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ABSTRACT OF THE THESIS 

 
 

Photoacoustic Tomography of Water in Phantom and Biological Tissue 

by 

Zhun Xu 

Master of Science in Biomedical Engineering 

Washington University in St. Louis, 2011 

Research Advisor:  Professor Lihong Wang 

 
 
The concentration of water in the human body and tissue reflects both physiological and 

pathological properties. Photoacoustic tomography (PAT) has been widely used to image 

various tissues, with imaging contrast provided by many optical absorbers. However, to our 

knowledge, water has never been used as the absorption contrast in PAT. Herein, 

preliminary results of water detection and imaging with PAT are shown. The absorption 

spectra of water–ethanol mixtures with different water concentrations were 

photoacoustically measured, and the water content in both phantom and biological tissue 

was imaged. Finally, we present the results of in vivo PAT imaging of cold-injury induced 

water accumulation in the mouse brain, called cerebral edema. 
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Chapter 1 
 
Introduction 
 

1.1 Water 
 

The human body is composed of 60% water; the brain is nearly 70% water. The 

concentration of water in tissue may indicate different physiological and pathological 

properties, and several techniques have been applied to image water content in tissue. 

For instance, Magnetic Resonance Imaging (MRI) has been traditionally used to 

image water content in the brain1,2, bone3,4 and other tissues5,6 based on its T2 

contrast,  and diffusion-weight MRI (DW-MRI) is used to map the bound water in 

brain and muscle tissues7,8. Optical methods have also been used to measure the 

water content in tissues. For example, diffuse optical methods have been 

implemented to measure the increased water concentration in tumors9. Diffuse 

optical spectroscopy (DOS) can measure the spectral changes due to bound water10, 

yet its poor spatial location ability compromises its sensitivity11. 

 

1.2 Photoacoustic Tomography 
 

Photoacoustic tomography (PAT) is a new and promising imaging technique in the 

biomedical field. When an object absorbs pulsed or intensity-modulated optical 

irradiation, acoustic waves are induced from transient thermoelastic expansion12. 

PAT can reconstruct the absorption signals from the photoacoustic signals detected 

by the ultrasound transducer. It is capable of multi-scale imaging, from centimeter 

scale breast tumors to micrometer scale red blood cells13. Ultrasound detection 
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achieves useful penetration depths, while it keeps the features of optical imaging, 

such as high sensitivity and high resolution. 

      To date, the most important application of PAT is to image red blood vessels in 

various tissues in the mouse and human beings. Hemoglobin is the main absorption 

contrast in the blood vessel imaging. In addition, melanoma, and various natural and 

artificial contrast agents have also been used. Water has a local peak absorption 

coefficient of 0.45 cm-1 around 975 nm, with a FWHM of 920 nm – 1040 nm in the 

absorption spectrum14. However, water has never been used as the photoacoustic 

contrast. In this paper, we explore the potential of laser-based PA detection of water. 

      The next chapter briefly introduces the theoretical basis. Then, we describe how 

the absorption spectra of water–ethanol mixtures at various concentrations were 

measured by using the PA technique. After that, both phantom and tissue 

experiments to image water are detailed, and we also present the in vivo imaging of 

cerebral edema. Finally, conclusions and a discussion are provided. 
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Chapter 2 
  
Theoretical Basis 
 

The generation and propagation of a photoacoustic pressure wave in an acoustically 

homogenous and non-viscid infinite medium can be described as15,16 

2
2

2 2

1
( ) ( , ) ( , )

s p

p t H t
v t C t

 
   

 
r r ,                          (1.1) 

where ( , )p tr denotes the acoustic pressure at position r and time t , sv is the speed of 

sound in the medium,  denotes the thermal coefficient of volume expansion, 

pC denotes the isobaric specific heat capacity, and ( , )H tr is the heating function 

(defined as the thermal energy converted at r and t  per unit volume and time). For 

optical absorption, the heating function generally equals ( , )th a t   r , where th is the 

percentage of energy that is converted into heat, a  is the optical absorption 

coefficient, and  is the optical fluence rate.  

 In general, the initial pressure rise 0p at r immediately after illumination by a 

short laser pulse is given by17 

0 ( ) ( ) ( ) ( )th ap F  r r r r ,                                      (2.2) 

where 
2
s

p

v

C


  is defined as the Grueneisen coefficient (dimensionless), and F is the 

optical fluence. In many cases, th  is approximately equal to one. The initial pressure 
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0 ( )p r is the source of the propagating PA pressure wave. It depends on not only the 

illumination fluence and absorption coefficient, but also on the Grueneisen 

coefficient. The dependence of the Grueneisen coefficient on the mixture’s 

composition can be established by applying the formula
2
s

p

v

C


  . The values for the 

speed of sound, sv , in water–ethanol mixtures with different water concentrations 

were obtained from Ref. 18. The thermal coefficient of volume expansion , and 

specific heat capacity, pC , of deionized water and pure ethanol were taken from Ref. 

19.  

The general image reconstruction for the initial pressure in an infinite 

acoustically homogenous medium was provided by Xu and Wang20,21, which is 

described as 

         
( )
0 /

0

( , )1
( ) d [2 ( , ) 2 ]

d s

b d
d t vs

p t
p p t t

t  


  
  r r

r
r r ,                (2.3) 

where d d / | | [ ( ) / | |]d d d dS      2 sr r n r r r r is defined as the infinitesimal solid 

angle at dr with respect to the reconstruction point r . For our planar detection 

geometry, 0 2  . In our experiment, signals from 240 planar scanning positions 

were obtained. So the integration of equation (2.3) could be transformed into discrete 

form to get the reconstruction result. 
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Chapter 3 
 
Spectral Measurements of   
Water–Ethanol Mixtures by 
Photoacoustic Tomography 
 

In this chapter, we present our photoacoustic measurements of the optical absorption 

spectrum of water–ethanol mixtures. These measurements are compared with 

spectrophotometric measurements, which we selected as the gold standard. 

 

3.1 Experimental Setup 
 
Figure 3.1 shows the experimental setup of our absorption spectrum measurement 

system. A tunable laser (Vibrant (HE) 355 I, OPOTEK) was the light source. The 

repetition rate of the laser light was 10 Hz. The wavelength was selected with the 

range of 925-1025 nm, covering the local peak absorption of water. For each 

experiment, a thin-walled plastic container with a preset constant volume of water–

ethanol mixture was placed above a 2.25 MHz unfocused ultrasonic transducer 

(V323, Panametrics). The transducer was immersed in a tank of mineral oil during 

the experiment. The distance from the bottom surface of the mixture to the front 

surface of the transducer was ~2 cm. Here we used the peak-to-peak PA signal value 

to represent 0 ( )p r . The signal from the transducer was amplified by 40 dB by a pulse 

amplifier (5072 PR, Panametrics) and then delivered to and recorded by a data 

acquisition card (CompuScope 14100, GaGe, Lockport, IL). The sampling rate of the 

data acquisition card was 50 MHz.  
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Figure 3.1 Experimental setup of water–ethanol mixture spectrum measurement 

 
Six mixtures of water–ethanol with different volume concentrations of water 

were made: 100% (pure deionized water), 80%, 60%, 40%, 20%, and 0% (ethanol 

only). Since the ethanol used was 95% pure (Pharmco-Aaper, 190 Proof) with the 

remaining 5% being water, the actual volume concentrations of water were 100%, 

81%, 62%, 43%, 24% and 5%, respectively.  The laser power was calibrated in the 

spectral range from 925 nm to 1025 nm at intervals of 25 nm. The laser pulse energy 

was recorded by a powermeter (Melles Griot broadband power/energy meter 

13PEM001), with 20 laser pulses averaged at each wavelength. 
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3.2 Results 
 
Based on the assumption that the absorption coefficient varies linearly with the water 

volume concentration, and using the linear fit of the Grueneisen coefficient obtained 

by the method shown in chapter 3.1, we can get a quadratic dependence of the PA 

signal with the water concentration (figure not shown here). The quadratic character 

of the curve indicates that the water fraction of a water–ethanol mixture is non-

monotonic and might not be determined uniquely according to the PA measurement 

alone.  In general, one PA signal corresponds to two possible water concentrations. 

The exception is for the mixture with 50% water concentration. We measured 

relative PA signals at the 975 nm wavelength for five different mixtures, and 

estimated the water concentration according to the quadratic dependence. Results are 

listed in Table 3.1.  

 

Table 3.1. Comparison of water concentrations with corresponding PA-derived 
fractional values (five means. For each mean, 100 PA signals were used) 
Preset water concentration 10% 30% 50% 70% 90% 

Photoacoustically measured 

water concentration (solution 

1) 

8.5% ±

0.4% 

30.3%

±1.1% 

50.6% 72.2%

±0.8% 

89.0%

±0.5% 

Photoacoustically measured 

water concentration (solution 

2) 

92.7%

±0.4% 

70.9%

±1.1% 

50.6% 28.9%

±0.8% 

12.1%

±0.5% 
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The relative absorption spectra were computed with Eq. (2.2) and then 

converted to absolute values (Figure 3.2 (a)) by calibrating with the absorption 

coefficient of deionized water at 975 nm measured by a spectrophotometer (Cary 5E, 

Varian, Walnut Greek, CA).  For Eq. (2.2), we used the Grueneisen coefficient and 

the calibrated and uniformly distributed optical fluence. For comparison, the 

absorption spectra were also measured with the spectrophotometer as a gold standard 

(Figure 3.2 (b)). The relative errors between the PA and spectrophotometric data are 

plotted in Figure 3.2 (c), which basically shows good accordance. Yet at 925 nm the 

error is relatively large due to water’s small absorption coefficient at that wavelength.  
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Figure 3.2 Optical absorption coefficients from (a) photoacoustic measurements(five means. For 
each mean, 100 PA signals were used.) and (b) spectrophotometric measurements. Note that the 
5% water solution is actually the ethanol stock solution. (c) Relative errors of the photoacoustic 

measurements from the spectrophotometric measurements at various wavelengths. 
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Chapter 4 
 
Water Content Imaging in Phantom  
and Biological Tissue  
 

4.1 Experimental Setup 
 
Figure 4.1 shows the experimental setup for the phantom and biological tissue 

experiment. Similar to the spectrum measurement setup, the only difference was the 

single-element transducer ((842-300, GE) with a center frequency of 2.25 MHz) 

placed beside the imaging object and immersed in mineral oil in the tank. During the 

imaging process, the transducer was rotated around the object through 240 positions 

evenly distributed along the horizontal scanning trajectory in order to get a full view 

of the photoacoustic signals. The image reconstruction was implemented in the 

computer after data acquisition, using the image reconstruction algorithm described 

in Chapter 2. 

Two samples were imaged using this PAT system. For sample 1, a gel 

cylinder made of an agar–water mixture (4% agar) was used. Three 5 mm diameter 

cylindrical holes were dug in the gel cylinder. One hole was filled with deionized 

water, another with 40% ethanol–60% deionized water mixture, and the third hole 

was left empty (Figure 4.2 (a)). For sample 2, a piece of porcine fat was used as the 

background. A hole was drilled in the fat and filled with 2% agar gel (Figure 4.3 (a)). 

The wavelength for the imaging was selected as 975 nm. 
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Figure 4.1 Experimental setup of phantom and tissue experiment 

 

4.2 Results 
 
Figure 4.2 shows a PAT image of objects with different water concentrations at 975 

nm. The negative value is partially due to the limited bandwidth of the ultrasonic 

detection system. In the quantitive study of PA signal in Chapter 5, we added a 

positivity constraint during the iterative process in the reconstruction to eliminate the 
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negative values. The reconstructed signal was integrated within the two squares 

marked in Figure 4.2 (b). The 40% water–60% ethanol mixture yielded a higher PA 

signal than deionized water, and the ratio was consistent with the quadratic 

dependence described in Chapter 3. 

 
Figure 4.2. Phantom experiment. (a) Photograph of a 4% agar gel with embedded objects of 

different water concentrations; (b) 2D photoacoustic image of the phantom. Squares: areas for 
signal integration and comparison. 

 

The tissue experiment (Figure. 4.3 (b)) indicated that water generates nine 

times stronger PA signals than fat at the 975 nm wavelength (Figure 4.3 (c)). Both 

the absorption coefficient and the Grueneisen coefficient may account for such a 

signal difference between water and fat. Thus, PAT has great potential to detect 

localized water in fat. 
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Figure 4.3. Tissue experiment. (a) Photograph of fat tissue with an embedded 2% agar object; (b) 

2D photoacoustic image of the fat tissue; (c) 1D PA signal along y = –2 mm. 
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Chapter 5 
 
In vivo Imaging of  Cerebral Edema by 
Photoacoustic Tomography  
 

5.1 Experimental Setup 
 
Figure 5.1 shows the real-time experimental setup for the in vivo study. Two 

wavelengths, 610 nm and 975 nm, were used to image a mouse brain in vivo. A 

ground glass homogenized the laser beam, making it evenly distributed on the brain 

surface. The fluence of each laser pulse on the surface was lower than the American 

National Standards Institute (ANSI) safety standard (20 mJ/cm2). A 512-element 

full-ring array was inserted in the system served as the ultrasonic detector. The 

central frequency of the transducer was 5 MHz, and it took 16 seconds to obtain one 

cross-sectional image with 10-times averaging. 

The mouse was anesthetized during the experiment. Cold-induced cerebral 

edema was generated by putting a liquid nitrogen-filled aluminum tube in contact 

with the mouse scalp for ~30 seconds. The animal remained on the experimental 

stage for the entire duration of imaging.  Three animals were used for the experiment. 

For two of the animals, changes in blood flow volume and water accumulation at the 

edema site were tracked 12, 24, and 36 hours after the cold injury by obtaining the 

photoacoustic imaging of the brain cortex. For the third animal, only changes at 12 
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and 24 hours after the cold injury were tracked. After that, the mouse was sacrificed 

and an MRI ex vivo image of the cortex was taken immediately. The whole 

procedure follows the rules in Animal Studies Protocol Compliance. 

 

 

 

  
Figure 5.1 Schematic of the photoacoustic tomography system for the in vivo experiment. 

 
 

The solid-angle-weighted image reconstruction algorithm developed by Li et al.21 

was used for the image reconstruction. As mentioned in Chapter 3, the iterative 
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algorithm was applied22 and the positivity constraint was added during each iterative 

step so as to eliminate the negative signals due to the bandwidth limitation. 

 
 

5.2  Results 
Figure 5.2 shows the brain images acquired in vivo by PAT at both 610 nm and 975 

nm and subsequently acquired ex vivo by MRI. The upper images in Figure 5.2 (a) – 

(c) indicate that the amount of blood in the vessel decreased during the first 24 hours 

after the cold injury. The lower images show an accumulation of water after the cold 

injury. The maximum size of the water accumulation region was observed at 24 

hours after the cold injury. The T2-weighted MRI image (shown in Figure 5.2 (e)) 

validated such region as an edema. Figure 5.2 (d) shows the integrated signals of 

both blood and water. The dashed line encircled contour at 60% of the maximum 

pixel value represents the region of the edema (Figure 5.2 (c)). From the bar plot in 

Figure 5.2 (d), we can see that 36 hours after the cold injury, both PA signals of 

water and blood returned to the original levels, indicating the recovery of the mouse.  
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Figure 5.2 Transcranial photoacoustic images of the mouse brain acquired through the intact 
scalp and skull noninvasively acquired (a) before cold injury, (b) 12 hours after injury, and (c) 24 
hours after injury. The upper and lower row images were acquired at 610 nm and 975 nm optical 

wavelengths, respectively.  Three mice were imaged: two of them were was kept alive until 36 
hours after cold injury, and the third was sacrificed 24 hours after the cold injury for MRI 

imaging. (d) Integrated water and blood signal strengths in the dashed line area computed 
respectively for the three mice. The signal strengths were normalized to the water signal 

acquired before cold injury. (e) MRI image of the mouse cortex, taken immediately after the 
mouse was sacrificed (24 hours after cold injury).  The edema is indicated by the arrow. The 

dashed line area in lower (c) outlines the contour area according to 60% of the maximum water 
signal acquired at 975 nm. 

 

 The signals in the water accumulation region were also integrated with the 

images obtained at five different wavelengths: 925 nm, 950 nm, 975 nm, 1000 nm, 

and 1025 nm (images shown in Fig. 3 (a) – (d)). Again, the spectrophotometric 



 

  18 
 

measurement was used as the gold standard. The comparison with the expected water 

absorption is shown in Figure 5.3 (e).  

 

Figure 5.3 (a) – (d): Transcranial photoacoustic images acquired at 24 hours after cold injury at 
925, 950, 1000, and 1025 nm wavelengths, respectively. The dashed line area is the same as the 

one shown in lower Fig. 2(c). (e) Comparison between the water absorption coefficients 
calculated by signal integrations in the reconstructed water accumulation region and the 

coefficients from spectrophotometric measurements.  
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Chapter 6  
 

Conclusions 
 
We have demonstrated the potential for water detection and imaging with 

photoacoustic tomography. First we photoacoustically measured the optical 

absorption coefficients of the water content in six water–ethanol mixtures. The linear 

dependence of the PA signal on the water concentration indicated the ability of PA to 

detect absorption detection. Then our phantom and tissue experiments showed that 

we could not only detect but also image water content in tissue, especially water in 

tissue with very low water concentration, as we showed in Chapter 4. Finally, we 

imaged the water content in vivo in the mouse brain. The formation of cerebral 

edema and its expansion and recovery was monitored with PAT. The results of the 

photoacoustic approach demonstrated its ability to image the cold–induced cerebral 

edema and its potential to image water. PAT required less time than MRI to obtain 

the image of water. Moreover, PAT is non-invasive and doesn’t require injected 

contrast agents, which allows it to outperform perfusion methods. Our results in 

water imaging with PAT make it possible to accurately differentiate several contrasts 

and monitor the corresponding physiological parameters with more optical 

wavelengths.  
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