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Abstract

The objective of this dissertation is to develop and apply kinetic schemes for the numerical

solution of 3-D compressible Euler and ideal Magnetohydrodynamic (MHD) equations.

By employing the so-called “moment method strategy”, kinetic schemes for the com-

pressible Euler and ideal MHD equations are derived from the collisionless Boltzmann

equation, which is “upwind” discretized. Then the moments of the “upwind” discretized

collisionless Boltzmann equation are taken with a collision invariant vector and the ap-

propriate distribution function to obtain the numerical scheme for the continuum Euler

and ideal MHD equations.

The well-known Kinetic Flux-Vector Splitting (KFVS) algorithm is obtained by up-

wind discretizing the collisionless Boltzmann equation based on the sign of the molecular

velocity ~v. However, if the molecular velocity is expressed as ~v = ~u + ~c, where ~u is

the fluid velocity and ~c is the thermal velocity, and the Boltzmann equation is upwind

discretized depending upon the sign of both ~u and ~c, the “moment method strategy” leads

to the so-called Kinetic Wave/Particle Splitting (KWPS) algorithm.

In this dissertation, for both the Euler and ideal MHD equations, initially the first-

order accurate time-explicit KFVS and KWPS algorithms are derived, and then the first-

xix



order accurate time-implicit KFVS and KWPS algorithms are developed. The derivations

are presented in the 3-D generalized coordinate system. A 3-D computational code for the

solution of compressible Euler and ideal MHD equations in generalized curvilinear coor-

dinate system is written and validated. The code has been written for the first-order time-

explicit KWPS algorithm. However, it can be easily extended to include the time-implicit

KWPS algorithm as well as both the time-explicit and time-implicit KFVS algorithms.

The code is applied to calculate the inviscid Supersonic flow past an axisymmetric blunt

body with and without the presence of a magnetic field. The effect of magnetic field in

reducing the strength of the bow shock is analyzed.

This dissertation makes a fundamental contribution to the development and applica-

tion of kinetic schemes for the solution of fluid dynamics equations.
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Chapter 1

Introduction

Major developments have been achieved in numerical methods for the solution of the

hyperbolic conservation law in the past three decades. Among them, there are several

methods that can be categorized as characteristics based upwind schemes. These schemes

either split the flux-vector or the flux-difference across a cell interface into positive and

negative parts using the eigenvalues of the system. The positive or negative flux-vector or

flux-difference is then discretized employing a backward or forward difference operator

respectively. The Steger-Warming upwind Flux-Vector Splitting (FVS) scheme [32] and

the van Leer FVS [35] are the examples of well-known FVS schemes. In addition, based

on an approximate Riemann solver, the Roe [30] and Osher schemes [34, 35] are among

the well-known Flux-Difference Splitting (FDS) schemes. There are other formulations

that apply the FVS to the flux-vector after separating it in two parts, one without any pres-

sure terms and the other with pressure terms. The well known schemes in this category

include Liou’s Advection Upwind Split Method (AUSM) [18], and Halt & Agarwal’s

Wave/Particle Split (WPS) [2] scheme.
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1.1 Kinetic Schemes for the Euler Equations

For dilute enough gases where binary collisions between gas molecules can be assumed

to dominate, the Boltzmann equation can be written as:

∂ (nf)

∂t
+ ~v · ∇ (nf) =

[
∂ (nf)

∂t

]
coll

= J (f, f1) (1.1)

where t is the time, n is the particle number density, f is the probability density distri-

bution function, and ~v is the molecular velocity. The collision integral operator J (f, f1)

describes the collision of the gas particle associated with distribution function f with an-

other particle associated with distribution function f1. J (f, f1) drives the distribution

function towards collisional equilibrium. In Cartesian coordinate system the operator ∇

is defined as:

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

where î, ĵ, k̂ are the Cartesian orthogonal unit vectors.

The kernel of the collision integral J vanishes for a gas in a state of collisional equi-

librium, and the Boltzmann equation has a form similar to that of the linear wave equa-

tion [5]. In literature, many schemes have been developed to solve the linear wave equa-

tion, e.g. first- and second-order upwind schemes, Lax-Wendroff method, Euler implicit

scheme, and Crank-Nicholson scheme [15, 34]. From statistical perspective [17, 5], the

solution for the distribution function f is the Maxwellian probability density distribution

function f (0).

During a collision, conserved quantities are mass (m), momentum (m~v), and total

energy (mεt), which are grouped together in the collision invariants vector Ψ. Note that

the specific total energy εt is a sum of the kinetic energy 1
2
~v · ~v and the internal energy ε.

It can be shown that the Euler equations are obtained when moments of the Boltzmann
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equation are taken with the collision invariants using the Maxwellian as the weighting

function. By taking the moments of the discretized Boltzmann equation with the collision

invariant vector and Maxwellian probability density distribution function, it is argued that

one can develop numerical schemes for the solution of the Euler equations. The schemes

that utilize this strategy are called the kinetic schemes.

There exist two major approaches towards the development of kinetic schemes. In

the older and more established approach, the flux vector in the collisionless Boltzmann

equation is upwind discretized depending upon the sign of the molecular velocity ~v. Mo-

ments of this “upwind” discretized Boltzmann equation are then taken with the collision

invariant vector Ψ
(
≡
{

1 ~v 1
2
~v · ~v + ε

})
and the equilibrium distribution function

(Maxwellian) f (0) as a weighting function to obtain the so called Kinetic Flux-Vector

Splitting (KFVS) scheme for the Euler equations. It was first proposed by Pullin[25] and

further developed by Deshpande [10] and Mandal & Deshpande [21]. This scheme, how-

ever, requires the evaluation of computationally expensive error functions. The other ap-

proach, proposed by Agarwal & Acheson [1], results in the so called Kinetic Wave/Particle

Splitting (KWPS) scheme. In this scheme, the molecular velocity ~v is decomposed in two

parts as ~v = ~u + ~c where ~u is the average fluid velocity of the gas and ~c is the thermal

(or peculiar) velocity. The flux-vector in the Boltzmann equation is thus divided into two

parts: the convective part based on ~u and the acoustic part based on ~c. Both the convective

and the acoustic parts in the Boltzmann equation are then “upwind” discretized and con-

verted into a numerical scheme for the Euler equations using the moment method strategy.

This approach results into the KWPS scheme, which does not require the evaluation of

error functions, thereby tends to increase the computational efficiency.

There have been several important extensions to the basic kinetic schemes in the past

two decades. Eppard & Grossman [12] extended the KFVS scheme for computing flows
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in chemical and thermal non-equlibrium. Ravichandran [26] applied the compact differ-

encing to the KFVS scheme to improve the spatial accuracy. Reksoprodjo [27] derived

a higher-order accurate kinetic wave/particle flux-splitting algorithm for the Euler equa-

tions. Higher-order accuracy has also been obtained through interpolation of the flow

variables, most notably in the q-KFVS scheme of Deshpande [9, 11], which employs

the entropy variables instead of the state or the primitive variables; this formulation also

ensurses the positivity of the scheme. Estivalezes & Villedieu [14, 13] proposed a second-

order KFVS scheme based on Taylor series expansion applied to the Maxwellian proba-

bility density distribution function. Similar approach was applied to the development of

higher-order KWPS scheme by Reksoprodjo & Agarwal [28], who devised a systematic

methodology to increase the accuracy to any desired order. Furthermore, they also devel-

oped the implicit kinetic schemes, both for the KFVS and KWPS algorithms. In another

approach, Xu [23, 37, 38] has employed the BGK collisional model in the Boltzmann

equation to reduce the difussivity of the KFVS and KWPS schemes.

1.2 Kinetic Schemes for the Ideal Magnetohydrodynam-

ics Equations

During the last decade, the kinetic schemes for the Euler equations have been extended

to solve the ideal MHD equations. By employing the kinetic schemes , the 1-D (7-wave)

MHD system has been extensively studied, and the results are in excellent agreement

with those obtained with other non-kinetic schemes. Achievements of Croisille et al. [8],

Xu [36, 33], and Reksoprodjo & Agarwal [29] are the most notable in the application

of kinetic schemes to ideal MHD equations. The key problem in the development of
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kinetic schemes for MHD equations has been the difficulty in obtaining a probability

density distribution function for ideal MHD flow equations and the magnetic induction

equations. However, by adding an acceleration term to the Boltzmann equation, which

recovers the fluid portion of the ideal MHD equations, Huba & Lyon [16] have derived a

distribution function. Agarwal & Reksoprodjo [3] have made another breakthrough; they

have successfully derived the implicit kinetic schemes for both the Euler equations and

the ideal MHD equations.
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Chapter 2

Derivations of the Kinetic Schemes for

the Euler Equations

The Chapman-Enskog expansion of the classical Boltzmann equation with Knudsen num-

ber (Kn) as a small parameter is used to determine the higher-order distribution functions

which represent the small departure from the equilibrium. In the Chapman-Enskog ex-

pansion, the leading term represents the equilibrium distribution function f (0) known as

the Maxwellian distribution function. The moments of Boltzmann equation with colli-

sion invariant vector Ψ and distribution function f (0) result in the Euler equations. The

distribution function f (1) corresponding to O (Kn) in the Chapman-Enskog expansion

represents the small departure from equilibrium such that the moments of the Boltzmann

equation with collision invariant vector Ψ and the distribution function {f (0) + Knf
(1)}

result in the Navier-Stokes equations. Similarly the moments of the Boltzmann equation

with collision invariant vector Ψ and the distribution function {f (0) + Knf
(1) + K2

nf
(2)}

result in Burnett equations and so on. Thus the kinetic schemes for the Euler, Navier-
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Stokes and Burnett equations can be derived by applying the “moment method strategy”

to the “upwind” discretized Boltzmann equation. In this chapter, the time-explicit and

time-implicit kinetic schemes — KFVS and KWPS are derived for the 3-D Euler equa-

tions in curvilinear coordinate system.

2.1 Connection between the Boltzmann Equation and the

Euler Equations

The Boltzmann equation (1.1) governs the time evolution of a gas particle associated with

a probability density distribution function f as it convects and collides with other parti-

cles. The collision process drives the distribution function toward collisional equilibrium.

The mathematical link between the Boltzmann equation at the molecular level and the

continuum equations of fluid flow is based on the “moment method strategy”, defined as

the following linear mapping:

〈fΨ〉 =
∫
<+

dε
∫
<3

d3v (fΨ) (2.1)

where f is the probability density distribution function defining the state of the gas and Ψ

is the collision invariant vector. The integration in equation (2.1) is carried out over the

positive space of internal energy ε and over the entire three-dimensional velocity space

d3v.

The mapping of the Boltzmann equation (1.1) to the continuum level is then expressed

by the following operation:〈(
∂ (nf)

∂t
+ vi

∂ (nf)

∂xi

)
ψ

〉
= 〈J (f, f1)ψ〉 (2.2)
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where ψ is a collision invariant belonging to the collision invariant vector, defined as:

Ψ (m,~v, ε) =
[
m m~v 1

2
m~v · ~v +mε

]T
(2.3)

such that the following operation is satisfied:

〈J (f, f1)ψ〉 =
∫
<+

dε
∫
<3

d3v J (f, f1)ψ = 0 (2.4)

This requirement is needed to ensure that the equations of the fluid flows are conserved at

the continuum level.

For a gas in a state of collisional equilibrium, the collision integral vanishes, thus

J (f, f1) = 0 in equation (1.1). The solution to the Boltzmann equation then becomes

the zeroth order probability density distribution function (Maxwellian distribution) in the

Chapman-Enskog expansion given by:

f (0) =
1

εo
exp

(
− ε

εo

)(
β

π

)3/2

exp (−β (~v − ~u) · (~v − ~u)) (2.5)

where β = ρ
2p

is the equivalent temperature, ρ = mn is the fluid density, and p is the

fluid pressure. The internal energy term associated with the non-translational degrees of

freedom is expressed in terms of the ideal gas constant R and temperature T as εo =(
1

γ−1
− 3

2

)
RT . Additionally, the molecular velocity ~v can also be written as the sum of

the fluid velocity ~u and the thermal velocity ~c.

Taking moments of the Boltzmann equation (1.1) with the collision invariant vector

Ψ and the equilibrium distribution function f (0) results in the Euler equations for the

conservation of mass, momentum, and total energy for a compressible inviscid gas. In all

the derivations, it is assumed that the equation of state for ideal gas holds, that is:

p = ρRT =
ρ

2β
(2.6)
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In Cartesian coordinates, the Euler equations can be written as:

∂Q

∂t
+
∂Fi

∂xi
= 0 (2.7)

where

Q =
[
ρ ρuj ρet

]T
Fi =

[
ρui ρuiuj + pδij ρuiet + pui

]T
i, j = 1, 2, 3

The total energy density is defined as ρet = 1
2
ρ~u · ~u+ 1

γ−1
p.

In the following sections (2.1.1) - (2.1.3), the details of the application of “moment

method strategy” to the Boltzmann equation (1.1) for obtaining the Euler equations (2.7)

are described. In the derivations, it is assumed that the gas is always in a state of colli-

sional equilibrium, that is, the convected molecules experience instantaneous collisions

such that the probability density distribution function f is always Maxwellian f (0).

In the derivations of the Euler equations in sections (2.1.1) - (2.1.3), the following

definitions and notations are employed:

1. Non-dimensional thermal velocity and non-dimensional internal energy are

defined as ~̂c =
√
β~c and ε̂ = ε/εo respectively;

2. The angle-brackets denote the mathematical operation of taking the moments of

the arguments;

3. The subscripts i, j, k run from 1 to 3, representing the three spatial dimensions,

with repeated indices implying summation over the range.
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It is important to note that the Boltzmann equation is inherently three-dimensional in

velocity space, which implies that the equations at the continuum level should also be

three-dimensional. Therefore, the terms “1-D” and “2-D” flows within this context could

be misleading; they only imply that the fluid velocity vector has 2 and 1 vanishing

components of velocity in the physical space for 1-D and 2-D flows, respectively.

2.1.1 Conservation of Mass

The equation for conservation of mass is obtained by employing the mapping operation

defined by equation (2.2) and substituting the collision invariant for the mass ψ = m:〈
m

(
∂ (nf)

∂t
+ vi

∂ (nf)

∂xi

)〉
=

∂

∂t
(ρ 〈f〉) +

∂

∂xi
(ρ 〈vif〉) = 0 (2.8)

where

〈f〉 = 1

〈vif〉 = ui 〈f〉+ 1√
β
〈ĉif〉 = ui + 0

Thus, the equation for conservation of mass (2.8) becomes:

∂

∂t
(ρ) +

∂

∂xi
(ρui) = 0 (2.9)

2.1.2 Conservation of Momentum

The equation for conservation of momentum is obtained by employing the mapping

operation defined by equation (2.2) and substituting the collision invariant for the
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components of the momentum ψ = mvj:〈
mvj

(
∂ (nf)

∂t
+ vi

∂ (nf)

∂xi

)〉
=

∂

∂t
(ρ 〈vjf〉) +

∂

∂xi
(ρ 〈vjvif〉) = 0 (2.10)

where

〈vjf〉 = uj 〈f〉+ 1√
β
〈ĉjf〉 = uj

〈vjvif〉 = uiuj 〈f〉+ ui
1√
β
〈ĉjf〉+ uj

1√
β
〈ĉif〉+ 1√

β
〈ĉiĉjf〉

= uiuj + 0 + 0 + 1
2β
δij

After substituting the equation of state (2.6) for 1
2β

, the equation for conservation of

momentum (2.10) can be expressed as:

∂

∂t
(ρuj) +

∂

∂xi
(ρuiuj) +

∂

∂xj
(p) = 0 (2.11)

2.1.3 Conservation of Total Energy

The equation for conservation of total energy is obtained by employing the mapping

operation defined by equation (2.2) and substituting the collision invariant for the total

energy ψ = 1
2
mv2

k +mε:〈(
1
2
mv2

k +mε
)(∂ (nf)

∂t
+ vi

∂ (nf)

∂xi

)〉
=

∂

∂t

(
ρ 〈εf〉+ ρ

〈
1
2
v2
kf
〉)

+
∂

∂xi

(
ρ 〈viεf〉+ ρ

〈
1
2
viv

2
kf
〉)

= 0 (2.12)

where

〈εf〉 = εo 〈f〉 = εo

〈viεf〉 = εo 〈vif〉 = uiεo 〈f〉+ εo
1√
β
〈ĉif〉 = uiεo + 0
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〈
1
2
v2
kf
〉

= 1
2
u2
k 〈f〉+ 1√

β
uk 〈ĉkf〉+ 1

2β

〈
ĉ2
kf
〉

= 1
2
u2
k + 0 + 1

4β
δkk〈

1
2
viv

2
kf
〉

= 1
2
uiu

2
k 〈f〉+ 1√

β
uiuk 〈ĉkf〉+ 1

2β
ui
〈
ĉ2
kf
〉

+ 1

2
√
β
u2
k 〈ĉif〉+ 1

β
uk 〈ĉiĉkf〉+ 1

2β
√
β

〈
ĉiĉ

2
kf
〉

= 1
2
uiu

2
k + 0 + 1

4β
uiδkk + 0 + 1

2β
ukδik + 0

Utilizing the definition of the average internal energy (εo) and the equation of state for

the ideal gas (2.6), the equation for conservation of energy (2.12) can be written as:

∂

∂t
(ρet) +

∂

∂xi
(ρuiet + pui) = 0 (2.13)

where the total energy is defined as ρet = 1
2
ρu2

k + 1
γ−1

p.

2.2 Explicit Kinetic Schemes (KFVS and KWPS) for the

Euler Equations

The mathematical link between the Boltzmann equation and the continuum equations of

fluid flows demonstrated in the previous section is called “moment method strategy”,

which can also be employed to map an upwind algorithm for solving the Boltzmann

equation to obtain the corresponding algorithm for solving the Euler equations. This

methodology is the philosophical basis of all kinetic schemes.

The moments of the upwind discretized form of the Boltzmann equation result in

upwind schemes for the equations for fluid flows at the continuum level. In this section,

the derivations of the kinetic schemes for the numerical solution of the Euler equations,

namely the KFVS and the KWPS schemes in generalized curvilinear coordinate system,
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are presented. The Euler equations in a time-invariant generalized coordinate system

(ξ, η, ζ) can be expressed as the follows:

∂Q̄

∂t
+
∂F̄ξ

∂ξ
+
∂F̄η

∂η
+
∂F̄ζ

∂ζ
= 0 (2.14)

where the overbar denotes the quantities in the generalized curvilinear coordinate

system, defined as

Q̄ = 1
JQ = 1

J

[
ρ ρuj ρet

]T
F̄ξ = 1

J (ξxFx + ξyFy + ξzFz)

= ‖ξ‖
J

[
ρuξ ρuξuj + pξ̂j ρuξet + puξ

]T
F̄η = 1

J (ηxFx + ηyFy + ηzFz)

= ‖η‖
J

[
ρuη ρuηuj + pη̂j ρuηet + puη

]T
F̄ζ = 1

J (ζxFx + ζyFy + ζzFz)

= ‖ζ‖
J

[
ρuζ ρuζuj + pζ̂j ρuζet + puζ

]T
j = x, y, z

where

1. Subscripts x, y, z are associated with the Cartesian coordinate system;

2. ‖·‖ denotes the Euclidean magnitude of the transformation metric vectors ~ξ, ~η, ~ζ ,

e.g., ‖ξ‖ =
√
ξ2
k =

√
ξ2
x + ξ2

y + ξ2
z ;

3. The hat (̂·) denotes the normalized components of the transformation metrics, and

the subscripts ξ, η, ζ on the velocity components indicate the velocity components

in the generalized coordinate system, which can be related to the values in the

Cartesian coordinate system through a rotation operation such as uξ = ξ̂kuk with

k = x, y, z.
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The Jacobian of coordinate transformation is defined as:

J =

∣∣∣∣∣∣∣∣∣∣∣
ξx ξy ξz

ηx ηy ηz

ζx ζy ζz

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣
xξ xη xζ

yξ yη yζ

zξ zη zζ

∣∣∣∣∣∣∣∣∣∣∣

−1

Deshpande et al. [10, 11, 21] apply the idea of moment method strategy by splitting the

molecular velocity (~v) into positive and negative parts. In the Cartesian coordinate

system, the split-flux Boltzmann equation (1.1) becomes:

∂ (nf)

∂t
+

∂

∂xi

(
vi+|vi|

2
(nf)

)
+

∂

∂xi

(
vi−|vi|

2
(nf)

)
= J (f, f1) (2.15)

with i = x, y, z. After applying the simple first-order accurate upwind discretization to

the Boltzmann equation (2.15) and utilizing the moment method strategy, the scheme

called Kinetic Flux-Vector Splitting (KFVS) is obtained. The split-flux terms for the

Euler equations in the generalized coordinate system are obtained as:

F̄±ξ = ‖ξ‖
J


1±erf(Sξ)

2


ρuξ

ρuξuj + ξ̂jp

ρuξet + uξp

±
exp(−S2

ξ)
2
√
πβ


ρ

ρuj

ρet + 1
2
p



 (2.16)

where Sξ is the ξ̂-component of the velocity ratio vector ~S = ~u
√
β, such that Sξ = ξ̂kSk

with k = x, y, z. The error function erf (x) is defined as:

erf (x) =
2√
π

x∫
0

dt exp
(
−t2

)
(2.17)

In the numerical computation this function must be calculated using numerical

integration schemes such as Gaussian Quadratures [1] or polynomial approximation [24].

Agarwal & Acheson [1] proposed the Kinetic Wave/Particle Split (KWPS) scheme to

upwind split the Boltzmann equation (1.1). The scheme is derived by first decomposing

14



the molecular velocity in the flux terms of the Boltzmann equation into fluid velocity and

thermal velocity (~v = ~u+ ~c), and then upwind-splitting the velocities ~u and ~c

individually based on their signs. In the Cartesian coordinate system, the split-flux

Boltzmann equation becomes:

∂ (nf)

∂t
+

∂

∂xi

(
ui+|ui|

2
(nf)

)
+

∂

∂xi

(
ui−|ui|

2
(nf)

)
+

∂

∂xi

(
ci+|ci|

2
(nf)

)
+

∂

∂xi

(
ci−|ci|

2
(nf)

)
= J (f, f1) (2.18)

After the moments are taken with respects to the collision invariants Ψ, the resulting

split-flux-vectors for the Euler equations in the generalized coordinate system are

obtained as:

F̄±ξ = ‖ξ‖
J


uξ±|uξ|

2


ρ

ρuj

ρet

+ 1
2


0

ξ̂jp

uξp

± 1

2
√
πβ


ρ

ρuj

ρet + 1
2
p



 (2.19)

Note the simpler expressions in equation (2.19) compared to the KFVS

formulation (2.16).

2.3 Implicit Kinetic Schemes for the Euler Equations

In order to increase the efficiency of the calculations for steady state cases, the implicit

variants of the kinetic schemes of section 2.2 are derived in this section. For the

derivation of implicit schemes, it is required to obtain the Jacobian matrices of the

flux-vectors.

There are two approaches for deriving the Jacobians:
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Continuum approach: the Jacobians are obtained from the flux-vectors such as the one

expressed in equation (2.16) of the explicit scheme, for example A±x = ∂F±x /∂Q

in Cartesian coordinate system.

Molecular approach: the Jacobians of the Boltzmann equation are calculated first and

then their moments are taken with the collision invariant vector Ψ, for example

A±x = 〈v±x ∂ (nf) /∂Q Ψ〉 in Cartesian coordinate system.

In subsequent derivations, the Jacobians are presented as a matrix product A = BC−1,

where B and C are 5× 5 matrices with C defined as

C =
∂Q̄

∂V
= 1
J


1 01×3 0

uj ρI 03×1

1
2
u2
k ρul

1
γ−1

 (2.20)

and V defined as the primitive variables vector
([

ρ ~u p

]T)
, and I is a 3× 3 identity

matrix. Also, the subscript j ∈ {x, y, z} runs vertically while the subscript l ∈ {x, y, z}

runs horizontally. The repeated index implies summation over the range {x, y, z}. This

convention on index notations is employed in all the derivations that follow. Also, the

size of the zero submatrices are subsequently dropped for brevity and to avoid clutter.

2.3.1 Continuum Approach

In the continuum (C) approach, the split Jacobian matrices are obtained directly from the

linearization of the flux-vectors at the continuum level. This approach is very

straightforward, and the results are as follows:
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For KFVS scheme:

A±ξ = ‖ξ‖
J

[
1±erf(Sξ)

2
B1
ξ ±

exp(−S2
ξ)

2
√
πβ

B2
ξ

]
C−1 (2.21)

where

B1
ξ =


uξ ρξ̂l 0

uξuj ρuξI + ρuj ξ̂l ξ̂j

1
2
uξu

2
k ρuξul + ρetξ̂l + pξ̂l

1
γ−1

uξ + uξ



B2
ξ =


1
2

0 β

1
2
uj + 1

2
uξ ξ̂j ρI + ρξ̂j ξ̂l βuj − βuξ ξ̂j

1
2
u2
k − 1

8β
− 1

2
et + 1

4
u2
ξ ρul + 1

2
ρuξ ξ̂l

1
γ−1

+ 3
4

+ βet − 1
2
βu2

ξ


and j, k, l = x, y, z.

Applying the continuum approach to the KWPS scheme, the following expression is

obtained:

A±ξ = ‖ξ‖
J

[
1−sgn(∓uξ)

2
B0
ξ + 1

2
B1
ξ ± 1

2
√
πβ

B2
ξ

]
C−1 (2.22)

where

B0
ξ =


uξ ρξ̂l 0

uξuj ρuξI + ρuj ξ̂l 0

1
2
uξu

2
k ρuξul + ρetξ̂l

1
γ−1

uξ



B1
ξ =


0 0 0

0 0 ξ̂j

0 pξ̂l uξ



B2
ξ =


1
2

0 β

1
2
uj ρI βuj

1
2
u2
k − 1

8β
− 1

2
et ρul

1
γ−1

+ 3
4

+ βet


and j, k, l = x, y, z. Note that sgn (0) ≡ 1.
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2.3.2 Molecular Approach

In the molecular (M) approach, first an upwind implicit scheme is formulated for the

Boltzmann equation. For example, the x-component of the flux terms is approximated as

follows:

(vxnf)t0+∆t ≈ (vxnf)t0 + ∆t
∂ (vxnf)

∂t
≈ vx (nf)t0 + vx

∂ (nf)

∂Q
∆Q (2.23)

where

∂ (nf)

∂Q
= (nf)

[
1
ρ

(1 + Φ) 2βcx 2βcy 2βcz −1
p
Φ

]
C−1

Φ =
5

2
− ε

εo
− βc2

x − βc2
y − βc2

z

The moment method strategy is then applied to obtain the split-flux Jacobians for the

Euler equations. The results are then utilized in formulating the implicit kinetic schemes

for the Euler equations.

Using the KFVS methodology, the split-flux Jacobians are the same as those obtained

using the continuum approach, expressed in equation (2.21).

On the other hand, by applying the Kinetic Wave/Particle Split (KWPS) methodology,

the resulting split-flux Jacobians for the Euler equations are obtained as:

A±ξ = ‖ξ‖
J

[
uξ±|uξ|

2
B0
ξ + 1

2
B1
ξ ± 1

2
√
πβ

B2
ξ

]
C−1 (2.24)

where

B0
ξ =


1 0 0

uj ρI 0

u2
k ρul

1
γ−1


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B1
ξ =


0 ρξ̂l 0

0 ρuj ξ̂l ξ̂j

0 ρetξ̂l + pξ̂l uξ



B2
ξ =


1
2

0 β

1
2
uj ρI + ρξ̂j ξ̂l βuj

1
2
u2
k − 1

2
et − 1

8β
ρul + ρuξ ξ̂l

1
γ−1

+ 3
4

+ βet


Note again, the simpler expressions in equations (2.24) and (2.22) compared to

equation (2.21).

2.3.3 Eigenvalues of the Jacobian Matrix

Some further insights can be obtained from the eigenvalue analysis of the Jacobian

matrix A = XΛX−1 where Λ is the diagonal matrix containing all the eigenvalues and

X is the eigenvector matrix. However, the present analysis is conducted on a simpler

diagonal matrix D, which is related to A by the similarity transformation A = CDC−1.

Also, for simplicity, the analysis is limited to 1-D Jacobian matrix only, resulting in a

cubic equation for the characteristics polynomial.

There are three Jacobian matrices that need to be considered: KFVS, KWPSC , and

KWPSM. Their characteristic polynomials are calculated as follows.

Eigenvalues of the KFVS Scheme

The characteristic polynomial can be written as:

0 =
∣∣∣∣−λI + 1+erf(Sx)

2
√
β

E1
x +

exp(−S2
x)

2
√
πβ

E2
x

∣∣∣∣ (2.25)
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where

E1
x =


Sx ρ

√
β 0

0 Sx
1
ρ

√
β

0 γ

2
√
β
ρ Sx

 E2
x =


1
2

0 β

1

2ρ
√
β
Sx 2 −1

ρ
Sx
√
β

−γ+1
8β
− γ−1

4β
S2
x − γ−1

2
√
β
ρSx

3γ+3
4

+ γ−1
2
S2
x


The calculation can be simplified if the following change of variables is applied:

K1 = 1+erf(Sx)

2
√
β

K2 =
exp(−S2

x)
2
√
πβ

λ̄ = λ− SxK1 −K2 γ̄ = γ − 1

The characteristic polynomial can now be recast as follows:

0 =

∣∣∣∣∣∣∣∣∣∣∣∣

−λ̄− 1
2
K2 ρ

√
βK1 βK2

1

2ρ
√
β
SxK2 −λ̄+K2

1
ρ

√
βK1 − 1

ρ

√
βSxK2

−
(
γ̄
4β
S2
x + γ̄+2

8β

)
K2

γ̄+1

2
√
β
ρK1 − γ̄

2
√
β
ρSxK2 −λ̄+

(
γ̄
2
S2
x + 3γ̄+2

4

)
K2

∣∣∣∣∣∣∣∣∣∣∣∣
0 = λ̄3 + λ̄2

[(
−3γ̄

4
− 1− γ̄

2
S2
x

)
K2

]
+ λ̄

[
γ̄
2
K2

2 + γ̄SxK1K2 − γ̄+1
2
K2

1

]
+
[
γ̄
4
K3

2 + γ̄
2
SxK1K2

2 +
(
γ̄
4
S2
x − γ̄

8

)
K2

1K2

]
(2.26)

Eigenvalues of the KWPS Scheme

The characteristic polynomial for the “continuum” approach can be written as:

0 =
∣∣∣∣−λI + 1−sgn(−Sx)

2
E0
x + 1

2
E1
x + 1

2
√
πβ

E2
x

∣∣∣∣ (2.27)

where

E0
x =



Sx√
β

ρ 0

0 Sx√
β

0

0 1
2β
ρ Sx√

β

 E1
x =


0 0 0

0 0 1
ρ

0 γ−1
2β
ρ 0

 E2
x =


1
2

0 β

0 1 0

−γ+1
8β

0 3γ+3
4


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Define the following the variables:

K0 = 1−sgn(−Sx)
2

K3 = 1

2
√
πβ

λ̄ = λ− 1√
β
SxK0 −K3 γ̄ = γ − 1

With this change of variables, the characteristic polynomial can be recast as:

0 =

∣∣∣∣∣∣∣∣∣∣∣
−λ̄− 1

2
K3 ρK0 βK3

0 −λ̄ 1
2ρ

− γ̄+2
8β
K3

1
4β
ρ (γ̄ + 2K0) −λ̄+ 3γ̄+2

4
K3

∣∣∣∣∣∣∣∣∣∣∣
0 = λ̄3 + λ̄2

[
−3γ̄

4
K3

]
+ λ̄

[
− γ̄

4
K2

3 − γ̄
8β
− 1

4β
K0

]
+
[
γ̄

16β
K3 (K0 − 1)

]
(2.28)

For the “molecular” approach, the characteristic polynomial is given as:

0 =
∣∣∣∣−λI + Sx+|Sx|

2
√
β

E0
x + 1

2
E1
x + 1

2
√
πβ

E2
x

∣∣∣∣ (2.29)

where

E0
x =


1 0 0

0 1 0

0 0 1

 E1
x =


0 ρ 0

0 0 1
ρ

0 γ
2β
ρ 0

 E2
x =


1
2

0 β

0 2 0

−γ+1
8β

0 3γ+3
4


Again, considerable simplification can be realized by the use of following variables:

K3 = 1

2
√
πβ

λ̄ = λ− [
√
π (Sx + |Sx|) + 1]K3 γ̄ = γ − 1

The characteristic polynomial can now be recast as:

0 =

∣∣∣∣∣∣∣∣∣∣∣
−λ̄− 1

2
K3

1
2
ρ βK3

0 −λ̄+K3
1
2ρ

− γ̄+2
8β
K3

γ̄+1
4β
ρ −λ̄+ 3γ̄+2

4
K3

∣∣∣∣∣∣∣∣∣∣∣
0 = λ̄3 + λ̄2

[(
−3γ̄

4
− 1

)
K3

]
+ λ̄

[
γ̄
2
K2

3 − γ̄+1
8β

]
+
[
γ̄
4
K3

(
K2

3 − 1
8β

)]
(2.30)
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Eigenvalues of the Kinetic Schemes

The determinants for both KWPS variants are constants. However, the determinant of

the KWPSC switches its sign and becomes positive for Sx ≤ 0. The determinant for the

KWPSM stays the same, a negative constant throughout.

Using procedures outlined above, the eigenvalues of the positive split-flux Jacobian

matrices are obtained as functions of the non-dimensional fluid velocity Sx and the

equivalent temperature β whose value is set to unity for the eigenvalues computations.

When applied to the KFVS split-flux Jacobian matrix, it is revealed that the eigenvalues

are smooth real functions of Sx. Furthermore, the eigenvalues associated with the

positive flux Jacobian matrix are all positive, go to zero as Sx goes to −∞, and to the

non-dimensional eigenvalues of the Euler equations
(
Sx, Sx ±

√
γ
2

)
as Sx goes to +∞.

For the KWPS split-flux Jacobian matrix, for both the molecular and the continuum

approaches, the eigenvalues are positive real functions which are parallel to the

non-dimensional eigenvalues of the Euler equations for positive values of Sx. For

negative values of Sx, however, two eigenvalues of the continuum KWPS Jacobian

matrix become complex numbers, and the remaining eigenvalue, a constant value, is

discontinuous at Sx = 0. On the other hand, the eigenvalues associated with molecular

KWPS split-flux Jacobian matrix stay continuous at Sx = 0, and stay constant for

Sx ≤ 0. Based on this observation, the molecular approach is preferred over the

continuum approach.
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Chapter 3

Derivations of the Kinetic Schemes for

the Ideal MHD Equations

In the previous chapter, a systematic description of the application of the “moment

method strategy” was presented for obtaining the kinetic schemes for the Euler equations

from the “upwind” discretized Boltzmann equation. In this chapter, the methodology is

extended for obtaining the kinetic schemes for the ideal MHD equations.

3.1 Connection between the Boltzmann Equation and

the Ideal MHD Equations

Under the assumption that the viscous effects are negligible and there are no relativistic

effects [22, 6], the governing equations of Magnetohydrodynamics (MHD) are given
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below. Note that∇ = ı̂ ∂
∂x

+ ̂ ∂
∂y

+ k̂ ∂
∂z

where ı̂, ̂, k̂ are the Cartesian orthogonal unit

vectors.

Continuity equation:
∂

∂t
(ρ) +∇ · (ρ~u) = 0 (3.1)

Conservation of momentum:

∂

∂t
(ρ~u) +∇ · (ρ~u~u) +∇ (po) = ∇ ·

(
1
µo
~B ~B

)
(3.2)

Conservation of total energy:

∂

∂t
(ρet) +∇ · (ρ~uet + po~u) = ∇ ·

(
1
µo
~B
(
~u · ~B

))
(3.3)

Magnetic field induction:
∂

∂t

(
~B
)

= ∇×
(
~u× ~B

)
(3.4)

The above equations can be combined in the following conservation form. Note that the

repeated indices imply summation over the range.

∂Q

∂t
+
∂Fi

∂xi
= 0 (3.5)

The components of Q and F are as follows

Q =
[
ρ ρuj ρet Bj

]T
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Fi =



ρui

ρuiuj + poδij − 1
µo
BiBj

ρuiet + poui − 1
µo
BiukBk

uiBj −Biuj


i, j, k = 1, 2, 3

where ~B is the magnetic field and the constant µo is the permeability of free space

(≡ 4π × 10−7 H/m). The total pressure and total energy density are redefined to account

for the magnetic field contribution as po = p+ 1
2µo
B2
k and ρet = 1

2
ρu2

k + 1
γ−1

p+ 1
2µo
B2
k .

Furthermore, the equivalent temperature is now defined as β = ρ
2po

. Thus, the equation

of state for the ideal MHD can be expressed as

p = ρRT = po − 1
2µo
B2
k =

ρ

2β
− B2

k

2µo
(3.6)

To establish the connection between the Boltzmann equation and the ideal MHD

equations it is necessary to derive a suitable distribution function from which the

continuum equations can be recovered. Previous derivations of the kinetic schemes for

ideal MHD [8, 36] simply extend the flux-splitting function of the Euler equations.

Recently, it has been shown [16] that a distribution function can indeed be constructed

for the ideal MHD equations for the conservation of mass, momentum, and total energy,

namely equations (3.1), (3.2), and (3.3). The following sections illustrate this new

approach. However, the methodology does not work in connecting the Boltzmann

equation to the equation of magnetic field induction (3.4). Thus, this approach will not

be followed in this dissertation for the derivation of the kinetic schemes for the ideal

MHD equations.
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Consider the following generalized transport equation:〈
∂ (nf)

∂t
ψ

〉
+

〈
vi
∂ (nf)

∂xi
ψ

〉
−
〈
ai
∂ (ψ)

∂vi

〉
= 0 (3.7)

with ~w = 1√
ρµo

~B defined as the Alfven wave velocity, and the acceleration terms

ai = ∂
∂xi

(
1
2
w2
i nf

)
in conjunction with the following distribution function [16]:

f =
1

εo
exp

(
− ε

εo

)(
1

π

)3/2∏
h

√
β√

1− w2
hβ

exp

(
− βc2

h

1− w2
hβ

)

− 1

εo
exp

(
− ε

εo

)(
1

π

)3/2
(

crcs
8wrws

−
c2
q

8w2
q

)∏
h

1√
4w2

h

exp

(
− c2

h

4w2
h

)
(3.8)

where i, h, q, r, s = 1, 2, 3. In the following sections the derivation of the fluid portion of

the ideal MHD equations (3.1), (3.2), and (3.3) from the generalized transport

equation (3.7) is presented. Note that the angle-brackets denote the mapping operation

defined by equation (2.1).

3.1.1 Conservation of Mass

By substituting ψ = m in the generalized transport equation (3.7), the following

equation is obtained:
∂

∂t
(ρ 〈f〉) +

∂

∂xi
(ρ 〈vif〉) = 0 (3.9)

Since ∂ψ/∂vi = 0, taking the moment of equation (3.9) with ψ = m we obtain:

〈f〉 = 1

〈vif〉 = ui

Thus, the equation for conservation of mass (3.9) can be expressed as:

∂

∂t
(ρ) +

∂

∂xi
(ρui) = 0 (3.10)
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3.1.2 Conservation of Momentum

By substituting ψ = mvj in the generalized transport equation (3.7), the following

equation is obtained:

∂

∂t
(ρ 〈vjf〉) +

∂

∂xi
(ρ 〈vivjf〉)−

∂

∂xj

(
1
2
ρw2

j 〈f〉
)

= 0 (3.11)

Since ∂ψ/∂vi = mδij , taking the moment of equation 3.11 with ψ = mvj we obtain:

〈vjf〉 = uj

〈vivjf〉 =


uiuj − wiwj, i 6= j

uiuj + 1
2β
− 1

2
wiwj, i = j

Substituting for 1
2β

from the equation of state (3.6), the equation for conservation of

momentum (3.11) can be written as:

∂

∂t
(ρuj) +

∂

∂xi
(ρuiuj − ρwiwj) +

∂

∂xj

(
po + 1

2
ρw2

j

)
− ∂

∂xj

(
1
2
ρw2

j

)
= 0

which simplifies to:

∂

∂t
(ρuj) +

∂

∂xi

(
ρuiuj − 1

µo
BiBj

)
+

∂

∂xj
(po) = 0 (3.12)

3.1.3 Conservation of Total Energy

By substituting ψ = mε+ 1
2
mv2

k in the generalized transport equation (3.7), the

following equation is obtained:

∂

∂t

(
ρ
〈(
ε+ 1

2
v2
k

)
f
〉)

+
∂

∂xi

(
ρ
〈(
ε+ 1

2
v2
k

)
vif

〉)
− ∂

∂xi

(
1
2
ρw2

i 〈vif〉
)

= 0 (3.13)

Since ∂ψ/∂vi = mvkδik = mvi, taking the moment of equation 3.13 with

ψ = mε+ 1
2
mv2

k we obtain:

〈εf〉 = εo
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〈
1
2
v2
kf
〉

= 1
2
u2
k + 3

4β
− 1

4
w2
k

〈viεf〉 = uiεo〈
1
2
viv

2
kf
〉

= 1
2
uiu

2
k + 5

4β
ui − 1

4
uiw

2
k − 1

2
uiw

2
i − wiukwk + uiw

2
i

The equation for conservation of total energy (3.13) can then be written as:

∂

∂t

(
ρεo + 1

2
ρu2

k + 3
2
po − 1

4
ρw2

k

)
+

∂

∂xi

(
ρuiεo + 1

2
ρuiu

2
k + 5

2
poui − 1

4
ρuiw

2
k − 1

2
ρuiw

2
i

)
− ∂

∂xi

(
ρwiukwk − ρuiw2

i

)
− ∂

∂xi

(
1
2
ρuiw

2
i

)
= 0

which, after some simplification and applying the definition of the total energy density(
ρet = 1

2
ρu2

k + 1
γ−1

p+ 1
2
ρw2

k

)
, becomes:

∂

∂t
(ρet) +

∂

∂xi

(
ρuiet + poui − 1

µo
BiukBk

)
= 0 (3.14)

3.2 Derivations of the Kinetic Schemes for the Ideal

MHD Equations

In section 3.1, it was shown that the ideal MHD equations can be expressed in

conservation form, given by equation (3.5). These equations are:

∂Q

∂t
+
∂Fi

∂xi
= 0 (3.15)

Q =



ρ

ρuj

ρet

Bj


and Fi =



ρui

ρuiuj + poδij −BiBj

ρuiet + poui −BiukBk

uiBj −Biuj


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where

1. i, j, k = 1, 2, 3;

2. the total pressure and total energy density are defined as po = p+ 1
2
B2
k and

ρet = 1
2
ρu2

k + 1
γ−1

p+ 1
2
B2
k;

3. the equivalent temperature is now defined as β = ρ
2po

to include the contribution of

the magnetic field;

4. the factor 1√
µo

has been absorbed in the definition of ~B for simplicity and brevity.

3.2.1 One-Dimensional Formulation

Equation (3.15) includes 8 equations: the continuity equation, the three momentum

equations, total energy equation, and three induction equations. Since the eigenvalues of

the Jacobian matrices associated with this system are real numbers, the system is

hyperbolic [15]. Therefore, in the flowfield information is propagated through the wave

speeds. Because the 8 eigenvalues can be related to the wave speeds, the terminology

8-wave formulation is often employed for the system of equations (3.15).

Due to the solenoidal condition required on the magnetic field (∇ · ~B = 0) by the

Maxwell equations of electrodynamics, the Bx term in 1-D MHD equations becomes a

constant. Therefore, the corresponding induction equation for Bx can be dropped, and

the above 8-wave system of equations (3.15) can be contracted to 7-wave formulation for

1-D ideal MHD. The corresponding 7 eigenvalues, in non-decreasing order [22], are:

ux − af , ux − wx, ux − as, ux, ux + as, ux + wx, and ux + af ; where wx is the
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x-component of the Alfven (intermediate) wave velocity, with af and as defined as the

fast and slow magneto-acoustic wave speeds:

af =
√
a2
M + a2

Z

as =
√
a2
M − a2

Z

a2
M = 1

2

(
w2
k + a2

)
a2
Z =

√
a4
M − a2w2

x

with a =
√

γp
ρ

being the speed of sound, and w2
k = w2

x + w2
y + w2

z .

Some of the eigenvalues can be equal to one another, depending on the values of the

magnetic field components. Hence the ideal MHD equations may not remain strictly

hyperbolic [7]. The following cases may arise depending upon the values of the

magnetic field components:

No magnetic field: Bx = By = Bz = 0

wx = 0 , af = a , as = 0

In this case, 5 of the eigenvalues are equal to the flow velocity ux, and the fast

magneto-acoustic speed reduces to the speed of sound a.

Zero longitudinal magnetic field: Bx = 0 and By, Bz 6= 0

wx = 0 , af =
√
w2
k + a2 , as = 0

Again, 5 of the eigenvalues are equal.

Zero transverse magnetic field: Bx 6= 0 and By = Bz = 0

af = max (|wx| , a) , as = min (|wx| , a)
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In this case, there are 2 pairs of the eigenvalues that are equal. Depending on the

magnitude of Bx, either the fast or the slow magneto-acoustic wave travels with

the Alfven wave. A special case arises when |Bx| =
√
γp. In this case, 3 pairs of

eigenvalues are equal to each other (wx = af = as = a).

Croisille et al [8] derived an extension of the KFVS scheme to solve the 7-wave MHD

equation. Xu [36] employed a similar methodology to extend his BGK scheme to solve

the ideal MHD equations. The KFVS split-flux-vectors that are obtained can be written

as:

F±x = 1±erf(Sx)
2

F1 ±
exp(−S2

x)
2
√
πβ

F2 (3.16)

where

F1 =



ρux

ρu2
x + po −B2

x

ρuxuy −BxBy

ρuxuz −BxBz

ρuxet + poux −BxukBk

uxBy −Bxuy

uxBz −Bxuz



and F2 =



ρ

ρux

ρuy

ρuz

ρet + 1
2
po − 1

2
B2
x

By

Bz



Employing a similar strategy, the split-flux-vectors for KWPS scheme for ideal MHD

equations can be obtained as follows:

F±x = ux±|ux|
2

Q + 1
2
F1 ± 1

2
√
πβ

F2 (3.17)
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where

F1 =



0

po −B2
x

−BxBy

−BxBz

poux −BxukBk

−Bxuy

−Bxuz



and F2 =



ρ

ρux

ρuy

ρuz

ρet + 1
2
po − 1

2
B2
x

By

Bz



The KWPS formulation of the 7-wave ideal MHD equations, studied by Reksoprodjo &

Agarwal [29], gives results that are in excellent agreement with those obtained with

other schemes.

3.2.2 Multi-Dimensional Formulation

The Maxwell equations of electrodynamics require that the magnetic field ( ~B) remains

divergence-free, which is not an easy condition to implement in the numerical schemes

for MHD equations. Thus it is not straightforward to extend the numerical schemes

developed for the 7-wave 1-D ideal MHD equations to multi-dimensional MHD

equations. Till now, there are several ideas that have been proposed in the literature to

satisfy this requirement of divergence free magnetic field. Powell [22] utilized a clever

mathematical trick to ensure that the errors associated with non-compliance of the

solenoidal requirement are advected away. An alternative approach is to solve the

Poisson equation∇2φ+∇ · ~B = 0, at the end of each time step to attain a corrected

magnetic field ~B → ~B +∇φ, where φ is the solution of the Poisson equation.
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Tang and Xu [33] proposed a multi dimensional kinetic scheme for the ideal MHD

equations. The new split-flux-vectors are obtained as follows:

F̄±ξ = ‖ξ‖
J

[
1±erf(Sξ)

2
F̄1 ±

exp(−S2
ξ)

2
√
πβ

F̄2

]
(3.18)

where

F̄1 =



ρuξ

ρuξuj + ξ̂jpo −BξBj

ρuξet + uξpo −BξukBk

uξBj −Bξuj


and F̄2 =



ρ

ρuj

ρet + 1
2
po − 1

2
B2
ξ

Bj − ξ̂jBξ


The above subscript j denotes a 3× 1 column vector representing Cartesian x, y, z

components.

A similar flux-vector splitting can be employed for the KWPS algorithm. The

split-flux-vectors are obtained as follows:

F̄±ξ = ‖ξ‖
J

[
uξ±|uξ|

2
F̄0 + 1

2
F̄1 ± 1

2
√
πβ

F̄2

]
(3.19)

where

F̄0 =



ρ

ρuj

ρet

Bj − ξ̂jBξ


, F̄1 =



0

ξ̂jpo −BξBj

uξpo −BξukBk

−Bξ

(
uj − ξ̂juξ

)



and F̄2 =



ρ

ρuj

ρet + 1
2
po − 1

2
B2
ξ

Bj − ξ̂jBξ


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3.2.3 Derivation of Implicit Kinetic Schemes for the Ideal MHD

Equations

The derivation of the implicit kinetic schemes for the ideal MHD equations employs the

same methodology as was used in deriving the implicit kinetic schemes for the Euler

equations in section 2.3. However, due to the unavailability of a distribution function

that completely describes the ideal MHD equations [16], only the continuum approach

can be applied to the KFVS algorithm. The implicit KWPS algorithm for the ideal MHD

equations is derived from the implicit KFVS scheme using the implicit formulation for

the Euler equations as a guideline.

Homogeneity of the Ideal MHD Flux-Vector

Since the flux-vectors of the ideal MHD equations are not homogeneous of degree one

with respect to the conserved variables ((∂F/∂Q) Q 6= F), an implicit scheme must be

derived in a somewhat roundabout manner. MacCormack [19, 20] accomplished this by

adding a dummy equation ∂â/∂t = 0, with â being a dummy variable, to the system of

equations (3.15), and modified the expressions for the magnetic field components in the

equations as shown in equation (3.20). The resulting system reduces to equation (3.15)

when â = 1. However, the modified flux-vectors in (3.20) can be shown to be

homogeneous of degree one with respect to the modified conserved variable vector. In

all subsequent derivations, the expressions are given only for the ξ component of the

generalized coordinate system. The expressions for η and ζ components are easily

obtained by simply replacing ξ with η and ζ respectively.

The modified conserved variable vector Q̄ and the ξ-component of the modified flux
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dyad F̄ξ can be written as follows:

Q̄ = 1
J



ρ

ρuj

ρet

Bj

â


and F̄ξ = ‖ξ‖

J



ρuξ

ρuξuj + ξ̂jpo −
(

1
â
Bξ

)
Bj

ρuξet + uξpo −
(

1
â
Bξ

)
ukBk

uξBj −Bξuj

0


(3.20)

where the total pressure and total energy density are now defined as po = p+ 1
2â
B2
k and

ρet = 1
2
ρu2

k + 1
γ−1

p+ 1
2â
B2
k . Without loss of generality, it can be assumed that â ≡ 1.

The homogeneity of the flux-vector can be shown as follows. First, note that F̄ξ can be

expressed as:

F̄ξ = ‖ξ‖
J





ρuξ

ρuξuj + ξ̂jpo

ρuξet + uξpo

uξBj

0


−
(

1
â
Bξ

)



0

Bj

ukBk

uj â

0




The Jacobian matrix of this flux-vector can be calculated as follows:

Aξ = ∂
∂Q̄

(
F̄ξ

)
= ∂

∂Q̄


‖ξ‖
J



ρuξ

ρuξuj + ξ̂jpo

ρuξet + uξpo

uξBj

0




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−
(

1
â
Bξ

)
∂
∂Q̄


‖ξ‖
J



0

Bj

ukBk

uj â

0




− ‖ξ‖J



0

Bj

ukBk

uj â

0


∂
∂Q̄

(
1
â
Bξ

)

However, the last term can be dropped because
(
∂
(

1
â
Bξ

)
/∂Q̄

)
Q̄ = 0. Thus the 9× 9

Jacobian matrix becomes:

Aξ = ∂
∂Q̄

(
F̄ξ

)
= ‖ξ‖

 AP ~b

~0T 0


where AP is the 8× 8 Jacobian matrix due to Powell [22] and

~b =
[

0 γ−2
2â2

ξ̂jB
2
k

γ−2
2â2

uξB
2
k − 1

â
Bξuj

]T

is the 8× 1 column vector associated with â flux.

Implicit KFVS Scheme for the Ideal MHD Equations

The implicit KFVS scheme for the ideal MHD equations is derived by utilizing a

methodology similar to that used in deriving the implicit KFVS scheme for the Euler

equations employing the continuum approach. Define the matrix C as:

C = 1
J



1 01×3 0 01×3 0

uj ρI 03×1 03×3 03×1

1
2
u2
k ρul

1
γ−1

Bl −1
2
B2
k

03×1 03×3 03×1 I 03×1

0 01×3 0 01×3 1


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where I is the 3× 3 identity matrix. The subscript j denotes a 3× 1 column vector, while

the subscript l indicates a 1× 3 row vector. The range for j, k, l subscripts is {x, y, z}

with repeated indices signifying summation over the whole range. The sizes of the zero

submatrices are dropped in the rest of this chapter for brevity and to avoid clutter.

For the Jacobian matrix of the KFVS ideal MHD split-flux-vectors, the following

expression is obtained:

A±ξ = ‖ξ‖
J

[
1±erf(Sξ)

2
B1 ±

exp(−S2
ξ)

2
√
πβ

B2

]
C−1 (3.21)

where

B1 =



uξ ρξ̂l 0 0 0

uξuj ρξ̂luj + ρuξI ξ̂j ξ̂jBl −BξI −1
2
ξ̂jB

2
k

1
2
uξu

2
k ρξ̂lht + ρuξul −BξBl

γ
γ−1

uξ 2uξBl −Bξul −uξB2
k

0 ξ̂lBj −BξI 0 uξ
(
I− ξ̂j ξ̂l

)
−Bξ

(
uj − uξ ξ̂j

)
0 0 0 0 0



B2 =



1 0 0 0 0

uj ρI 0 0 0

1
2
u2
k ρul

1
γ−1

+ 1
2

3
2
Bl − 1

2
Bξ ξ̂l −3

4
B2
k

0 0 0 I− ξ̂j ξ̂l 0

0 0 0 0 0



−



1

uj

ht − 1
4β
− 1

2ρ
B2
ξ

1
ρ

(
Bj −Bξ ξ̂j

)
0





1
2

0

−β

−Blβ

1
2
B2
kβ



T
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+



0

ξ̂j − 1
po
BξBj

1
2
uξ − 1

2po
Bξ (2ukBk − uξBξ)

− 1
po
Bξ

(
uj − uξ ξ̂j

)
0





1
2
uξ

ξ̂lρ

−uξβ

−Bluξβ

1
2
B2
kuξβ



T

Implicit KWPS Scheme for the Ideal MHD Equations

The implicit KWPS scheme for the ideal MHD equations is derived by employing the

molecular approach of the implicit KWPS scheme for the Euler equations, and using the

previously obtained implicit KFVS Jacobian for the MHD equations, expressed in

equation (3.21), as a guiding model. The Jacobian matrix of the KWPS ideal MHD

split-flux-vectors is obtained as:

A±ξ = |ξ|
J

[
uξ±|uξ|

2
B0 + 1

2
B1 ± 1

2
√
πβ

B2

]
C−1 (3.22)

where

B0 =



1 0 0 0 0

uj ρI 0 0 0

1
2
u2
k ρul

1
γ−1

Bl −1
2
B2
k

0 0 0 I− ξ̂j ξ̂l 0

0 0 0 0 0


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B1 =



0 ρξ̂l 0 0 0

0 ρξ̂luj ξ̂j ξ̂jBl −BξI −1
2
ξ̂jB

2
k
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3.2.4 Implementation of the Poisson Solver

The Maxwell’s equations require that the solenoidal condition on the magnetic field is

satisfied in MHD computations. One method to fulfill this requirement is to utilize a
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Poisson solver. The initial step is to solve the following Poisson equation:

∇2φ+∇ · ~B = 0 (3.23)

and then to adjust the magnetic field according to ~Bk+1 = ~Bk +∇φk. The Poisson

equation (3.23) is then solved again based on the new value of the magnetic field. The

application of Neumann boundary condition∇iφ = 0 is to guarantee that the magnetic

field along the boundary is left unchanged. The Laplacian in a generalized coordinate

system can be expressed as follows:

∇2φ =
(
~ξ, ~ξ

)
φξξ + (~η, ~η)φηη +

(
~ζ, ~ζ

)
φζζ

+ 2
(
~ξ, ~η

)
φξη + 2

(
~η, ~ζ

)
φηζ + 2

(
~ζ, ~ξ

)
φζξ

+∇2ξφξ +∇2ηφη +∇2ζφζ

where the quantities in parentheses denote inner products and the greek subscripts

denote partial differentiation, e.g.,
(
~ξ, ~η

)
= ξxηx + ξyηy + ξzηz and φξη = ∂2φ

∂ξ∂η
. The

Laplacian of the generalized coordinate component ξ can be written as follows:

∇2ξ = −
(
~ξ, ~ξ

)
(ξxxξξ + ξyyξξ + ξzzξξ)− 2

(
~ξ, ~η

)
(ξxxξη + ξyyξη + ξzzξη)

− (~η, ~η) (ξxxηη + ξyyηη + ξzzηη)− 2
(
~η, ~ζ

)
(ξxxηζ + ξyyηζ + ξzzηζ)

−
(
~ζ, ~ζ

)
(ξxxζζ + ξyyζζ + ξzzζζ)− 2

(
~ζ, ~ξ

)
(ξxxζξ + ξyyζξ + ξzzζξ)

The Laplacian of other components η and ζ can be similarly obtained using appropriate

substitutions. In addition, the following formula can be used to calculate the magnetic

field divergence:

∇ · ~B = ξx (Bx)ξ + ηx (Bx)η + ζx (Bx)ζ

+ ξy (By)ξ + ηy (By)η + ζy (By)ζ

+ ξz (Bz)ξ + ηz (Bz)η + ζz (Bz)ζ
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Also, the boundary conditions are applied in the generalized coordinate system as

φξ = φη = φζ = 0, similar to φx = φy = φz = 0 in Cartesian system. Finally, the

magnetic field is updated as follows:

Bx =
∂φ

∂x
= ξxφξ + ηxφη + ζxφζ (3.24)

with the other magnetic field components obtained by employing corresponding

substitutions.
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Chapter 4

Code Validation Test Cases

Employing a number of test cases, Reksoprodjo[27] has validated the 1-D and 2-D

explicit KWPS schemes for the solution of Euler and ideal MHD equations. For the

Euler code, the 1-D cases include the Sod’s shock tube test case [31] and the steady-state

shock structure computations. The 2-D Euler cases include the flowfield computations of

a cylindrical blast-wave, and supersonic flow past an axisymmetric blunt body. For the

MHD code, the 1-D case is the standard Brio & Wu magnetic shock tube test case [7]. In

all the above test cases, it is clear that the explict KWPS scheme is able to produce

accurate results.
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4.1 Explicit KWPS Scheme for the Euler Equations

4.1.1 One-Dimensional Test Cases for the Explicit KWPS Euler

Code

The first test case used to validate the explicit KWPS schemes is the Sod’s shock tube

test case. A uniform grid of 2000 mesh points is employed in the computational domain.

This computational domain is divided in two parts which are initially (at time t = 0)

separated by a diaphragm, with density and pressure ratios of 8 and 10 respectively. The

specific heats ratio γ is set to 7
5
. The CFL is defined as the ratio

CFL =
max (|ux|+ a)

∆x
∆t (4.1)

where a is the local speed of sound, and ∆x is set equal to unity. The time step used is

∆t = 0.4, which corresponds to CFL ≈ 0.877, and the final solution is obtained at

t = 400. This case is widely used as a benchmark for testing the numerical algorithms.

The numerical results are compared with the analytical solution, which can be easily

obtained.

In this case, a gas, initially at rest in a long infinite tube and separated by a diaphragm, is

at a high pressure and density in one chamber and at a low pressure and density in the

other chamber. When the diaphragm is broken, the high pressure gas expands into the

low pressure side and a series of waves generate from the original location of the

diaphragm: these waves constitute a compression wave, an entropy wave, and an

expansion wave. With the assumption that both the ends of the tube to the diaphragm are

infinitely long, the waves that emanate from the diaphragm location are assumed to

never reach the ends of the tube. The flow domain spanned these three waves can be
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Figure 4.1: Analytical solutions for the Sod’s shock tube test case [31]
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Figure 4.2: Explicit KWPS calculations for the Sod’s shock tube test case [27]
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divided into 5 distinct regions, as shown in Fig. (4.1). The undisturbed gas fills regions I

and V. The head and the tail of the expansion wave mark the left and right borders of

region II, which is called the expansion region. On the border between regions III

and IV, the two gases are separated by a contact discontinuity—density shows an

increase but velocity and pressure profiles stay continuous. Finally, a traveling shock is

present on the boundary between regions IV and V across which all flow variables are

discontinuous. The numerical solutions with the KWPS Euler solver are shown in

Fig. (4.2) which compare with the analytical solutions shown in Fig. (4.1).

The second test case is the computation of the structure of a Mach 1.5 steady shock. The

domain consists of 100 uniformly distributed mesh points. For Euler flow, an analytical

solution can be found in standard textbooks on compressible fluid flow, e.g., the book by

Anderson [4]. If the flow starts at t = 0, then linear variations in density, velocity, and

pressure within the computational domain can be calculated using the boundary values at

the left and right boundaries, which are obtained from the Rankine-Hugoniot jump

relations [17] as given below:

ρr
ρl

=
(γ + 1)M2

l

(γ − 1)M2
l + 2

pr
pl

=
2γM2

l − (γ − 1)

γ + 1

M2
r =

(γ − 1)M2
l + 2

2γM2
l − (γ − 1)

whereM = ux
a

is the Mach number, a =
√

γp
ρ

is the speed of sound, and the subscripts l

and r denote pre- and post-shock conditions. A time step of ∆t = 0.3 is used for explicit

KWPS scheme, which corresponds to CFL ≈ 0.890. The solution is considered to

converge when L2 − norm < 10−5. Results from the steady-state shock structure

computations are shown in Figs. (4.3) and (4.4).
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4.1.2 Two-Dimensional Test Cases for the Explicit KWPS Euler

Code

In the 2-D test case of the propagation of a cylindrical blast-wave, a Cartesian square

domain L× L is discretized into 100× 100 grid points. In the center of the domain is a

circular region r = 1
5
L representing a high pressure phigh = 40plow region. The final

solution is computed at t = 2.0, and the time step is set at ∆t = 0.02 for the explicit

KWPS scheme. The numerical results for the cylindrical blast-wave test case are

obtained by using the KWPS scheme; the density and thermal pressure contours as

shown in Fig. (4.5).

The second 2-D case is the supersonic flow past a cylindrical blunt-body, of which the

leading edge is semicircular with a radius R = 0.1 m, and the afterbody extends to 2R

behind the leading edge. The grid consists of 78× 51 mesh points.

The inflow conditions are set to that of a uniform flow of Mach 5.85 with farfield density

and pressure values of T∞ = 55 K and p∞ = 510 Pa. The CFL values used are 0.4 for

the explicit KWPS scheme, and the solution is assumed to converge when the

L2 − norm of changes in density is less than 10−7.

The density contour plots are shown in Fig. (4.6) for the explicit and the implicit KWPS

scheme. The stagnation line profiles for the density, thermal pressure, and temperature

are given in Figs. (4.7). It should be noted that at the stagnation point the computed

numerical values of the flow variables are accurate when compared with analytical

values.

47



X

Y

-0.5 -0.25 0 0.25 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

X

Y

-0.5 -0.25 0 0.25 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 4.5: Density (L) and thermal pressure (R) contours for the cylindrical blast-wave

test case

Figure 4.6: Density contour plots for the blunt-body computation using the explicit (L)

and implicit (R) KWPS scheme
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of the 2-D blunt body using the explicit KWPS scheme
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4.2 Explicit KWPS Scheme for the Ideal MHD

Equations

The standard Brio & Wu [7] magnetic shock tube test case is employed to validate the

explicit KWPS scheme for the ideal MHD equations. This test case is similar to that of

Sod’s shock tube except that the gas under investigation is a plasma subjected to a

magnetic field. The initial conditions are the same as that of the Sod’s shock tube test

case (Section 4.1.1), with the additions of a constant longitudinal magnetic field value of

Bx = 3
4

and a transverse magnetic field value of By = +1 in the high density/pressure

region and By = −1 in the low density/pressure region of the magnetic shock tube. The

computational domain consists of 1600 mesh points. The time step is set to ∆t = 0.16,

which corresponds to CFL ≈ 0.390 for the Euler case and to CFL ≈ 0.608 for the MHD

case.

The MHD code is first used to compute the flowfield without the magnetic field. Under

this condition, the code is actually solving the Euler equations. After that, the magnetic

field is imposed on the Euler solution. In the calculations, γ is set to 2 following Brio &

Wu [7]. Final solution is obtained at t = 160. In the MHD shock tube, there are 5 waves

present within the solution. From the left, they are a fast rarefaction wave, a compound

(shock-expansion) wave, the contact discontinuity, a slow shock, and a fast rarefaction

wave.

Computations with KWPS MHD solvers are in good agreement with those of Brio &

Wu [7]. Figs. (4.8) - (4.10) respectively show the density, pressure and velocity profiles

at t = 160, which are in good agreement with those computed by Brio & Wu [7]. These

calculations validate the accuracy of explicit KWPS scheme for computing ideal MHD

flows.
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Chapter 5

Computation of Inviscid Supersonic

Flow Past an Axisymmetric Blunt Body

Using the 3-D Euler solver

A 3-D computational code for solving the Euler equations in general curvilinear

coordinate system was written based on the explicit KWPS scheme. The code has been

applied to compute the supersonic flow past a cylindrical blunt-body at Mach 5.85 for

angles of attack varying from 3◦ to 15◦. The following sections describe the detailed

results for the computed flow fields.
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5.1 Computational Domain and Grid

A sketch of the computational domain is shown in Fig. (5.1), where appropriate

boundaries are also identified. The leading edge of the blunt body is semi-spherical with

a radius R = 0.1 m, and the afterbody extends to 2R behind the leading edge.

A structured-grid is employed for flow field calculations. The grid consists of

40× 51× 10 mesh points for cases with an angle of attack of 0◦ and 3◦. For angles of

attack of 6◦, 10◦, and 15◦, a finer grid of 117× 51× 10 mesh points is used to maintain

accuracy. Figures (5.2) - (5.4) show various views of the grid.
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Figure 5.1: Cross-section of the computational domain for Supersonic Flow Past an Ax-

isymmetric Blunt Body
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Figure 5.2: View of the Grid in the x− y Plane

Figure 5.3: Side View of the Grid
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Figure 5.4: View of the Grid in the y − z Plane
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5.2 Flowfield Computations

Computations are performed at Mach number M = 5.85 at angles of attack α = 0◦, 3◦,

6◦, 10◦ and 15◦

The inflow conditions are that of a uniform flow of Mach 5.85 with farfield density and

pressure values of ρ∞ = 0.0323 kgm3 and p∞ = 510 Pa. The CFL value used is 0.4 for

the KWPS explicit scheme. The solution is assumed to converge when the L2 − norm of

changes in density is less than 10−7.

5.2.1 Flowfield Computations at M = 5.85, α = 0◦

In this case, relatively coarse grid of 40× 51× 10 mesh points was found to be sufficient

for accurate results. Figure (5.5) shows the convergence history of the L2 − norm of

density which decreases to 10−7 in about 1500 iterations. Figure (5.6) shows the

variation of density along the stagnation line. Figure (5.7) shows the density contours in

the x− y plane and Figure (5.8) shows a 3-D view of the density contours. Figure (5.9)

shows the variation in the streamwise velocity along the stagnation line. Figure (5.10)

shows the contours of the streamwise velocity in x− y plane and figure (5.11) shows the

3-D view of the streamwise velocity. Figure (5.12) shows the variation in temperature

along the stagnation line. Figure (5.13) shows the temperature contours in the x− y

plane and Figure (5.14) shows a 3-D view of the temperature contours. Figure (5.15)

shows the variation in total pressure along the stagnation line. Figure (5.16) shows the

total pressure contours in the x− y plane and Figure (5.17) shows a 3-D view of the total

pressure contours.
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For this test case the computed shock appears at the right location as seen by the density

profile along the stagnation line. The stagnation value of density is 0.1849kg/m3

compared to the reference value of 0.0323kg/m3 in the free-stream; the temperature and

total pressure at the stagnation point increase from 55K and 0.51kPa in the free-stream

to 430K and 23kPa respectively. The velocity along the stagnation line decreases from

the free-stream value of 870m/s to the value of 0m/s at the stagnation point. These

computed values at the stagnation point are in excellent agreement with the analytical

values as shown in the table below:

Flow Variables Units Analytical Values Computed Values

Density kg/m3 0.1834 0.1849

Total Pressure kPa 22.704 22.510

Temperature K 431.45 430.63

Table 5.1: Analytical and computed values of the flow variables at the stagnation point

During computation, it was found that the KWPS scheme has difficulty in converging to

the correct solution when the initial conditions in the interior of the domain are set to the

free-stream conditions. For moderately high Mach number, the bow shock never

detaches from the body, instead it degenerates into a shock layer next to the surface. This

problem has been circumvented by specifying zero velocity vector in the interior and on

the solid wall, while keeping the values of density ρ and total energy et to that of the

free-stream. In other words, instead of detaching the bow shock from the body, it is

allowed to travel into the domain from the free-stream. The computed stagnation values

are in excellent agreement with the analytical values. It is also found that the computed

bow shock is placed correctly in the computational domain in the converged solution

when compared to its analytically determined location along the stagnation line.
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Figure 5.5: Convergent History of the L2−norm of Density for the Supersonic Flow Past

an Axisymmetric Blunt Body; M = 5.85, α = 0◦.

Figure 5.6: Density Profile along the Stagnation Line for Supersonic Flow Past an Ax-

isymmetric Blunt Body; M = 5.85, α = 0◦; the stagnation point - nose of the body - is at

x = −0.1.
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Figure 5.7: Density Contours in the x−y Plane for Supersonic Flow Past an Axisymmetric

Blunt Body; M = 5.85, α = 0◦.

Figure 5.8: 3-D View of the Density Contours for Supersonic Flow Past an Axisymmetric

Blunt Body; M = 5.85, α = 0◦.
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Figure 5.9: Streamwise Velocity Profile along the Stagnation Line for Supersonic Flow

Past an Axisymmetric Blunt Body; M = 5.85, α = 0◦.

Figure 5.10: Velocity Contours in the x − y Plane for Supersonic Flow Past an Axisym-

metric Blunt Body; M = 5.85, α = 0◦.
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Figure 5.11: 3-D View of the Velocity Contours for Supersonic Flow Past an Axisymmet-

ric Blunt Body; M = 5.85, α = 0◦.

Figure 5.12: Temperature Profile along the Stagnation Line for Supersonic Flow Past an

Axisymmetric Blunt Body; M = 5.85, α = 0◦.

63



Figure 5.13: Temperature Contours in the x − y Plane for Supersonic Flow Past an Ax-

isymmetric Blunt Body; M = 5.85, α = 0◦.

Figure 5.14: 3-D View of the Temperature Contours for Supersonic Flow Past an Ax-

isymmetric Blunt Body; M = 5.85, α = 0◦.
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Figure 5.15: Total Pressure Profile along the Stagnation Line for Supersonic Flow Past an

Axisymmetric Blunt Body; M = 5.85, α = 0◦.

Figure 5.16: Total Pressure Contours in the x − y Plane for Supersonic Flow Past an

Axisymmetric Blunt Body; M = 5.85, α = 0◦.

65



Figure 5.17: 3-D View of the Total Pressure Contours for Supersonic Flow Past an Ax-

isymmetric Blunt Body; M = 5.85, α = 0◦.
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5.2.2 Flowfield Computations at M = 5.85, α = 3◦

In this case, relatively coarse grid of 40× 51× 10 mesh points was found to be sufficient

for accurate results. Figure (5.18) shows the variation of density along the stagnation

line. Figure (5.19) shows the density contours in the x− y plane and Figure (5.20)

shows a 3-D view of the density contours. Figure (5.21) shows the variation in the

streamwise velocity along the stagnation line. Figure (5.22) shows the contours of the

streamwise velocity in x− y plane and figure (5.23) shows the 3-D view of the

streamwise velocity. Figure (5.24) shows the variation in temperature along the

stagnation line. Figure (5.25) shows the temperature contours in the x− y plane and

Figure (5.26) shows a 3-D view of the temperature contours. Figure (5.27) shows the

variation in total pressure along the stagnation line. Figure (5.28) shows the total

pressure contours in the x− y plane and Figure (5.29) shows a 3-D view of the total

pressure contours. The magnitudes of the different flow variables at the stagnation point

are as expected from analytical normal shock theory.
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Figure 5.18: Density Profile along the Stagnation Line for Supersonic Flow Past an Ax-

isymmetric Blunt Body; M = 5.85, α = 3◦.

Figure 5.19: Density Contours in the x − y Plane for Supersonic Flow Past an Axisym-

metric Blunt Body; M = 5.85, α = 3◦.
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Figure 5.20: 3-D View of the Density Contours for Supersonic Flow Past an Axisymmet-

ric Blunt Body; M = 5.85, α = 3◦.

Figure 5.21: Streamwise Velocity Profile along the Stagnation Line for Supersonic Flow

Past an Axisymmetric Blunt Body; M = 5.85, α = 3◦.
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Figure 5.22: Velocity Contours in the x − y Plane for Supersonic Flow Past an Axisym-

metric Blunt Body; M = 5.85, α = 3◦.

Figure 5.23: 3-D View of the Velocity Contours for Supersonic Flow Past an Axisymmet-

ric Blunt Body; M = 5.85, α = 3◦.
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Figure 5.24: Temperature Profile along the Stagnation Line for Supersonic Flow Past an

Axisymmetric Blunt Body; M = 5.85, α = 3◦.

Figure 5.25: Temperature Contours in the x − y Plane for Supersonic Flow Past an Ax-

isymmetric Blunt Body; M = 5.85, α = 3◦.
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Figure 5.26: 3-D View of the Temperature Contours for Supersonic Flow Past an Ax-

isymmetric Blunt Body; M = 5.85, α = 3◦.

Figure 5.27: Total Pressure Profile along the Stagnation Line for Supersonic Flow Past an

Axisymmetric Blunt Body; M = 5.85, α = 3◦.
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Figure 5.28: Total Pressure Contours in the x − y Plane for Supersonic Flow Past an

Axisymmetric Blunt Body; M = 5.85, α = 3◦.

Figure 5.29: 3-D View of the Total Pressure Contours for Supersonic Flow Past an Ax-

isymmetric Blunt Body; M = 5.85, α = 3◦.
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5.2.3 Flowfield Computations at M = 5.85, α = 6◦

In this case, a finer grid of 117× 51× 10 mesh points was used to maintain accuracy.

Figure (5.30) shows the variation of density along the stagnation line. Figure (5.31)

shows the density contours in the x− y plane and Figure (5.32) shows a 3-D view of the

density contours. Figure (5.33) shows the variation in the streamwise velocity along the

stagnation line. Figure (5.34) shows the contours of the streamwise velocity in x− y

plane and figure (5.35) shows the 3-D view of the streamwise velocity. Figure (5.36)

shows the variation in temperature along the stagnation line. Figure (5.37) shows the

temperature contours in the x− y plane and Figure (5.38) shows a 3-D view of the

temperature contours. Figure (5.39) shows the variation in total pressure along the

stagnation line. Figure (5.40) shows the total pressure contours in the x− y plane and

Figure (5.41) shows a 3-D view of the total pressure contours. The magnitudes of the

different flow variables at the stagnation point are as expected from analytical normal

shock theory.
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Figure 5.30: Density Profile along the Stagnation Line for Supersonic Flow Past an Ax-

isymmetric Blunt Body; M = 5.85, α = 6◦.

Figure 5.31: Density Contours in the x − y Plane for Supersonic Flow Past an Axisym-

metric Blunt Body; M = 5.85, α = 6◦.
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Figure 5.32: 3-D View of the Density Contours for Supersonic Flow Past an Axisymmet-

ric Blunt Body; M = 5.85, α = 6◦.

Figure 5.33: Streamwise Velocity Profile along the Stagnation Line for Supersonic Flow

Past an Axisymmetric Blunt Body; M = 5.85, α = 6◦.
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Figure 5.34: Velocity Contours in the x − y Plane for Supersonic Flow Past an Axisym-

metric Blunt Body; M = 5.85, α = 6◦.

Figure 5.35: 3-D View of the Velocity Contours for Supersonic Flow Past an Axisymmet-

ric Blunt Body; M = 5.85, α = 6◦.
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Figure 5.36: Temperature Profile along the Stagnation Line for Supersonic Flow Past an

Axisymmetric Blunt Body; M = 5.85, α = 6◦.

Figure 5.37: Temperature Contours in the x − y Plane for Supersonic Flow Past an Ax-

isymmetric Blunt Body; M = 5.85, α = 6◦.
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Figure 5.38: 3-D View of the Temperature Contours for Supersonic Flow Past an Ax-

isymmetric Blunt Body; M = 5.85, α = 6◦.

Figure 5.39: Total Pressure Profile along the Stagnation Line for Supersonic Flow Past an

Axisymmetric Blunt Body; M = 5.85, α = 6◦.
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Figure 5.40: Total Pressure Contours in the x − y Plane for Supersonic Flow Past an

Axisymmetric Blunt Body; M = 5.85, α = 6◦.

Figure 5.41: 3-D View of the Total Pressure Contours for Supersonic Flow Past an Ax-

isymmetric Blunt Body; M = 5.85, α = 6◦.
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5.2.4 Flowfield Computations at M = 5.85, α = 10◦

In this case, a finer grid of 117× 51× 10 mesh points was used to maintain accuracy.

Figure (5.42) shows the variation of density along the stagnation line. Figure (5.43)

shows the density contours in the x− y plane and Figure (5.44) shows a 3-D view of the

density contours. Figure (5.45) shows the variation in the streamwise velocity along the

stagnation line. Figure (5.46) shows the contours of the streamwise velocity in x− y

plane and figure (5.47) shows the 3-D view of the streamwise velocity. Figure (5.48)

shows the variation in temperature along the stagnation line. Figure (5.49) shows the

temperature contours in the x− y plane and Figure (5.50) shows a 3-D view of the

temperature contours. Figure (5.51) shows the variation in total pressure along the

stagnation line. Figure (5.52) shows the total pressure contours in the x− y plane and

Figure (5.53) shows a 3-D view of the total pressure contours. The magnitudes of the

different flow variables at the stagnation point are as expected from analytical normal

shock theory.
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Figure 5.42: Density Profile along the Stagnation Line for Supersonic Flow Past an Ax-

isymmetric Blunt Body; M = 5.85, α = 10◦.

Figure 5.43: Density Contours in the x − y Plane for Supersonic Flow Past an Axisym-

metric Blunt Body; M = 5.85, α = 10◦.
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Figure 5.44: 3-D View of the Density Contours for Supersonic Flow Past an Axisymmet-

ric Blunt Body; M = 5.85, α = 10◦.

Figure 5.45: Streamwise Velocity Profile along the Stagnation Line for Supersonic Flow

Past an Axisymmetric Blunt Body; M = 5.85, α = 10◦.
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Figure 5.46: Velocity Contours in the x − y Plane for Supersonic Flow Past an Axisym-

metric Blunt Body; M = 5.85, α = 10◦.

Figure 5.47: 3-D View of the Velocity Contours for Supersonic Flow Past an Axisymmet-

ric Blunt Body; M = 5.85, α = 10◦.
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Figure 5.48: Temperature Profile along the Stagnation Line for Supersonic Flow Past an

Axisymmetric Blunt Body; M = 5.85, α = 10◦.

Figure 5.49: Temperature Contours in the x − y Plane for Supersonic Flow Past an Ax-

isymmetric Blunt Body; M = 5.85, α = 10◦.
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Figure 5.50: 3-D View of the Temperature Contours for Supersonic Flow Past an Ax-

isymmetric Blunt Body; M = 5.85, α = 10◦.

Figure 5.51: Total Pressure Profile along the Stagnation Line for Supersonic Flow Past an

Axisymmetric Blunt Body; M = 5.85, α = 10◦.
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Figure 5.52: Total Pressure Contours in the x − y Plane for Supersonic Flow Past an

Axisymmetric Blunt Body; M = 5.85, α = 10◦.

Figure 5.53: 3-D View of the Total Pressure Contours for Supersonic Flow Past an Ax-

isymmetric Blunt Body; M = 5.85, α = 10◦.
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5.2.5 Flowfield Computations at M = 5.85, α = 15◦

In this case, a finer grid of 117× 51× 10 mesh points was used to maintain accuracy.

Figure (5.54) shows the variation of density along the stagnation line. Figure (5.55)

shows the density contours in the x− y plane and Figure (5.56) shows a 3-D view of the

density contours. Figure (5.57) shows the variation in the streamwise velocity along the

stagnation line. Figure (5.58) shows the contours of the streamwise velocity in x− y

plane and figure (5.59) shows the 3-D view of the streamwise velocity. Figure (5.60)

shows the variation in temperature along the stagnation line. Figure (5.61) shows the

temperature contours in the x− y plane and Figure (5.62) shows a 3-D view of the

temperature contours. Figure (5.63) shows the variation in total pressure along the

stagnation line. Figure (5.64) shows the total pressure contours in the x− y plane and

Figure (5.65) shows a 3-D view of the total pressure contours. The magnitudes of the

different flow variables at the stagnation point are as expected from analytical normal

shock theory.

88



Figure 5.54: Density Profile along the Stagnation Line for Supersonic Flow Past an Ax-

isymmetric Blunt Body; M = 5.85, α = 15◦.

Figure 5.55: Density Contours in the x − y Plane for Supersonic Flow Past an Axisym-

metric Blunt Body; M = 5.85, α = 15◦.
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Figure 5.56: 3-D View of the Density Contours for Supersonic Flow Past an Axisymmet-

ric Blunt Body; M = 5.85, α = 15◦.

Figure 5.57: Streamwise Velocity Profile along the Stagnation Line for Supersonic Flow

Past an Axisymmetric Blunt Body; M = 5.85, α = 15◦.
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Figure 5.58: Velocity Contours in the x − y Plane for Supersonic Flow Past an Axisym-

metric Blunt Body; M = 5.85, α = 15◦.

Figure 5.59: 3-D View of the Velocity Contours for Supersonic Flow Past an Axisymmet-

ric Blunt Body; M = 5.85, α = 15◦.

91



Figure 5.60: Temperature Profile along the Stagnation Line for Supersonic Flow Past an

Axisymmetric Blunt Body; M = 5.85, α = 15◦.

Figure 5.61: Temperature Contours in the x − y Plane for Supersonic Flow Past an Ax-

isymmetric Blunt Body; M = 5.85, α = 15◦.
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Figure 5.62: 3-D View of the Temperature Contours for Supersonic Flow Past an Ax-

isymmetric Blunt Body; M = 5.85, α = 15◦.

Figure 5.63: Total Pressure Profile along the Stagnation Line for Supersonic Flow Past an

Axisymmetric Blunt Body; M = 5.85, α = 15◦.
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Figure 5.64: Total Pressure Contours in the x − y Plane for Supersonic Flow Past an

Axisymmetric Blunt Body; M = 5.85, α = 15◦.

Figure 5.65: 3-D View of the Total Pressure Contours for Supersonic Flow Past an Ax-

isymmetric Blunt Body; M = 5.85, α = 15◦.
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Chapter 6

Computation of Inviscid Supersonic

MHD Flow Past an Axisymmetric Blunt

Body Using the 3-D Ideal MHD solver

In this chapter, computations are performed for supersonic flow past an asixymmetric

blunt body in the presence of a magnetic field using the explicit KWPS Ideal MHD flow

solver.
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6.1 MHD Flowfield Computations at M = 5.85, α = 0◦,

Bx = By = 0, Bz = 0.04T

In this case, the grid of 40× 51× 10 mesh points was employed to compute the results.

Figure (6.1) shows the variation of density along the stagnation line. Figure (6.2) shows

the variation in the streamwise velocity along the stagnation line. Figure (6.3) shows the

variation in temperature along the stagnation line. Figure (6.4) shows the variation in

thermal pressure along the stagnation line. Figure (6.5) shows the density contours in the

x− y plane. Figure (6.6) shows the contours of the streamwise velocity in x− y plane.

Figure (6.7) shows the dynamic pressure contours in the x− y plane. These calculations

are compared with the Euler calculations in the absence of magnetic field. As shown in

section (6.3), the application of the magnetic field decreases the strength of the shock

significantly. This effect can be utilized in reducing the shock-wave drag of space

vehicles.
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Figure 6.1: Density Profile along the Stagnation Line for Supersonic Flow Past an Ax-

isymmetric Blunt Body;M = 5.85, α = 0◦, Bx = By = 0, Bz = 0.04 T

Figure 6.2: Streamwise Velocity Profile along the Stagnation Line for Supersonic Flow

Past an Axisymmetric Blunt Body;M = 5.85, α = 0◦, Bx = By = 0, Bz = 0.04 T
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Figure 6.3: Temperature Profile along the Stagnation Line for Supersonic Flow Past an

Axisymmetric Blunt Body;M = 5.85, α = 0◦, Bx = By = 0, Bz = 0.04 T

Figure 6.4: Thermal Pressure Profile along the Stagnation Line for Supersonic Flow Past

an Axisymmetric Blunt Body;M = 5.85, α = 0◦, Bx = By = 0, Bz = 0.04 T
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Figure 6.5: Density Contours in the x−y Plane for Supersonic Flow Past an Axisymmetric

Blunt Body;M = 5.85, α = 0◦, Bx = By = 0, Bz = 0.04 T

Figure 6.6: Velocity Contours in the x − y Plane for Supersonic Flow Past an Axisym-

metric Blunt Body;M = 5.85, α = 0◦, Bx = By = 0, Bz = 0.04 T
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Figure 6.7: Dynamic Pressure Contours in the x − y Plane for Supersonic Flow Past an

Axisymmetric Blunt Body;M = 5.85, α = 0◦, Bx = By = 0, Bz = 0.04 T

100



6.2 MHD Flowfield Computations at M = 5.85, α = 0◦,

Bx = By = 0, Bz = 0.06T

In this case, the strength of the magneic field is increased to Bz = 0.06 T to see its

effect. Again, the grid of 40× 51× 10 mesh points was employed to compute the

results. Figure (6.8) shows the variation of density along the stagnation line. Figure (6.9)

shows the variation in the streamwise velocity along the stagnation line. Figure (6.10)

shows the variation in temperature along the stagnation line. Figure (6.11) shows the

variation in thermal pressure along the stagnation line. Figure (6.12) shows the density

contours in the x− y plane. Figure (6.13) shows the contours of the streamwise velocity

in x− y plane. Figure (6.14) shows the dynamic pressure contours in the x− y plane.

These figures show that the increase in the intensity of the magnetic field further

weakens the strength of the bow shock, thereby resulting in a greater reduction in shock

wave drag. In section (6.3), the results of flow field calculations with and without

magnetic field are compared.

101



Figure 6.8: Density Profile along the Stagnation Line for Supersonic Flow Past an Ax-

isymmetric Blunt Body;M = 5.85, α = 0◦, Bx = By = 0, Bz = 0.06 T

Figure 6.9: Streamwise Velocity Profile along the Stagnation Line for Supersonic Flow

Past an Axisymmetric Blunt Body;M = 5.85, α = 0◦, Bx = By = 0, Bz = 0.06 T

102



Figure 6.10: Temperature Profile along the Stagnation Line for Supersonic Flow Past an

Axisymmetric Blunt Body;M = 5.85, α = 0◦, Bx = By = 0, Bz = 0.06 T

Figure 6.11: Thermal Pressure Profile along the Stagnation Line for Supersonic Flow Past

an Axisymmetric Blunt Body;M = 5.85, α = 0◦, Bx = By = 0, Bz = 0.06 T
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Figure 6.12: Density Contours in the x − y Plane for Supersonic Flow Past an Axisym-

metric Blunt Body;M = 5.85, α = 0◦, Bx = By = 0, Bz = 0.06 T

Figure 6.13: Velocity Contours in the x − y Plane for Supersonic Flow Past an Axisym-

metric Blunt Body;M = 5.85, α = 0◦, Bx = By = 0, Bz = 0.06 T
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Figure 6.14: Dynamic Pressure Contours in the x− y Plane for Supersonic Flow Past an

Axisymmetric Blunt Body;M = 5.85, α = 0◦, Bx = By = 0, Bz = 0.06 T
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6.3 Comparison of Euler and MHD Flowfield

Computations at M = 5.85, α = 0◦, Bx = By = 0,

Bz = 0.04T and 0.06T

In this section, the comparison of flow fields with and without the magnetic field is

presented. Figures (6.15) - (6.19) respectively show the variation of density, streamwise

velocity, thermal pressure, static temperature and total pressure along the stagnation line.

There are two physical effects that can be clearly observed: (1) The magnetic field

decreases the strength of the bow shock and (2) the magnetic field pushes the shock

further away from the body. furthermore, for higher values of the magnetic field, these

two effects become more pronounced. Thus, the magnetic field can be utilized in

reducing the wave drag of aerospace vehicles at high speed.
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Figure 6.15: Comparison of Density Profiles along the Stagnation Line for Euler and

MHD Supersonic Flow Past an Axisymmetric Blunt Body;M = 5.85, α = 0◦, Bx =

By = 0, Bz = 0.04 T and Bz = 0.06 T

107



Figure 6.16: Comparison of Velocity Profiles along the Stagnation Line for Euler and

MHD Supersonic Flow Past an Axisymmetric Blunt Body;M = 5.85, α = 0◦, Bx =

By = 0, Bz = 0.04 T and Bz = 0.06 T
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Figure 6.17: Comparison of Thermal Pressure Profiles along the Stagnation Line for Euler

and MHD Supersonic Flow Past an Axisymmetric Blunt Body;M = 5.85, α = 0◦, Bx =

By = 0, Bz = 0.04 T and Bz = 0.06 T
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Figure 6.18: Comparison of Temperature Profiles along the Stagnation Line for Euler

and MHD Supersonic Flow Past an Axisymmetric Blunt Body;M = 5.85, α = 0◦, Bx =

By = 0, Bz = 0.04 T and Bz = 0.06 T
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Figure 6.19: Comparison of Total Pressure Profiles along the Stagnation Line for Euler

and MHD Supersonic Flow Past an Axisymmetric Blunt Body;M = 5.85, α = 0◦, Bx =

By = 0, Bz = 0.04 T and Bz = 0.06 T
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Chapter 7

Summary

A class of explicit and implicit kinetic schemes, known as Kinetic Flux-Vector

Split(KFVS) and Kinetic Wave-Particle Split (KWPS), have been developed for the

numerical solution of Euler and ideal magnetohydrodynamics equation in 3-D

orthogonal curvilinear coordinate systems. A 3-D computational code has been written

using the explicit KWPS scheme to solve the 3-D Euler and ideal MHD equations. Other

kinetic schemes can be easily included in the code with minor modifications. The code

has been validated by computing 1-D and 2-D flows for which the computations of other

investigators are available. The 3-D code has been applied to compute the Euler and

MHD supersonic flow past an axisymmetric blunt body at an angle of attack. The

computed Euler flowfields show the location of the shock upstream of the body in

agreement with the prediction of the normal shock theory along the stagnation

streamline.

The 3D codes based on explicit KWPS scheme for both the Euler and MHD equations

have been successfully tested for the supersonic flow past an axisymmetric blunt body.
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The code performed successfully in the 3-D generalized coordinate system. The kinetic

schemes are found to be very robust and efficient.

The code can be used for studying the flowfields in a wide range of aerospace

applications.
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Appendix A

Derivation of the 1-D Kinetic Schemes

for the Euler Equations

In Chapter 2 and Chapter 3, a mathematical connection between the Boltzmann equation

and the Euler equations was presented. In the following sections, the methodology

described as the “moment method strategy” is employed to derive the 1-D kinetic

schemes, namely the explicit Kinetic Flux-Vector Split (KFVS) and the Kinetic

Wave/Particle Split (KWPS) schemes. Note that the term “1-D” in the context of

Boltzmann equation simply means that the other two velocity components of the fluid

vanish (u2 = u3 = 0).
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A.1 The Maxwellian Gas

The Maxwellian probability density distribution function describes the gas in a state of

collisional equilibrium. It can be expressed as follows:

f (0) =
1

εo
exp

(
− ε

εo

)(
β

π

)3/2

exp (−β (~v − ~u) · (~v − ~u)) (A.1)

where β = ρ
2p

is the equivalent temperature, ρ = mn is the fluid density, and p is the

fluid pressure. The internal energy term associated with the non-translational degrees of

freedom is expressed in terms of the ideal gas constant R and temperature T as

εo =
(

1
γ−1
− 3

2

)
RT . Additionally, the molecular velocity ~v can also be written as the

sum of the fluid velocity ~u and the thermal velocity ~c.

The equilibrium Boltzmann equation can be written as:

∂ (nf)

∂t
+ vi

∂ (nf)

∂xi
= 0 , i = 1, 2, 3 (A.2)

where t is the time, n is the particle number density, f is the probability density

distribution function, vi are the components of the molecular velocity vector, and xi are

the components of the position vector.

The collisional invariant vector Ψ is the vector of quantities that are conserved during

collisional processes, namely the mass, momentum, and the total energy of the

individual gas particles:

Ψ =
[
m m~v mε+ 1

2
m~v · ~v

]T
(A.3)

In the following sections, the kinetic schemes for the 1-D Euler equations, namely the

KFVS and the KWPS schemes, are derived. It has been noted that certain integrals are

repeatedly used in the derivation of the schemes, therefore they are presented below.
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Internal energy The integrals used are of the form
∫

exp (−ε) dε.

∫
exp (−ε) dε = −exp (−ε) + C∫
ε exp (−ε) dε = −ε exp (−ε) +

∫
exp (−ε) dε∫

ε2 exp (−ε) dε = −ε2 exp (−ε) + 2
∫
ε exp (−ε) dε

Molecular velocity First, note that the definition of the error function is

erf (φ) = 1√
π

φ∫
−φ

exp
(
−ϕ2

)
dϕ = 2√

π

φ∫
0

exp
(
−ϕ2

)
dϕ

since exp (−ϕ2) is an even function. In particular, erf (∞) = 1. In the following

sections, the integrals involving the molecular velocity are of the form
∫

exp (−c2) dc.

∫
exp

(
−c2

)
dc see definition of the error function∫

c exp
(
−c2

)
dc = −1

2
exp

(
−c2

)
+ C∫

c2 exp
(
−c2

)
dc = −1

2
c exp

(
−c2

)
+ 1

2

∫
exp

(
−c2

)
dc∫

c3 exp
(
−c2

)
dc = −1

2
c2 exp

(
−c2

)
+
∫
c exp

(
−c2

)
dc∫

c4 exp
(
−c2

)
dc = −1

2
c3 exp

(
−c2

)
+ 3

2

∫
c2 exp

(
−c2

)
dc

A.2 Conserved Variables (Field) Vector

The field variable vector Q is obtained by taking the moments of (nf) with respect to

the collision invariant vector. The detailed derivations are given as follows. Note that

1-D flow is assumed, that is u2 = u3 = 0. Taking Ψ = m:

〈mnf〉 = ρ

∞∫
0

1

εo
exp

(
− ε

εo

)
dε

∞∫
−∞

√
β

π
exp

(
−β (v1 − u1)2

)
dv1
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×
∞∫
−∞

√
β

π
exp

(
−βv2

2

)
dv2

∞∫
−∞

√
β

π
exp

(
−βv2

3

)
dv3

By substituting ε̂ = ε
εo

and ĉi =
√
β (vi − ui), simpler expressions are obtained:

〈mnf〉 = ρ

∞∫
0

exp (−ε̂) dε̂

∞∫
−∞

1√
π
exp

(
−ĉ2

1

)
dĉ1

×
∞∫
−∞

1√
π
exp

(
−ĉ2

2

)
dĉ2

∞∫
−∞

1√
π
exp

(
−ĉ2

3

)
dĉ3

= ρ (A.4)

Substituting Ψ = mv1 gives:

〈mnv1f〉 = ρ

∞∫
0

exp (−ε̂) dε̂

∞∫
−∞

(
u1 + 1√

β
ĉ1

)
1√
π
exp

(
−ĉ2

1

)
dĉ1

×
∞∫
−∞

1√
π
exp

(
−ĉ2

2

)
dĉ2

∞∫
−∞

1√
π
exp

(
−ĉ2

3

)
dĉ3

= ρu1

Yet, when Ψ = mv2 and Ψ = mv3 are used, the following expressions are obtained:

〈mnv2f〉 = ρ

∞∫
0

exp (−ε̂) dε̂

∞∫
−∞

1√
π
exp

(
−ĉ2

1

)
dĉ1

×
∞∫
−∞

1√
β
ĉ2

1√
π
exp

(
−ĉ2

2

)
dĉ2

∞∫
−∞

1√
π
exp

(
−ĉ2

3

)
dĉ3

= 0

and

〈mnv3f〉 = ρ

∞∫
0

exp (−ε̂) dε̂

∞∫
−∞

1√
π
exp

(
−ĉ2

1

)
dĉ1

×
∞∫
−∞

1√
π
exp

(
−ĉ2

2

)
dĉ2

∞∫
−∞

1√
β
ĉ3

1√
π
exp

(
−ĉ2

3

)
dĉ3

= 0
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Finally, by using Ψ = mε+ 1
2
m (v2

1 + v2
2 + v2

3), the following expression is obtained:

〈mnεf〉 = ρ

∞∫
0

ε̂ εoexp (−ε̂) dε̂

∞∫
−∞

1√
π
exp

(
−ĉ2

1

)
dĉ1

×
∞∫
−∞

1√
π
exp

(
−ĉ2

2

)
dĉ2

∞∫
−∞

1√
π
exp

(
−ĉ2

3

)
dĉ3

= ρεo〈
mn1

2
v2

1f
〉

= ρ

∞∫
0

exp (−ε̂) dε̂

∞∫
−∞

(
1
2
u2

1 + 1√
β
u1ĉ1 + 1

2β
ĉ2

1

)
1√
π
exp

(
−ĉ2

1

)
dĉ1

×
∞∫
−∞

1√
π
exp

(
−ĉ2

2

)
dĉ2

∞∫
−∞

1√
π
exp

(
−ĉ2

3

)
dĉ3

= 1
2
ρu2

1 + ρ 1
4β〈

mn1
2
v2

2f
〉

= ρ

∞∫
0

exp (−ε̂) dε̂

∞∫
−∞

1√
π
exp

(
−ĉ2

1

)
dĉ1

×
∞∫
−∞

1
2β
ĉ2

2
1√
π
exp

(
−ĉ2

2

)
dĉ2

∞∫
−∞

1√
π
exp

(
−ĉ2

3

)
dĉ3

= ρ 1
4β〈

mn1
2
v2

3f
〉

= ρ

∞∫
0

exp (−ε̂) dε̂

∞∫
−∞

1√
π
exp

(
−ĉ2

1

)
dĉ1

×
∞∫
−∞

1√
π
exp

(
−ĉ2

2

)
dĉ2

∞∫
−∞

1
2β
ĉ2

3
1√
π
exp

(
−ĉ2

3

)
dĉ3

= ρ 1
4β

By using the definition for the average internal energy
(
εo =

(
1

γ−1
− 3

2

)
1

2β

)
and the

equation of state for ideal gas
(
p = ρ 1

2β

)
, the previous expressions can be combined and

written as: 〈
mn

(
ε+ 1

2
v2
k

)
f
〉

= ρet (A.5)

Thus, for the one-dimensional Euler equations, where u2 = u3 = 0, the vector Q can be

expressed as:

Q =
[
ρ ρu1 ρet

]T
(A.6)
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where et = 1
2
u2
k + γ

γ−1
1

2β
is the specific total energy. Note that the equations for the

transverse velocity components (u2, u3) have been dropped.

A.3 Kinetic-Flux-Vector-Splitting (KFVS) Scheme

Flux-Vector

The KFVS split-flux-vector along the direction x1 can be obtained by splitting (v1nf)

based on its sign and then taking the moments with respect to the collision invariant

vector. For the mass conservation equation, Ψ = m, therefore:

〈
mnv+

1 f
〉

= ρ

∞∫
0

1

εo
exp

(
− ε

εo

)
dε

∞∫
−∞

v1+|v1|
2

√
β

π
exp

(
−β (v1 − u1)2

)
dv1

×
∞∫
−∞

√
β

π
exp

(
−βv2

2

)
dv2

∞∫
−∞

√
β

π
exp

(
−βv2

3

)
dv3

Substituting ε̂ = ε
εo

and ĉi =
√
β (vi − ui),

〈
mnv+

1 f
〉

= ρ

∞∫
0

exp (−ε̂) dε̂

∞∫
−u1
√
β

(
u1 + 1√

β
ĉ1

)
1√
π
exp

(
−ĉ2

1

)
dĉ1

×
∞∫
−∞

1√
π
exp

(
−ĉ2

2

)
dĉ2

∞∫
−∞

1√
π
exp

(
−ĉ2

3

)
dĉ3

=
1+erf

(
u1
√
β

)
2

(ρu1) +
exp(−u21β)

2
√
πβ

(ρ) (A.7)

where erf (φ) = 2√
π

φ∫
0

exp (−ϕ2) dϕ is the error function.

By substituting Ψ = mv1 the following expression is obtained:

〈
mnv+

1 v1f
〉

= ρ

∞∫
0

exp (−ε̂) dε̂

∞∫
−u1
√
β

(
u1 + 1√

β
ĉ1

)2
1√
π
exp

(
−ĉ2

1

)
dĉ1

125



×
∞∫
−∞

1√
π
exp

(
−ĉ2

2

)
dĉ2

∞∫
−∞

1√
π
exp

(
−ĉ2

3

)
dĉ3

=
1+erf

(
u1
√
β

)
2

(
ρu2

1 + ρ 1
2β

)
+

exp(−u21β)
2
√
πβ

(ρu1)

Applying the equation of state of an ideal gas

p = ρRT =
ρ

2β

results in: 〈
mnv+

1 v1f
〉

=
1+erf

(
u1
√
β

)
2

(
ρu2

1 + p
)

+
exp(−u21β)

2
√
πβ

(ρu1) (A.8)

When Ψ = mv2 and Ψ = mv3 are used, the following expressions are obtained:

〈
mnv+

1 v2f
〉

= ρ

∞∫
0

exp (−ε̂) dε̂

∞∫
−u1
√
β

(
u1 + 1√

β
ĉ1

)
1√
π
exp

(
−ĉ2

1

)
dĉ1

×
∞∫
−∞

1√
β
ĉ2

1√
π
exp

(
−ĉ2

2

)
dĉ2

∞∫
−∞

1√
π
exp

(
−ĉ2

3

)
dĉ3

= 0 (A.9)

and

〈
mnv+

1 v3f
〉

= ρ

∞∫
0

exp (−ε̂) dε̂

∞∫
−u1
√
β

(
u1 + 1√

β
ĉ1

)
1√
π
exp

(
−ĉ2

1

)
dĉ1

×
∞∫
−∞

1√
π
exp

(
−ĉ2

2

)
dĉ2

∞∫
−∞

1√
β
ĉ3

1√
π
exp

(
−ĉ2

3

)
dĉ3

= 0 (A.10)

And finally by employing Ψ = mε+ 1
2
m (v2

1 + v2
2 + v2

3), the split-fluxes for the energy

equation are obtained:

〈
mnv+

1 εf
〉

= ρ

∞∫
0

ε̂ εoexp (−ε̂) dε̂

∞∫
−u1
√
β

(
u1 + 1√

β
ĉ1

)
1√
π
exp

(
−ĉ2

1

)
dĉ1
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×
∞∫
−∞

1√
π
exp

(
−ĉ2

2

)
dĉ2

∞∫
−∞

1√
π
exp

(
−ĉ2

3

)
dĉ3

=
1+erf

(
u1
√
β

)
2

(ρu1εo) +
exp(−u21β)

2
√
πβ

(ρεo)

〈
mnv+

1
1
2
v2

1f
〉

= ρ

∞∫
0

exp (−ε̂) dε̂

∞∫
−u1
√
β

1
2

(
u1 + 1√

β
ĉ1

)3
1√
π
exp

(
−ĉ2

1

)
dĉ1

×
∞∫
−∞

1√
π
exp

(
−ĉ2

2

)
dĉ2

∞∫
−∞

1√
π
exp

(
−ĉ2

3

)
dĉ3

=
1+erf

(
u1
√
β

)
2

(
1
2
ρu3

1 + 3
2
pu1

)
+

exp(−u21β)
2
√
πβ

(
1
2
ρu2

1 + p
)

〈
mnv+

1
1
2
v2

2f
〉

= ρ

∞∫
0

exp (−ε̂) dε̂

∞∫
−u1
√
β

(
u1 + 1√

β
ĉ1

)
1√
π
exp

(
−ĉ2

1

)
dĉ1

×
∞∫
−∞

1
2β
ĉ2

2
1√
π
exp

(
−ĉ2

2

)
dĉ2

∞∫
−∞

1√
π
exp

(
−ĉ2

3

)
dĉ3

=
1+erf

(
u1
√
β

)
2

(
1
2
pu1

)
+

exp(−u21β)
2
√
πβ

(
1
2
p
)

〈
mnv+

1
1
2
v2

3f
〉

= ρ

∞∫
0

exp (−ε̂) dε̂

∞∫
−u1
√
β

(
u1 + 1√

β
ĉ1

)
1√
π
exp

(
−ĉ2

1

)
dĉ1

×
∞∫
−∞

1√
π
exp

(
−ĉ2

2

)
dĉ2

∞∫
−∞

1
2β
ĉ2

3
1√
π
exp

(
−ĉ2

3

)
dĉ3

=
1+erf

(
u1
√
β

)
2

(
1
2
pu1

)
+

exp(−u21β)
2
√
πβ

(
1
2
p
)

By using the definition for the average internal energy
(
εo =

(
1

γ−1
− 3

2

)
1

2β

)
, the KFVS

split-flux for the energy equation is expressed as:

〈
mnv+

1

(
ε+ 1

2
v2
k

)
f
〉

=
1+erf

(
u1
√
β

)
2

(ρu1et + pu1) +
exp(−u21β)

2
√
πβ

(
ρet + 1

2
p
)

(A.11)
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Thus, the KFVS split-flux-vector for the Euler equations can be written as:

F± =
1±erf

(
u1
√
β

)
2


ρu1

ρu2
1 + p

ρu1et + pu1

±
exp(−u21β)

2
√
πβ


ρ

ρu1

ρet + 1
2
p

 (A.12)

A.4 Kinetic-Wave-Particle-Splitting (KWPS) Scheme

Flux-Vector

In the derivation of the KWPS split-flux-vectors, it is recognized that the molecular

velocity ~v can be expressed as the sum of the fluid velocity ~u and the thermal velocity ~c.

Upwinding can then be applied to each of the velocities ~u and ~c separately. This results

in much simpler expressions compared to the KFVS formulation.

By using the fluid velocity ~u as the basis for the upwinding, the following expression is

obtained when moments are taken with respect to the collision invariant vector:

〈
u+

1 nfΨ
〉

= u1+|u1|
2
〈nfΨ〉 (A.13)

In equation A.13 the fluid velocity can be taken outside the integrations. However, this is

equivalent to: 〈
u+

1 nfΨ
〉

= u1+|u1|
2

Q (A.14)

This implies that the information contained in the conserved variable vector is convected

at exactly the fluid velocity, hence the name “particle” flux.

The “wave” flux is obtained by splitting the thermal velocity ~c. The derivation of the

split-flux terms for the “wave” flux is given below.
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Letting Ψ = m, the following expression is obtained:

〈
mnc+

1 f
〉

= ρ

∞∫
0

exp (−ε̂) dε̂

∞∫
0

1√
β
ĉ1

1√
π
exp

(
−ĉ2

1

)
dĉ1

×
∞∫
−∞

1√
π
exp

(
−ĉ2

2

)
dĉ2

∞∫
−∞

1√
π
exp

(
−ĉ2

3

)
dĉ3

= 1

2
√
πβ

(ρ) (A.15)

By substituting Ψ = mv1, the following expression is obtained:

〈
mnc+

1 v1f
〉

= ρ

∞∫
0

exp (−ε̂) dε̂

∞∫
0

1√
β
ĉ1

(
u1 + 1√

β
ĉ1

)
1√
π
exp

(
−ĉ2

1

)
dĉ1

×
∞∫
−∞

1√
π
exp

(
−ĉ2

2

)
dĉ2

∞∫
−∞

1√
π
exp

(
−ĉ2

3

)
dĉ3

= 1

2
√
πβ

(ρu1) + 1
2

(p) (A.16)

When Ψ = mv2 and Ψ = mv3 are used, the following expressions are obtained:

〈
mnc+

1 v2f
〉

= ρ

∞∫
0

exp (−ε̂) dε̂

∞∫
0

1√
β
ĉ1

1√
π
exp

(
−ĉ2

1

)
dĉ1

×
∞∫
−∞

1√
β
ĉ2

1√
π
exp

(
−ĉ2

2

)
dĉ2

∞∫
−∞

1√
π
exp

(
−ĉ2

3

)
dĉ3

= 0 (A.17)

and

〈
mnc+

1 v3f
〉

= ρ

∞∫
0

exp (−ε̂) dε̂

∞∫
0

1√
β
ĉ1

1√
π
exp

(
−ĉ2

1

)
dĉ1

×
∞∫
−∞

1√
π
exp

(
−ĉ2

2

)
dĉ2

∞∫
−∞

1√
β
ĉ3

1√
π
exp

(
−ĉ2

3

)
dĉ3

= 0 (A.18)

And finally by employing Ψ = mε+ 1
2
m (v2

1 + v2
2 + v2

3), the split-fluxes for the energy
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equation are obtained:〈
mnc+

1 εf
〉

= ρ

∞∫
0

ε̂ εoexp (−ε̂) dε̂

∞∫
0

1√
β
ĉ1

1√
π
exp

(
−ĉ2

1

)
dĉ1

×
∞∫
−∞

1√
π
exp

(
−ĉ2

2

)
dĉ2

∞∫
−∞

1√
π
exp

(
−ĉ2

3

)
dĉ3

= 1

2
√
πβ

(ρεo)

〈
mnc+

1
1
2
v2

1f
〉

= ρ

∞∫
0

exp (−ε̂) dε̂

∞∫
0

1√
β
ĉ1

1
2

(
u1 + 1√

β
ĉ1

)2
1√
π
exp

(
−ĉ2

1

)
dĉ1

×
∞∫
−∞

1√
π
exp

(
−ĉ2

2

)
dĉ2

∞∫
−∞

1√
π
exp

(
−ĉ2

3

)
dĉ3

= 1

2
√
πβ

(
1
2
ρu2

1 + p
)

+ 1
2

(pu1)

〈
mnc+

1
1
2
v2

2f
〉

= ρ

∞∫
0

exp (−ε̂) dε̂

∞∫
0

1√
β
ĉ1

1√
π
exp

(
−ĉ2

1

)
dĉ1

×
∞∫
−∞

1
2β
ĉ2

2
1√
π
exp

(
−ĉ2

2

)
dĉ2

∞∫
−∞

1√
π
exp

(
−ĉ2

3

)
dĉ3

= 1

2
√
πβ

(
1
2
p
)

〈
mnc+

1
1
2
v2

3f
〉

= ρ

∞∫
0

exp (−ε̂) dε̂

∞∫
0

1√
β
ĉ1

1√
π
exp

(
−ĉ2

1

)
dĉ1

×
∞∫
−∞

1√
π
exp

(
−ĉ2

2

)
dĉ2

∞∫
−∞

1
2β
ĉ2

3
1√
π
exp

(
−ĉ2

3

)
dĉ3

= 1

2
√
πβ

(
1
2
p
)

Simplifying: 〈
mnc+

1

(
ε+ 1

2
v2
k

)
f
〉

= 1
2

(pu1) + 1

2
√
πβ

(
ρet + 1

2
p
)

(A.19)

Thus, the KWPS split-flux-vector for the one-dimensional Euler equations is obtained as:

F± = u1±|u1|
2


ρ

ρu1

ρet

+ 1
2


0

p

pu1

± 1

2
√
πβ


ρ

ρu1

ρet + 1
2
p

 (A.20)
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Appendix B

Metrics of Transformation for the

Generalized Curvilinear Coordinate

System

B.1 Computation of the Metrics of Transformation

The solution of the Euler equations about an arbitrary geometry can be facilitated by

employing a body conforming grid system. The numerical computation, however, is far

more convenient to be conducted over a simple Cartesian grid. To connect both the

physical (consisting of orthogonal curvilinear grid lines) and computational (consisting

of Cartesian grid lines) spaces, a method of coordinate transformation is applied.

Define the following one-to-one relationships connecting the computational coordinates
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(ξ, η, ζ) as functions of the physical space coordinates (x, y, z):

ξ = ξ (x, y, z)

η = η (x, y, z)

ζ = ζ (x, y, z)

A differential form of the above expressions can be written as:
dξ

dη

dζ

 =


ξx ξy ξz

ηx ηy ηz

ζx ζy ζz




dx

dy

dz

 (B.1)

where the subscripts denote partial differentiations.

In general, it is much easier to define the physical space coordinates as functions of the

computational space coordinates. This can achieved by reversing the role of dependent

and independent variables in equation (B.1) as follows:
dx

dy

dz

 =


xξ xη xζ

yξ yη yζ

zξ zη zζ




dξ

dη

dζ

 (B.2)

from which the metrics of coordinate transformation can be obtained as:
ξx ξy ξz

ηx ηy ηz

ζx ζy ζz

 =


xξ xη xζ

yξ yη yζ

zξ zη zζ



−1

= J


yηzζ − yζzη zηxζ − zζxη xηyζ − xζyη

yζzξ − yξzζ zζxξ − zξxζ xζyξ − xξyζ

yξzη − yηzξ zξxη − zηxξ xξyη − xηyξ

 (B.3)
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where J is the Jacobian of coordinate transformation defined as:

J =

∣∣∣∣∣∣∣∣∣∣∣
xξ xη xζ

yξ yη yζ

zξ zη zζ

∣∣∣∣∣∣∣∣∣∣∣

−1

=
1

(xξyηzζ + xηyζzξ + xζyξzη)− (zξyηxζ + zηyζxξ + zζyξxη)

B.2 Differentiation of the Metrics of Transformation

In the derivation of the Poisson solver, the need to evaluate the spatial derivatives of the

metrics of transformation arises. The Laplacian of an arbitrary function φ in the

Cartesian coordinates is defined as:

∇2φ = φxx + φyy + φzz (B.4)

In a generalized curvilinear coordinate system, the equation (B.4) becomes more

involved. The following illustrates the additional terms that need to be added:

∇2φ =

(
ξx
∂

∂ξ
+ ηx

∂

∂η
+ ζx

∂

∂ζ

)
(ξxφξ + ηxφη + ζxφζ)

+

(
ξy
∂

∂ξ
+ ηy

∂

∂η
+ ζy

∂

∂ζ

)
(ξyφξ + ηyφη + ζyφζ)

+

(
ξz
∂

∂ξ
+ ηz

∂

∂η
+ ζz

∂

∂ζ

)
(ξzφξ + ηzφη + ζzφζ)

= (ξ, ξ)φξξ + (η, η)φηη + (ζ, ζ)φζζ

+ 2 (ξ, η)φξη + 2 (η, ζ)φηζ + 2 (ζ, ξ)φζξ

+∇2ξφξ +∇2ηφη +∇2ζφζ

where the terms such as (ξ, ξ) = ξ2
x + ξ2

y + ξ2
z indicate the inner products. The Laplacian

of the coordinate ξ is defined as follows:

∇2ξ = ξx
∂

∂ξ
(ξx) + ηx

∂

∂η
(ξx) + ζx

∂

∂ζ
(ξx)
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+ ξy
∂

∂ξ
(ξy) + ηy

∂

∂η
(ξy) + ζy

∂

∂ζ
(ξy)

+ ξz
∂

∂ξ
(ξz) + ηz

∂

∂η
(ξz) + ζz

∂

∂ζ
(ξz)

The Laplacians of the other coordinates η and ζ are obtained by using appropriate

substitutions. Finally, the derivatives of the metrics of coordinate transformation, e.g.

∂
∂ξ

(ξx), can be obtained using the definition of the Jacobian of transformation J as

follows:

∂

∂ξ
(ξx) =

∂

∂ξ
[J (yηzζ − yζzη)]

= J (yξηzζ − yζξzη + zζξyη − zξηyζ) + Jξ (yηzζ − yζzη)

Expanding Jξ

Jξ = − J 2 [(xξξyηzζ + xηyζzξξ + xζyξξzη)− (zξξyηxζ + zηyζxξξ + zζyξξxη)]

− J 2 [(xξyξηzζ + xξηyζzξ + xζyξzξη)− (zξyξηxζ + zξηyζxξ + zζyξxξη)]

− J 2 [(xξyηzζξ + xηyζξzξ + xζξyξzη)− (zξyηxζξ + zηyζξxξ + zζξyξxη)]

= − J 2 (yηzζ − yζzη)xξξ − J 2 (zηxζ − zζxη) yξξ − J 2 (xηyζ − xζyη) zξξ

− J 2 (yζzξ − yξzζ)xξη − J 2 (zζxξ − zξxζ) yξη − J 2 (xζyξ − xξyζ) zξη

− J 2 (yξzη − yηzξ)xζξ − J 2 (zξxη − zηxξ) yζξ − J 2 (xξyη − xηyξ) zζξ

= − J (ξxxξξ + ξyyξξ + ξzzξξ + ηxxξη + ηyyξη + ηzzξη + ζxxζξ + ζyyζξ + ζzzζξ)

The substitution for Jξ gives

∂

∂ξ
(ξx) =

∂

∂ξ
[J (yηzζ − yζzη)]

= J (yξηzζ − yζξzη + zζξyη − zξηyζ) + Jξ (yηzζ − yζzη)

= − ξx (ξxxξξ + ξyyξξ + ξzzξξ)

− ηx (ξxxξη + ξyyξη + ξzzξη)

− ζx (ξxxζξ + ξyyζξ + ξzzζξ)
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Likewise, other derivatives can be obtained. After substitution, the Laplacian∇2ξ

becomes

∇2ξ = − (ξ, ξ) (ξxxξξ + ξyyξξ + ξzzξξ)− 2 (ξ, η) (ξxxξη + ξyyξη + ξzzξη)

− (η, η) (ξxxηη + ξyyηη + ξzzηη)− 2 (η, ζ) (ξxxηζ + ξyyηζ + ξzzηζ)

− (ζ, ζ) (ξxxζζ + ξyyζζ + ξzzζζ)− 2 (ζ, ξ) (ξxxζξ + ξyyζξ + ξzzζξ)
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Appendix C

Implementation of Boundary

Conditions

Numerical simulations of the Euler equations require a procedure for implementing the

boundary conditions in a manner consistent with the physics of the flow. Incorrect

application of the boundary conditions can lead to wrong solutions, or may result in

instability in the computations. This appendix explains the implementation of the

boundary conditions employed in this dissertation.

C.1 Supersonic Inflow

This boundary condition, applied at supersonic inflows, simply imposes prescribed or

free-stream values on the inflow boundary grid points. This procedure is applied at the

inflow boundary for computation of supersonic flow past a blunt body.
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C.2 Supersonic Outflow

At supersonic outflows, flow variables can be simply extrapolated from the interior

points onto the boundary grid points. This type of boundary condition is implemented on

the supersonic outflow boundaries for supersonic flow past a blunt body.

C.3 Subsonic Outflow

For subsonic outflow boundary, flow variables can be simply extrapolated from the

neighboring interior points onto the boundary grid points. This type of boundary

condition is implemented on the subsonic outflow boundaries for supersonic flow past a

blunt body.

C.4 Solid Wall Boundary Condition

A more general approach in devising a procedure to enforce a solid wall boundary

condition involves the following idea. First, it is assumed that at the wall the normal

gradient of the pressure is equal to zero, therefore its value at the wall can simply be

extrapolated from the interior. Being solid, there is no mass flow across the wall, which

is expressed as ~u · n̂ = 0, where n̂ is the unit vector normal to the wall. However, the

magnitude of the momentum vector ~M = ρ~u can be assumed to be the same, only its

direction needs to be set tangential to the wall (velocity slip condition). In other words,

upon encountering the solid wall the momentum vector is rotated to point tangetially

along the wall. The density at the wall can then be obtained using the fact that for steady
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state flow of inviscid, non-heat conducting gas, the total enthalpy ht is constant

throughout the flowfield. Mathematically, it can be expressed as:

ht =
1

2ρ2
~M · ~M +

γ

γ − 1

p

ρ
= constant (C.1)

from which density at the wall can then be obtained as a solution of a quadratic equation:

ρ =
γp+

√
γ2p2 + 2ht (γ − 1)2 ~M · ~M

2ht (γ − 1)
(C.2)

where the positive sign has been chosen to prevent negative values for the density.
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Appendix D

Computational Code (Separate

Document)
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