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Abstract

A visual language Show and Tell is introduced as a programming language for home
information systems, integrating the computer capabilities of managing computatlon
communication, and database. It is shown that keyboardless programming is possible with
Show and Tell. The language is implemented on the Apple Macintosh personal computer.
The semantic model of the language is based on the concepts of dataflow and completion.
A Show and Tell program is a partiaily ordered set of nested boxes and arrows. Traditional
programming constructs such as subroutine, iteration, record structure, recursion,
exception, concurrency and so forth, are represented by two-dimensional graphical
structure of boxes and arrows. The design philosophy, conceptual model, syntax, and
semantics of major language constructs are described. Various research probiems in the
visual programming area are discussed.
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1. Introduction

This report presents the design philosophy and the basic features of an icon-driven

visual programming language called Show and Tell™+, By a visual language, we mean a
programming language in which two-dimensional graphic patterns are used to represent
various programming concepts, such as subroutines, iteration, recursion, concurrency,
exception, data values and data types. For more general usage of the term visual
programming, see Reference [1].

The Show and Tell Language (STL) is designed for novice computer users who are not
familiar with keyboarding. In STL, program construction requires no keyboarding, except
for textual data entry. A pointing device, a mouse, is the primary mechanism for user

interface. Currently the language is implemented on the Apple® Macintosh™ personal

computer. Programming in MacPaint ™ or keyboardless programming is the main goal
of the Macintosh version of STL.

The Show and Tell language system was developed as the first phase of the research
activity that started two years ago. The research problem was to investigate the possibilities
and limitations of computers at home in future information oriented society. The research
goal is divided into three phases; the long term, the short term, and the immediate goal.
The outline of research problems at each phase are described below.

1.1  Long Term Goal

The long term goal is to construct a computer system which accomplishes the
integration in the following three areas:

(1) Integration of Environments: home, work, and school.

According to Alvin Toffler [2], powerful micro-mainframe capabilities at home
combined with teletext/videotex services will transform a home inio an electronic cottage,
where adults work and children learn in the environment of family life. Information
oriented societies are home-centered societies. Office automation and home automation will
coincide in such a society.

(2) Integration of Applications: communication, computation, and database.

In an information oriented society, computation will be only a small part of computer
application at home. Communication will be more dominant. A computer will be used to
manage communication activities regarding what information to be shared with whom,
when, and how. Information sharing can be done either by an exchange of messages,
e.g., sending a letter to a school teacher, or through a database, e.g., announcing a garage
sale in the community bulletin board. A database query of a CD-ROM based encyclopedia
can be considered as another communication activity (sharing information) that requires
both database and computation management capabilities. Home computer users would see
one application of computer, i.e., information management, instead of three different
applications of a computer. The computer capabilities for managing computation,
communication, and database must be integrated into a single conceptual framework.

+ Show and Tell is a trademark of Computer Services Corporation.
Macintosh is a trademark of Apple Computer, Inc.
MacPaint is a trademark of Apple Computer, Inc.



(3) Integration of Communication Media: image, audio, and text.

Information can be represented in different forms on different media. Communication
management needs the capabilities of dealing with different communication media in a
unified manner. Hardware technologies for video, audio and texual information have been
integrated under the digital technology. However, a similar integration has not been
attempted in the current software technology. For example data types for non-textual
objects such as video images and audio messages are not available in general purpose
programming languages.

There are two fundamental research problems associated with the above long term goal;
user interface design and a conceptual model of computer capabilities at home. Home
video and audio equipment have a different user interface design than that of a home
computer. They provide more direct feedback to the user's operations. User interfaces for
different system components with different communication media, must be integrated into a
uniform paradigm of user interface for a home information system.

An equaly important problem is to construct a unified semantic model of computer
capabilities covering the three different application areas of computation, communication
and data query. A traditional von Neumann type machine model is not appropriate for
modeling communication activities because it can not represent concurrent activities
naturally. It is not appropriate for modeling database applications, because it cannot
represent pattern matching and pattern search activities without simulating them. Present
computer users are forced to leam, implicitly or explicitly, different models of ‘computer'
in different application areas in order to use application-specific computer languages.

1.2 Short Term Goal

There are different approaches for achieving the long term goal described in §1.1. One
approach is to start with design of a hardware equipment for a future home information
system. Another is to design an operating system environment in which many software
tools will be made available for different home applications. The third approach, which we
have taken, centers around design of a new computer language.

Our working hypothesis is that programming, a process of assembling or modifying
simple computational resources into a complex one, will be required by every user of future
information system, in spite of many would-be available application software packages. A
general purpose application program or database must be refined to fit the specific needs of
a particular user. In this broader definition of programming for end users, algorithm
design is not an essential part of programming, contrary to the traditional definition.

The short term goal is to construct a computer language which has the following three
aspects:

(1) Visual programming language

High resolution graphics capabilities can facilitate efficient man-machine
communication because of its high bandwidth. Direct object manipulation is possible with
the high bandwidth, and is essential in any programming environment for home computer
users. A visual programming language offers a mechanism for specifying an assembling
process in two-dimensional graphic layout, which is more intuitive to the end user than a



textual Iayout. In addition, a visual program can display the effects of the program
execution directly, giving the user the sense of direct object manipulation.

(2) Keyboardless programming language

Programming, as an assembly process of a complex object, involves the selection of
components and establishing connections among the components. Programming is a
sequence of decision making which consists of choosing objects and the establishment of
connections. It requires knowledge about what components are available, how each
component can be connected with others, and how to make newly composed objects
available for future composition.

In a traditional text-based programming language, identification of components and
connections are made through texual names (identifiers, labels and keywords). Even
though 2 construction of a textual name is not usually considered a part of programming
activity (some may agree that it is a part of coding), it still requires selections of a primitive
object, a character, to construct a complex object, 2 word. For small children the task of
composing a word on a keyboard is a difficult task, primarily because the range of selection
is too large to grasp in one span of attention and not all of the choices are displayed
explicitly; for example, the effect of Shift key is not visible. Thus, text-based
programming requires end users to perform two levels of selection process, one to select a
computational resource and the other to select a name component.

In order to simplify user programming task we propose to eliminate the second level of
selection process by (i) identifying computational resources with two-dimensional patterns
(icons), (ii) displaying all available components in 2 two-dimensional layout, and (iii)
providing a user with a pointing device for selection. We call this keyboardiess
programming.

(3) Job Control Language

"There exists no fundamental difference between a programming language and a job
control language, or a shell language, both as an assembly langnage for computational
resources. Only difference is that a job control language is used to assemble a large unit of
resources such as files and job steps, while a programming language is used to assemble a
smaller units such as memory cells and CPU instruction cycles. Users should not be
required to learn two different languages with different syntax and semantics for the same
purpose of assembling computational resources.

The main research problem for the short term goal is to construct two-dimensional
abstract syntax for known programming concepts such as assignment, iteration, recursion,
concurrency, exception, synchronization, data type, module, file, quoting, and unquoting.
Pictorial representation of computational resources and their relationships are the
foundations of visual programming and keyboardless programming.

Designing a two-dimensional syntax requires a different set of design rules than those
for linear syntax. For example, due to limited size of screen display, the economy of space
has to be an important design consideration. Color graphics will enhance the economy. In
general a concrete syntax will depend upon the characteristics of the display device.



1.3 Immediate Goal

We had chosen to design a computer language for school children on the Macintosh
personal computer system as a case study for visual programming language research. The
immediate goal was to design and implement a visual programming language with a
concrete syntax suitable for the specific hardware and specific group of end users, in such a
way that the research problems of the short term and long term goals could be addressed.

The research problem associated with this phase was integration of visual programming
with the Macintosh user interface mechanism, i.e., the desktop metaphore with windows
and menus. Our solution to the problem can be characterized by the term Programming in
MacPaint, one of the most popular application software for Macintosh. Anyone who can
use MacPaint should be able to construct a program in the new language.

STL is the result of our efforts to achieve this immediate goal. In this report we will
describe the syntax and semantics of STL constructs. The box-arrow syntax of STL is
expected to play a key role in development of abstract syntax for visual programming
language in the next phase of research. The semantic foundation of STL is a new
computation model called Hierarchical Dataflow Model (HDM) which is reported in [3].
We view HDM as a tentative answer to the research probiem in the long term phase, of
constructing a conceptual model of computation for home computer users.

This report is organized as follows:

Introduction
Systemn Overview
Macintosh Environment
System Architecture
Basic Capabilities
Implementation Note
3. Language Overview
Conceptual Model
Syntax
Semantics
4. Programming in STL
Programming Constructs
Programming Aspects
5. Conclusions and Future Directions
6. References.
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2. System Overview
2.1 Macintosh Environment

STL is currently implemented on a 512K Macintosh with an external disk drive and an
Appletalk local area network. A mouse and keyboard are available for user input, and a bit
mapped screen and internal speaker are available for output. The operating system is
provided by the Finder program and the ToolBox ROM programs. The voice output
capability is made available through a commercial product, SmoothTalker™++ from First
Byte®. For more detailed information about Macintosh system, see Reference [4].

The STL users are assumed to be familiar with the Macintosh environment to the extent
that the MacPaint application program can be used reasonably well with window operations
and menu selections. We assume the same for the reader.

2.2 System Architecture

A Macintosh computer, connected to an AppleTalk network, running a copy of the STL
system disk, represents a desk for STL users. (See Figure 1.) Each desk has a name
(Macintosh volume name), an incoming mail box, outgoing mail box, picture telephone,
and a set of drawers. The desk name is unique in the network. The incoming mail box
retains a queue of received mail until the mail is opened by the user. The user can send
mail to any other desk by putting the mail in the outgoing mail box, as long as the
destination desk's name is known. The STL system tries to deliver outgoing mail each
time a new desk appears on the network.

A user at a desk can communicate with another user through a picture telephone. The
user may initiate a call to any other desk on the network at any time. When the call is
made, the computer running the called desk will beep, indicating the incoming call, and the
user has an option of answering or neglecting the call. When the connection is established,
an empty phone window will be created at the both ends. The window is partitioned into
three areas; caller's protected area, the responder's protected area, and the unprotected
common area. A user can enter or erase any pencil drawing and text in the common area or
in his own protected area. Any action on the unauthorized area will be neglected. All
drawings and text will be displayed at the both ends simultaneously. (See Figure 2 for an
example of phone window.) What you see on your screen is what your partner sees on his
screen. Either user can hang up on the picture phone at any time.

A STL drawer is implemented as a Macintosh file and identified by the file name. It
contains a collection of (Show and Tell) files, where a file is a combination of a puzzle and
a sequence of known soluzions. A Show and Tell file represents a relation, in the sense of
relational database, where the puzzle specifies the schema and each solution in the file is a
record representing a tuple in the relation. The puzzle is a specification of database schema,
data query, and computational procedure (operation), altogether in a single form. A drawer
is a collection of database and related operations in a particular application area. The
concept of drawer was used to introduce a packaging capability into STL for modular
programming.

*++ SmoothTalker is 2 trademark of First Byte.



Figure 1: Show and Tell Architecture
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A puzzle is identified by a standard-sized icon which is automatically constructed from
the image entered by the user into the name area of the puzzle. A puzzle name is also used
to identify the file for which the puzzle is the schema definition. Each drawer contains a
directory which is a sequence of icons representing the all files (puzzles) contained in the
drawer. When a drawer is opened , the directory of the drawer is displayed on the screen

(directory window) showing its content. The general syntax and semantics of STL puzzies
will be given in the sections that follow.

A user constructs a new puzzle on Edit Window using the editing tools similar to those
available in MacPaint. The vertical menus provide a set of commands to control saving and
solving the newly constructed puzzle. (See Figure 3.) A puzzle consists of boxes
connected by arrows. A box may be empty, contain a data value, or may contain another
puzzle which is represented either by its icon name or by a nested set of boxes and arrows.
Names of component puzzles can be selected from the drawers currently opened.
Programming in STL is assembling existing puzzles into a new compiex one.

The STL system provides three predefined system drawers; Input/Qutput, Arithmetic,
and Miscellaneous. The directories of the system drawers are given in Figure 4. The
standard arithmetic operations are available from the Arithmetic drawer. The semantics of
each system-defined puzzle is given in the STL User's Manual ([5]).

Input Qutput
O= = A
H i

= S=———— firithmetic

@ﬂﬂ=%%&§aa«

Miscellaneous

3 A& ABLA | DD or|[ || De

Figure 4: System Defined Drawer Directories

A user can start the system to solve the puzzle in the current Edit window by clicking
the "Solve" item in the Puzzle menu and the solution will be displayed in the same Edit
window. The system can solve more than one puzzle concurrently, i.e., multitasking is
possible in MSTL. The user can start another puzzle by making another Edit window
current and by clicking the "Solve" item again, while the first puzzle is being solved.



2.3 Basic Capabilities

We will list the basic capabilities of STL here as a summary of the system overview.
Management of computation and data is the main application area of STL. Local area
network communication capabilities are incorporated into the system but not integrated into
the STL language at the present time, i.e., the user can not control communication activities
through a STL program (puzzle). As an algorithmic programming language, STL can be
characterized as a functional language based on the dataflow concept.

In the following sections, we will discuss the STL capabilities listed under (2) Database
and (3) Computation.

(1) Communication*+ : AppleTalk local area network

Mailing: Drawer (file) transfer.
Picture Phone: Text and pencil drawing.

(2) Database: Relational approach.

Data Objects: Image, text, and number.
Schema: Record structure with constraints.
Query: Join, projection, selection operations.

(3) Computation: Functional, data-driven, and asynchronous execution.

Data Structure: File (sequence of records).

Image, text, number (no logical values).
Control: Block Structure.

Recursion.

Sequential iteration (no Ioops).

Paraliel iteration.

Multitasking.

2.4 Implementation Note

"The current version of MSTL is implemented in C using the AZTEC C compiler from
Manx Software Systems. The compiler was augmented by us with a Preprocessor to
simulate the Ada package construct including the exception handling capability. Our
method for modular programming in C is reported in [6].

The system consists of approximately 30 packages. The size of source codes is about
700 KB in total. The size of object codes is about 240 KB excluding resource files. The
size of resource file is about 130 KB which includes the SmoothTalker speech driver,

*+++ The communication modules are not integrated into the current version of the MSTL
system. They are available as stand alone systems.
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3. Language Overview

In this section we will introduce the conceptual model, the syntax, and the semantics of
STL. Our presentation here is informal. The current implementation of STL on Macintosh,
MSTL, is not a full version of STL.

3.1  Conceptual Model

By the conceptual model of STL. we mean a definition of the STL system from the
user's point of view. There are two fundamental concepts incorporated in STL, dataflow
and completion. Motivations for the choice are given in [3]. We assume that the reader is
familiar with the notion of dataflow. (See [7] for reference.) The notion of completion is
well-known in psychology ([8]) but littie known in computer science ([9]). We will
illustrate the notion shortly.

To an end user the STL system is a tool for defining and solving a certain kind of
puzzle, called a Show and Tell (ST) puzzle. A ST puzzle consists of boxes connected by
arrows. The arrows define the neighborhood relationship among the boxes. Some boxes
may be empty. The puzzle is solved when the empty boxes are filled with data objects
satisfying the constraints imposed by the neighboring boxes. A ST puzzle defines a
completion problem of filling the missing portions of a graphic pattern in the same way a
jig-saw puzzle defines a completion problem. A puzzle is solved when the puzzie is
completed.

The STL system solves a puzzle either by computation or by database search of existing
solutions. A puzzle is solved by computation when empty boxes are filled by transfer of
data objects from the neighboring boxes. A computation model for STL is similar to the
dataflow model of computation. A database search in STL consists of selecting a solution
in the database that matches with the partial information given in the remaining part of the
puzzle. Itis similar to the associative memory model of database. Itis possible to
combine computation and database search in solving a single ST puzzle.

The notion of completion is used in STL as a mechanism for integrating computation
and database into a single conceptual framework. The STL system is a system with
completion capability. It can solve puzzles and provide tools for saving, modifying, and
sharing puzzles and solutions with other users. The Show and Tell language is a
specification language for the Show and Tell puzzles.

Figure 5 illustrates the completion problem by examples. In Figure 5, (a)is a
completion problem in perception, (b) defines a jig-saw puzzle as a completion problem in
which the constraint is physical shape, (c) is a ST puzzle defining a computation as a
completion problem in which the constraint is logical rather than physical, and (d) is a ST
puzzle defining a data query as a completion problem in which the constraint is the content
of a database.
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3.2  Syntax

There is no known formal grammar for STL puzzles. Some of our efforts to construct
formal syntax for two-dimensional languages are described in [10] and [11]. We will use
a pseudo BNF grammar assisted by English to specify the syntax of STL. In this informal
two-dimensional grammar only the shape and type of a figure are significant and the size
and geographic location are not. We introduce two composition operations, concatenation
and superposition.

The concatenation of two figures is defined as a juxtaposition of the figures without
overlapping. The superposition is a juxtaposition with overlaps sharing some elements of
the figures. We denote the concatenation operation by '+' and the superposition operation
by '+'." The results of these operations are not necessarily unique, because there may exist
many different ways of juxtaposing two-dimensional figures. For example, consider the
two figures A and B in Figure 6 (a). Figure 6 (b) enumerates some members of A+B, and
(c) enumerates some members of A*B. Note that since the juxtaposition operation is both
commutative and associative, so are the concatenation and superposition operations.

Figure A Figure B

v —»

(a) Componenet Figures

(b) Some Members of A +B

—

4
(c) Some Members of A «B

Figure 6: Concatenation and Superposition
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3.2.1
puzzle ::= ( name + background } ¢ boxgraph
name ::= picture
background ::= picture
picture :i= bit image of any size (MacPaint picture in MSTL)

A puzzle consists of three components; name, background, and boxgraph. A nameis a
rectangular bit image used to identify the puzzle. A background can be any picture
commenting about the puzzle. The name area and the background do not overlap with each
other. The boxgraph is the main component of a puzzle that the STL system interprets. It
can overlap with the name and/or background. An example of an MSTL puzzle with
empty boxgraph is given in Figure 7.

=

4

Figure 7: Name Area and Background in MSTL

3.2.2
boxrgraph i:=box {box } « [ flow ]

The notation { } denotes the concatenation closure and { ] denotes the superposition
closure. The above rule is equivalent to:

boxgraph :i= (box +... + box) ¢ (flow ¢ . .. ¢ flow)

A boxgraph consists of one or more boxes connected by a set of arrows. An arrow
(flow) connects one box to another defining a flow of data from the originating source box
to the destination box. Two boxes may be connected by more than one arrow. An arrow
may intersect with other arrows and boxes. While no two boxes may overlap with each
other, nesting of boxes is allowed, i.e., one box may contain other boxes. The boxes and
arrows may not form any cycle or a loop; a boxgraph is a partially ordered set of nested
boxes. It is characterized formally as a directed acyclic multi-graph ([3]).

There are eleven different types of box frames (Figure 8), and there is only one kind of
arrow, a solid line with an arrow-head. A line may consists of arbitrarily many line
segments each of which is a straight line.



closed open base iteration
_j _I SERRARRRRRR
closed structure open structure file

X

closed unquote open unquote descriptor quote

Figure §: Different Box Frames

323
box ::= simple | complex | iteration | file |
structure | unquote

simple ::= constant | variable | operation

constant ;= data | | | data

variable ::= !

operation :i=| jcon || i icon

data ::= number | text | picture
icon '= square bit image of standard size

A simple box may be a constant (a box containing a data object), a variable (an empty
box), or an operation (a box containing an icon). A data object can be a number, a text, or
a picture. An icon is a fixed sized picture, 32 X 32 in the case of MSTL, constructed from
the name area of some existing puzzle. The icon represents the named puzzle.

324

complex ::= | boxgraph boxgraph

A complex box is a box containing another boxgraph. An arrow may start from a box
inside of a complex box, crossing its frame, and end at a box outside of the complex box.
Similarly an arrow may cross the box frame from the outside. However, no arrow may
start from or end at the complex box itself. An arrow may start from a box outside of the

14
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complex box, passing through it by crossing its frame twice, and end at another outside
box.

3.25

iteration ::= || boxgraph|| + { port)

port:= D | (II1J

An iteration box contains a boxgraph. An arbitrary number of ports, either sequential
or parallel, can be attached to the outside frame of an iteration box. A sequential port is
represented by a pair of triangles positioned at the opposite sides of the frame. A parallel
port is represented by a meshed rectangle on the outside frame. One and only one arrow
may cross a sequential port while more than one arrow may cross a parallel port as long as
they are in the same direction. No arrow may pass through an iteration box. In MSTL, no
arrow may cross more than one port. As in the case for a complex box, an arrow may
cross the frame of an iteration box in either direction. Figure 9 illustrates possible ways of
intersecting an iteration box with arrows.

1

I1H] A4
B - v 4 r ’B
B ’ LN N
v 4 72 >

4
Pars

— 1 % + I
‘—ﬂf I *f

Figure 9: Iteration Box and Ports

3.2.6
file ::= |c0n
tructure ::= = |
structure = M hougraph | | 7 bougraph
icon icon
boxgraph| | boxgraph

A file box must contain an icon which represents the solution sequence of the named
puzzle. A file box may have incoming arrows only or outgoing arrows only. A structure
box defines the record structure (schema) of a file. It may contain an icon in its name area
to share the record structure of the named puzzle. Structure boxes are similar to complex
boxes except that an arrow may start from or may end at a structure box itself.
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unquote ::= I

quoted_boxgraph ::= Ig icon 'I boxgraph

An arrow may start from or end at the outside frame of the unquote box. No arrow
may pass through the frame of an unquote box. An unquote box may have incoming
arrows ending at the inside frame.

3.2.8
flow ::= direct_flow | indirect_flow
direct_flow ::= constant — constant |
structure —— structure |
quoted_boxgraph — unquote |
file —— structure | structure — file

A flow is an arrow connecting two boxes. Every flow has a unique source and
destination box. There may be more than one flow between two boxes. An arrow consists
of a chain of line-segments with the last segment having the arrow head. An arrow may
intersect with the frames of variable (empty), complex, iteration, or structure boxes. When
an arrow intersects with the frame of an iteration box, it may or may not pass through a
sequential port or a parallel port. An arrow may pass through a box, intersecting twice
with the box frame, only if it is an empty box or a complex box.

A direct flow connects directly two boxes having or expecting a particular type of
value. A flow between a file box and structure box must pass through exactly one parallel
port. The arrow head of a flow from a quoted boxgraph to an unquote box must reach the
inside frame of the unquote box.

3.2.9
indirect_fiow ::= station —— station |
( constant | structure | file | quoted_bouxgraph ) — station |
station—— ( constant | structure | file | unquote)

station ::= variable | operation | unquote

An indirect flow contributes to a dataflow through a general flow control box such as
an empty box and operation box. We call them starion boxes. A station box can be used to
control dataflow of any value type. An arrow connecting a station to an unquote must
reach the inside frame of the destination. Figure 10 gives several examples of direct and
indirect flow.
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Figure 10: Examples of Flow
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3.3 Semarntics

We will define the semantics of STL by describing how a solution for a STL puzzle can
be constructed. Even though there exists a declarative definition of a STL solution, we will
use imperative descriptions in this informal exposition for easier understanding. A formal
declarative definition is given in [3].

A solution is an assignment of data values to the empty (variable) boxes of a puzzle
such that the resulting puzzle may be consistent, i.e., free from contradiction. The notion
of consistency is the most fundamental semantic concept for STL. Since the STL
consistency is based on the identity of data values, we will first discuss the data types of
STL.

3.3.1 Data Type

We define a data type as a set of functions and predicates defined on the value set. The
following data types are available in STL:

Number a floating point number.

Text an arbitrarily long sequence of alpha-numeric characters.
Picture a rectangular bit-image of arbitrary size.

Boxgraph a data structure representing a grammatical boxgraph.
List a list of data values of any type including the list type.

Note that there is no Boolean data type in STL. The set of operations for each data type
is provided in the system defined drawers. In the current implementation of MSTL,
however, the following Llimitations exist:

(1) The boxgraph data type is not supported.

(2) No operation on the picture data type is avaitable, nor the identification operation;
the system cannot decide whether two pictures are identical or not.

(3) Standard arithmetic operations are available. (See Figure 3.)

(4) Three operations on the text data type are available:

@) AB A

search concatenation length

The system can identify two text values.

(5) Two operations on the list data type are available:

3 e

construct decompose
The system cannot identify two lists. A list object cannot be made visible on the
screen. .
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3.3.2 Dataflow

The STL. system solves a puzzle by transfering a data object from one box to another
following the direction of an arrow. The data transfer is asynchronous and the duration is
unknown. If the arrow passes through an empty box on the way to the destination box, the
system fills the empty box with the data object, changing the variable box into a constant
box. If the arrow passes through a complex box which contains an inconsistent boxgraph,
the data transfer will be terminated at the complex box. If the complex box is consistent,
the data transfer continues toward the destination box. Thus, a dataflow can be switched
on or off by the consistency status of a complex box intersecting with the flow.

When a data value is transfered to a variable (empty) box, the value will be registered
inside the box and the box becomes a constant box. If the destination is a constant box
containing the same value as the one transfered, no change occurs and the destination box
stays the same constant box. If the destination box contains a different value from the
transfered data object, the smallest boxgraph that contains the arrow becomes inconsistent,
If the destination is an operation box, the transfered value will be consumed by the
operation box as one of its arguments. Such an operation box will produce new values on
the outgoing arrows,

Using the system defined arithmetic operations, we will illustrate the notion of dataflow in
Figure 11(a).

b c d
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Figure 11 (a): Dataflow
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Figure 11 (b): Solution for (a)

The number value 2 in the constant box a is transfered to the multiplication operation
box ¢ through a variable box b, which will be filled by the value 2. Meanwhile, the
number value 3 in e is transfered to the addition operation box f and waits there for
consumption. As soon as the necessary two arguments become available to the addition
operation in f, the operation will be executed, consuming two values and producing one
new value 5, which is to be transfered to the variable box g. Subsequently, the value 5 is
transfered from the box f to the box ¢ and the box h. As soon as the multiplication



operation in the box ¢ gets two arguments, it will be executed, consuming the two values
and producing the one value 10 which will be transfered to the variable box d. Thus,
Figure 11(b) is the solution for the puzzie given in Figure 11(a).

Note that the data transfer from box a to box ¢ and the transfer from box e to box f is
concurrent, and that the operations will be executed when and only when the argument
values become available. The multiplication must be performed after the addition in this
example, because the former requires the data from the latter. Besides this data
dependency, there is no sequencing control assumed in STL. Parallel computation is more
basic than sequential computation in STL.

Since there is no cycle in a STL puzzle, once a data object occupies a variable box,
changing it to a constant box, the assignment of the value to the box never changes.
Therefore, computation in STL is functional and has no side effects.

3.3.3 Consistency

As stated in Section §3.3.2, when a data value is transfered to another box containing a
different value, the smallest boxgraph containing the destination box will become
inconsistent. This is the most primitive form of inconsistency in STL, and the boxgraph
containing such conflicting dataflow will be called primitively inconsistent. Figure 12
gives examples of primitively inconsistent puzzles. Figure 12(b) is inconsistent because
the same conflict as in (a) will arise when 2 or 3 is transfered to the empty box. Figure
12(c) is inconsistent because the number value 5 produced by the addition operation
conflicts with the constant 6.

(a) .T
2 o ‘__3 o &b l¢— 3

(b) (c)
Figure 12: Primitively Inconsistent Boxgraphs

A boxgraph is inconsistent if and only if it is primitively inconsistent or it has an open
complex box containing an inconsistent boxgraph or an open operation box containing an
icon representing a puzzle whose boxgraph becomes inconsistent when it is executed. A
boxgraph is consistent if it is not inconsistent. If an inconsistent boxgraph is contained in
a closed box, the smallest boxgraph containing the closed box is not necessarily
inconsistent. A closed box confines the inconsistency inside the box while an open box
allows a propagation of inconsistency out of the box toward the global environment. The
inconsistency is broardcasted toward the other components of the boxgraph. Inconsistency
1s similar to exception in traditional programming languages, and a closed box defines the
scope of inconsistency as the begin-end block structure defines the scope of exception in
Ada, for example.
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The effect of inconsistency is by definition to make the boxgraph non-communicative
and non-existing when viewed from the outside. Any dataflow passing through a box
containing an inconsistent boxgraph will be terminated at the box. This switching
capability of a complex box is the main motivation for introducing the concept of
consistency into STL. Since every boxgraph is either consistent or inconsistent, any
complex box or any operation box, which contains a named boxgraph, can represent a
predicate. Consistency plays the role of the Boolean data type.

Figure 13 illustrates the switching capability of boxgraphs.
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Figure 13: Switching with Consistency

In Figure 13(a) the complex box is inconsistent, therefore the constant data object 1
cannot reach the destination box. Note the MSTL system hatches all inconsistent complex
boxes during the execution time. In (b) the inconsistency is contained inside the smaller
closed box, and the larger complex box is consistent. Therefore, the constant 1 can reach
the destination. In (c) the inconsistency propagates out of the smaller open box, and the
larger complex box becomes inconsistent as in ().

For another example, Figure 14 illustrates how logical operations can be implemented
in STL using the switching capability of consistency. Figure 14(a) presents the AND
operation computing '0 and 1 = 0" and (b) presents the OR operation for ' Oor 1 = 1".



¢ 1
! :
:D“ 0 ]
§\\v§\\ \v\ N
R N
f o

Figure 14 (

a): AND Operation
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3.3.4 Folding

A boxgraph can be arbitrarily complex. First of all, there is no theoretical limit on the
number of boxes in a boxgraph. Secondly, each box itself can be arbitrarily complex
because the box may contain another boxgraph entirely, i.e., nesting of boxgraphs is
allowed in STL. We differentiate two types of complexity associated with a boxgraph; the
number of boxes and the maximum depth of nesting. We call the former the horizontal
complexity, and the latter the verical complexity. Figure 15 compares two boxgraphs of
similar function with different complexity profile.

°Lle] e =0H{e] o =0 Lo|=10F»

15

v v
S > Ik > 4 >

Figure 15 (a): Horizontally Complex Boxgraph
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Figure 15 (b): Vertically Complex Boxgraph

For managing such complexities, there are two abstraction mechanisms provided in
STL, folding and naming, each intended to be used for reducing the horizontal complexity
and the vertical complexity, respectively. The iterative looping construct in a traditional
programming language corresponds to the folding abstraction in STL, and the recursive
procedure corresponds to the naming abstraction. In this section we will discuss the
folding abstraction and in the next section we will discuss the naming abstraction.

Folding is to collect a spatially (or horizontally) spreading array of similar boxgraphs
into one place. It is represented by an iteration box in STL. For example, the boxgraph in
Figure 15(a) can be folded into the form shown in Figure 16(a), and the corresponding

MSTL syntax is given in Figure 16(b).
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Figure 16 (a): Folding Boxgraphs
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Figure 16 (b): Specification of Folding Using Iteration Box

Note that the iteration box of Figure 16(b) specifies a folding of unbounded number of
components, rather than three components as in (a). Methods of limiting the number of
components in a folding will be explained later.

There are three different forms of interaction (communication) among the folded
components and their environment; serial, parallel, and global.

Sequential iteration: A folding with a sequential iteration provides a serial
communication among the components. Sequential iteration is represented by a pair of
sequential ports (small triangles) attached to the iteration box. Figure 17 shows the general
syntax and semantics of sequential iteration, where o is an arbitrary boxgraph. In MSTL
when the user enters an incoming sequential port by clicking its location, the system
automatically enters the outgoing port at the corresponding location of the opposite side of
the iteration box. There may be more than one sequential port on a single iteration box as
illustrated by Figure 16(b), but only one arrow may pass through each sequential port.

b bl bk

(a) Syntax (b) Semantics
Figure 17: Sequential Iteration

<
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When the STL system executes an iteration box such as the one in Figure 17(a), the
system unfoids the array by creating dynamically a new copy of « and transfering the data
from the latest component to the new one. The unfolding terminates when the newly
created component boxgraph is evaluated as inconsistent. For example the iteration box of
Figure 16(b) can be bounded as shown in Figure 18. The boxgraph computes

6+5+4+34+2+1 = 21.

. N 1Y =01 ©

Figure 18: Bounded Sequential Iteration

Note that the data transfer from one component to the next is synchronized at the
boundary of the component, limiting the degree of parallelism existing inside the array.
However, within each component dataflows are still asynchronous and potentially paraliel.
Also note that sequential iteration is the only way by which the array components can
communicate with each other.

If an iteration box has no communication port, then the unfolding does not terminate.
For example Figure 19 is an MSTL puzzle that speaks the current time indefinitely.

& ek ]

Figure 19: Unbounded Iteration

Global input: An iteration box can receive a data value from an incoming arrow
when the arrow does not pass through any communication port. The value will be
transfered to every component of the iteration. This corresponds to a global variable in a
traditional programming language. The syntax and semantics are given in Figure 20.
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(a) Syntax (b) Semantics
Figure 20: Sequential Iteration with Global Inputs

Parallel iteration: A folding with a parallel iteration provides a parallel
communication between two folding arrays. Parallel iteration is represented by a parallel
port (a striped rectangle) attached to the iteration box. There may be more than one parallel
port on a single iteration box, and more than one arrow may pass through each parallel
port. Figure 21 shows the general syntax and semantics of simple parallel iteration, where
there is only one parallel port on each iteration box, and a and B are arbitrary boxgraphs.
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(a) Syntax (b) Semantics
Figure 21: Parallel Iteration

N

In Figure 21 the o iteration (source) box controls the unfolding of the p iteration
(destination) box. The source terminates when an inconsistent « boxgraph is created, and
the destination terminates when the source terminates. During the unfolding process, if an
inconsistent p boxgraph is created, it will be discarded. This provides a mechanism of
incorporating the selection or filtering capability into the p boxgraph. It is illustrated by the
example in Figure 22. The left-hand side iteration box in Figure 22 produces a sequence
(list) of numbers 1 through 10 and the right-hand side iteration box consumes the sequence
by selecting the numbers less than 5 and constructs their product: 1x2x3x4 = 24.
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Figure 22: Selection in Parallel Iteration
When two arrows enter a parallel iteration box, they may share the same parallel port or
they may enter through separate parallel ports. The former mode of interfacing is called the

inner product mode and the latter the cross product mode. See Figure 23 for the syntactic
difference. The syntax for more than two arrows entering a parallel iteration box is similar.
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(a) Inner Product Mode (b) Cross Product Mode

Figure 23: Parallel Iteration Modes

The semantics of inner product mode is illustrated by Figure 24 (a). Unfolding of the
destination iteration is synchronized with unfoldings of all the source iterations. If « (or p)
iteration has a sequential port, then its components will communicate with each other
sequentially in synchronization with the yiteration. The semantics of cross product can be
represented by a nested set of parallel iterations as shown in Figure 24 (b) and (c). The
difference between Figure 23 (b) and Figure 24 (b) is similar to the difference between the
following two array declarations in Ada:

type T23 is array (o,B) of y
type T24 is array (o) of array () of .

28
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3.3.5 Naming

A boxgraph is vertically complex when it contains a nested set of boxes as in Figure
15(b). Naming is an abstraction mechanism for managing the vertical complexity. By
naming we mean to represent an arbitrarily complex boxgraph by a name (an icon in
MSTL) of fixed complexity. It corresponds to the procedure concept in a traditional
programming language. Any occurrence of a name icon in a boxgraph can be replaced by
the boxgraph associated with the icon without changing the consistency of the original
boxgraph.

For example, The boxgraph of Figure 15(b) can be approximately represented by
Figure 25(a), where the name is defined by Figure 25(b) in the MSTL syntax. The square
at the upper-left corner is the name area that contains an icon. Itis to be defined as the
name of the boxgraph constructed in the remaining part of the Edit window. The
representation is approximate because the boxgraph of Figure 25(a) represents an
unbounded nesting of the same boxgraph, while Figure 15(b) has a bounded depth of
nesting. An example of naming a bounded nesting will be given later in Figure 27.
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(a) Name Usage (b) Name Definition

Figure 25: Naming Abstraction

The base boxes in a name definition specify the input and output parameters for the
named complex boxgraph. A base box represents an input parameter if it has no incoming
arrow, and an output parameter if it has no outgoing arrow. When there is more than one
Input parameter in a name definition, the association between incoming data values and the
input parameters must be established by a binding rule.

In MSTL the binding rule is a positional rule in that base boxes in a name definition are
lexicographically ordered by the (x,y)-coordinates of the upper-left corners, and arrows
incident with an operation box that contains the name are also lexicographically ordered by
the (x,y)-coordinates of the intersection points with the box. On Macintosh screen, the x-
coordinate increases from left to right and the y-coordinate from top to bottom. In MSTL,
the ordering of the base boxes can be shown in the Edit window, as illustrated in Figure
26(a), by executing the menu command "Order Base Boxes".
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(b) Ordering of Incoming and Outgoing Arrows
Figure 26: MSTL Binding Rule

When the STL system executes an operation box that contains a name icon, the system
creates a new copy of the boxgraph associated with the name, binds the input parameters,
executes the boxgraph, and assigns the output parameters to the outgoing arrows of the
operation box. If there exists a mismatch between the number of parameters and the
number of arrows, the operation box will be evaluated as inconsistent. Since a vertically
complex nested boxgraph is expanded dynamically during the execution time, the depth of
nesting can be controlled by making the recursive usage of named boxgraph conditional to

the input parameters. For example, Figure 27 defines recursively the X function which is
similar to Figure 25(b) except that the depth of nesting is bounded by the input parameter
value. The recursion terminates in this example when the input value becomes non-
positive,
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Figure 27: Bounded Expansion of Operation Box
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Through naming abstraction, the vertical complexity of a nested boxgraph can be
reduced. However, for understanding the semantics of an operation box containing a name
icon, it is often necessary to display the definition of the name icon. For that purpose and
others, the MSTL system has a Stop Mark capability. It corresponds to the break-point
operation in a traditional programming system. Figure 28 illustrates the Stop Mark
capability using a recursive definition of the factorial function.
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Figure 28: Stop Mark and Peek Window

Before solving a puzzle on the current Edit window, the user can set a stopmark on any
operation box. The stop mark is indicated by a dot on the upper-left corner of the box.
The system stops the execution just before it is ready to execute the marked box. The user
has at that point an option of opening a Peek window for the marked box. In the Peek
window, the named puzzle (subroutine) will be displayed with the input parameters already
being assigned. When the user selects the "Continue" menu command after that, the
system continues the execution displaying results of computation on both Edit window (for
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main routine) and Peek window (for subroutine). In Figure 28 the Edit window shows
that the system stopped before executing the factorial function and the user opened the Peek
window for the factorial operation box. The Peek window displays the exact same
boxgraph as in the Edit window except for the input value. The dots in the name areas of
Edit and Peek windows indicate that the puzzle is currently being executed.

Note that a name icon can be contained either in a closed box or in an open box. When
it is contained in a closed box, the closed box is equivalent to a closed complex boxgraph
containing the named boxgraph. Similarly, when it is contained in an open box, it is
equivalent to an open complex boxgraph.  When the named boxgraph is evaluated as
inconsistent and the name icon is in an open box, the inconsistency will be propagated into
the boxgraph containing the operation box. For example, Figure 29(a) defines a

conditional subtraction function and Figure 29(b) uses it to simplify the T function of
Figure 27. In general a predicate function name is contained in an open box.
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(a) Name Definition for Conditional Subtraction
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(b) Name Usage of Conditional Subtraction

Figure 29: Open Operation Box
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3.3.6 File

When the boxgraph of a puzzle contains at least one base box, the puzzle defines a
schema of a file. A file in STL is a sequence of known solutions for a puzzle that has base
boxes. A solution is a set of data values which makes the puzzle consistent when they are
assigned to the base boxes. A solution is a list of data values, and a file is a list of lists. A
puzzle in a drawer can save arbitrarily large number of known solutions. When the puzzle
consists of base boxes only, and no arrows, it defines a record structure in a traditional
programming language, where each base box represents a record field.

An example of simple file definition is given in Figure 30. The puzzle defines a schema
for recording golf score. The user fills each base box with proper information through a
keyboard and saves the record into the puzzle in a drawer by selecting "Save" menu
command. The small box next to the name area indicates how many solutions (records) are
currently saved inside the puzzle. Any text outside of the base boxes is a part of the
background and should be considered as a comment.

Edit s[1&==—= qolf

?@ |6 |
¥ DATE | 6/11/86 SCORE
SCORE G
NAME Steve Parker
SCORE 94

Figure 30: A Simple File Definition

For simple data query there is a browsing mechanism in MSTL to search through a
small file, record by record, directly on the Edit window. For selecting a particular record,
the puzzle can be modified to include a query condition. Figure 31(a) gives an example of
such query specification. The query is "When did Kathy Smith score less than 1007"

After the user selects the "Find" menu command, the system completes the boxgraph, as in
Figure 31(b), with the first solution in the file that makes the boxgraph consistent. This is
a direct method of querying a simple file.

SE=————— Edit
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DATE
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Figure 31(a): Direct Database Query (Specification)
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Figure 31(b): Direct Database Query (Answer)

There is another method of data query, i.¢., through a file box and a structure box. A
file box containing a name icon represents the solutions saved in the file of the named
puzzle. It is equivalent to a parallel iteration that produces or accepts a sequence of records.
In order to represent an individual record a structure box can be used. A structure box has
a name area into which the user can insert a puzzle name. The system, then, automatically
draw the base boxes of the puzzle, proportionally scaled, inside the structure box. A set of
values contained in a structure box is a list data type and can be treated as a single value. A
file is a list of lists. The purpose of structure box is the composition and decomposition of
a record structure, i.e., a list data structure. Figure 32 illustrates the semantics of a file box
in terms of parallel iteration and structure box.
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(a) Syntax (b) Semantics
Figure 32: Semantics of File Box

As an example of using a file box the puzzle of Figure 33(a) displays the content of the
golf score file on the Score List window as shown in Figure 33(b). Note that the window
operation takes a window name as the first parameter and a list value as the second
parameter, and only when there is no window open with the same name, the system will
create the new window.
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.. Darren Cruse 115 6/11/86
Steve Parker 98 5/23/86
Dave Groth 103 5/23/86
Kathy Smith 95 5/23/86
Kathy Smith 99 6/11/86
Steve Parker 94 6/11/86
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(a) File Listing Program (b) Window Output
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Figure 33: File and Parallel Iteration

Figure 34 illustrates how a structure box can be used to decompose a record structure.
The puzzle prints the only records whose score is less than 100,
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Figure 34: Structure Box for Record Decomposition

A parallel iteration can be used to construct a new file from an old file. For example,
Figure 35(a) presents a STL program that constructs a file of good players based on the
golf score file. The new file will contain the records of name and score which is less than
100 as shown in Figure 35(b). After the file is created, the user can browse through the
file using the direct query method illustrated by Figure 31.
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(a): A Program for Construction of New File
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(b): The Result of Construction
Figure 35: Construction of New File

Since a file is a relation in the terminology of relational database, the above example
shows how the selection and projection operation can be implemented in STL. The join
operation requires a paralle! iteration with cross product interface. Figure 36 gives an
example of the join operation. Assume that two puzzles in Figure 36(a) are already
defined. The player-age file contains the records of name and age. Based on the goif score
file records the program of Figure 36(b) constructs a file of age and score.

Edit Edit
PLAYER RGE
NAME
AGE scope | AGE
e SCORE

Figure 36 (a): Schemata of New Files
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Figure 36 (b): Join Operation

In STL there is no conceptual difference between solving a puzzle by computation and
by data query. A puzzle is solved by completion. A simple example will explain the
concept. Figure 37(a) is a puzzle to compute the sum of two numbers. It is also a schema
of a file whose record structure is an ordered triplet. After solving the puzzle (b) by
clicking "Solve" menu command and getting the result (c), it can be saved into the puzzle's
file. Now the puzzle (d) can be solved by clicking "Find" to get the same result (¢). Note
that the puzzle (d) is not computationally solvable in STL.
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(a) Schema Definition (b) Computation Problem

Figure 37: Computation and Data Query
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(c) Solution (d) Data Query Problem

Figure 37: Computation and Data Query

3.3.7 Unquote

Quoting a boxgraph inhibits the system to evaluate the boxgraph. A quoted boxgraph
15 a data value that can be transfered from one box to another. Unquoting is the inverse
operation of quoting, and unquoting a quoted boxgraph is equivalent to evaluating the
boxgraph. It corresponds to the apply operation in LISP.

There are two ways of refering to a boxgraph as a data object. One way is to use a
quote box containing a boxgraph. The quote box represents its content as a data value.
The other way is to use a descriptor box containing an icon name of a puzzle. The
descriptor box represents the boxgraph of the named puzzle as a data value. For example,
assuming that the puzzle in Figure 38(a) is already defined, both (c) and (d) refers to the
same boxgraph of the puzzle in (a). Figure 38(b) will be used later in Figure 40.
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(a) Geometric Mean Puzzle (b) Arithmetic Mean Puzzle

Figure 38: Descriptor Box and Quote Box
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(c) Descriptor Box (d) Quote Box
Figure 38: Descriptor Box and Quote Box

An unquote box requires at least one incoming arrow ending at the inside frame for
receiving a quoted boxgraph. All other arrows either end at or start from the outside frame
of the unquote box. The number of arrows incident with the outside frame should be the
same as the number of base boxes (i.e., parameters) contained in the quoted boxgraph. A
closed unquote box with a quoted boxgraph is equivalent to a closed complex box
containing the same boxgraph except that all base boxes in the boxgraph are connected to
the arrows incident to the unquote box. Similarly an open unquote box is equivalent to an
open complex box. Figure 39 shows the equivalence for the case of closed unquote box.
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(a) Syntax (b) Semantics

Figure 39: Unquote Box

The main purpose of introducing the unquote operation in STL is to provide the capability
of constructing high order functions. Since a boxgraph representing a function can be
made as a data value, it can be fed into another function as an argument. It also can be
controlled by regular dataflow. A simple application of unquote operation is given in
Figure 40. When 'G’ is chosen the unquote box computes the geometric mean of two
numbers and when ‘A’ is chosen it computes the arithmetic mean.



Figure 40: Unquote Application
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Programming in STL

In this section we will discuss the relationship between STL and traditional
programming concepts. First, we will summarize the correspondence between traditional
programming constructs and STL constructs. Then, we will discuss the software
engineering aspects of STL.

Programming Constructs

In spite of different syntax and semantics from other programming languages, STL
inherits many traditional programming concepts. We will enumerate some of the
associations between traditional constructs and STL constructs below, however loose it
may be. The list is not meant to be exhaustive.

Assignment:
Variable:

Constant:
Record:
Array:
Decision:

Sequencing:
Block:

Function:

Predicate:
Tteration:
Recursion:
Task type:
Task:

Synchronization:

Exception:

Relation:
Schema:
Selection:
Projection:
Join:

Apply operation:

Dataflow.
Empty closed box and empty base box.
Once a value is assigned to a variable, it never changes, i.e., it has
the single assignment property.
Closed box with data.
Structure box and base boxes in a named puzzle.
Iteration box with parallel port.
Consistency and dataflow.
There is no Boolean data type. Dataflow is controlled by the
consistency of a complex box.
Data dependency.
No explicit sequencing construct exists.
Complex box.
Similar to an open subroutine.
Named puzzle in a closed box.
Parameters are base boxes. The binding rule is positional.
Named puzzle in an open box.
Folding.
Nested naming.
Named puzzle,
Named puzzle in a closed box.
There is no difference between task and procedure in STL.
All activations of functions and predicates are concurrent.
Data driven.
A box is evaluated as soon as incoming data become available.
Inconsistency.
Exception propagation is made possible through an open box.
File of a named puzzle.
Structure box and base boxes in a named puzzle.
Parallel iteration in inner product mode.
Parallel iteration in inner product mode.
Parallel iteration in cross product mode.
Unquoting.

There 1s no representation of the following important programming concepts in STL:

+ Type checking capability.
+ Abstract data type.

» Package.

+ Generics or parameterized macros.
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4,2  Programming Aspects

A visual programming requires a new approach to software design and implementation.
We will discuss here some software engineering aspects of STL programming.

4.2.1 Picture Programs

The most distinct feature of STL. is a visual presentation of information. In STL an
identifier is a picture and so is a comment. A program itself is a picture and so is a datum.
A text is a special form of picture. A database also can contain visual data. Figure 41 give
some examples of picture program and database.

Te=———— Hitron—>o———

| am an eagle,
screech .

screach? T— *Il\ll

| )

Figure 41(a): Pictorial Program

I eee———————————— Edit
F'ﬂ Name Profile

PERSONNEL Dan Kimura

Affiliation CS Dept

Title Associate Prof

Work | Language Design
Prototyping
Slave Driver

Figure 41(b): Show and Tell Personnel Database
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Figure 41(c): Data Query Program

n——————————— BNy |
PROF I LE =

jane

Figure 41(d): Data Query Function

Figure 41(a) is self explanatory. Figure 41(b) is a record of the Show and Tell
personnel database. Figure 41(c) is a data query program to find a profile of a person
whose name contains a text entered as the input parameter. Figure 41(d) shows how the
data query program can be used as a function to generate a person'’s profile.
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4.2.2 Structured Programming

The abstraction mechanisms of STL are limited to control abstraction. Data abstraction
is absent from STL. Even though it is generally assumed that a pictorial language is easier
to understand, without careful layout, even a pictorial program can be made difficult to
understand. For example Figure 42 and Figure 38(b) are logically equivalent puzzles, but
Figure 42 is harder to understand. Obviously structured programming in a two-
dimensional language requires a different approach from that of a one-dimensional
language.

SNeem———=—= Edit
T, ¢ 14

& ety 2
4 | 4

Figure 42: Program Understandability in STL
4.2.3 Assertions

The concept of consistency is fundamental in the STL semantics. It is a declarative
concept rather than an imperative one. (See [3] for more detailed discussion of the
declarative nature of STL semantics.) Assertion is a declaration of an attribute on
computational states. It can be incorporated in STL as a predicate in a closed box. If the
predicate fails at some point of computation the box will be hatched indicating the failure,
but the computation will continue because the failure is contained in the local closed box.
Figure 43(a) gives an example of assertion.

[ Edit

é_l

> v
D 4 0.000100 oV
) CHECK

1

Figure 43(a): Squareroot Function with Assertion
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The puzzle of Figure 43(a) computes y = SQRT(x) with accuracy € where x=29 and

€=0.0001. It also checks whether the answer is correct or not by testing: x+2ey > y2 > x.
The predicate is defined in Figure 43(b). The computation is correct for x=29 as shown in
Figure 43(c). If there is an error in the algorithm as in Figure 43(d) where the constant 3 is
used in stead of 2, the checking predicate fails and the failure is displayed by hatching the
predicate box.
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Figure 43(b): Assertion Predicate
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Figure 43(c): Correct Computation
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Figure 43(d): Incorrect Computation
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5. Conclusions and Future Directions

Visual programming (VP) is a new research area of importance. It is important because
it will contribute to make a computer accessible to everyone and will contribute to reduce
the software cost, and it will present a new set of research problems. The fundamental
issue in VP is the visualization of programming concepts. The issue is how to represent
data structures and algorithms in such a way that a computer user can interact with a
computation closely and efficiently through high resolution graphics.

We have introduced the term keyboardless programming as a paraphrase of VP
assuming that when we minimize the usage of a keyboard as a text generator, we maximize
the visualization of programming concepts. We have designed and implemented a visual
language Show and Tell for keyboardless programming to investigate how far we can
achieve this goal. Our results show that it 1s possible to eliminate entire keyboard usage
from programming (except for data entry), if it is for computation and database query,

This does not show, however, that Show and Tell is a better visual programming
language. Sometimes VP is tedious even for novice end users, and traditional textual
programming can be simpler. For example, arithmetic expressions, in a textual form, are
in general much easier to construct, assuming that the programmer knows how to use a
keyboard, and easier to understand, than a dataflow visual representation. For another
example a data query specification is simpler if we can combine a textual specification with
a visual specification, as compared in Figure 44(a) and (b).

B i % NAME

Oil Phillips PHILLIPS
12.50 200 @
URLUE SHARE LOGO

£

...........................

SANANL RNV :
\\\. ' &Q > D 4| 200
\\\\\\\\' DA 3

Figure 44(a): Query Definition and Result in MSTL
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50 & D 200
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Figure 44(b): Texual Query Definition in Visual Schema

Figure 44(a) is a query definition and a result of query in MSTL. The query portion of
this puzzle requires seven boxes and six arrows. In contrast, Figure 44(b), which is based
on a possible improvement of MSTL, requires only one box and two arrows. Thus for a
simple query definition like this a compromise between texual and visual programming will
be meaningful.

We have shown that there are new programming concepts that are unique to visual
programming. Folding and parallel iteration are such examples. These are new because
they are spatial concepts. The notion of space is not established in traditional programming
languages. Another example of spatial constructs in STL is a propagation of inconsistency
inside a closed box. Its mode of communication is broadcasting and broadcasting is a
space oriented concept. Future investigation of spatial programming concepts will be more
urgent in visual programming than in textual programming. In particular, construction of a
computation model in which the notion of space plays an important role is a research
problem in VP that requires immediate attention.

Another research problem in VP is a formal study of two-dimensional languages. Qur
proposal of two-dimensional grammar with concatenation and superposition operations,
requires more formal and rigorous treatment, in order that a general parsing theory and a
new parsing algorithm can be developed. For example, when a two-dimensional formal
grammar is established, our systolic approach for parsing, reported in [10], will become a
more general parsing theory applicable to other spatial visual languages. Note that systolic
parsing is more meaningful for visual programming languages than others. In [11], we
show that a major subset of STL boxgraphs can be formally specified by an index
grammar.

STL is not a fixed language. It will evolve into another visual programming language
after it is thoroughly evaluated. However, some extensions are already under our
consideration at the present time. One possible extension of STL is to introduce more
variety of arrow types. There are three new arrow types being considered: control arrow,
excitory arrow, and inhibitory arrow.
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(1) Contol arrow: This introduces sequential control flow into STL directly. The
destination box will be executable only after the source box is completed. If a box has
many incoming control arrows, it has to wait until all the souce boxes are completed. This
extension makes it possible to sequence already existing puzzles without modifying them.
Figure 45 illustrates the concept of control arrow which is represented by a double lined
arrow.

E[e=—=—x== [dit

The squareroot of | | ‘;,‘|‘|

o ol = [ s aal o

v
7 > il

Figure 45: An Example of Control Arrow

(2) Excitory arrow+ : This propagates the consistency of a box to another. When the
source box is inconsistent the destination box will be unconditionally inconsistent. When
the source is consistent the arrow has no effect on the destination box, i.e., the destination
may be or may not be consistent, depending on the result of evaluating the destination box.
When more than one excitory arrow comes into a box, the box will be inconsistent if one of
the source boxes is inconsistent, otherwise the arrows have no effects. This helps to ease
some layout problems involving complex boxgraphs.

(3) Inhibitory arrow++ : This is similar to excitory arrow. For multiple inhibitory
arrows coming into a box, when one of the source boxes is consistent, the destination box
will be unconditionally inconsistent. Otherwise the arrows have no effect on the
destination box. This simplifies representation of the if-then-else construct in STL. For
example the factorial function of Figure 28 can be simplified into the one in Figure 46 in
which an inhibitory arrow is represented by a dotted line with a hollow arrow head.

Note that all three arrow types proposed above can be simulated by the current STL.
The motivation for the extension is not to enhance the computation power of STL but to
enhance the understandability and simplicity of STL programs.

*+ This arrow type was suggested by Professor Marvin Minsky of MIT,
++ This arrow type was suggested by Professor Gyula Mago of University of North

Carolina.
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Figure 46: Factorial Function with Inhibitory Arrow

The current version of MSTL is an interpreter of STL. The performance consideration
was secondary to the conceptual feasibility of keyboardless programming. Now having
established the feasibility, we are addressing the performance issue. As one of the steps to
improve the performance of MSTL we designed and implemented a prototype MSTL
compiler. See [12] for the detail. The performance of the current prototype compiler is not
yet sufficient for business or educational applications. Development of a compiler version
of STL is needed for performance enhancement. Particularly the compiler development is
essential if and when we extend STL into a system programming language.

The declarative semantics of STL in [3] encourages us to investigate the relationship
between STL and other declarative languages. One such investigation can be pursued by
extending STL into Picture LISP and Picture Prolog. While basic components of LISP are
already incorporated into STL by design, it is not the case for Prolog. A visual language
for logic programming will require new ideas beyond those provided in STL.

Finally a design and implementation of a STL system drawer for Picture Logo will
demonstrate a contribution of STL in educational application, which was, after all, the
initial motivation of developing a visual programming language.
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