Figs. 3.6 and 3.8. In

Sec. 3.3, we also demonstrate the algorithm’s exceptional accuracy for large systems.

In Fig. 3.3(a), the squares represent NMI averages over all replica pairs (left axis).

The inverted triangles represent the mutual information I averages for the same

replica pairs (right axis). In Fig. 3.3(b), the triangles represent VI averages over all

replica pairs (left axis), and the diamonds represent the Shannon entropy H averages

for the replicas (right axis). In both panels, the circles represent the average number

of clusters across the replicas (right offset axes). All parameters are plotted versus the

model weight γ where we use a logarithmic scale to facilitate comparing the behavior

of a large range of system sizes from N = 16 nodes in Figs. 3.8 and 3.9 to as large as

N = 200 000 nodes in Figs. 3.2(b) and 3.5 [65].

The extrema (ia,b) and (iia,b) are the correctly determined levels 2 and 3 re-

spectively of the test hierarchy depicted in Fig. 3.2(a). Peaks (ia) and (iia) have

IN = 1 and minima (ib) and (iib) have V = 0 which indicate perfect correlations

among the replicas for both levels of the hierarchy. The “plateaus” in H and I are a

second indication of the significant system structure whose importance will become

more apparent in later examples. The plateau in the average q [79] is also an impor-
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tant indicator of system structure as used in [33]. However, Figs. 3.4, 3.7, and 3.9

discussed later demonstrate that some caution should be exercised when using the

plateau criterion (in H, I, or q) for determining multiresolution structure.

At level 3 in Fig. 3.2(a), the average number of externally connected edges for

each node is Zout � 32.0 with a random noise component of Znoise
out � 19.8. Both

of these numbers are larger than the average number of internal edges, Zin � 14.3.

Despite this imbalance, the algorithm easily identifies level 3 of the hierarchy because

the external edges (particularly those due to the random noise) are not concentrated

strongly enough into any one external cluster. This behavior is important for smaller

communities on level 3 where Zout is substantially larger than Zin, and it illustrates

that the model is robust to noise in the system.

The VI peaks at γ1 = 0.111 and γ2 = 0.435 in Fig. 3.3(b) correspond to the average

inter-community edge densities, p1 = 0.1 for sub-communities at level 2 and p2 = 0.3

for sub-communities at level 3. Equation (2.3) relates the minimum internal edge

density pin ≥ γ/(γ+1) for each community in a solved partition. We can arrive at this

inequality, using inductive reasoning, by considering the minimum inter-community

edge density required for two arbitrary communities A and B to merge. We apply

the relation as an equality (i.e., energy difference between the merged and unmerged

states is approximately zero) for the peak VI values at γ1 and γ2. The respective

densities are pAB
1 = 0.100 and pAB

2 = 0.303. These values correspond closely to the

constructed inter-community densities p1 and p2 above. The local VI maxima show

that “complexity” of the energy landscape increases at resolutions where γ/(γ +1) is
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equal to the mean inter-community edge density. The more intuitive interpretation

is that the “complexity” of the energy landscape increases substantially when the

energy difference between different states is approximately zero.

3.2.2 Erdős-Rényi random graph

In Fig. 3.4, for comparison purposes we show the results for a purely (Erdős-Rényi)

random graph at the same average edge density p = 0.182 as the hierarchy in Figs.

3.2(a) and 3.3. We use eight replicas and four trials per replica at a total run time of

about 6.9 sec [78]. The only peak (ia) in the random graph corresponds to a trivial

division into groups with sizes of approximately {1, 2, 253} among the various replica

solutions. This peak indicates transitional behavior to lower density, essentially triv-

ial, structures. Peaks such as (i) can be distinguished from more meaningful ones by

the cluster size distribution or the corresponding information measures. The value

of I at (ia) or V and H at (ib) all have very low information values. Otherwise, the

random graph displays no significant multiresolution structure.

All of the information measures display a plateau behavior at (iia,b). The plateaus

in NMI or VI do not indicate a clear multiresolution structure because the correlations

are relatively poor (IN � 0.70 and V � 3.6) for both measures. If we examine the

detailed solutions across the plateaus (separate from our multiresolution algorithm),

the average NMI and VI are IN = 0.644 and V = 4.04 both of which indicate poor

agreement. There is no consistent structure identified by the community detection

algorithm in this region. Instead, the weak plateaus in NMI and VI indicate that
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the system is constrained within a set of similarly sized partitions that have similarly

high community edge densities. This example also illustrates that if we use only

the plateaus (in H, I, or q), there is a potential to incorrectly identify significant

structure(s) in the system. This possibility can be remedied by information checks

on nearby solutions in the plateau, but the poor NMI and VI correlations already

appear to indicate the lack of consistent structure in the region.

3.2.3 Large hierarchy

A much larger hierarchy is depicted in Fig. 3.2(b). The system has 200000 nodes and

10011428 edges. Approximately 62% of these edges are due to random noise between

level 2 communities. For this system, p1 = 0.000 31, but p2 = 0.3 and p3 = 0.9 are

unchanged from Fig. 3.2(a). There are 10 000 sub-communities at level 3 with sizes

ranging from 6 to 37. Level 3 communities are combined in groups of two to eight

to form the 2500 communities of level 2 with sizes ranging from 27 to 180. We use

eight replicas and two trials per replica with a run time of about 4.6 hours [78]. In

Fig. 3.5, extrema (ia,b) exactly identify level 2 of the hierarchy with perfect NMI

and VI correlations, and extrema (iia,b) accurately identify (IN = 0.999 995 and

V = 1.42× 10−4) all but 5 merged clusters out of 10 000 and 15 nodes out of 200 000

nodes for level 3. Due to random fluctuations, all of these nodes have a random

connectedness of 50% or less for their intended communities. This result is therefore

consistent with the model and algorithm.
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Figure 3.4: Plot of information measures IN , V , H, and I in panels (a) and (b) vs

the Potts model weight γ for a (Erdős-Rényi) random graph that has the same average

density p = 0.182 as the hierarchy in Fig. 3.2(a) and the corresponding results in Fig. 3.3.

The right-offset axes plot the number of clusters q. See Fig. 3.3 for a full description of the

legends and axes. In panel (a), the peak (ia) corresponds to a trivial partition of the system

into groups with sizes of approximately {1, 2, 253} among the different replicas. The trivial

structure change in the NMI spike is indicated by its the low value of mutual information I

at (ia) and by its low VI V and Shannon entropy H at (ib). The plateaus at (iia,b) do not

correspond to a consistent multiresolution structure as evidenced by the poor NMI and VI

correlations. Rather, they indicate multiple similarly sized configurations that have similar

community edge densities.
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Figure 3.5: Plot of information measures IN , V , H, and I in panels (a) and (b) vs.

the Potts model weight γ for the large three-level heterogeneous hierarchy depicted in Fig.

3.2(b). The right-offset axes plot the number of clusters q. See Fig. 3.3 for a complete

description of the legends and axes. With the exception of 15 weakly connected nodes (out

of 200 000) and 5 merged clusters (out of 10 000) at (iia,b), the extremal values of IN and

V at (ia,b) and (iia,b) both accurately correspond to levels 2 and 3 respectively of the

hierarchy depicted in Fig. 3.2(b).
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Figure 3.6: Pictorial representation of a social network of 62 bottlenose dolphins in Doubt-

ful Sound, New Zealand[80, 81, 82]. These groupings correspond to structures (i), (iv), and

(v) in Fig. 3.7 in order of smaller group sizes. The two-cluster partition (i) corresponds

to a known split of the dolphin community [80]. In partition (iv), sub-groups are as-

signed distinct node shapes except for circles which indicate various one and two member

groups. Structure (v) is identified from configuration (iv) when the four highlighted dyads

of dolphins ({5, 56}, {15, 55}, {20, 28}, and {40, 52}) form distinct sub-groups. Note that

sub-groups {7, 19, 30} and {23, 36, 39} in (iv) have nodes that are separated in their respec-

tive super-groups. These groups are examples of how our algorithm does not restrict node

assignments between different resolutions, and they illustrate how the algorithm can apply

to general types of multiresolution structure.
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Figure 3.7: Plot of information measures IN , V , H, and I in panels (a) and (b) vs. the

Potts model weight γ for a social network of 62 bottlenose dolphins in Doubtful Sound,

New Zealand [81, 80, 82]. A summary of results is depicted in Fig. 3.6 for configurations

(i), (iv), and (v). The right-offset axes plot the number of clusters q. See Fig. 3.3 for

a complete description of the legends and axes. One notable grouping is configuration

(i) which corresponds to a known split of the dolphin community [80]. The structures

represented by (ii) – (v) are other potential well-defined partitions explained in the text.

3.2.4 Dolphin social network

We tested a social network of 62 bottlenose dolphins in Doubtful Sound, New Zealand

[80, 81, 82]. Three of the strongest partitions ((i), (iv), and (v)) are depicted in Fig.
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3.6 using the results in Fig. 3.7. We use ten replicas with ten trials per replica at a

total run time of about 0.78 sec [78]. We use a density scaling of 0.8 rather than 0.75

for pi < 0.1 for step (4) of the algorithm in order to more easily observe the transition

between structures (i) and (ii) in Fig. 3.7. Configuration (i) identifies a grouping of

21 and 41 dolphins with perfect NMI and VI correlations (IN = 1 and V = 0). This

configuration agrees with an observed split of the dolphin network when a dolphin

left the school [80], but our algorithm also suggests that this configuration is not the

only strongly defined partition for the system.

Our algorithm further identifies partitions (ii) – (v) as important candidate par-

titions based on the strong NMI and VI information correlations. Partition (ii) sep-

arates weakly connected dolphins ({4}, {11}, {12}, {35}, {58}, and {46, 59}) in the

larger super-group of Fig. 3.6 into distinct sub-groups. Configuration (iii) is slightly

less well-defined with information correlations of IN � 0.980 and V � 0.132. It sepa-

rates weakly connected dolphins ({22}, {31}, {39}, {48}, and {32, 60}) of the smaller

super-group of partition (i) and also begins a coarse division of the larger super-group.

Configuration (iv) is perfectly correlated and is the first major reconfiguration of both

super-groups of structure (i). The data in the three largest groups of (iv) are largely

divided along gender lines according to details presented in [81]. Configuration (v) is

a slight variation of (iv) with IN � 0.998 and V � 0.0178 which separates four dyads

of dolphins ({15, 55}, {46, 49}, {32, 60}, and {20, 28}) into distinct groups. Among

different tests, there is some variation in the predicted groupings where a few nodes

can be reassigned between groups or separated into distinct communities. Sub-groups
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{7, 19, 30} and {23, 36, 39} of configuration (iv) have nodes that are split between the

two super-groups of (i). These groups show that our algorithm does not restrict

node assignments between different resolutions. This behavior allows our algorithm

to solve general types of multiresolution structures.

All measures show a strong plateau for configuration (ia,b). The mutual infor-

mation I shows weak plateaus at (iia) and (iva) but no plateau at (iiia) and (va).

Similarly, the Shannon entropy H shows weak plateaus at (iib) and (vb) but no

plateau for (iiib) and (ivb). The average number of clusters q as used in [33] also

indicates the presence of structures (ii) and (v), but it misses partition (iv). Ad-

ditionally, a weak plateau in q near configuration (iii) predicts a slightly different

resolution than the extremal NMI and VI correlations. The weak plateau behavior of

H, I, or q at different configurations of (iia,b) – (va,b) do not contradict the existence

of valid structures. Rather, missing plateaus in the supplemental measures H, I, or

q can indicate a noisy graph in general or a strongly defined but transient resolution.

3.2.5 Highland Polopa tribe relations

Figures 3.8 and 3.9 show the results for 16 Polopa tribes of Highland New Guinea

[83, 84]. These data feature allied, neutral, and antagonistic relations between the sub-

tribes of the region. Hage and Harary [84] used symmetric edge weights of +1 for allied

relations, 0 for neutral relations, and −1 for antagonistic relations in their analysis;

but these “intuitive” weight assignments are inconsistent if extended to systems that

include few or no antagonistic relations (such systems would tend to “collapse” into
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Figure 3.8: Pictorial representation of 16 Polopa tribes of Highland New Guinea [83,

84]. Solid lines represent allied relationships, and gray dashed lines represent antagonistic

relationships. The three main levels of the structure are indicated by shaded areas. These

groupings of tribes correspond to structures (i), (ii), and (iv) in Fig. 3.9 in order of smaller

group sizes. Distinct node shapes (intermediate grouping) also correspond to structure (ii).

The three-cluster structure (ii) corresponds exactly to the analysis in [83, 84]. Structure

(iii) in Fig. 3.9 is formed when node 2 joins the group at the bottom-right of the figure.

large groups). Therefore, our model uses the more consistent assignments of −1 for

“neutral” relations and −2 for antagonistic relations. Interestingly, Hage and Harary

[84] related the fact that the sub-tribes did not consider the possibility of strictly

neutral relations among tribes. We use 12 replicas with 10 trials per replica to limit

fluctuations in this very small data set at a total run time of about 0.46 sec [78]. We

use an array data structure due to the missing edge weights.
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Figure 3.9: Plot of information measures IN , V , H, and I in panels (a) and (b) vs.

the Potts model weight γ for 16 Polopa tribes of Highland New Guinea. The results are

summarized in Fig. 3.8. The right-offset axes plot the number of clusters q. See Fig. 3.3 for

a complete description of the legends and axes. The most important structure represented

in the figure is at (iia,b) where the strong correlations agree exactly with analysis presented

in [83, 84]. See the text for a full discussion of the other structures indicated in the figure.

Figure 3.8 depicts configurations (i), (ii), and (iv) from Fig. 3.9 in order of smaller

group sizes. For presentation purposes, we allow three additional resolutions to be

solved after the algorithm detects disjoint subgraphs at (ia,b). Our three-cluster

partition (ii) agrees exactly with those discussed in [84]. All configurations indicated
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in Fig. 3.9 are strongly defined with IN = 1 and V = 0. The first configuration (i)

is a two-cluster solution which merges two sets of clusters of configuration (ii). The

small size of the system causes the transition between configurations (i) and (ii) to

be sharply defined. To resolve the ambiguity, we must reference the plateaus in the

information measures H or I (or the number of clusters q [33]).

Strong NMI and VI values at (iiia,b) and (iva,b) correspond to two five-cluster so-

lutions. These solutions sub-divide the three-cluster system into two slightly different

dense configurations of allied tribes. In configuration (iii), node 2 is associated with

the group on the bottom-right of Fig. 3.8. In configuration (iv), all groups are cliques

(maximally connected sub-graphs). Both NMI and VI detect the transition between

(iii) and (iv) with a short-lived spike. The information measures H and I also show

the transition with plateaus at different values. Here, the number of clusters q does

not detect the transition since q does not actually change. Again, this is due to the

limited variability in this system, but the same ambiguity occurs in Fig. 3.4 for all

three supplemental measures H, I, and q.

3.3 Accuracy

In Figs. 3.10 – 3.12, we test the accuracy of the multiresolution algorithm of Sec. 3.1

with a recently proposed benchmark in [67]. An example graph with N = 1000 nodes

is depicted in Fig. 3.10. This new benchmark can pose a significant challenge since

it incorporates a more realistic heterogeneous distribution of community sizes and
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Figure 3.10: A sample graph with N = 1000 nodes from the new benchmark proposed in

[67]. For presentation purposes, this depiction uses μ = 0.05. Other parameters are α = 2,

β = 1, 〈k〉 = 15, and kmax = 50 (see text).

node degrees, and it allows for testing across a large range of system sizes. It divides

a set of N nodes into q communities with sizes assigned according to a power-law

distribution with an exponent β. The community sizes are optionally constrained by

minimum and maximum sizes of nmin and nmax. The degrees of the nodes are also

assigned in a power-law distribution with an exponent α with constraints specified by

the maximum degree kmax and the mean degree 〈k〉. The minimum degree kmin is set

so that the distribution gives the correct mean 〈k〉. A fraction (1 − μ) of the edges

of each node are connected to nodes within their own communities. The remaining

fraction μ are assigned to nodes in other communities.
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Figure 3.11: Plot of information measures IN , V , H, and I in panels (a) and (b) vs.

the Potts model weight γ for a single realization of the benchmark suggested in [67]. The

right-offset axes plot the number of clusters q. See Fig. 3.3 for a complete description of the

legends and axes. Figure 3.10 depicts a sample system from the benchmark. This example

plot is for N = 1000, μ = 0.5 , α = 2, and β = 1 (see text). Using the algorithm in Sec. 3.1,

we identify the strongest NMI and VI replica correlations among the different resolutions

as the “best” answer for the graph. For this graph, there is only one extremal value of IN

and V which indicates that there is only one “best” resolution for the defined system (see

also Appendix F). Note that these information values are the averages among the replicas.

The full accuracy plot in Fig. 3.12 plots the average IN between the “best” partitions and

the known benchmark graphs for a range of the mixing parameter μ.
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Figure 3.12: A plot of IN vs. μ for a new benchmark problem proposed in [67]. IN

is calculated between the solved answer, by means the multiresolution algorithm in Sec.

3.1 using the APM of Eq. (2.2), and the constructed benchmark graphs. An example

multiresolution analysis for a sample graph is in Fig. 3.11. μ is the fraction of edges of

each node (on average) that are assigned outside its own community. We tested the power-

law distribution exponents α = 2 and 3 and β = 1 and 2 for the node degrees and the

community sizes, respectively. For comparison, we also plot the results from [67] determined

by modularity optimization (Q-opt) using SA. With the APM, our multiresolution algorithm

demonstrates extremely high accuracy for large systems (see text). Appendix F discusses

the accuracy perturbations in panels (a) and (b) for N = 5000 nodes. Data for N = 1000

and N = 5000 nodes are averaged over 100 and 25 graphs, respectively.

We test systems with N = 1000 and 5000 nodes and power-law exponents of α = 2

and 3 for the degree distribution and β = 1 and 2 for the community size distribution.
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We do not specify the optional community size constraints nmin or nmax allowing the

benchmark program to specify them by the degree distribution. The node degree

distribution is specified by 〈k〉 = 15 and kmax = 50 where the mean degree 〈k〉 = 15

was the most difficult of the tested values in [67]. We vary the mixing parameter μ

in the range 0.1 ≤ μ ≤ 0.7. The accuracy results are summarized in Fig. 3.12.

We apply the multiresolution algorithm of Sec. 3.1 to identify the “best” system

partition. Figure 3.11 shows an application of the algorithm for a single benchmark

graph with N = 1000, μ = 0.5, α = 2, and β = 1. In this plot, we identify the

“best” system resolution by the strongest average NMI correlation between all pairs

of replicas. We use r = 8 replicas with t = 4 energy optimization trials per replica. As

seen in Fig. 3.11, both IN and V (almost always) show only one extremal value which

is the strongly defined system at (ia,b). Plateaus in H, I, and q qualitatively confirm

the structure indicated by the extrema in IN and V . From these data, we determine

that there is only one “best” resolution for the defined system. See Appendix F for

additional considerations in identifying the “best” benchmark resolution.

In Fig. 3.12, we identify the “best” partition for a set of benchmark graphs over

a range of the mixing parameter 0.1 ≤ μ ≤ 0.7. We then compare each solution via

NMI with the “known” partition. We average over 100 graphs for N = 1000 and

over 25 graphs for N = 5000 for each tested μ. For comparison, we also include

the results given in [67] for modularity optimization using a simulated annealing

algorithm. Combined with the APM of Eq. (2.2), our multiresolution algorithm

performs excellently, achieving almost perfect accuracy for each tested distribution
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exponent α and β and for a large range of the mixing parameter μ. The accuracy

perturbations in panels (a) and (b) for N = 5000 nodes are due to benchmark graphs

with more than one local extremum in IN and V . These perturbations are a result of

the automated selection of the single “best” resolution based on IN and V extrema.

We can largely eliminate them by a simple extension of the basic multiresolution

algorithm (see Appendix F). They are also nearly eliminated for these values of N if

we specify the default community size constraints of nmin = 20 and nmax = 50.

The absolute Potts model has little difficulty accurately solving the harder prob-

lem with N = 5000 nodes because the edges connected to external communities are

spread over more communities on average. This construction causes a greater con-

trast of interior and external edge densities (considering edges connecting pairs of

communities). This larger contrast allows the benchmark graph to be easily identi-

fied by the multiresolution algorithm. The converse occurs for small systems in the

benchmark.

Our multiresolution algorithm has some difficulty in identifying all communities in

this benchmark for exceptionally small systems (N � 300) where we achieve IN � 1.0

for a range of μ that increases with N (for N = 300, IN � 1.0 for μ ≤ 0.45).

Communities are partitioned locally, independent of any global parameters of the

system; so this limitation is not a resolution limit effect. Rather, this behavior is due

to simultaneously resolving communities with substantially different relative densities

[85]. Palla et al. [4] stated that the community density should be used in identifying

communities, which our Potts model does in effect. In Sec. 2.1.1, we suggested that it
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is the typical community edge density that characterizes the resolution of a partition.

The difficulty in this benchmark is due to defining communities by the fraction of each

node’s edges (1 − μ) that lie within its own community. Each community contains

�s = ns〈k〉(1−μ)/2 edges on average where ns is the size of community s. The average

edge density ps of community s is

ps =
〈k〉(1 − μ)

(ns − 1)
. (3.2)

The numerator is constant on average across all communities. Our Potts model

solves heterogeneously-sized systems well (see Secs. 3.2.1 and 3.2.3), but one notable

implication of Eq. (3.2) is that the realistic distribution of community sizes leads to

a substantial distribution of community edge densities with substantially different

character for this benchmark.

Note also that our highly accurate results for μ = 0.6 and 0.65 for most values

of N , α, and β in Fig. 3.12 show that the concept of a weak community structure

[69], where some nodes have more total edges connected to other communities than

within their own, is not too restrictive because the external edges can be dispersed

among many other communities. Indeed for μ > 0.5, all clusters in this benchmark on

average exceed the definition of a weak community since most, if not all, nodes have

more exterior than internal edges. So-called weak communities can occur frequently

in social networks for example. Individuals often know far more people than the

size of the local “community” group(s) (friends, associates, etc.) of which they are

members. We showed a similar, but more striking, result when identifying level 3 of
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the constructed hierarchy in Figs. 3.2(a) and 3.3 where the smallest communities had

many more external than internal edges. Nevertheless, the model could easily resolve

the communities at the correct resolution.

3.4 Discussion

In Figs. 3.3 – 3.5, 3.7, 3.9, and 3.11, strong correlations in NMI and VI appear

to be consistent indicators of important multiresolution structures. In most cases

the assessments of the “best” partitions are confirmed by “plateaus” in the mutual

information I and the Shannon entropy H. These information plateaus are similar

to those seen in the number of clusters q in [33] and that are also observed in our

data [79]. In Ref. [33], the Arenas et al. indicated that plateaus in q correspond to

the most relevant system structures. Our results largely affirm but also extend that

observation.

In many pertinent applications of our algorithm, the final results (including, by

fiat, our synthetic networks in Secs. 3.2.1 and 3.2.3) are indeed hierarchical in the

conventional sense. That is, solving the Hamiltonian of Eq. (2.2) anew with a dif-

ferent model weight γ may break the communities apart, but it does not swap ver-

tices between different communities at the correct resolutions. As each resolution is

solved independently in our algorithm, we may (and indeed do) find more compli-

cated multiresolution partitions where node reassignments lead to overlaps between

communities that are perhaps disjoint on another level. This latter case is more sub-
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tle and appears in systems such as the dolphin social network of Sec. 3.2.4 and other

individually oriented networks.

Variations in run time scaling among the different tests is influenced, sometimes

strongly, by different levels of effective noise in each system (aside from differing

numbers of replicas and trials; see Sec. 4.3.2). For example, the hierarchy for Fig. 3.3

had a run time of 6.1 s. The corresponding random graph in Fig. 3.4, with nearly the

exact same density and number of nodes, finished in 6.9 sec.

NMI and VI possess different strengths for quantitatively assessing multiresolution

structure. (1) Of course, NMI is normalized and VI is not (although one normalization

for VI is 1/ log2 N [86]). Both of these features are useful. (2) Figures 3.3–3.5 show

that VI more clearly identifies poor configurations. In the high density regime (γ � 5)

of Figs. 3.3 and 3.5, NMI shows a lower correlation compared to the peak values at

(i) and (ii); but VI clearly indicates poor agreement. In Fig. 3.4, VI in panel (b)

visually indicates a much poorer correlation in the γ � 0.3 region as compared to

NMI in panel (a). (3) In Fig. 3.4(a), we identified peak (ia) as a “trivial” division

with a huge component weakly connected to some small branch elements. If one was

actually interested identifying these very low-density solutions, NMI does identify

them. In panel (b), V and I simply indicate a very low-information configuration.

In many cases, extrema in either NMI or VI are sufficient to identify the mul-

tiresolution structure of a system. Occasionally, we need to additionally reference the

mutual information I or the Shannon entropy H (or the number of clusters q [33]).

For example, in Fig. 3.3 NMI and VI almost do not distinguish between the γ = 0.83
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partition (the exactly correct one) and the γ = 1.6 partition (one weakly connected

node separates to form a new community) because the separation between the two

configurations is almost imperceptible. Both of these partitions correspond to level 3

of the hierarchy depicted in Fig. 3.2(a), and both partitions have perfect correlations

(IN = 1 and V = 0). In this case, the small changes in information measures H and

I indicate a redundant γ = 1.6 partition. Also in Figs. 3.11 and 3.12, we used the

plateau to distinguish, when needed, between strongly correlated transient partitions

(due to random elements of the benchmark generation process) and the more stable

partition corresponding to the intended solution.

A similar challenge can occur for very small systems, such as in the transition from

(i) to (ii) in Fig. 3.9, or for systems with few intercommunity connections. As the

resolution is adjusted in these systems, variability can be more limited; and system

transitions can be sharply defined. For these systems, it is possible that the NMI and

VI correlations can remain strong and constant while crossing a structural transition.

In Fig. 3.9, we avoid this ambiguity by noting that H and I clearly show a transition

between structures (i) and (ii). Such systems can also accentuate the perceived

plateaus in the multiresolution data because the variation in different configurations

is small and transitions between major configurations can be sharp.

Given the distinctions, the two evaluations of multiresolution structure (“plateau”

behavior in H, I, and q or strongly defined IN and V correlations) are complimen-

tary. While the plateau behavior is important, it is a more qualitative assessment

of the “best” resolutions for the system. At least for our Potts model, under some
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conditions the plateaus in H, I, or q can be weak enough to prevent them being used

as the universal indicator of multiresolution structure. In Fig. 3.4, the plateaus even

corresponded to a set of similarly sized partitions with similar densities rather than

consistent structure. The NMI and VI approach can more easily identify short-lived,

but nevertheless strongly defined, structures (such as configuration (iv) in Fig. 3.7)

that the plateau criterion can miss. In all Figs. 3.3 – 3.5, 3.7, 3.9, and 3.11, the major

benefit of using the NMI and VI evaluations is that it appears to give a quantitative

estimate of the “best” resolutions. Together, the information measures appear to

provide a consistent, accurate, and quantitative method of identifying general mul-

tiresolution structure.

3.5 Further work

In further work, we will also consider a different method of adjusting the resolution

of the system using the Hamiltonian

Hvt({σ}) = −1

2

∑
i�=j

[
(aij + αij) Aij − (bij + βij) Jij

]
δ(σi, σj) (3.3)

where αij and βij are the new model weights as compared to γ in Eq. (2.2). This vari-

able topology Potts Hamiltonian is a generalized and continuous version of threshold

cut-offs in weighted graphs. It presents an alternative method of continuously scaling

the system by using an additive rather than a multiplicative scaling. It differs from

Eq. (2.2) in that it progressively adjusts the topology of the system where multi-

plicative scaling does not change the system’s connectedness. Additive scaling may
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provide a different perspective on the evolution of the system structure over different

scales, and it may better simulate how some real world models are “stressed.”

Additionally, it may be possible to probe the system at a local level by using either

localized partitions or by analyzing details within the confusion matrix at each resolu-

tion. With this approach, we may be able to identify stable, but localized, structures

beyond the information conveyed in the global information-based correlations.

In a future work, we will detail the minimization of the “free energy” type func-

tional of Eq. (3.1). This functional contains both the Potts model energy and the

composite information function. This latter information theory measure is maximized

when the correlation between replicas is maximal.

3.6 Conclusion

We use a Potts model measure for community detection and apply it to detecting

multiresolution structures: (1) Our approach identifies and quantitatively evaluates

the ‘best’ multiresolution structure(s), or lack thereof, in a graph. (2) All resolutions

are solved independently, so the algorithm allows for the identification of completely

general types of multiresolution structure. (3) It is based on information compar-

isons, so in principle is should apply to any community detection model that can

examine different resolutions. (4) The underlying Potts model and algorithm are as

accurate as the best methods currently available. [54, 59]). The model is a local

measure of community structure, so it is free from the ‘resolution limit’ as discussed
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in the literature [54, 44, 45, 33, 34, 52]. (5) Building on this foundation, the mul-

tiresolution algorithm demonstrates extremely high accuracy for large systems using

a recent benchmark proposed in [67] (see Sec. 3.3). (6) We estimate that the compu-

tational cost scales as O(N1+βZ1+βrt log N log Z) for some small β [74, 77] where r

is the number of replicas, t is the number of optimization trials per replica, Z is the

average node degree, and N is the number of nodes. We have tested our community

detection algorithm on systems as large as O(107) nodes and O(109) edges (see Sec.

2.6.2) [78]. The multiresolution algorithm requires a substantial number of individ-

ual community solutions; but due to the speed of the underlying algorithm, it can

nevertheless examine systems over O(105) nodes and O(107) edges on a single-user

workstation. The algorithm should extend very efficiently to parallel or distributed

computing methods allowing larger systems to be studied.
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Chapter 4

Phase transitions in community

detection

4.1 Introduction

Phase transition effects appear in many computational problems, and they constitute

one of the most important applications of statistical methods to these problems. In

these applications, a phase transition is defined as a situation where small changes in

local behavior will significantly change the overall algorithm performance (accuracy

and/or computational cost). Examples include the k-Satisfiability (k-SAT) problem

[87, 88, 89], search problem in artificial intelligence [90], Steiner trees [91], random

vertex-covers [92], Hamiltonian circuits [93], graph coloring [93], image restoration

and error-correction [94], and others. We will elaborate on a phase transition effect

in community detection that manifests in both static and dynamic aspects of the
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problem. Our results constitute a new perspective for singular transition from a

typical-easy to a rare-hard region in the community detection problem.

The static phase transition is studied via the system energy, “noise” (density of

intercommunity edges), time and temperature curves, and also the time-correlation

function. For a particular system, the energy as a function of noise pout reaches a

peak at some critical value of pout which is a sign of crossing from an easy to a hard

solution region much like that which occurs in the k-SAT problem [87]. We determine

the critical value of the noise for this transition, and we then study the properties of

system in the transition region. As it turns out, the system shows non-equilibrium

phenomenon, i.e., a breakdown of ergodicity; and further studies show that the system

in this region has spin-glass-like properties. For example, it has a memory effect.

The dynamic transition is analyzed by testing the fluctuations in the node trajec-

tories (community memberships) as a function of time. The node trajectories change

from convergent (well-defined memberships) to chaotic status (rapidly changing mem-

berships) as more noise is added. The convergence behavior in low noise corresponds

to system ergodicity, and the chaotic behavior in high noise corresponds to the break-

down of ergodicity. For a fixed system, the transition found by dynamic and static

facets always correspond to the same transition point which indicates that the phase

transition is an inherent property of the community detection problem.
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4.2 Heat bath algorithm

Using the cavity method [95], we can analytically solve for the communities in cer-

tain graphs, e.g., when all nodes have a fixed degree of k = 3. However, most general

graphs (with arbitrary degree and cluster size distributions) require computer simu-

lation. The system energy is the most intrinsic parameter for our problem, and we

search for the ground state of the above Hamiltonian by iteratively moving nodes be-

tween candidate communities based on a heat bath algorithm (HBA). Our community

detection heat bath algorithm is as follows:

(1) Initialize the system. Except for special cases, initialize the network into a

“symmetric” state where each node forms its own community (q0 = N).

(2) Test for a node move. Select a candidate node for a possible move to a new

state {σi} (see below). The probability of moving a given node is based on a Boltzman

weight P ({σi}) = e−ΔE/T (where we take the Boltzman constant to be kB = 1) for

the next candidate configuration {σi} at a specified temperature T and an energy

change ΔE (see Ref. [16], for example). We sum the probabilities for all candidate

moves where the node may (i) stay in its current cluster, (ii) move to each connected

cluster, (iii) or move to a new empty cluster (except when the current cluster size

is already n = 1). We normalize the probability distribution, generate a random

number, and move the node accordingly. The node is then “frozen” (not allowed to

move again) for the remainder of the current iteration (see step 3).

(3) Iterate through all nodes. Rather than randomly selecting nodes for candidate

85



Phase transitions in community detection

moves, we sequentially allow each node an opportunity to move, per step 2, on each

algorithm iteration.

(4) Test for community merges. After each iteration through all nodes in step 3,

we also allow the possibility for pairs of communities to merge based on the Boltzman

weight given in step 2.

(5) Stop after fixed number of iterations. Because we are looking at the solution

behavior at a fixed temperature in this chapter, we run for a (large) fixed number

of iterations. Generally, the number of iterations required for a “stable” solution is

O(102), but for “hard” problems, such as those encountered in this paper during

the phase transitions, the number of iterations is O(103). In general practice, we

would implement a cooling schedule to model a simulated annealing process with an

associated convergence criterion.

4.3 Static transition for T = 0

In this section, we use the greedy algorithm in Sec. 2.2 to solve the community par-

titions. We illustrate a community detection phase transition via the accuracy (as

measured by VI) on the noise test benchmark in Sec. 2.4.2 and a “susceptibility” on

a much smaller benchmark discussed in Sec. 2.3.
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Figure 4.1: (Color online) Plot of VI V vs the average external degree kout for the APM

and RBCM models. Similar to Sec. 2.4.2, we generate strongly defined communities with

N = 4096 nodes and high levels of intercommunity noise. We use the greedy algorithm in

Sec. 2.2 to solve the systems for both models. The system is initially assigned a random

power-law degree distribution with an exponent α = −2, maximum degree kmax = 1200, and

average degree 〈k〉α (kout � 〈k〉α). Communities are assigned in a power-law distribution

with an exponent β = −1, minimum size nmin = 8, maximum size nmax = 24, and density

pin = 1. The APM shows sharp accuracy transitions at (i) near kout � 620 (no zero energy

moves) and at (iii) near kout � 770 (using zero energy moves). These roughly correspond

to a similar transition for the RBCM at (ii). See the text regarding (iv). Each point is an

average over 25 graphs.
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4.3.1 Accuracy transition

In Fig. 4.1, we construct a set of well-defined but noisy systems with N = 4096 nodes

from the benchmark in Sec. 2.4.2. An initial random degree distribution is assigned

according to a power law with an exponent of α = −2, maximum degree kmax = 1200,

and average degree 〈k〉α. Community sizes are assigned in a power-law distribution

with an exponent of β = −1. Minimum and maximum community sizes are nmin = 8

and nmax = 24, respectively. We then maximally connect internal community edges

(density pin = 1). We vary the average power-law degree 〈k〉α (the average external

degree kout � 〈k〉α) and solve the system with the APM and RBCM models using the

algorithm in Sec. 2.2.

Features (i) and (iii) correspond to two related “phase transitions” of the system

into a “glassy” state for our APM. The “complexity” of the energy landscape dramat-

ically increases near the “critical points” of k(i)

out � 630 (where we disallow zero energy

moves) and k(iii)

out � 770 (where we allow zero energy moves), respectively. After the

transitions, our algorithm in Sec. 2.2 is more easily trapped in a metastable state

when navigating the energy landscape. In the intermediate region, the APM can still

almost perfectly solve the system (in general problems, allowing zero energy moves

does not usually result in such a drastic difference in accuracy). A second aspect of

these transitions (not depicted) is a generally rapid rise in the computational effort

required to solve the system which peaks near the respective critical points.

Feature (iii) at k(iii)

out � 680 shows that the RBCM displays a similar transition.
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We speculate that the more complicated energy landscape of the RBCM actually

allows further optimization as compared to the APM when not utilizing zero energy

moves in this problem. At feature (iv), the best RBCM solution (see Appendix C)

approaches a trivial partition with q > 3200 communities.

This community detection transition is similar to transitions in the k-SAT (k-

SATisfiability) problem found by Mézard et al. [87]. The authors showed that the

most difficult solutions for k-SAT problems are found along well-defined loci in the

phase diagram of random satisfiability problems. Figure 4.1 illustrates a similar

transition in community detection.

4.3.2 Transition via a “Susceptibility”

Another approach to view the phase transition is depicted by the data in Fig. 4.2.

The benchmark problem that serves as the basis for this data is discussed in detail

in Sec. 2.3. In Fig. 4.2, we plot for several numbers of trials n, the “susceptibility”

χn ≡ p(t = n) − p(t = 4) versus Zout, the average number of edges that each node

has connected exterior to its own community. The average number of total edges per

node is Z = 16. p is the percentage of correctly identified nodes from Fig. 2.1 (see

Ref. [19] in [62]), and t is the number of trials at each test. The ordinate χ in Fig.

4.2 is the percentage improvement in accuracy based on the number of optimization

trials that are used.

As Zout increases, the noise in the system increases. Figure 4.2 illustrates how the

noise in the system affects the effort required to solve the system as accurately as
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Figure 4.2: (Color online) A plot of the susceptibility χn ≡ p(t = n)−p(t = 4) versus Zout,

the average number of edges that each node has connected exterior to its own community.

χn is the percentage increase in the accuracy of each test as the number of trials t = n is

increased from n = 5 to n = 100. The average number of total edges per node is Z = 16.

p is the percentage of correctly identified nodes from Fig. 2.1. The curves are spline fits

and are intended for visualization purposes only. Additional trials are unnecessary in the

easy region Zout � 7. The benefit of extra trials is largest in the short transition region

8 ≤ Zout ≤ 9, and the benefit diminishes into the hard region Zout � 9.5 where the accuracy

improvement is small even with a large number of attempted optimization trials.

possible. The benefit of extra optimization trials is negligible for the easy region up

until about Z = 7. Additional trials are more important for a short transition region

(8 ≤ Zout ≤ 9). After this region, the benefit quickly reaches a point of diminishing

returns in the hard region Zout � 9.5 where it fails to produce large improvements in

accuracy despite significantly more computational effort.
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As the number of trials n increases, the “susceptibility” χn progressively exhibits

a more pronounced peak. Such a trend is also evidenced in the susceptibility of finite

size physical systems. We have also identified a similar and related dynamic feature

of the transition that is quantified by the increased computational time required for

a single solution [74] (beyond any added computational cost due to extra energy

optimization trials).

4.4 Static transition for T > 0

We again use the noise test benchmark in Sec. 2.4.2 to study phase transitions in our

problem for simulation temperatures T > 0. That is, for each constructed benchmark

graph, we start with N nodes divided into q communities with a power law size

distribution (β = −1). In order to create a strongly defined community structure,

we connect all intracommunity edges at a high average edge density pin = 0.95. One

distinction in this section is that we implement a fixed density of random external

edges pout < 0.5 (noise) as opposed to using a power law distribution of noise as in

Sec. 2.4.2. We use the above HBA in Sec. 4.2 at a temperature T > 0 to solve each

test network. Obviously, the higher the noise level, the more difficult the system

will be to solve. Similarly, a higher solution temperature T makes the constructed

configuration harder to detect.
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Figure 4.3: Plots of energy E(T, pout) where T is the heat bath temperature and pout is

the level of network noise for a system with N = 1024 nodes. The number of communities

is q = 80 and 100 in panels (a) and (b), respectively. The energy here refers to an ensemble

average energy over 100 replicas at time t = 1000. Both panels show a phase transition from

a “flat region” (solvable) to a “hill region” (difficult-to-solve) as T and pout increase. From

panels (a) to (b), the solvable region decreases as q increases, which matches the complexity

trend.

4.4.1 Energy transition

In panel (a) of Fig. 4.3, we show a 3-dimensional (3D) plot of the system energy

E(T, pout) for q = 80. As expected, the energy exhibits a sudden jump as the noise

pout exceeds some critical value pc. A similar critical behavior is observed for solution

temperature T (the algorithm misplaces some nodes). We can determine the tran-

sition region in each system by observing the values of pout and T that show rapid

increase in E. We can solve the system perfectly in the “flat” region which shows

relatively low noise for many temperatures. In panel (b), we also show that a larger
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q (smaller communities) makes the system more difficult to solve (transitions occur

earlier in pout and T ) because the noise has a larger relative energy contribution when

used to evaluate the best community memberships. At low T and high pout, we see

an additional small bump in E where we observe that the near “greedy” application

of the solver cannot adequately optimize the solution.

The relation between energy and noise can be extracted from this 3D plot by fixing

the temperature. The resulting curve shows a peak behavior as the noise passes a

critical point pc, which is a site of the easy-hard transition. In other words, the system

moves from solvable, to difficult-to-solve, to unsolvable as noise increases. This kind

of transition is confirmed by the computational effort required to solve the system as

a function of noise [96], which displays a peak behavior as well.

A simple explanation of the energy transition is as follows: As pout increases from

0, the system is able to stay ergodic at low levels of noise. That is, the algorithm can

still traverse any encountered local energy minima to find the optimal solution, so the

energy stays constant (there is only one global energy minimum); however, it does

take progressively more time, in a non-linear relation, to locate the global minimum

state. Secondly, as pout passes the critical value pc, the system is still ergodic, but

it takes a very long time to find the lowest energy state. In a finite time scale, the

system stays near a local minimum state thus yielding a higher energy. Lastly, as

pout becomes significantly larger than pc, the system starts to lose ergodicity, and so

it takes shorter time to converge.

Following this explanation, increasing the running time would help increase the
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Figure 4.4: Plot of energy E vs temperature T for a system with N = 512 nodes, q = 40

communities, and pout = 0.32. The HBA temperature begins at T = 2.5 and decreases by

Tk+1 = 0.95Tk per step (one loop through all nodes) for each solution step k on the network.

After a steady-state solution is obtained, the process is reversed by Tk+1 = 1.05Tk. Note

that the network solution shows a clear hysteresis-like effect.

accuracy of the solution in the hard region (the peak area). After this region, the sys-

tem requires essentially an infinite amount of time to solve accurately. The accuracy

aspect of the transition was observed in [17] at T = 0. The non-zero temperature

case can also be verified by plotting the energy versus time in the hard region [96].

The breakdown of ergodicity indicates a non-equilibrium system in that region.

This non-equilibrium behavior would also cause a memory effect which has been
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previously studied for other spin glass systems, both in experiment and theory [97, 98].

When a spin glass is cooled down, a memory of the cooling process is imprinted in

the spin structure, and this process will be reproduced if one heats the system up.

In order to determine whether our system has a similar memory effect, we conduct

a similar computational “experiment.” Basically, we put our system in a heat bath,

and we lower the heat bath temperature T by a small amount each step k (a single it-

eration through all nodes), i.e., Tk+1 = 0.95Tk. After we reach a steady-state solution,

we then reverse the process and increase T after each step, i.e., Tk+1 = 1.05Tk.

In Fig. 4.4, we plot the system energy E as a function of T during this process.

The energy curve as T decreases follows a different path than when T increases which

strongly implies a hysteresis-like effect. This effect reinforces the similarity between

the community detection and a spin glass system.

Examples that show a memory effect are not limited to this one [99]. For instance,

if we add noise to the same system and then sequentially remove them, the accuracy of

the solution also forms a hysteresis loop at low temperature [96]. Similar to a real spin

glass system, the magnitude of this effect also decreases as the temperature increases,

and it finally disappears at some critical temperature in the community detection

problem. The system experiences a transition from spin-glass-like to a normal state,

and we could define this transition temperature Tg as a typical glass transition for

the community detection system.
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Figure 4.5: The collapsed curves for the correlation function at different waiting times

tw for a system with N = 512 nodes, q = 40 communities, and pout = 0.4. The heat bath

temperature is T = 1.2. The y-axis is g(t)C(tw, t) where g(t) = 6 − log10(t). The x-axis is

u(tw, t) = 1
1−μ [(t + tw)1−μ − t1−μ

w ] where μ = 0.2. Note that the value of μ is smaller than

the most common value, which indicates that it is more difficult to reach equilibrium in our

system.

4.4.2 Time correlation function

Furthermore, the two-time autocorrelation function, which is defined as

C(tw, t) =
1

N

N∑
i=1

δσi(tw),σi(tw+t), (4.1)

96



Phase transitions in community detection

can be also used to explore the spin-glass-like behavior. C(tw, t) denotes the auto-

correlation between time tw and t + tw, N is the number of nodes, σi(tw) denotes the

community membership for node i at time tw.

We use the HBA starting from a symmetric initial state and calculate the au-

tocorrelation in Eq. (4.1) for different waiting times tw and temperatures T . Each

correlation curve with longer waiting time lies above those with shorter waiting times,

and all the curves (with different waiting times) are non-zero for a long period of sim-

ulation time indicating that the correlation function also demonstrates a memory

effect in the studied system [96]. Moreover, we can predict the long time behavior of

C(tw, t) by fitting the curves using a commonly-used equation in Fig. 4.5 [100, 101].

If we apply the HBA starting from different initial configurations at low tempera-

ture, all the correlation curves with different initializations separate from each other

even up to t as large as t = 10000 [96]. Then as T increases, all the curves start mov-

ing towards, and finally overlap, each other. The temperature at which the different

initial configurations overlap indicates when the respective systems start losing any

memory of their initial configurations, and it directly relates to the glass transition

temperature Tg in the hysteresis loop for the same system. This further establishes

the existence of spin glass transition in the community detection problem.
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Figure 4.6: Plots of node trajectories 〈�ni〉 as a function of time t (number of algorithm

steps). The tested system has N = 24 nodes, q = 4 communities, and is solved at T = 0.05

using a HBA. Node i is picked randomly from the 24 nodes. pout = 0.2 is below the critical

transition in noise for these network parameters in panel (a), and pout = 0.3 is above the

transition in panel (b). Note that panel (a) shows a perfect dynamical solution for node i

where panel (b) indicates an incorrect solution attempt on average.

4.5 Dynamic transition

We also analytically study the related dynamical transition. To describe the dynami-

cal process, we need to calculate the trajectory (of community memberships) for each

node as a function of time. Specifically, we replace the delta function δ(σi, σj) in

Eq. (2.2) by a product 	ni · 	nj where 	ni and 	nj are the vertices of a regular (q − 1)-

dimensional simplex which satisfy the equation

	ni · 	nj =

[
1 +

1

q − 1

]
δij − 1

q − 1
, (4.2)
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where δij is the Kronecker delta. By this transformation, we can transfer the Hamil-

tonian in Eq. (2.2) to an Ising model form,

H = −
∑
ij

Cij 	ni · 	nj, (4.3)

where Cij is the interaction weight. We then use the Hubbard-Stratonovich transfor-

mation by introducing a scalar auxiliary field 	η to derive the effective Hamiltonian

β × Heff =
∑
i�=j

ln
(
e�ηiA

′−1
ij �ηj · Tr �ni

e �ni �ηi

)
(4.4)

in which A′
ij = (1 + γ)Aij − γ.

The dynamical equation for a node moving under the effective field is

d	ηi

dt
= −δHeff

δ	ηi

= −β−1
∑

j

A
′−1
ij 	ηj + β−1

∑
�nj

e− �nj ·�ηi · (− 	nj)∑
�nj

e− �nj ·�ηi
(4.5)

We can solve this dynamical relation to obtain a plot of the auxiliary field 	η as a

function of time

〈	ni〉 =

∑
�ni

	ni · e−βHi
eff∑

�ni
e−βHi

eff

=

∑
�ni

	ni · exp(−	ηiA
′−1
ij 	ηj) · Tr �ni

exp(−	ni · 	ηi)∑
�ni

exp(−	ηiA
′−1
ij 	ηj) · Tr �ni

exp(−	ni · 	ηi)
. (4.6)

Substituting 	η in Eq. (4.5) into Eq. (4.6), we can determine the trajectory of the

nodes as shown in Fig. 4.6.

The node trajectories 〈	ni〉 always converge to zero in low noise, and they diverge

in high noise in Fig. 4.6. The result demonstrates exactly the same kind of phase
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transition where the system moves from ergodicity to a breakdown of ergodicity.

The vectors 	ni’s are symmetric, so an ergodic system would make the average go

to zero, while a non-ergodic system could allow the average to be non-zero. The

transition point at which the dynamical process turns from convergence to divergence

is consistent with the one found by the static method above.

4.6 Conclusion

In conclusion: (1) We study the energy as the function of the density of intercommu-

nity edges (noise) and temperature of a heat bath solver for a community detection

problem. From these data we detect a rapid phase transition from an easy-to-solve

to a hard-to-solve problem. (2) The algorithm’s solution time for the system as a

function of noise exhibits the same phase transition, and the critical points deter-

mined by both transitions are the same for a given network. (3) In the hard-to-solve

region, a network shows a memory effect, which is a sign of a breakdown of ergodicity.

(4) We discussed three different examples of the memory effect, from which we can

extract the glass transition temperature. (5) We study an effective Hamiltonian as an

analytic function of thermodynamic variables. We then develop the node’s trajectory

equation (in terms of an evolving community membership) from it. (6) By plotting

the curve of node trajectories as a function of time, we found that the trajectory

shows a dynamic transition from convergence to divergence as the noise increases,

and the transition point matches well with the one found in the static case.
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Chapter 5

Characterizing amorphous

structures

5.1 Introduction

Amorphous materials often possess desirable properties relative to their respective

crystalline counterparts. For example, amorphous materials in general possess indus-

trial processing and preparation advantages [102, 103], greater solubility of pharma-

ceuticals [104] and other advantages [102, 105]. Metallic glasses can be stronger than

their respective crystalline structure due to fewer realized material defects, and they

can possess other interesting electrical, chemical, and magnetic properties [103].

In perfect crystals, the natural system scales are evident by the regular ordering

of the lattice. The fundamental unit cells of a crystal typically involve several atoms

that are replicated in a simple pattern to span the entire system. There are no
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intermediate scale structures that transition the system from the atomic scale of the

lattice up to the complete single crystal. Identifying the basic periodic unit cells

is vital to the understanding of all crystalline solids, and it is the simplicity of the

revealed structure that enables scientists to understand the behavior of these solids in

great detail. Early on, the existence of specific unit cell structures were postulated to

exist in crystals based on the sharp facets and other macroscopic properties of large

crystals. The only natural structure is that of the basic unit cell which replicates

itself everywhere (including on the largest scales).

There are other more complex systems in which new structures appear on addi-

tional intermediate scales between the atomic-scale and the macro-scale of the system.

A simple example is that of a crystal composed of different domains. These distinct

domains provide a natural definition of intermediate range structure for these systems

even though the basic periodic unit cells are essentially unchanged in each domain.

Although basic ordered materials form a fundamental pillar of modern technology

(e.g., the transistor was made possible by an understanding of the electronic prop-

erties of ordered periodic crystals with introduced impurities), there are many other

systems whose understanding is extremely important but are lacking due to the com-

plexity of their structure. In recent years, scientific exploration has endeavored to

understand a vast array of such complex materials that do not have a simple theo-

retical starting point. Such systems range in scope from structural glasses to complex

electronic states.

Some of the oldest complex materials are glasses which are still not well under-
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stood even after millenia. Liquids that are rapidly cooled (“supercooled”) below their

melting temperature cannot crystallize and instead become “frozen” into an amor-

phous state. On supercooling, liquids may veer towards local low energy structures,

such as icosahedral structures observed in metallic glasses [106, 107], before being

quenched into an amorphous state. Because of the lack of a simple crystalline refer-

ence, the structure of glasses is notoriously difficult to quantify beyond the very local

scales.

The most familiar and oldest technological glasses are the common silicate glasses.

More modern glasses include phosphate glasses (biomedical applications), semicon-

ductor chalcogenide glasses (optical recording media), and aforementioned metallic

glasses. In addition to their technological applications, some fundamental problems

in physics involve a better understanding the nature of the glass transition and the

character and evolution of amorphous structures.

Many theories of glasses rely on the hypothesis of natural structures in the glass

[108, 109, 110, 111]. Actually finding such structures in a general way has been

more elusive. How then does one best characterize the most “natural” structures in

amorphous systems? Here, we attempt to provide a general framework to answer this

question with specific applications to two model glass formers.
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5.2 Background

Existing work in the pursuit of understanding the glass transition is vast, spanning

decades and affecting many fields of science and engineering. Glass transitions can

be characterized by a number of different, but related, criteria [112]: the viscosity

and relaxation times can increase by many orders of magnitude with little change

in usual measures of order or quantities that accompany known phase transitions

(although recent work [113] may imply a stronger relationship than was previously

thought). Glasses demonstrate short range order (SRO) and medium range order

(MRO) structures, but no long range order exists. From an energy landscape per-

spective, the number of metastable energy states increases dramatically through the

glass transition [114, 115]. Some other works include a direct analysis of the po-

tential energy landscape of a glass (not in a graph theoretic mold) are found in

[116, 114, 115, 117, 118, 119, 120].

Given the broad appearance of a glass-related states in matter, different frame-

works have been explored to work towards a “universal” characterization of the glass

transition, such as geometry based frustration [108, 109, 111, 110] and the appear-

ance of topological defects as well as possibly related kinetic constraints [111, 110,

121, 122, 123].

There is a rigorous proof that a growing length scale must accompany the diverging

relaxation times of glass [124]. Some evidence has been found for a growing correlation

length [125, 126, 127, 128]. Correlation lengths have also been studied in terms of
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“point-to-set” correlations [129, 130].

In metallic glasses, early work to ascertain local structural, as opposed to meso-

scopic, features in monatomic systems used a dense random packing model [131]. It

was later established that such structures are better represented by an efficient clus-

ter packing (ECP) model [132, 133, 134]. SRO features were thought to pivot on

the existence of local icosahedral structures centered around solute atoms. Various

idealized SRO configurations were presented in [135]. Schenk et al. experimentally

verified icosahedral short range order (ISRO) in undercooled liquids [106]. Kelton

et al. were the first to experimentally establish a connection between ISRO and the

nucleation barrier [107]. Later work further established the importance of ISRO in

glasses [136, 137, 138].

Many structural characterizations are oriented toward static viewpoint of the sys-

tem, but some dynamical features have also been examined. Analysis of “free volume”

(unoccupied space between atoms) fluctuations [134] have been used. Shear stress

calculations investigate dynamical processes in glass forming materials [119, 139].

Dynamic heterogeneities involving cooperative motion of structures in a glass have

also been studied [140, 141, 142, 143].

Characterizations of SRO and MRO structures have been proposed or analyzed

in various settings for low [144] and high [138] solute concentrations, binary systems

[144, 138], or multicomponent systems [133].

Some methods of characterizing local structures include Voronoi tesselation [145,

123, 144], Honeycutt-Andersen indices [146], and bond orientation ordering parame-
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ters [147]. These local measures center on an atom or a given link and, by definition,

are restricted from detecting more complex longer range general structures.

Experimental means to directly measure MRO structures are given in [148, 149].

Some potential MRO clusters were examined [120, 144, 138]. Some approaches to

understand MRO use pattern matching to idealized MRO structures often constructed

as agglomerations of perfectly ordered SRO features.

Our unbiased structure characterization method extends multiresolution ideas [37]

in network science to complex materials. Any complex physical system may be ex-

pressed as a network composed of nodes that code basic units of interest (e.g., atoms,

electrons, etc.). Weighted links capture the strength of the interactions between the

different nodes or experimentally determined correlations (e.g., covariance or partial

correlation contributions to the structure factor). After casting the system as a net-

work, we then search for “communities” of nodes (i.e., clusters of atoms) that are

more tightly linked to each other than to nodes in other clusters [17].

Our multiresolution method extends the idea of community detection to quan-

titatively identify the “best” scale (or scales) for a complex physical system. Our

approach does not rely on intuition or a knowledge of expected “important” features.

Rather, it quantitatively estimates the best scale(s) through information-theory-based

correlations, such as the variation of information (VI) [86] or normalized mutual in-

formation (NMI), among different solutions. We may imagine that these solvers are a

group of people all assigned the task of examining the structure of the same network

In essence, different copies of the community detection problem are given to indepen-
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dent solvers (“replicas”). If many of these solvers strongly agree regarding certain

features of the solution, then these aspects are more likely to be correct.

Extrema in NMI or VI (and sometimes information plateaus, see Appendix I)

between the independent solvers indicate the best scales for the network. Multiple

extrema can indicate multiple relevant length scales and different time and length

scales appear in, e.g., α and β relaxation processes of structural glass formers. The

analysis presented here uses a fixed time separation between replicas, but we may

further analyze a range of time separations between replicas which would allow us to

ascertain the most relevant time scales of the system.

While the strength of the replica correlations is related to the relative atomic posi-

tions by design, one distinction between our work and some other established studies

of local structures in glasses is that our analysis is not looking strictly at the positional

structure. Rather, it evaluates structures in terms of the potential energies (i.e., the

internal binding energies of the clusters, see also [120]). A disadvantage of this ap-

proach is that it does not apply directly to model glass formers that use repulsive-only

or hard-sphere potentials. Advantages of our approach are: As mentioned previously,

it is not restricted to searching for expected structural features. Detected features

can be on essentially any size scale of the model system. Our method can encapsu-

late weights that represent general statistical (pair of higher order) stress (or other)

correlation functions.

Our approach provides a perspective different from the “point-to-set” [150, 151,

124] and other methods [126]. The point-to-set method examines the overlap between

107



Characterizing amorphous structures

configurations in a given volume (a “cavity”) in an equilibrated system and compares

those to configurations in the same cavity of the equilibrated system in which the

boundary of the cavity was held fixed. Physically, it probes how probable it is to

have a particular configuration within a disk or ball of a particular diameter given the

boundary conditions. If many states exist inside some sphere of some fixed radius, a

change in the boundary conditions will not significantly alter the cluster distribution.

Conversely, if the sphere radius is smaller than the natural correlation length, then the

number of configurations compatible with the boundary will be small and the overlap

will be large. A different approach is in Ref. [126] which examines the distribution

of structures inside a given volume to identify the correlation length. The method

examines whether the distribution of configurations inside the volume occurs with a

random frequency (when the linear scale of the volume is larger than the correlation

length) or not (when the linear scale of the volume is smaller than the correlation

length).

Our method looks does not look for overlap at different scales for a multitude of

configurations nor their frequency. Rather, the pertinent structures are revealed by

the information theory extrema between different copies of the entire system. We do

not need to directly tabulate possible configurations and their occurance probabilities

nor examine the system in restricted volumes.

Furthermore, the basic structures that we find may be used as the natural units in a

renormalization group type analysis where clusters are replaced by single nodes and an

effective energy can be written that entails interactions between the different clusters
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Figure 5.1: A depiction of our simulated model glass former with three components “A”,

“B”, and “C” with mixture ratios of 88%, 7%, and 5%, respectively. The N = 1600

atoms are simulated via IMD [152] in cube of approximately 31 Å in size with periodic

boundary conditions. The identities of the atoms are C (red), A (silver), B (green) in order

of increasing diameters.

alone. Finding the basic units is not trivial in amorphous systems such as glasses

or other disordered systems. In these systems, there is no symmetry and no obvious

knowledge of how to optimally partition the system as we go up in scale. Physically,

the community detection algorithm seeks to find a permutation that renders the

interaction maximally block diagonal and sparse with minimal interactions between

the blocks.

109



Characterizing amorphous structures

a0 a1 a2 a3 a4 a5

AA * * * * * *
AB 1.92 17.4 6.09 3.05 -4.68 3.48
AC 2.38 8.96 -14.9 3.11 -3.88 4.38
BB * * * * * *
BC 1.88 8.00 -3.42 2.53 -1.25 3.00
CC * * * * * *

Table 5.1: Fit parameters for Eq. (5.1) obtained from fitting configuration forces and

energies to ab initio data. The same-species (*) data is replaced by a suggested potential

derived from generalized pseudo-potential theory [155] (see also Appendix H).

5.3 Simulations of model glasses

We examine a model glass former derived from a three-component AlYFe metallic

glass [153] which we designate as “A”, “B”, and “C” in mixture ratios of 88%, 7%,

and 5%, respectively. The presence of the different components B and C assists in

the formation of a glassy state [154].

5.3.1 Ternary model glass former

As depicted in Fig. 5.1, one system that we examine is derived from a three-component

AlYFe metallic glass. The system t is a model glass former with components des-

ignated as “A”, “B”, and “C” in mixture ratios of 88%, 7%, 5%, respectively. We

use classical molecular dynamics (MD) [152] to simulate the system dynamics. For

this, we need accurate effective pair potentials that portray the pairwise interactions
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Figure 5.2: A plot of the model potentials for our three-component model glass former

(see Fig. 5.1). We indicate the atomic types by “A”, “B”, and “C” which are included with

mixture ratios of 88%, 7% and, 5%, respectively. The units are given for a specific candidate

atomic realization (AlYFe) discussed in the text. The same-species data uses a suggested

potential derived from generalized pseudo-potential theory [155] (see also Appendix H).

between the atoms in the system. Our model potential energy function is [156]

φ(r) =
(a0

r

)a1

+
a2

ra5
cos (a3r + a4) (5.1)

where it incorporates a realistic weak long range interaction. r is the distance between

the centers of two atoms. Table 5.1 summarizes the parameter values ai which depend

on the specific types for a pair of interacting atoms, and Fig. 5.2 shows the respective

potential plots.

The interaction parameters ai were determined [156] by fitting configuration forces
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and energies to ab initio data [157]. The same-species model interactions are finally

replaced by that suggested by generalized pseudo-potential theory (GPT) [155]. As

depicted in Fig. 5.1, we simulate N = 1600 atoms in a cubic system approximately

31 Å in size using periodic boundary conditions. This width is approximately twice

the size of any suspected MRO structures.

The system is initialized at a temperature of T = 1500 K and allowed to equilibrate

for a long time using a constant number of atoms, a constant volume, and a constant

energy (NVE). After allowing for system equilibration, we save s high temperature

configurations separated by a fixed period of simulation time. Prior to cooling, the

length scales in the system are changed by 1% to account for the increase in density as

a result of cooling since we choose to cool the system in an NVT ensemble to control

the temperature. The system is then rapidly quenched to T = 300 K, and it is

allowed to equilibrate in this mostly frozen state in an NVE ensemble. We again save

s separate low temperature configurations separated by a long period of simulation

time.

5.3.2 Lennard-Jones glass

We additionally test the ubiquitous Lennard-Jones (LJ) potential using the Kob-

Andersen (KA) 80:20 binary liquid [158] which lies in the glass-forming mixture region

[159]. The potential is

φαβ(r) = 4εαβ

[(σαβ

r

)6

−
(σαβ

r

)12
]

(5.2)
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where α or β designate one of two atomic types A and B. Specifically, in accord with

KA we set the dimensionless units εAA = 1.0, εAB = 0.50, εBB = 1.5, σAA = 1.0,

σAB = 0.88, and σBB = 0.80.

As in the ternary glassy system above, we use MD [152] to simulate a LJ system

of N = 2000 atoms. The system is initialized at a temperature of T = 5 (using energy

units where the Boltzmann constant kB = 1) and allowed to evolve for a long time.

We save s high temperature configurations separated by 1000 time steps selected so

that the configurations are separated by times that are of the order of the caging time

(see KA [158]). The time step size is Δt = 0.0069 in LJ time units. Then the system

is rapidly quenched to T = 0.01 which is well below the glass transition temperature

of the KA-LJ system. The system is allowed to run in this mostly frozen state, and

we save s low temperature configurations separated by 1000 steps of simulation time.

5.4 Multiresolution clustering on amorphous ma-

terials

Our idea is to apply, for the first time, multiresolution network analysis methods

to ascertain pertinent structures in complex amorphous materials. Using concepts

developed in Chapter 2, we define a model network by means of direct physical

analogies. We define a node as a single atom. Edges, and their corresponding weights,

are directly defined by the associated pair-wise potential energy. Specifically, we use

the interatomic potential energies in Eqs. (5.1) and (5.2). This model of weighted
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network edges is physically appealing in that finding the best partition for the network

is akin to minimizing the cluster binding energies of the physical system. In principle

for this application, we could further generalize the community detection Hamiltonian

of Eq. (2.2) to include n-body correlations or interactions.

Our community detection algorithm in Sec. 2.2 partitions the network into com-

munities by assigning a unique cluster membership for each node. Local features

in metallic glasses generally exhibit interconnecting short range structures [144]. In

our community detection problem, this feature corresponds to allowing “overlapping”

node memberships where atoms can be members of more than one local cluster. We

incorporate this effect by assigning a node as a secondary member of every commu-

nity for which it has a negative binding energy in terms our Potts model in Eq. (2.2)

(see Appendix G).

5.4.1 Motivation and physical analogies

Since the replicas in the current problem represent time-separated configurations,

strong agreement among the replicas corresponds to more consistent physical struc-

tures over time which fits the intuitive notion of a well-defined natural structure in

a physical system. In our current approach, these configurations are solved indepen-

dently (as opposed to solving the system in a time-dependent sense), but in principle

we could add contributions due to time-dependent relations between the graphs.

Two strengths of our community detection method approach include: The analysis

is independent of the type of structures that are being analyzed (structured, amor-
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phous solid, and possibly even liquid systems). Because edge assignments are based

on relative node positions (through the interaction potential), our method should be

robust with respect to translational or rotational motion of solid structures in the

system (such as crystal nucleation).

We can write down the general partition function for a community partition with

intercommunity interactions which, in the usual language, would correspond to the

surface terms of clusters in Random First Order Transition theory (RFOT). Our

parameter γ effectively plays the role of scaling the relation between surface and bulk

terms in RFOT. A high value of γ corresponds to large surface effects while a small

γ corresponds to dominant bulk effects.

In an ideal decomposition into communities, there is no interaction between dif-

ferent communities, and the system is effectively that of an ideal gas of disjoint

communities. Stated differently, in the simplest setting in which the Hamiltonian

would be block diagonal, the evolution of nodes (atoms) in each community would

be decoupled from all other nodes in other communities. In such instances, we may

treat each community as a different particle in an ideal gas of non interacting such

particles. The general problem is to find (the time dependent) permutation that may

render it into a nearly/best possible block diagonal form (on the time scale chosen).

Community detection emulates this for graphs

For slow cooling of a liquid which enables crystallization, a first order or critical

transition appears in the community detection problem (in the partitioning into dis-

joint ideal gas particles). A similar transition appears in slowly cooled liquids. For
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an infinitely rapid cooling of a liquid, the interactions between the particles are those

of a spin-glass, and we expect that a spin-glass transition appears in the community

detection problem [160].

5.4.2 Application for model glass formers

We assign edges between the nodes (atoms) with the respective weights based on

the empirical pair-potentials given by Eqs. (5.1) and (5.2). Specifically, we calculate

the potential energy φij between each pair of nodes i and j in the system and then

shift each value by a constant φ0 to obtain φ′
ij = φij + φ0 (assuming that φij → 0

as r → ∞). The shift φ0 > 0 is necessary for the community detection algorithm

to properly partition the network of atoms since it provides an objective definition

of which interatomic spacings are preferable for a well-defined cluster and which are

preferred to be excluded from a cluster.

In our particular application here, we calculate the average potential energy of

the system and set φ0 = −φavg. For use in Eq. (2.2), we define an edge with a weight

aij = −φ′
ij between nodes i and j if φ′

ij < 0, and we weight any missing links (or

“repulsive edges”) by bij = φ′
ij if φ′

ij ≥ 0. We then solve both model systems over a

large range of γ using s = 12 replicas and t = 10 optimization trials per replica.

While φ0 = −φavg is an intuitive shift that accomplishes the goal of an objective

cluster definition here, it is not an appropriate shift for some problems. For example,

using φ0 = −φavg turns out to be problematic in some cases for lattice models. In a

general application, we could examine many potential shifts φ0 and look for extrema
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Figure 5.3: Panels (a) and (b) show the plots of information measures IN , V , H, and I

and the number of clusters q (right-offset axes) versus the Potts model weight γ in Eq. (2.2).

The ternary model system contains 1600 atoms in a mixture of 88% type A, 5% of type

B, and 7% of type C with a simulation temperature of T = 300 K which is well below the

melting temperature for this system. This system shows a strongly correlated set of replica

partitions as evidenced by the information extrema at (i) in both panels at γ � 0.001. An

example of the best system partition is seen in Fig. 5.5, and some sample clusters including

overlapping nodes are depicted in Figs. 5.6 and 5.7.

117



Characterizing amorphous structures

 I
N

 I
 q

 V
 H
 q

0

1

2

3

4

5

6

10
2  q

0

1

2

3

4

5

6

10
2  q

10-5 10-4 10-3 10-2 10-1 100 101 102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

(b)

I N

(a)

10-5 10-4 10-3 10-2 10-1 100 101 102 103 104
0

2

4

6

8

10

γ

V

γ

0

2

4

6

8

I
0

2

4

6

8

H

Figure 5.4: Panels (a) and (b) show the plots of information measures IN , V , H, and

I and the number of clusters q (right-offset axes) versus the Potts model weight γ in Eq.

(2.2). The ternary model system contains 1600 atoms in a mixture of 88% type A, 5% of

type B, and 7% of type C with a simulation temperature of T = 1500 K which is well above

the melting temperature for this system. At this temperature, there is no resolution where

the replicas are strongly correlated. See Fig. 5.3 for the corresponding low temperature case

where the replicas are much more highly correlated at γ � 0.001.
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Figure 5.5: A depiction of the full partitioned system where unique cluster memberships

are depicted as distinct colors (best viewed in color). The atomic identities are B, A, C

in order of increasing diameters. Overlapping nodes (multiple memberships per node) are

subsequently added to these communities to determine the best interlocking system clusters.

in the information measures V or IN as a function of both γ in Eq. (2.2) and φ0.

In addition to the tested systems below, we applied the algorithm to various test

cases including square, triangular, and cubic lattice structures (see Appendix I). The

algorithm is able to correctly identify the natural leading order scales (plaquettes

and composites of plaquets as “cascades” in the information theory correlations). We

tested identifying natural features and domain boundaries within a 2D Ising lattice

(see Appendix J). Further testing (see Appendix K) involved two-dimensional defects
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(dislocations, interstitials, etc.) and domain walls (not depicted) in a lattice. Defects

in triangular lattices occurred most frequently near cluster boundaries.

We also tested static configurations [161] for the ternary model glass system where

each replica is a model of the same configuration. There we detected structures in both

low and high temperatures where the high temperature “structures” are more fragile

(that is, harder to solve in the clustering problem). This corresponds to identifying

relevant transient features in a dense liquid.

5.4.3 Ternary model glass results

In Figs. 5.3 and 5.4, panels (a) and (b) show the data for the replica information

correlations over a range of network resolutions. The lower temperature system at

T = 300 K in Fig. 5.3(a) shows a peak NMI at (ia) with a corresponding VI minimum

at (ib). Figure 5.5 depicts example of the full system partition, and Figs. 5.6 and

5.7 depict samples of the best clusters at γbest � 0.001 where we include overlapping

node memberships (the replicas correlations are calculated on partitions as in Fig.

5.5). The correponding T = 1500 K high temperature solutions have a much lower

NMI at γbest � 0.001 indicating significantly worse agreement among replicas. That

is, one would expect that the high temperature system T = 1500 K is in a liquid state,

so any observed features are not dynamically stable across all replicas (snapshots of

the system over time). At T = 300 K, the best structures have consistent cluster

sizes that are exclusively MRO.

The plateau regions for γ > 10 are similar to the LJ plot in Fig. 5.8, but in this
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(a) (b)

(c) (d)

Figure 5.6: Panel (a) is the full system cube, and panels (b) – (d) show three sample

clusters (one cluster per box) within the simulation boundaries using periodic boundary

conditions. Note that the algorithm identifies structures beyond immediate short range

neighbors.

system the NMI plateau is lower. In the high temperature case in Fig. 5.4, there are

additional “almost-plateaus” for the range 0.001 � γ � 0.1. These plateaus represent

a region of structural transition, but we are not concerned with them because the

replica correlations are very low.
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Figure 5.7: A depiction of some of the best clusters for the peak replica correlation at

feature (i) in Fig. 5.3. These clusters include overlapping node membership assignments

where each node is required to have an overall negative binding energy to the other nodes

in the cluster. The atomic identities are C (red), A (silver), B (green) in order of increasing

diameters.

5.4.4 Binary Lennard-Jones glass results

In Figs. 5.8 and 5.9, panels (a) and (b) show the data for the multiresolution replica

correlations for the simulated LJ system. The lower temperature system at T = 5

(in energy units) in Fig. 5.3(a) shows a plateau in NMI at (ia) with a corresponding

VI plateau at (ib) which are the local extrema (V = 0 at γ � 0.15 is a trivial

solution of a single cluster in this problem). Figure 5.10 depicts a sample of the

best clusters, including overlapping node memberships, at resolution (i) for γbest �

104. The corresponding higher temperature solutions at γbest � 104 have a lower

NMI (worse agreement among replicas). Our identified structures for this LJ model
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Figure 5.8: Panels (a) and (b) show the plots of information measures IN , V , H, and I

and the number of clusters q (right-offset axes) versus the Potts model weight γ in Eq. (2.2).

The LJ system contains 2000 atoms in a mixture of 80% type A and 20% type B (Kob-

Andersen binary LJ system [158]) with a simulation temperature of T = 0.01 (energy units)

which is well below the glass transition of Tc � 0.5 for this system. This system shows

a somewhat strongly correlated set of replica partitions as evidenced by the information

extrema at (ia,b) in panels (a) and (b). A set of sample clusters for the best resolution at

γ = 104 is depicted in Fig. 5.10.
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Figure 5.9: Panels (a) and (b) show the plots of information measures IN , V , H, and I

and the number of clusters q (right-offset axes) versus the Potts model weight γ in Eq. (2.2).

The LJ system contains 2000 atoms in a mixture of 80% type A and 20% type B (Kob-

Andersen binary LJ system [158]) with a simulation temperature of T = 5 (energy units)

which is well above the glass transition of Tc � 0.5 for this system. At this temperature,

the replicas are significantly less correlated than the corresponding low temperature case in

Fig. 5.8.
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Figure 5.10: A depiction of some of the best clusters for the peak replica correlation at

feature (i) in Fig. 5.8. These clusters include overlapping node membership assignments

where each node is required to have a overall negative binding energy to the other nodes in

the cluster. The atomic identities are B (silver) and A (red) in order of increasing diameters.

system are consistent in terms of the cluster sizes and are almost exclusively SRO

configurations with simple adjunct-type atoms extending into the low end of MRO

size structures.

5.5 Conclusion

Our algorithm utilizes a network theory model of a set of physical configurations. We

identify more cohesive and consistent SRO or MRO structures at temperatures below

the glass transition (or in a solid amorphous state) in two different model glasses. Our

analysis evaluates structures in terms the potential energies (i.e., the internal binding
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energies of the clusters). This approach differs from some other methods of structural

analysis that look strictly at the relative atomic positions. When present, the lack of

convergence to the same exact clusters, with only the appearance of a similar cluster

distribution, suggests high configurational entropy. Our approach identifies MRO as

the dominant feature of our ternary model glass former with no strongly defined SRO.

In contrast, the LJ system shows a largely SRO structure with adjunct atoms that

create near-MRO structures.

Our method is a new and very general approach to determining the natural local

and mesoscopic structures of amorphous or other complex physical systems. We do

not bias the expected configurations in any way other than to require an attractive

model interatomic potential (and/or higher order correlations, in principle) and a set

of dynamic configurations from which to define the model networks. The information

extrema and/or information plateaus give the different pertinent length scales (lattice

scales and correlation lengths) of the system in an unbiased unified way with no

prejudice as to what correlation functions should be deemed important.

Compounding the changes in structure that we find by analyzing the atomic sys-

tem at different temperatures and minimizing the energy function to determine the

optimal division into clusters, there are also entropic effects. The distribution of op-

timal partitions becomes wider and less pronounced also due to these effects as the

temperature increases. We also remark that when solving the system of Eq. (2.2)

at non-zero temperature for a given network (i.e., atomic configuration that is held

fixed), entropic effects can, on their own, lead to a transition as the temperature is
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increased [160].

On a lattice, plateaus in information theory correlation steps correspond to a

cascade of structures starting from the smallest dyads of nodes, to basic plaquette

structures (square, triangle, etc.), and growing ever larger (two joined plaquettes etc.).

In Ising spin systems at different temperatures on a square lattice, the domains of

“+” and “−” spins are separated from one another by domain walls. The information

plateaus correspond similarly to the cascade of small plaquette structures found on

the lattice itself (i.e., the single plaquette, two joined plaquettes etc.) up to a cutoff

scale set by the domain wall. This is sensible since no clear structure is found beyond

the domain length scale.

The largest fluctuations occur at the boundaries between different domains. These

domain walls are directly attained by the extrema (those corresponding to the maxi-

mum in VI). Physically, they correspond to the scales at which the largest fluctuations

occur where the large fluctuations lead to poor information theory correlations be-

tween the different replicas. Figure J3 corresponds to a sample depiction of the system

at the maximum VI. Correlation lengths are thus likely related poor correlations in

the information theory measures (maxima in VI) which is a subject for further study.

Further work could include: (i) Analyze the distinctions between different model

glass formers that were observed in Figs. 5.3 – 5.10. In particular, the ternary model

metallic glass and binary LJ systems show distinctly different features in the multires-

olution plots in Figs. 5.3, 5.4, 5.8, and 5.9. (ii) These plots provide a characterization

of the behavior of the glass formers over a range of system scales, so we could pur-
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sue this characterization further to see if it relates to the glass formability. (iii) We

can investigate any relation between “phase transitions” in the community detection

problem [160] (which exist apart from any associated atomic network model) and

glass or other transitions known to exist in physical systems. (iv) Examine the ex-

tremal information correlations as a function of the potential shift φ0 and the model

weight γ which will provide a more comprehensive analysis of the “best” structures.

(v) High values of γ roughly correspond to small scale features, and conversely, low

values γ roughly correspond to larger features up to the size of the system. Thus,

we speculate that there may be a relation between α and β relaxation times and

the behavior of our replica correlations in the different regions. (vi) We can use the

same method to detect general spatio-temporal structures beyond time correlations

using the corresponding classical action S from which the equations of motion follow.

This action replaces the use of the energy at fixed times. The system will evolve in

space-time to minimize the action, and we can represent the system as a network in

(D+1) space-time dimensions where D is the number of spatial dimensions. We then

employ our algorithm to find the communities in space-time. A (D + 1) dimensional

action for elastic media including a “dualized form” for the study of defects was given

in Refs. [162, 122].
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modules in dense weighted networks with the potts method. J. Stat. Mech.:

Theory Exp., 8(8):P08007, 2008.

[36] Daniel J. Fenn, Mason A. Porter, Mark McDonald, Stacy Williams, Neil F.

Johnson, and Nick S. Jones. Dynamic communities in multichannel data: An

application to the foreign exchange market during the 2007-2008 credit crisis.

Chaos, 19:033119, Aug 2009.

133



Bibliography

[37] Peter Ronhovde and Zohar Nussinov. Multiresolution community detection for

megascale networks by information-based replica correlations. Phys. Rev. E,

80(1):016109, Jul 2009.

[38] Jie Zhang, Kai Zhang, Xiao ke Xu, Chi K Tse, and Michael Small. Seeding the

kernels in graphs: toward multi-resolution community analysis. New J. Phys.,

11:113003, Nov 2009.

[39] Xue-Qi Cheng and Hua-Wei Shen. Uncovering the community structure asso-

ciated with the diffusion dynamics on networks. J. Stat. Mech.: Theory Exp.,

2010(04):P04024, Apr 2010.

[40] Peter J. Mucha, Thomas Richardson, Kevin Macon, Mason A. Porter, and

Jukka-Pekka Onnella. Community structure in time-dependent, multiscale, and

multiplex networks. Science, 328:876–878, May 2010.

[41] Marcelo Blatt, Shai Wiseman, and Eytan Domany. Superparamagnetic cluster-

ing of data. Phys. Rev. Lett., 76(18):3251–3554, 1996.

[42] Hristo N. Djijev. A scalable multilevel algorithm for graph clustering and com-

munity structure detection. In Algorithms and Models for the Web-Graph:

Fourth International Workshop, WAW 2006, Revised Papers, volume 4936,

pages 117–128, Berlin, Heidelberg, 2007. Springer-Verlag.

[43] I Ispolatov, I Mazo, and A Yuryev. Finding mesoscopic communities in sparse

networks. J. Stat. Mech.: Theory Exp., 09(09):P09014, 2006.

134



Bibliography
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[45] Jussi M. Kumpula, Jari Saramäki, Kimmo Kaski, and J. Kertész. Limited

resolution in complex network community detection with potts model approach.

Euro. Phys. J. B, 56:41–45, 2007.

[46] We adopt the term ‘multiresolution’ as used in [34] to indicate that this algo-

rithm is not limited to hierarchical structures.
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A Information theory measures

The normalized mutual information IN and the variation of information V provide

methods of comparing one proposed community division to another. In order to define

IN(A, B) or V (A, B) between two partitions A and B, we first ascribe a Shannon

entropy H(A) for an arbitrary community partition A. We assign the probability

that a given node will fall in community k as P (k) = nk/N , where nk is the number

of nodes in community k and N is the total number of nodes in the system. Then

the Shannon entropy is

H(A) = −
qA∑
i=1

nk

N
log

nk

N
(A-1)

where qA is the number of communities in partition A.

Mutual information I(A, B) was developed within information theory. It evaluates

how similar two data sets are in terms of information contained in both sets of data.

The mutual information between two partitions A and B of a graph is calculated

by defining a “confusion matrix” for the two community partitions. The confusion

matrix specifies how many nodes nij of community i of partition A are in community
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j of partition B. Mutual information I(A, B) is defined as

I(A, B) =

qA∑
i=1

qB∑
j=1

nij

N
log

(
nijN

ninj

)
(A-2)

where ni is the number of nodes in community i of partition A and nj is the number of

nodes in community j of partition B. An interesting generalized mutual information

is also defined in [165]. Danon et al. [57] suggested that a normalized variant [76] of

mutual information be adapted for use in evaluating similar community partitions.

Using Eqs. (A-1) and (A-2), the normalized mutual information IN(A, B) between

partitions A and B is

IN(A, B) =
2I(A, B)

H(A) + H(B)
(A-3)

which can take values in the range 0 ≤ IN(A, B) ≤ 1. Fred and Jain [76] introduced,

for computer vision problems, a single resolution application of NMI that we use in

our work.

The variation of information [86] is a metric in the formal sense of the term and

measures the “distance” in information between two partitions A and B. Using Eqs.

(A-1) and (A-2), V (A, B) is calculated by

V (A, B) = H(A) + H(B) − 2I(A, B). (A-4)

As an information distance, low values of V (A, B) indicate better agreement between

partitions A and B. VI has a range 0 ≤ V (A, B) ≤ log N . It is sufficient and even

preferable to use the un-normalized version of VI. We utilize both NMI and VI to

demonstrate that our approach is not limited to a specific measure.
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The mutual information I and Shannon entropy H also play a supplemental role

in determining multiresolution structure. For the Shannon entropy H, we average

over all replicas using

〈H〉 =
1

r

∑
A

H(A). (A-5)

For IN , V , and I, we calculate the average of the measures over all pairs of replicas

with

〈S〉 =
2

r(r − 1)

∑
A>B

S(A, B) (A-6)

where S is any of the information measures and r is the number of replicas. We use

base 2 logarithms in all information calculations.

Similarly, higher order cumulants of S can be computed with a (replica symmet-

rically weighted) probability distribution function that we set to be

P (S) =
2

r(r − 1)

∑
A>B

δ
[
S − S(A, B)

]
. (A-7)

In Eq. (A-7), δ
[
S − S(A, B)

]
is the Dirac delta function. For any function f of S,

the expectation value of f is

〈f〉 =

∫
dS P (S)f(S). (A-8)

Formally, in our probability distribution of Eq. (A-7), the information measure S

plays a role analogous to the overlap parameter in spin-glass problems.
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B Resolution limit and the Erdős-Rényi Potts model

For unweighted graphs, the RBER model of Eq. (2.21), based on the Erdős-Rényi null

model, is not inherently a global measure of community structure as is the RBCM,

based on the configuration null model. The original model [15] was defined without

the density p where γ
ER

≡ γ
RB

p. The ad hoc inclusion of the density carried an

implicit assumption that γ
RB

is constrained to some range, perhaps by γ
RB

� O(1)

(otherwise, introducing a second constant is not meaningful). It then became a Potts

model based on an Erdős-Rényi null model.

The justification for including the graph density in the model was initially based

on heuristic arguments about density inequalities that bounded the behavior of γ
ER

.

Data were also presented using a common, but very small, benchmark (discussed in

Sec. 2.3) that supported the approximation of γ
ER

∝ p. However, the approximation

is not generally applicable. For example, between the systems in Secs. 2.3, 2.4, and

2.6, we would need to vary γ
RB

by at least 3 orders of magnitude (and arbitrarily

larger if we increase the system size in Sec. 2.4.2) if we wish to consistently identify

the most accurate solution for each system. If we remove the constant (but graph

dependent) density p, we trivially remove from Eq. (2.21) any dependence on global

graph parameters.

This change is more than a pedantic exercise. Connecting the RBER model to

the system density allowed it to automatically scale to solve arbitrary graphs in a

semiobjective manner (see Sec. 2.5.1), but it also appeared to impose a resolution
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limit [45]. Trivially removing the global dependence on p effectively “eliminates” the

resolution limit for the model if one reinterprets the meaning of the original model

weight γ
ER

. With this change, we assert that there is no genuine resolution limit in

the unweighted RBER model as it was originally presented in [15] without the density

dependence p.

The second term in Eq. (2.21) indicates that γ
ER

specifies the fraction of lmax
s

that each community must have before it has an energy less than zero. Thus, we

reinterpret γ
ER

as the minimum edge density of each community in a solved partition

(or the maximum external edge density [15]), but this minimum density is enforced

through only local constraints. The cost for this freedom is that we must choose the

“correct” weights γ
ER

for each graph, but the best choices are not arbitrary.

After removing p, we re-analyze the resolution-limit results obtained for the RBER

model in Secs. 2.5.2 and 2.5.3. Using Fig. 2.8(a), the original condition for two

arbitrary unweighted communities A and B to merge is given by Eq. (2.14). Without

p, the new merge condition is

l > γ
ER

nm (B-1)

which is based only on local variables of communities A and B and the independently

set γ
ER

.

For the circle of cliques depicted in Fig. 2.7, the original merge condition is given

by Eq. (2.10). The new condition for two neighboring cliques to merge is

γ
ER

<
1

m2
. (B-2)
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Using the reinterpretation of γ
ER

, the value of γ
ER

= 1/2 demands at least a 50% edge

density for each community to be valid. At m = 3, Eq. (B-2) demands γ
ER

< 1/9 for

a merger to occur. Therefore, at γ
ER

= 1/2 the model will not experience a resolution

limit effect for any global scale of N , L, or q for cliques of size m ≥ 3.

After removing the density and reinterpreting γ
ER

, the model is not genuinely

subject to a resolution limit because the constraints that define the community struc-

ture are enforced locally. We can then apply concepts mentioned in Sec. 2.5.1 to solve

graphs with a local community measure. One caveat is that the locality of the RBER

model does not extend as naturally to weighted systems (see Sec. 2.5.5).

C Example noise test solution with the RBCM

In Sec. 2.4.2, we add noise to a strongly defined system to test the accuracy of the

RBCM of Eq. (2.7) compared to the APM of Eq. (2.2). A sample system is depicted

in Fig. 2.4, and the accuracy results are summarized in Figs. 2.5 and 2.6. For the

APM, we solve the system with the model weight γ = 1 for all graphs. Figure C1

shows an example of how we select the best result for the RBCM as compared to the

known answer.

We start with γ
RB

= 0.1 and geometrically increase the step size by 101/20 (i.e.,

20 steps per decade of γ
RB

). This example is for N = 512 nodes. The power-law

distribution exponents are α = −2 and β = −1 for the power-law degree and the

community size distributions, respectively. Other parameters are: minimum and
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Figure C1: Plot of VI V vs γRB for the RBCM. In Sec. 2.4.2, we generate a set of strongly

defined communities with varying levels of intercommunity noise kout. Using the greedy

algorithm in Sec. 2.2, we compare the accuracy of solutions found with the RBCM to our

APM. Since the models operate differently, we compare the results in Figs. 2.5 and 2.6

for our APM using γ = 1 to the best result for the RBCM independently determined for

each kout. To this end, we increment γRB by 20 steps per decade and calculate VI for each

solution using the known answer. We then select the best γRB corresponding to the lowest

VI average. This example is for a system with N = 512 nodes (see Fig. 2.4) with an average

external degree kout � 10. See the text regarding other parameters defining the distribution

of initial node degrees and community sizes. Each point is an average over 100 graphs.

maximum community sizes nmin = 4 and nmax = 50, community edge densities pin =

1, average external degree (noise) 〈k〉α � kout � 10, maximum external degree kmax =

100, and t = 4 trials per solution. Figure C1 shows only one best answer for the

RBCM. We average over 100 graphs for each γ
RB

, and the best VI average is plotted
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Figure D1: Plot of VI V vs the average external degree kout for the RBCM. In Sec. 2.4.2,

we generate a set of strongly defined communities with high levels of intercommunity noise.

In Figs. 2.5 and 2.6, we vary the initial average power-law degree 〈k〉α � kout and solve the

networks using the greedy algorithm in Sec. 2.2 and SA where we use a starting temperature

of T0 = 1.0 × 10−4 for the N = 512 node systems. The greedy algorithm initialized into a

symmetric initial state (q0 = N) outperforms SA in accuracy when using the best γRB (see

Appendix C). In these plots, we further examine SA for a range of starting temperatures.

Even with significantly higher starting temperatures, SA cannot exceed the accuracy of the

greedy algorithm in this problem.

in Figs. 2.5 and 2.6 with the result for the APM.

D Noise test analysis of SA at different starting

temperatures

In Sec. 2.4.2, we construct a set of maximally connected communities with varied

levels of intercommunity noise. The systems are defined with a power-law distribution
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of community sizes and an approximate power-law distribution of external noise (see

Sec. 2.4.2). We solve each system using the RBCM with the greedy algorithm in Sec.

2.2 and SA both with t = 4 trials. In Figs. 2.5 and 2.6, we use starting temperatures

of T0 = 1 × 10−4 for N = 512 and T0 = 1 × 10−5 for N = 4096. Note that we scale

the model energy by the number of edges in the system (−1/L) so that it is explicitly

equivalent to the normalized modularity when γ
RB

= 1. SA performs slightly worse

in accuracy than the greedy algorithm of Sec. 2.2 using a symmetric initial state

(q0 = N).

Given this counter-intuitive result, in Fig. D1 we examine how the accuracy of the

SA algorithm is affected by the algorithm’s starting temperature. We plot the average

VI V for the best RBCM result (see Appendix C) versus the average external degree

kout. We test starting temperatures spanning 5 orders of magnitude for N = 512

nodes. The cooling rate is fixed at Ti+1 = 0.999Ti where each step i consists of N

randomly proposed state changes. For the highest temperatures, the computational

time dramatically increases due to a significantly longer cooling time with no signif-

icant improvement in accuracy. Thus, a higher starting temperature for SA cannot

improve its performance sufficiently to match the accuracy of the greedy algorithm

in this problem.
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E Generalization of the information-based replica

method

In Sec. 2.2, we may recast the information theory measures used to evaluate the

correlation between different replicas for other (non-graph theoretic) optimization

problems with general Hamiltonians (or cost functions) H. An alternate form of Eq.

(A-2) for the mutual information between replicas i and j is

I(i, j) = H(i) + H(j) − H(i, j) (E-1)

where H(i), H(j), and H(i, j) denote the entropies of replica i, replica j, and the

combined system formed by both replicas, respectively. Instead of using Eq. (A-2),

we write the Shannon entropy H(i, j) for the combined replicas i and j which we then

apply in Eq. (E-1). For general Hamiltonians H, we replace H(i), H(j), and H(i, j)

by a thermodynamic entropy for the respective systems.

In the general case, the thermodynamic entropy H(i, j) of the system formed by

the union of replicas i and j is

H(i, j) =
∂

∂T

{
β−1 log

[
Tri,j

(
e−βH(i) + e−βH(j)

)]}
, (E-2)

and the entropy H(i) of system i or j is

H(i) =
∂

∂T

{
β−1 log

[
Tri

(
e−βH(i)

)]}
. (E-3)

H(i) and H(j) are the Hamiltonians of replicas i and j, and β = 1/(T ln 2) is the

inverse temperature. Within our approach, an ensemble reduces to a finite number of
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points (replicas) whose correlations are monitored by information theory measures.

This form pertains to the general case in which both i and j pertain to a collection

of decoupled copies, and the traces are over all coordinates in replicas i and j.

The standard mutual information of Eq. (A-2) is generally not invariant (as it

ideally should be) under the permutation of “identical” nodes (those with an identical

neighbor list that are otherwise indistinguishable by other parameters of the system).

Specifically, we refer to nodes i and j as identical in a graph if the adjacency matrix A

is invariant under the permutation of node i with node j [166]. That is, A commutes

with the permutation of nodes i and j, [Pij, A] = 0, if nodes i and j are identical. The

thermodynamic entropies of Eqs. (E-2) and (E-3) are invariant under permutations

of identical nodes because any symmetries, or lack thereof, are fully represented in

the system Hamiltonian H.

In the simplest case with only one copy of the system in replica i and one copy in

replica j, there is only one term in both i and j; and the designation Tri,j becomes

redundant (the entropies of i and j are also trivially H(i) = H(j) = 0). In a more

realistic approximation to thermodynamic quantities, each of the replicas i and j

contain a number of independent decoupled copies of the system. Inserting Eqs. (E-

2) and (E-3) into Eq. (E-1), we obtain the mutual information between i and j. NMI

and VI are then given by Eqs. (A-3) and (A-4). Other information measures S(i, j)

between replicas i and j may also be computed. Along similar lines, multi-replica

(higher than two) forms may replace the sum over two-replica configurations in Eqs.

(3.1) and (E-2).
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We may also reconstruct the information measures using a different physical anal-

ogy. The Shannon entropy of Eq. (A-1) is analogous to an ensemble where each of the

N nodes corresponds to one point in the ensemble. The communities correspond to

q possible states of a single particle with energies {Ek} for k = 1 to q at a given tem-

perature T such that the same community occupation probabilities are reproduced

as pk = nk/N = e−βEk/
∑q

i=1 e−βEi where the inverse temperature is β = 1/(T ln 2).

The mutual information I of Eq. (A-2) is equivalent to an ensemble of size N for a

two-particle system in which each particle can be in any of q states. The interaction

between the two particles is such that it leads to energies {Eij} for the two occupied

communities i and j. These interactions lead to a relative probability pij = nij/N for

occupying the two-particle states that is proportional to e−βEij . The effective Hamil-

tonian for the resulting physical system does not directly depend on the identities of

the N nodes (although it does not distinguish between “identical” and distinguishable

nodes).

One potential limitation of our thermodynamic framework in Eqs. (E-2) and (E-

3) is that general, non-graph theoretic, applications may require many copies of the

same system. The traces Tri, Trj need to be calculated on multiple copies of the

same system. This is bypassed in the application of mutual information for graph

problems because the node number N effectively plays the role of many ensemble

points (multiple replica copies) on which the thermodynamic average is to be taken.
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F Multiresolution LFR benchmark comments

As discussed in Sec. 3.3, we used the new benchmark problem presented in [67] to test

the accuracy of our multiresolution algorithm of Sec. 2.2. Our algorithm attempts

to identify all strongly defined resolutions. By design, the benchmark in [67] con-

structs a “realistic” system with a single intended solution; however, random effects

of the graph generation process can also create additional transient, but neverthe-

less strongly defined resolutions which our algorithm can detect. In implementing

the benchmark, we endeavor to automate the identification process to determine the

single “best” resolution as intended by the benchmark. We explain two special cases.

The first difficulty is encountered for μ � 0.4. We can detect multiple resolutions

with perfect correlations (IN = 1 and V = 0) for resolutions near the intended bench-

mark solution which occur more frequently as μ decreases. This effect is similar to

partition (i) that occurred near partition (ii) in Fig. 3.9. The transitional resolutions

are not necessarily meaningless partitions on an individual graph-by-graph basis, but

they are artifacts of the randomly generated system and thus vary across the different

benchmark graphs. Similar to structure (iia,b) in Fig. F1, the plateaus in the infor-

mation measures H or I (or the number of clusters q [33]) indicate a more “stable”

partition. It is this stable partition that corresponds to the intended solution for the

benchmark graph. Thus, when necessary, we use the plateaus to discriminate between

the short-lived and the most stable strongly defined partitions in order to determine

the single “best” resolution for each benchmark graph.
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A second difficulty is shown in Fig. F1 which occurs most frequently in the range

of mixing parameter 0.45 � μ � 0.65. The stable configuration that corresponds to

the intended benchmark answer is configuration (iia,b). The low-density, transient,

but strongly correlated configuration at (ia,b) has a slightly higher NMI correlation.

Even a casual visual inspection of the data in Fig. F1 indicates that configuration

(iia,b) is the dominant configuration for the graph. Specifically, configuration (iia,b)

possesses both very strong NMI and VI correlations (IN � 1.0 and V � 0.0) as well as

stable and long H, I, and q plateaus, and indeed it corresponds almost exactly to the

intended benchmark answer. However, the automated application of the multiresolu-

tion algorithm slightly favors configuration (ia,b) as the “best” resolution since it has

a higher NMI (δIN � 6.3 × 10−5) and a lower VI. (See Secs. 3.2.2 and 3.4 regarding

potential problems of using the plateaus in H, I, or q as the primary measure for

identifying the “best” resolutions.)

These graphs are the cause of the accuracy perturbations in Figs. 3.12(a) and

3.12(b). They are less frequent for β = 2 since the community size distribution is

more skewed towards smaller communities than for β = 1. We note that the average

accuracy for the perturbations in Figs. 3.12(a) and 3.12(b) is still high at IN � 0.96.

In Fig. 3.12, an iteration cap acted as an effective filter for most low-density spikes.

We could further improve the automated analyses of such graphs by replacing this

filter with moving NMI or VI averages (i.e., each moving average is over the NMI

or VI of several nearby resolutions) to exclude resolutions such as the short-lived

configuration (i).
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Figure F1: Plot of information measures IN , V , H, and I, and q (right-offset axes) vs the

Potts model weight γ for a realization of the benchmark [67] (see Sec. 3.3). See Fig. 2.3 for

a description of the legends and axes. This plot uses N = 5000, μ = 0.45, α = 2, and β = 1.

We use the algorithm in Sec. 2.2 to attempt to identify the “best” resolution for the graph.

For some cases in the benchmark, there exists more than one extremal value of IN and V

where the low-density configuration at (i) has a slightly stronger NMI and VI correlations

than the intended benchmark answer at (ii). In this example, a casual inspection indicates

that the stable region at (ii) is clearly the “best” partition which corresponds almost exactly

to the intended solution. The automated algorithm favors the configuration at (i).
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G Overlapping dynamics

In Chapter 5, we wish to account for the possibility of a given atom being connected to

more than one physical cluster. For example, in a cubic lattice, each atom participates

in the local structure of multiple unit cells. In community detection, this corresponds

to allowing “overlapping” community memberships where a node can be a member

of more than one community. To accomplish this task, we select the lowest energy

replica partition at the best resolution(s) of the model network [i.e., value(s) of γ in

Eq. (2.2) corresponding to extrema in IN or V ].

First, we fix the initial node memberships including the number of communities q.

We then sequentially iterate through the nodes and each membership for a given node

and make changes according to the following: (1) place the node in any additional

(non-member) clusters to which it is bound (a negative energy contribution), or (2)

remove the node from any member clusters (except for the original membership) in

which the current net energy contribution is positive. This process iterates through

all nodes as many times as necessary until no node additions or removals are found.

The total computational cost is slightly higher than the initial partitioning cost in

Sec. 2.2 due to the multiple allowed memberships. See also [2] for another method

that allows overlapping multiscale network analysis in a general fashion.
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Figure H1: A plot of the model potentials for our three-component model glass former

using the fit data in Table H1 in Sec. 5.3.1. We indicate the three atomic types by “A”, “B”,

and “C”. The units are given for a specific candidate atomic realization (AlYFe). Here, we

use the ab initio fit data in Table 5.1 in place of the same-species GPT interactions used in

Table 5.1 and Fig. 5.2.

a0 a1 a2 a3 a4 a5

AA 2.11* 9.49* -32.3* 3.66* -10.6* 6.20*
AB 1.92 17.4 6.09 3.05 -4.68 3.48
AC 2.38 8.96 -14.9 3.11 -3.88 4.38
BB 2.01* 4.95* 5.01* 2.74* -2.26* 3.00*
BC 1.88 8.00 -3.42 2.53 -1.25 3.00
CC 2.75* 15.3* -6400* 2.38* -4.69* 8.71*

Table H1: Fit parameters for Eq. (5.1) obtained by fitting configuration forces and energies

to ab initio data. The same-species (*) data is different from Table 5.1.
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H Alternate ternary metallic glass model

We repeat the analysis of Secs. 5.3.1 and 5.4.3, for an alternate ternary model glass

system (AlYFe). In particular, we use the best parameter fits for the same-species

interactions as opposed to implementing the GPT [155] as used in Figs. 5.3 – 5.7. The

lower temperature system at T = 300 K in Fig. H2(a) shows a peak NMI at (ia) with

a corresponding VI minimum at (ib). Following Sec. 5.4.3, Fig. H4 depicts a sample

of the best clusters at γbest � 0.001 where we include overlapping node memberships

(the replicas correlations are calculated on partitions). The corresponding T = 1500

K high temperature solutions have a much lower NMI at γbest � 0.001 indicating

very poor agreement among the replicas. At T = 300 K, the best structures have

consistent cluster sizes that are MRO or a little larger which are generally larger than

1/2 the simulated system width. Therefore, it would beneficial to test the consistency

of the clusters in a larger system requiring a substantially longer computational time.

In this system the NMI plateau at γ � 100 is actually higher than the configura-

tion at (i), but the clusters are almost exclusively small (n � 5 nodes) and are not

completely contiguous. The distinction in the results between the different potential

models is likely due to the longer range A-A minimum in the ab initio fit data as

compared to the GPT minimum.
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I Multiresolution application to lattice systems

We define several uniform lattices systems for the purpose of comparing the results

to the model glasses where we use relatively small systems for presentation purposes.

We would normally model the respective lattices with unweighted networks, but here

we wish to be consistent with the analysis in Chapter 5. With this in mind, we further

apply a “potential” shift φ0 which corresponds to the negative of the average weight

over all pairs of nodes (any non-neighbor has a weight of bij = 1).

We allow zero energy moves for the lattice solutions and perform a more strenuous

optimization for these solutions. These representative networks result in “imperfect”

tilings of the favored local structures due to the constraints imposed by the perfect

symmetry in the Hamiltonian and by the local solution dynamics with the evolving

community structure. In the depictions, different colors represent distinct clusters

(best viewed in color) and edges between clusters are made partially transparent as a

visualization aid. No overlapping nodes are assigned in the lattice depictions.

I.1 Square lattice

We define a uniform, initially unweighted, square lattice with N = 400 nodes. Edges

are assigned to each neighbor in the x and y directions with periodic boundary con-

ditions. The “potential” shift is φ0 = 0.97995. We then perform the same multireso-

lution analysis to the graph as in the previous systems. In Fig. I1, we see that where

are three dominant plateaus in the information measures.
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The overall multiresolution pattern resembles the LJ system in Fig. 5.4.4, except

for the presence of the plateaus in the lattice plot, which suggests that the LJ system

is “more ordered” than the metallic glass model. However, a purely random graph

[37] also shows a similar pattern, including a plateau, which indicates that there may

exist an analogy between purely “random” and perfectly “ordered” systems in our

analysis. However, these data are not alone sufficient to be conclusive.

We select a configuration at γ = 60 corresponding to the center plateau. The

lattice is depicted in Fig. I2 with q = 120 clusters of 78 squares, 4 triads, and 38

dyads. At this resolution, the square dominates the configuration which shows that

our algorithm is able to isolate the basic unit cells of the lattice in a natural fashion.

The plateau for γ � 100 corresponds to essentially all dyads, and the plateau for

γ � 30 corresponds to a mixture of dyads, squares, and tight six-node configurations

(a square plus two adjacent nodes). The lower γ plateau favors the six-node configu-

ration in terms of the cluster energies, but the larger features are even more difficult

with which to tile the lattice than for squares.
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Figure H2: Panels (a) and (b) show the plots of information measures IN , V , H, and I

and the number of clusters q (right-offset axes) versus the Potts model weight γ in Eq. (2.2).

The ternary model system contains 1600 atoms in a mixture of 88% A, 7% B, and 5% C

with a simulation temperature of T = 300 K which is well below the melting temperature for

this system. This alternate system uses parameter fits from Table H1 for the same-species

interactions as opposed to the GPT interactions used in Table 5.1 and Figs. 5.3 – 5.7. This

system shows a locally preferred resolution at (i) in both panels. A sample cluster for the

best resolution at γ � 0.000 1 is depicted in Fig. H4. The region for γ � 100 actually has

a higher correlation than the local peak (i), but the clusters are very small (n � 5 nodes)

and somewhat dispersed.
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Figure H3: Panels (a) and (b) show the plots of information measures IN , V , H, and I

and the number of clusters q (right-offset axes) versus the Potts model weight γ in Eq. (2.2).

The ternary model system contains 1600 atoms in a mixture of 88% A, 5% B, and 7% C

with a simulation temperature of T = 1500 K which is well above the melting temperature

of Tm � 1260 K for this system. This alternate system uses parameter fits from Table H1

for the same-species interactions as opposed to the GPT interactions used in Table 5.1 and

Figs. 5.3 – 5.7. At this temperature, there is no resolution where the replicas are strongly

correlated. See Fig. H2 for the corresponding low temperature case where the replicas are

much more highly correlated at γ � 0.000 1.
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Figure H4: A depiction of some of the best clusters for the peak replica correlation at

feature (i) in Fig. 5.3. These clusters include overlapping node membership assignments

where each node is required to have an overall negative binding energy to the other nodes in

the cluster. The atomic identities are C (red), A (silver), B (green) in order of increasing di-

ameters. These clusters are generally larger than 1/2 the simulated system width; therefore,

it would beneficial to test their consistency in a larger simulation (requiring substantially

longer computational time).
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Figure I1: A plot for the multiresolution analysis of a square lattice with periodic boundary

conditions. Neighbors edges have an initial weight of aij = 1 and non-neighbors have an

initial weight of bij = 1. We further apply a “potential” shift of φ0 = 0.979 95 in order to

be consistent with our previous analysis on glasses in Chapter 5. There are three distinct

plateaus in the information measures. A depiction of the system at γ = 60 for the center

plateau is shown in Fig. I2.
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Figure I2: A depiction of a partition of a square lattice with periodic boundary conditions.

The corresponding multiresolution plot is seen in Fig. I1. We use the algorithm described

in the paper at γ = 60 to solve the system. To aid in visualization of the clusters, neighbor

links not in the same cluster are made partially transparent. In this configuration, there

were q = 120 clusters with 78 squares, 4 triads, and 38 dyads which indicates that square

configuration dominates the partition, and it shows how our algorithm can naturally identify

the basic unit cells of the square lattice.

I.2 Triangular lattice

Similar to the square lattice we define a uniform, initially unweighted, triangular

lattice with N = 400 nodes. Edges are assigned to each triangular neighbor using

periodic boundary conditions. The “potential” shift is φ0 = 0.969 925. We again
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perform the same multiresolution analysis to the graph with the results shown in Fig.

I3. There are three dominant plateaus in the information measures; and the overall

multiresolution pattern resembles both the square lattice and the LJ systems except

for the presence of the plateaus here.

We select a configuration at γ = 50 corresponding to the “left” plateau. The

lattice is depicted in Fig. I4 with q = 104 clusters of 17 triads, and 86 “diamonds”,

and 1 five-node cluster. The five node cluster is a result of a preference being given

for an isolated node to join a diamond as opposed to forming its own single-node

cluster. At this resolution, the diamond configuration dominates.

Two plateaus to the right of γ � 65 are both strongly dominated by triads of

nodes. The distinction between the two is that the central plateau favors an isolated

node joining a triangle, to form a rare diamond, rather than forming its own single-

node cluster. Together, the different plateaus show that our algorithm is able to

isolate the basic unit cells of the lattice in a natural fashion.
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Figure I3: A plot for the multiresolution analysis of a triangular lattice with periodic

boundary conditions. Neighbor edges have an initial weight of aij = 1 and non-neighbors

have an initial weight of bij = 1. We further apply a “potential” shift of φ0 = 0.969 925 in

order to be consistent with our previous analysis on glasses in Chapter 5. There are three

distinct plateaus in the information measures, but the latter two are closely related (see

text). A depiction of the system at γ = 50 for the left plateau is shown in Fig. I4.
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Figure I4: A depiction of a partition of a triangular lattice with periodic boundary con-

ditions. The corresponding multiresolution plot is seen in Fig. I3. We use the algorithm

described in the paper at γ = 50 (the “left” plateau) to solve the system. To aid in visual-

ization of the clusters, neighbor links not in the same cluster are made partially transparent.

In this configuration, there were q = 104 clusters with 17 triads, 86 “diamonds,” and 1 five-

node configuration (see text) which indicates that the diamond configuration dominates the

partition. Our algorithm can naturally identify the different basic unit cells of the lattice.

I.3 Cubic lattice

We further define a uniform, initially unweighted, cubic lattice with N = 1000 nodes.

Edges are assigned to each neighbor in the x, y, and z directions using periodic

boundary conditions. The “potential” shift is φ0 = 0.987 988. We perform the same

multiresolution analysis to the graph as in the previous systems where the results are

summarized in Figs. I5 and I6.
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Out of q = 177 clusters, we identified 66 squares, 51 six-node configurations

(square plus two adjacent nodes), 45 cubes, and 15 other assorted configurations

smaller than cubes. At γ � 50, the cube is the preferred cluster in terms of the

cluster energy, but they consist of only slightly more than 25% of the clusters because

the large cube configuration is more difficult to identify due to the perfect network

symmetry and local constraints imposed by the evolution of the community structure

during the algorithm dynamics. The “middle” plateau represents a square-dominated

region (in any orientation) with 201 out of 294 clusters are squares, and the “right”

plateau consists of dyads of nodes almost exclusively.
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Figure I5: A plot for the multiresolution analysis of a cubic lattice with periodic boundary

conditions. Neighbors edges have an initial weight of aij = 1 and non-neighbors have an

initial weight of bij = 1. We further apply a “potential” shift of φ0 = 0.987 988 in order to

be consistent with our previous analysis on glasses in Chapter 5. There are three distinct

plateaus in the information measures. The leftmost short plateau is the cube preferred

resolution (in terms of cluster energy) with 45 out of 177 clusters are cubic clusters (no

configurations larger than cubes are found). A depiction of the system at γ = 50 for the

left plateau is shown in Fig. I6.
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Figure I6: A depiction of a partition of a cubic lattice with periodic boundary conditions.

The corresponding multiresolution plot is seen in Fig. I5. We solve the system using the

algorithm described in Sec. 2.2 at γ = 50 (the short “left” plateau). Neighbor links not in the

same cluster are made partially transparent as a visualization aid. In this configuration,

there were q = 177 clusters with 66 squares, 51 six-node configurations, 45 cubes, and

15 other assorted configurations. A cubic cluster is the preferred partition (in terms of

cluster energy), but it is difficult to fill the system with cubes in practice due to the perfect

symmetry of the network and constraints imposed by the evolving community structure.

J Multiresolution application to a 2D Ising lattice

We define two-dimensional square lattice of Ising spins using the Hamiltonian

H = −
∑
ij

σiσj (J-1)
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for all pairs of neighbor spins i and j. Neighbors with the same spin are assigned an

edges with an initial weight of aij = 1, neighbors with opposite spins have no edge

and are given an initial weight of bij = 1 (or a repulsive edge), and non-neighbors

have an initial weight of aij = bij = 0. There is an unavoidable inherent discontinuity

in defining the interactions for the Ising system (only neighbors can interact) and

the continuous systems in Chapter 5 (all pairs of nodes interact). With this caveat,

we analyze this Ising system according to the same multiresolution analysis for the

systems in Chapter 5. With this in mind, we further apply the average “potential”

shift φ0 which varies on each defined network and which corresponds to the negative

of the average weight over all pairs of nodes (including non-neighbors). We allow

zero energy moves for the solution dynamics. No overlapping nodes are assigned in

the Ising lattice.

In Fig. J2, different colors represent distinct clusters (best viewed in color) and

edges between clusters (neighbor spins with the same sign but that are in different

clusters) are depicted in gray. Missing edges are not depicted. In Fig. J1, there are

two main plateaus for γ � 100 and a noticeable configuration “shift” at γ � 170.

The “right” plateau for γ � 500 consists largely of same-spin dyads except where

a given spin has no matching neighbors. The “middle” plateau for 170 � γ � 500

corresponds to a “natural” grouping of medium size clusters.

Here, the plateaus correspond to a cascade of structures starting from the smallest

dyads of nodes, to basic plaquette structures (square, triangle, etc.), and growing ever

larger (two joined plaquettes etc.). In Ising spin systems at different temperatures
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on a square lattice, the domains of “+” and “−” spins are physically separated from

one another by domain walls. The plateaus here similarly correspond to the cascade

of small plaquettes found on the lattice up to a cutoff scale set by the domain walls.

No clear structure is seen beyond the natural domain length scale, but the do-

main walls are closely related to the maximum in VI (NMI displays a different, non-

extremal, behavior where the standard deviation is large). Physically, they correspond

to the scales at which the largest fluctuations occur where the large fluctuations re-

sult in poor information correlations between the replicas. Figure J3 shows a sample

depiction of the system at this VI peak. Correlation lengths are thus likely related to

poorly correlated replicas best indicated by a VI maximum. A more detailed analysis

of the suspected relationship is a subject for further study.
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Figure J1: A plot for the multiresolution analysis of a square lattice of Ising spins with

periodic boundary conditions at a simulation temperature of T = 2.269 (almost exactly at

the magnetic transition). Neighbors with the same spin orientation are assigned edges with

an initial weight of aij = 1. Neighbors with opposite spin orientations are assigned missing

links with weights (or repulsive edges) of bij = 1, and non-neighbors have an initial weight

of aij = bij = 0. There are two distinct plateaus in the information measures for γ � 100

with a significant configuration shift near γ � 170. A depiction of the system at γ = 400

for the center plateau is shown in Fig. J2, and a sample configuration for the VI peak at

γ � 0.15 is shown in Fig. J3.
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Figure J2: A depiction of a partition of a square lattice of Ising spins with periodic bound-

ary conditions at a simulation temperature of T = 2.269. The corresponding multiresolution

plot is seen in Fig. J1. We use the algorithm described in the paper at γ = 400 to solve the

system. For presentation purposes, we depict all spins by spheres and links (between same-

sign Ising spins) that cross a community boundary in gray. This multiresolution analysis

shows the dominant communities are square plaquettes within same-spin domains.

K Multiresolution analysis of 2D LJ lattices with

elastic defects

We define a uniform lattice based on a two-dimensional LJ system using the LJ

potential in Eq. (5.2) where the lattice is constructed as the ideal ground state of

the system using periodic boundary conditions. The main purpose is to check the
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Figure J3: A depiction of a partition of a square lattice of Ising spins with periodic bound-

ary conditions at a simulation temperature of T = 2.269. The corresponding multiresolution

plot is seen in Fig. J1. We solve the network using the algorithm described in Sec. 2.2 at

γ � 0.15 (the actual partition here used an unshifted lattice), corresponding to the peak

VI. For presentation purposes, we depict all spins by spheres. Edges (neighbors that have

the same Ising spin) that cross a community boundary are depicted in gray. Any identified

clusters vary substantially across the replicas since the community solutions are in a state

of maximum fluctuation, but the cluster sizes (length) are of the scale of the size of the

same spin domains. This qualitatively implies that the poor information correlations in our

analysis may be related to the correlation length of the system.

consistency of our multiresolution method in Chapter 5, but the lattice also allows

us to perform a preliminary investigation of how our analysis treats lattice defects in
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Figure K1: A plot for the multiresolution analysis of a 2D triangular LJ lattice in an

ideal ground state using periodic boundary conditions. Edges are weighted according the

LJ potential in Eq. (5.2). There are two distinct preferred regions, a small peak in the

information measures on the left and a large plateau on the right. The left peak corresponds

to the largest possible “natural” clusters for this system. We show a sample depiction at

γ � 39 in Fig. K2.

a controlled setting when some nodes are randomly removed from the system.
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Figure K2: A depiction of a partition of a 2D LJ triangular lattice with periodic boundary

conditions. The corresponding multiresolution plot is in Fig. K1 where the small peak on

the left occurs at γ � 39. This peak indicates the largest natural clusters for this particular

lattice system.

K.1 LJ triangular lattice

Similar to the regular triangular lattice test in Sec. I.2, we define a uniform lattice

with N = 3120 nodes. Any edges between pairs of nodes are assigned and weighted

according to the LJ potential in Eq. (5.2) using periodic boundary conditions. We

again perform the same multiresolution analysis on the graph from Chapter 5 where

the results are shown in Fig. K1.

We select a configuration at γ � 39 corresponding to the smaller peak on the
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left where the best lattice at this resolution is depicted in Fig. K2. This particular

resolution shows the largest “natural” clusters that appear with this particular lattice

spacing. In general, we would further study a range of lattice spacings to more

completely understand this system.

K.2 LJ triangular lattice with defects

Similar to the complete LJ lattice Sec. K.1, we define a uniform triangular lattice with

N = 2943 nodes where we create random “defects” by removing some nodes. Edges

are again assigned and weighted according to the LJ potential in Eq. (5.2) applying

periodic boundary conditions. We perform the multiresolution analysis from Chapter

5, on the graph where the results are shown in Fig. K3.

We select a configuration at γ � 31.6 from the smaller peak on the left which

corresponds to the largest natural communities for this system at this specific lattice

spacing. An example of the best lattice partition is depicted in Fig. K4. Defects

appear to occur most likely near the boundary of neighboring communities.

193



Appendix

 I
N

 I
 q

 V
 H
 q

0
1
2
3
4
5
6
7
8

10
2  q

0
1
2
3
4
5
6
7
8

(ib)

(ia)

10
2  q

10-2 10-1 100 101 102 103 104 105
0.0

0.2

0.4

0.6

0.8

1.0

(b)

I N

γ

(a)

10-2 10-1 100 101 102 103 104 105
0

1

2

3

4

5

6

7

V

γ

0

2

4

6

8

10

I
0

2

4

6

8

10

H

Figure K3: A plot for the multiresolution analysis of a 2D triangular LJ lattice with

periodic boundary conditions. Edges are weighted according the LJ potential in Eq. (5.2).

As with the complete (no defects) lattice in Fig. K1, there are two preferred regions, a

small peak on the left and a large plateau on the right, where the peak here corresponds

to the largest possible “natural” clusters. The defects make only a small alteration to the

multiresolution plot. A depiction of the system at γ � 31.6 for the left peak is shown in

Fig. K4.
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Appendix

Figure K4: A depiction of a partition of a 2D LJ triangular lattice with periodic boundary

conditions. The corresponding multiresolution plot is seen in Fig. K3. We use the algorithm

described in the paper at γ � 31.6 (the left peak) to solve the system. Our algorithm places

defects generally near the boundary of the communities in order to minimize the energy

cost of the defects in the community assignments.
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