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Abstract: Design of high performance hardware and software based gate-switch level logic
simulators requires knowledge about the logic simulation process itself.
Unfortunately, little data is publically available concerning key aspects of this
process. An example of this is the lack of published empirical measurements
relating to the time distribution of events generated by such simulators. This paper
presents a gate-switch level logic simulator lsém which is oriented towards the
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reviewed, and its relevant data gathering facilities are discussed. An example is
presented which illustrates the use of lstm in gathering data on event distributions
and on communications requirments under alternative logic circuit partitionings.
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COLLECTING DATA ABOUT LOGIC SIMULATION *
Roger D. Chamberlain and Mark A. Franklin
Campus Box 1115

Washington University
St. Louis, Missouri 63130

1. Introduction

With the advent of LSI and VLSI technologies, the role of logic simulation in the design
and fault analysis of digital systems has steadily grown in importance. The major reason for its
critical role in the verification phase of the design cycle is that the costs associated with fixing
design errors after chip and system fabrication have been completed are extremely high. In
terms of fault analysis, logic simulation plays a central role in developing test vector sets for use

in validating the operation of fabricated systems.

Software based logic simulators based on standard discrete event simulation algorithms
have been available for some time [1,2,3] and have been used extensively in the verification and
fault analysis tasks. With VLSI, however, where hundreds of thousands of logic components may
be present on a single chip, the costs associated with logic simulation have grown enormously.
Such simulations can consume months of machine time [4] and, with increased chip component

densities, have become a significant bottleneck in the overall design cycle.

One response to this problem has been the design and development of a number of special
purpose digital processors tailored to the logic simulation task [5,4,6,7,8,9,10]. These processors
can often speed up the simulation process by several orders of magnitude over pure software
simulation approaches. For a general review of the techniques and architectures employed in

these hardware based logic simulators see Blank [11] and Franklin [12].

In attempting to design either hardware or software based logic simulators, questions often

arise relating to the nature of the logic simulation task itself. Table 1 contains a number of

* This research has been sponsored in part by funding from ONR Contract N00014-8D-C-0761, NSF Grant
DCR-8417709, an NSF Graduate Fellowship, and the ITT Corporation.
The authors are with the Departments of Computer Science and Electrical Engineering, Washington University, St.
Louis, MO.
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questions indicative of type of issues which must be addressed in the design of a logic simulator.
While some of these questions apply only to hardware based simulators, others apply to both
simulator types. The author’s have found almost no data in the public literature relating to
these issues and the lack of such data is a principal motivation for the work reported in this

paper.

Consider, for example, the type of information required to design an effective event list
processing algorithm for use in logic simulation. While many event list algorithms have been
developed [13,14,15), performance analysis of such algorithms has generally required that various
assumptions be made regarding the way events are generated over the simulation time period.
Often, for instance, a uniform time distribution has been assumed even though it is generally
believed to be incorrect. These untested assumptions may be critical in evaluating the relative

performance of the various algorithms.

1. What is the distribution of events over time during execution of logic
simulation? Such information is useful in the design of both hardware and
software based event list manipulators.

2. How should the logic to be simulated be partitioned when attempting to
perform simulation on a parallel hardware based simulator? In certain
designs, improper partitioning may lead to uneven load balancing and
excessive interprocessor communications delays.

3. How are events distributed within clock cycles? Such information could be of
importance in determining the effectiveness of various pipelining strategies
for processing multiple events which occur at the same time slot.

4. How much time is spent in the various phases of the simulation algorithm
(e.g. event list operations, netlist operations, logic function evaluation, etc.)?
Having this information permits one to concentrate resources on those parts
of the simulation process which have the greatest effect on simulation costs.

TABLE 1: Some Logic Simulation Questions

This paper presents the lsim logic simulator. Lsfm has been designed to aid in gathering
data about the logic simulation process. Indeed, Isim has facilities, in conjunction with UNIX
task monitoring functions and the S statistical package (16], to collect and display all of the

data required to answer the questions of Table 1. The goal in designing {sim was to develop a
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tool which would aid in data gathering important to the design of advanced hardware based

logic simulators.

The remainder of this paper is divided into four sections. Section 2 presents the lsim gate-
switch level logic simulator and illustrates its use in specifying a simple circuit. Section 3
discusses lsim’s data gathering facilities. Section 4 presents a more extensive example
illustrating the use of lsim’s data collection facilities. The final section presents summary and
conclusions about the use of lsim collected data in the design of hardware based logic

simulators,

2. An Introduction to Lsim

Lsim is a gate-switch level simulator which can simulate systems containing both the
traditional TTL unidirectional type of logic gates, and bidirectional switches of the sort found
in MOS circuits. It has been written in the C language, and runs under the UNIX operating
system. The remainder of this section contains a summary of Isim simulation capabilities and an

example illustrating its use. A complete description can be found in Chamberlain [17].

Lsim models circuits with signal values being represented by one of seven logical states:

STABLE STATES TRANSIENT STATES

1  high r rising

0 low f falling

z  high impedance t transition to/from high impedance
x  undefined

To properly model circuits which include bidirectional gates, pass transistors, wired logic
connections and tri-state outputs, a “strength” is associated with each signal in addition to its
logical signal. Lstm uses two strengths, strong and weak, corresponding to a high and low
current drive capability. A strong signal is one that is connected directly to the power supply,
ground, or though an active transistor to supply or ground. A weak signal is one that is
connected to a voltage source though a resistance, such as a depletion mode pullup transistor.

Timing analysis is supported at three different levels, a unit delay model in which every gate is
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assumed to have a delay of one simulated time unit, a fixed delay model where gate delays are
modeled by fixed low-to-high and high-to-low propagation times, and a variable delay model in
which gates have variable delays specified by a maximum and a minimum value. Fault

simulation is supported through establishment of stuck-at conditions for selected signal lines.

2.1. Logical States

The seven logical states associated with signal lines are divided into two major types,
stable states (1,0,2,x) and transient states (r,f,t). The “1” and “0” states are used to model high
and low voltages respectively. The “z” state is used to model the high impedance output of
components that have tri-state outputs. The “x” state is used when little is known about the

voltage level of the signal.

Transient states are used to represent intermediate states during a transition between
stable states. The “r” and “f” states are used during a transition from low to high, and from
high to low respectively. The “t” state is used during a transition to or from a high impedance
state. The transient states are only utilized in the variable delay timing model. The unit and

fixed delay timing models only use the first four stable states.

Logical states (except for z) have one of two signal strengths (strong or weak) associated
with them. These strengths are used to resolve the state of a signal when more than one
component output is connected to the signal. This is the case when using wired logic

connections.

2.2. Bidirectional Components

There are several components supported by Isim that differ from the normal unidirectional
gate model that is common in gate level simulators. These components, the pass transistor and
resistor (required for proper MOS logic simulation), are capable of propagating signals in two
directions. Internally to lsim, these components are handled by creating, in effect, two parallel

unidirectional components that are connected back to back. This construction is hidden from

LSIM DATA COLLECTION =5- June 85



the user, who simply refers to one terminal of the component as the input and the other
terminal as the output. The algorithms for processing bidirectional components and handling

multiple strength signals follow those proposed by Hayes [18,19].

2.3. Delay Models and Timing Specifications

The simplest delay model supported by Isim is the unit delay model. Timing issues are
completely ignored in this model and all components are assumed to have a delay of one unit.
This unit delay is used to provide a mechanism for providing functional simulation of the circuit

without the overhead involved with more accurate timing simulations.

The second delay model supported is the fixed delay model. Lstm treats each component
as having fixed low-to-high and high-to-low propagation times associated with each output. In
addition, enable and disable times (i.e. switching times for the setup and removal of a high
impedance state on a component output) may also be specified. Whenever the component is
evaluated and it is determined that an output is to change state (i.e., a new event is generated),
the time for this new event is calculated as the current time plus the fixed time associated with

the delay through the component.

The most accurate delay model takes into account the fact that not all components can
have a fixed propagation delay associated with them, but are more realistically modeled by a
variable time range within which the output modification is assumed to take place. The
variable delay model uses a minimum and maximum value associated with each of the delay
times specified, and signal levels are modeled by the three transient states (“r”, “”’, and “t”)

during the time between the known stable states.

In addition to the standard component delays discussed above, setup and hold times may
be used to specify input timing requirements for memory elements. Violation of setup and hold

time requirements are detected by the simulator and reported as an error condition.
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2.4. A Simple Example

An example of Isim usage is presented below.

2.4.1. Circuit Specification and Compilation

The first step involved in simulating a circuit is describing the properties of the circuit in a
machine readable format. This circuit deseription must include information such as the gates to
be simulated, their interconnections, delays, and other properties. In order to facilitate this
description, the eirc circuit compiler has been developed to translate a text file description of
the circuit of interest into a format readable by isim. Figure 1 is the schematic diagram of a
simple three gate digital circuit. Figure 2 gives the specification of the example circuit as input
to circ. A complete description consists of at least the following parts: delay specifications,

component type definitions, environment specification, and netlist deseription.

In this example, there are two delay specifications defined (comdel and memdel). These
user selected identifiers are referenced later when defining component types. They associate
minimum, maximum, and fixed low-to-high propagation, high-to-low propagation, output enable,

and output disable times with the given identifier.

dout.h

N
dout.]

clk.h

Figure 1. Example circuit
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# Example circuit specification

begin circuit

begin delays
comdel = (8,12,12 § 2,3,3)ns;
memdel = (4,6,6 § 4,6,6)ns;

end delays;

begin types
nmos_inv = (not, de={weak, strong), comdel);
nmos_nor = (nor, 2, de={weak, strong), comdel);
dflip_flop = (dff, st = 3ns, ht = 1ns, memdel);

end types;

begin environment
inputs = (a.h,b.h,clk.h);
outputs = (dout.h,dout.l);

end environment;

begin components
norl = (nmos_nor, inputs = (a.h, b.h), outputs = (di.l});
notl = (nmos_inv, inputs = (di.l}, outputs = (di.h));
fil = (dflip_flip, inputs = (clk.h, di.h), outputs = (dout.h, dout.1));

end components;

end circuit;

Figure 2. Example circuit specification
There are three component types defined by the user in the circuit description, nmos_inv,
nmos_nor, and dflip_flop. They reference the built-in functions not, nor, and dff, respectively.
Not and nor are standard combinatorial gates, dff is a level sensitive D flip lop. The other
parameters in the type definition indicate the number of inputs, output current drive capability,
setup time, hold time, and delay specification to be associated with the type. These component

types will be referenced when specifying the logic netlist.

The environment specification defines the primary inputs and outputs of the circuit. The
netlist description is where the actual components themselves are described. The components

are named, typed, and their connectivity is defined by specifying their input and output signals.

2.4.2, Interactive Simulation

Once a digital circuit has been specified and compiled using ctre, it is ready to be

simulated by lsim. After lsim has been invoked the user may enter interactive commands to
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control the simulation process. Some of the more important commands are those which describe
the inputs to the simulated circuit and the form of the output required. The following

commands set up these parameters for the current example.

lsim> set 0O a.h

lsim> input b.h 0000000011111111 p

lsim> input clk.h Q0001100 p

lsim> watch a.h b.h di.l di.h clk.h dout.h dout.1l
l1sim> output 1

The first command (set) establishes a static low level at the primary input signal a.h. The
second two commands define periodic waveforms (designated by use of a “p™ to drive the
primary input signals b.h and clk.h. The watch command indicates which signals are to be
displayed on a periodic basis, and the output command specifies that the output period is to be
1 unit. In this example, the default unit delay mode! is used and thus the periods referred to in

the input and output commands are in terms of these unit times.

The status of all the signals being watched can be determined at any time during the
simulation through the use of the status command. Figure 3 shows the results of issuing the
status command. The “x” indicates that the logical states of the associated four signals are
undefined. The states of the other three signals were established by the previously executed set
and input commands. The numbers in the final column are included to associate a signal name
with the appropriate column of the simulation output (see Figure 4 where a.h is associated with

column 1, b.h with column 2, etc.).

lsim> status

a.h = 0 (watched) (1)
b.h = 0 (watched) (2)
di.1l = x (watched) (3)
di.h = x (watched) (4)
clk.h = 0 (watched) (5)
dout.h = x (watched) (6)
dout.l = x (watched) (7)
lsim>

Figure 3. Sample Terminal Session
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Once the signals for the primary inputs have been established, the simulation is ready to
begin. The initial implementation uses a simple output format which is oriented towards use of
inexpensive alphanumeric terminals. Figure 4 below shows the results of simulating the system
for 24 time units (3 clock periods). The numbers found at the top of each column of output
correspond to the signals being watched as indicated in Figure 3. The periodic inputs can be
seen in columns 1 (a.h), 2 (b.h}, and 5 (clk.h). The remaining signals can be seen to change

1 unit after their respective component inputs change.

At this point the user may proceed in a number of directions. The current simulation may
be continued, the delay model could be changed to either fixed delay or variable delay, the

current state of the simulation could be stored in a disk file, a previously saved simulation could

lsim> start

units 1 2 3 4 5 6 7

0 [0 J© | x | x |0 | x | x |
1 [0 0 | 1) x |0 | x | x |
2 [0 j©o | 1j0 |0 | x | x |
3 [0 10 | 1i0 |10 } x | x |
4 O [ | 110 | 1} x | x |
5 o |1 | 110 | 1|6 | 1|
6 i 16 | 110 10 |0 | 1]
7 I [0 | 110 |10 |10 | 1]
8 e |1 11 110 10 O | 1|
9 10 | 110 |0 0 |0 | 1|
10 o | 110 | 11j0 O | 1|
11 0o | 110 | 110 O | 1|
12 0o |} 110 | 1] 1|0 | 1|
13 o | 1j0 | 1] 1| 110 |
14 o [ 110 | 1j0 | 110 |
15 ¢ | 1j0 | 21j0 | 1|0 |
16 fO |0 {0 | 110 | 110 |
17 ¢ ¢ | 1} 1|10 | 1]0 |
18 [ |0 | 1|0 | | 110 |
19 [0 O | 110 |0 | 1j0 |
20 [0 jo | 110 | 1 110 |
21 {io |0 | 1106 | 110 | 1]
22 I 16 | 1|0 |6 |0 | 1]
23 |0 |10 | 110 |0 |0 | 1)
Simulation halted at time = 24 units.
1sim>

Figure 4. Simulator Qutput
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be input, or the session could be terminated.

3. Data Collection Facilities

A major motivation for the implementation of lsim was the desire to investigate the
simulation algorithm itself. The remainder of this section discusses lsim’s data collection

features for monitoring the simulation task.

3.1. Event

An event refers to a discrete action performed by the simulator, such as the modification
of the logical state of a component output, or the periodic display of signal states to the user.
Each event has a time associated with it that tells when during the simulation that event is to
occur. Events are stored in a data structure called the event queue, which handles the
scheduling of events as well as the retrieval of the event with the lowest time value. The
following statistical data is collected by lsim about the event queue while data collection is

enabled:

the number of events associated each component in the circuit
the number of events in the event queue
the times between events in the event queue

In addition to the data mentioned above, there is a provision for lsim to send out a record
to a file each time an event is scheduled, retrieved from the event queue, or deleted from the

event queue. Each record created contains four fields organized as follows:

field | contents and values

insertion (*“1”), removal (*0”), deletion (“-1”}
current simulated time (picoseconds)
scheduled time of the event (picoseconds)
event type

e L0 BD

Insertion and removal of events correspond to the normal processing of events associated with
discrete event simulation. Event deletion occurs when certain types of errors (e.g. “spike” errors)

are encountered. The current simulated time is recorded before the event is processed for event
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removal records. The event type identifies the action to be performed by the simulator {e.g.
component output modification, display output, etc.) that this event represents. Records are
written as ASCII strings with individual records separated by new lines. The resulting data file

can be analysed using the S statistical analysis package.

3.2. Partitioning

A common approach to achieving high speed logic simulation is to develop parallel
hardware architectures and associated parallel simulation algorithms. The general idea here is
to partition the logic to be simulated and place each partition on a separate processor.
Simulation can, hopefully, proceed in a parallel fashion on the multiple processors thus

achieving a computational speedup.

In order to examine various parallel architecture options, the effects of alternative logic
partitioning schemes must be examined. A poor partitioning can result in either overloading

certain processors, overloading the interprocessor communications network, or both.

Lstm supports the collection of communication requirements between components in
different partitions in an attempt to measure quantitatively the interprocessor (interpartition)
communication that takes place. Each component may be assigned a partition (if unspecified, it
defaults to zero}, and each time a component output changes and the resulting signal is
propagated to another component, an interpartition count is updated. This information is
stored in a square N x N matrix (N is the total number of partitions) whose entries contain a
count of source partition (row number) to destination partition (column number)
communications. At the end of the simulation, each entry in the matrix tells the amount of
communication required between the various partitions. If the overhead involved with
communicating across partitions is large, it is obviously advantageous to have most of the
communications requirements show up on the major diagonal, meaning the communication was

completely within a partition.
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3.3. Task Execution

The standard UNIX profiling utilities can be used to determine the cpu times of various
tasks involved in the simulation. The utilities provide information that tells the number of
times that subroutines have been called as well as cpu times for the subroutines themselves.
The subroutine calls can then be classified into a set of general tasks that comprise the

simulation. The current task classifications being used are the following:

event queue manipulation
functional evaluation
netlist operations

user output

other overhead

The event queue manipulation includes the insertion, retrieval, or deletion of events from
the event queue. Functional evaluation is the determination of component cutput output values
given component input values. The netlist operations refer to the propagation of component
output changes to the inputs of other components, in effect, searching the conmectivity of the
circuit. The user output refers to the time spent providing the periodic display of signal states.
The other overhead represents the time that could not be easily classified as one of the other

tasks.

3.4. Output Format

To demonstrate the output format of the data collection facilities, the circuit of Section 2
is simulated with data collection enabled. The resulting terminal session is shown in Figure 5.
Most of the data reported is self explanatory. Note that the times shown in the example are in
units since a unit delay timing model was used. Note also that the default of a single partition
(partition 0) was used, resulting in an interpartition communications matrix containing only a

single entry.
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% lsim circuit.ls

S8imulator state input from file circuit.ls

Current simulated time = O units.

lsim> input clk.h 00001100 p

lsim> set O a.h

lsim> input b.h 0000000011111111 p

lsim> collect on

lsim> halt 64

lsim> start

Simulation halted at time = 64 units.

lsim> collect off

The number of events processed for each component in the circult is:
norl 8 ffl 16
notl 8

The average number of events in the event queue = 2.500
The standard deviation is 0.707

The maximum number of events in the queue = 5

The total number of events processed = 56

The total number of events deleted from the queue = 0
The average time between events = 1.143 units

The maximum time between events = 2 units

The minimum time between events = 0 units

The summary of communication across partitions is as follows:
0
0o 78
lsim>

Figure 5. Data collection output

4. Example Simulation

In this section the simulation task oriented data collection capabilities of lsim are
illustrated with a more extensive circuit example. The circuit to be simulated contains about
1000 transistors and functions as a stopwatch controller. It was designed as part of an
undergraduate VLSI design course using NMOS technology and was subsequently fabricated and

shown to operate as specified.
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4.1. Circuit Description

The function of the stopwatch is to keep track of the time between successive activations
of the run/stop signal (which would be connected to a button) in order for the user to measure
the elapsed time between two observed events. In addition, a clear input signal is provided to
allow the user to reset the time to an initial zero state. The time base, a two phase non-

overlapping clock, is generated externally to the chip.

Output from the stopwatch is provided in the form of four binary coded decimal digits,
representing the four digits in a time display ranging from 0 to 99 seconds with a precision of
01 sec. There are only two control inputs to the chip. The clear signal initializes the time to
zero by clearing all the internal counters, and the run/stop signal is responsible for starting and
stopping the timing operation. The first time the run/stop signal undergoes a low-to-high
transition, the stopwatch starts running and continues until a second low-to-high transition on

the run/stop signal.

The block diagram for the stopwatch is shown in Figure 6. The control inputs are “clr”,
the clear signal, and ‘“rs.h”, the run/stop signal. “Phil” and “phi2” are the two phase clock
inputs. For this data collection exercise the clock period was set at 200 ns. The ocutputs are
“d0” through “d15”. ‘“c0” through “c4” are carry signals that tell the counters when to
increment. There are two major component types that comprise the stopwatch, an edge

detector and six bed counters. These are defined as macros in lsém.

The edgedet component is a rising edge detector. It detects the rising edge of the “rs.h”
input and converts it into a “run.h” signal. “Run.h” is a logical high when the stopwatch is
running and is a logical low otherwise. The bedcount components are synchronous counters that
count from 0 to 9 when their “count” inputs are high. “Run.h” is the “count” input for
bedecountl, and “c0” through “c4” are the “count” (ci) inputs for bedcount? through bedeounts,

respectively.
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phi2 phil clr rs.h

edgedet L bedcountl <0 bedeount2

cl
bedcounts e bedcount5 ) bedecount4 £ bedcount3
d15d14d13 212 d11d10 d9 d8 d7 d6 d5 d4 d3 42 d1 do

Figure 6. Stopwatch block diagram

4.2. Event Information

Figures 7 and 8 illustrate two types of event oriented information which can be obtained
using lstm. Figure 7 shows the distribution of future events that were generated over an entire
simulation run. Every time a new event is scheduled, the time difference between the current
simulation time and the new event time is calculated. This figure is a histogram of all the time

differences which have been calculated during the circuit simulation.

Several points of interest should be noted. First, almost all events which are scheduled are
within a 200 ns time interval from the current time. An implication of this is that a simple

timing wheel event processing algorithm with a relatively small number of entries will be able to
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process events efficiently in constant (as opposed to linear or log N) time. The distribution of
events is also what we might expect with a digital system which has a 200 ns clock period, That
is most events are scheduled for times shortly after the clock period begins, or they are

scheduled for the start of the next clock period (about one clock period in the future).

Figure 8 shows the time position of all events generated over the entire simulation, but
scaled to indicate their location within the 200 ns clock period. As expected, most events occur
near the beginning of the clock period with hardly any events being scheduled for the second
half of the period. There are several implications of this distribution. First, any simulation
algorithm which determines whether there are events to process on a clock tick by clock tick
basis will encounter many clock ticks when there are no events available to process. These types
of simulation algorithms (and their corresponding hardware architectures) thus have an

overhead (possibly high) associated with processing clock times at which no action (events) take

LSIM DATA COLLECTION -17- June 85



place.

Second, the type of data found in this figure permits one to determine the effectiveness of
multiple processor pipelined architectures for hardware logic simulation. One way in which
hardware simulation speeds can be increased is to pipeline the processing of events that occur at
the same clock tick. If there are Ni events which occur at clock tick i, and if these events are
evenly distributed across M processors, then each processor has Ni/M events to process at time
i. If P represents the number of stages in an event processing pipeline, then the pipeline will only
be effective if Ni/M is larger then P over a sufficient number of i time points (i.e. the pipeline is
full a reasonable amount of time). The data contained in this figure (at a somewhat higher
resolution) allows one to make this sort of determination. A complete performance model of this

type of architecture is now being developed.
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Figure 8:; Distribution of Events Within A Clock Period
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4.3. Circuit Partitioning

An important problem which must be considered when dealing with multiple processor
based logic simulators relates to determining how circuit components are to be allocated to the
individual processors. Figure9 show the communications impact of two alternative partitionings
of the stopwatch cireuit across eight partitions (processors). In the first case (upper part of
figure} partition O corresponds to the input lines, partition 1 to the output lines, and the
remaining partitions to the major blocks found in Figure 6 (edgedet, bedcountl, bedeount?,
etc.). The results show a good deal of communications from the input (partition 0) to all the
other partitions, light communications from the four output blocks to the output lines and
between the blocks and their neighbors, and the bulk of communications within each block itself
(i.e. large numbers on the main diagonal). Given that communications within a partition has

very low cost (i.e. results in little delay), this partitioning scheme is probably an effective one.

This is contrasted with the second case where components have been randomly allocated
to eight partitions. In this case reasonable size entries appear in almost every matrix location
indicating that there is communications between all of the processors. Given a processor
mterconnection network which has limited bandwidth, such a component allocation could result
in a serious performance bottieneck. This type of information is now being utilized to evaluate

eflects of different partitioning algorithms on the performance of various hardware architectures.

5. Summary

This paper has described the lsim logic simulator, focusing on the data collection facilities
available for obtaining information about the logic simulation algorithm itself. An example was
provided illustrating the use of lsim in collecting data on event distributions over an entire
simulation run and event activity within a clock cycle. In addition, the powerful component,
partitioning analysis capability was discussed. Research is currently being pursued which is
using lsim to generate simulation task data on a benchmark of circuits. This data is to be used

in the development of realistic models of hardware architectures tailored to the logic simulation
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Figure 9 : Communications Across Circuit Partitions
algorithm. From this it is hoped that faster and more effective simulation machines can be

developed.
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