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ABSTRACT OF THE DISSERTATION

Smart Sensing and Clinical Predictions with Wearables:
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Professor Chenyang Lu, Chair

Wearable devices such as smartwatches and wristbands are gaining adoption. Recent advances

in technology in wearables enable remote health monitoring. However, there are challenges

in exploiting wearables in healthcare applications. First, sensor readings from wearables

are vulnerable to motion and noise artifacts. A robust pipeline is needed to extract reliable

measurements from noisy signals. Second, while wearables support an increasing number

of sensing modalities, there is a significant need to generate more clinically meaningful

measurements with wearables. Finally, to incorporate wearables into clinical practice, we need

to establish the link between wearable measurements and clinical outcomes, thus supporting

clinical decisions. To facilitate applications of wearables in healthcare, this dissertation

research exploits wearables to predict a wide range of clinically relevant outcomes from

physiological measurements to mental health disorders:

Measuring respiratory rate on a smartwatch with photoplethysmography: Modern smart-

watches usually lack the ability to accurately measure the respiratory rate (RR) in ambulatory

settings. We presented the RespWatch, an application that can robustly measure RR and

run completely on the smartwatch hardware. RespWatch directly reads the PPG waveform

from the smartwatch, and utilizes a hybrid approach with both signal processing and deep
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learning techniques to handle the noisy sensor signals and generate robust RR measurements.

A user study involving various activities showed that our hybrid method has advantages of

both accuracy and efficiency over the previous approaches.

Detecting objective and subjective stress with a commercial smartwatch: In this work, we built

stress detection models with commercial smartwatches, and we compared the objective stress

detection (based on the objective marker of stressor tasks) with the subjective stress detection

(based on the user’s subjective responses). Results showed that the generic subjective

stress models have worse performance than the objective stress models. To enhance the

subjective stress detection, we proposed a personalized subjective model accounting for

inter-individual differences via adaptive thresholds. Our personalized approach demonstrated

better performance.

Multi-task learning for randomized controlled trials (RCTs) with wearables: In this work, we

exploited machine learning models in conjunction with RCTs for personalized predictions

of a depression treatment outcome in which patients were monitored with wearables. We

formulated the predictions in different groups from an RCT as a multi-task learning (MTL)

problem, and proposed a novel MTL model specifically designed for the RCT. The MTL

approach was evaluated with an RCT involving 106 patients with depression, who were

randomized in a 2:1 ratio to receive the integrated intervention. Our proposed MTL model

outperformed both single-task models and existing multi-task models in predictive perfor-

mance. Our approach represents a promising step in exploiting RCTs to develop predictive

models for precision medicine.

Predicting mental disorders with wearables among a large cohort: Depressive and anxiety

disorders are among the most prevalent mental disorders and are usually interconnected. We

explored detecting those mental disorders with wearables in a large public dataset consisting of

xiv



more than 11,000 participants. We proposed a novel deep model that combines a transformer

encoder and convolutional neural network to directly learn from the raw daily activity time-

series data from the wearables. Our method achieved an area Under the Receiver Operating

Characteristic curve (AUROC) of 0.717 (S.D. 0.009), demonstrating the feasibility of utilizing

wearables to assist in diagnoses of mental health disorders.
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Chapter 1

Introduction

1.1 Wearables in Healthcare Overview

Wearables, also known as "wearable devices", are generally referred to any miniaturized

electronic devices that can be easily attached to and detached from the human body, or

incorporated into clothing or other body-worn accessories [192]. Until now, there are a variety

of off-the-shelf wearables, including smart earphones, smart rings and smartwatches, which

have been pervasively adopted in fitness tracking, fashion style and entertainment. Nowadays,

wearables also become appealing in healthcare. The growing awareness of healthcare and the

aging society stimulate a high demand for medical services, but limited hospital resources

hinder the access to professional healthcare for some people. Wearables can potentially fill

this gap, via longitudinal remote monitoring outside of the clinical.

It is reported that the global market for healthcare wearables was USD 24.57 billion and

will increase to more than 130 billion by 2026 with an annual growth rate of 24.7% [213].

The application of wearables is expected to become standard clinical practice. Emerging
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wearable-based analytic platforms and artificial intelligence are facilitating automated health

event prediction, prevention and intervention, extending professional healthcare from hospital

intensive care unit (ICU) to resource-limited field settings in a patient-centric way. Figure

1.1 illustrates the landscape of wearables in healthcare.

In-hospital In-home

Remote/ruralIn-work

Using Scenarios

…

Smartwatch EarphonesWristband

• Low cost

• Convenience

• Popularity

• Versatility

Wearables

…

Healthcare practitioner Artificial Intelligence

Telehealth monitoring

…

…

Heart rate Respiratory rate SpO2

Low-level physiological measures

Human affect/behavior detection

HappinessStress Sadness

…

…

Medical condition detection

Parkinson Depression

(A) (B) (C)

Data collection & transfer

Figure 1.1: The wearable landscape.
(A) Various using scenarios; (B) Wearable data workflow; (C) Multiple levels of smart

sensing in healthcare

The versatile onboard sensors from wearables enable endless possibilities for different health

applications. The sensors majorly fall into two categories: mechanical, and physiological.

Inertial measurement units (IMUs) are the most common mechanical sensor that can capture

body motions. IMUs have been utilized to track gait [137], detect falls [71], and behavior

patterns [102]. Physiological sensors, on the other hand, are aimed at directly measuring

biological signals including vital signs. Photoplethysmography (PPG) is a common physiolog-

ical sensor used to detect heart rate or oxygen saturation via changes in light absorbance

through thin tissues. Some heart conditions (e.g., atrial fibrillation) can be detected with

PPG sensors [181].
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Usually, data collected from wearables are processed locally and/or transmitted to cloud

storage for future analysis by healthcare practitioners and/or artificial intelligence. Processing

the data locally ensures a better real-time performance, but it is only suitable for some tasks

that do not require many computational resources. Offloading the data analysis to the cloud

is beneficial to some complex and long-term disease monitoring. On cloud, we can adopt more

advanced and sophisticated algorithms with access to much longer historical data, regardless

of the resource limitations in wearable hardware.

Nonetheless, the role of wearables in healthcare is still premature. There remain challenges

in unleashing the full power of wearables in healthcare. First, sensor readings from the

wearables are vulnerable to motion and noise artifacts, which are exaggerated on commercial

off-the-shelf wearables in ambulatory settings. Noise-contaminated signals could hinder

producing accurate measurements, degrading the credibility of the wearables. To this end,

a robust pipeline is needed to eliminate the adverse impacts of the noisy signals. Second,

modern wearables are limited to some specific measurements, such as physical activities,

heart rate, and oxygen saturation (i.e., SpO2). Although those measurements are reported to

be associated with some clinical conditions [106, 192, 209], other important measurements

(e.g., respiratory rate) are generally missing on the commercial wearables. We need to

generate more clinically meaningful measurements from raw signals provided by the wearable

sensors, as more measurements allow us to draw a more comprehensive picture for each

patient. Finally, there exist gaps between the massive wearable data and the clinical insights.

One general way is to build machine learning (ML) models with wearable data to predict

personalized medical conditions. Those personalized estimations can then support clinicians

to arrange treatments in a patient-centric way. For example, if the model predicts the patient

has a high chance of having a bad outcome, the clinicians may prescribe an intervention

treatment for the patient. However, establishing an accurate ML model with wearable data
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is not straightforward. The fine-grained and noise-contaminated time series could easily

make ML models overfitting. And sometimes, the models may also suffer from a small size of

training samples.

1.2 Thesis Contributions

To address the above challenges and advance the application of wearables in healthcare, this

dissertation investigates wearable applications from low-level wearable sensor measurements

to high-level predictions of mental health disorders through the following contributions:

1.2.1 Enable Robust Respiratory Rate Measurements On Commer-

cial Smartwatches

Modern smartwatches are equipped with Photoplethysmography (PPG) sensors to measure

heart rate. However, the ability to accurately measure respiratory rate (RR) with motions

is generally missing. Respiratory rate (RR) is a physiological signal that is vital for many

health and clinical applications. In an ambulatory setting, the sensor readings from a

wrist-worn smartwatch are pretty noisy, as wrist movements are inevitable. We presented

the RespWatch, a wearable sensing system for robust RR monitoring on smartwatches

with Photoplethysmography (PPG). We designed two novel RR estimators based on signal

processing and deep learning. The signal processing estimator achieved high accuracy and

efficiency in the presence of moderate noise. In comparison, the deep learning estimator,

based on a convolutional neural network (CNN), was more robust against noise artifacts at a

higher processing cost. To exploit their complementary strengths, we further developed a

hybrid estimator that dynamically switches between the signal processing and deep learning

estimators based on a new Estimation Quality Index (EQI). We evaluated and compared

4



these approaches on a dataset collected from 30 participants. The hybrid estimator achieved

the lowest overall mean absolute error, balancing robustness and efficiency. Furthermore, we

implemented RespWatch on commercial Wear OS smartwatches. The empirical evaluation

demonstrated the feasibility and efficiency of RespWatch for RR monitoring on smartwatch

platforms.

1.2.2 Predicting Objective and Subjective Stress With A Commer-

cial Smartwatch

Built upon the sensor data processing pipeline from RespWatch, we explored stress detection

on commercial smartwatches. Compared to respiration, stress is a more complicated physio-

logical or psychological response, which can be categorized as objective stress or subjective

stress [48]. The objective stress is defined as the biological reaction to a stressful exposure

that manifests with biological reactions [177], whereas the subjective stress is defined as a

subjective feeling of "being stressed". In this work, we described a methodological approach

(a) to compare the prediction performance of models developed using objective markers of

stress and subjective markers of stress; and (b) to develop personalized stress models by

accounting for inter-individual differences. The objective stress markers were derived from a

series of stressor tasks (e.g., a public speaking task or solving math problems) [151], and the

subjective stress markers were derived from participants’ subjective responses to self-reports

(e.g., I am stressed). Towards this end, we conducted a laboratory-based study with 32 healthy

volunteers. Our performance of the objective stress models with an instrumented commercial

smartwatch was comparable to state-of-the-art models from other laboratory-based studies

that require more sophisticated equipment. However, the generic subjective stress models

had a lower performance compared to objective stress models. To enhance the subjective
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stress prediction, we proposed the personalized subjective stress models accounting for inter-

individual differences via an adaptive threshold. Unlike traditional personalized models, our

approach does not need to build a machine learning model for each user. Results demonstrated

our personalized subjective stress model has significant performance improvements over the

generic subjective model.

1.2.3 Multi-Task Learning for Randomized Controlled Trials with

Wearables

A randomized controlled trial (RCT) is commonly regarded as the ultimate tool to validate

treatment by comparing patients’ outcomes in an intervention group and a control group

[55]. Previous statistical methods used for RCT analysis lack the ability to assess the

treatment response at an individual level. In this paper, we exploit machine learning models

in conjunction with RCTs for personalized predictions of a depression treatment in which

patients were monitored with wearable data. We formulated the predictions in different groups

from an RCT as a multi-task learning (MTL) problem, and proposed a novel MTL model

specifically designed for the RCT. Instead of training separate models for the intervention and

control groups, our MTL model can be trained on the combined groups of patients, effectively

enlarging the training dataset. We devised a hierarchical model architecture to aggregate data

from different sources and different stages of the trial, which allows the MTL model to exploit

the commonalities and capture the differences between two groups in the RCT. We evaluated

the MTL approach in the RCT involving 106 patients with depression, who were randomized

in a 2:1 ratio to receive the integrated intervention. Our proposed MTL model outperformed

both single-task models and existing multi-task models in predictive performance. Our

approach represents a promising step in exploiting RCTs to develop predictive models for

precision medicine.
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1.2.4 Predicting Mental Disorders with Wearables: A Large Cohort

Study

Depression and anxiety are among the most prevalent mental disorders, and they are usually

interconnected [40]. Although those two mental disorders have drawn increasing attention due

to their tremendous negative impacts on working ability and job performance [117], over 50%

of patients are not recognized or adequately treated. Recent literature has shown the potential

of using wearables for expediting the detection of mental health disorders [67], as physical

activities are reported to be related to some mental health disorders [9]. However, most prior

studies [151, 209] focused on a single group of people with limited sample size. The feasibility

of using wearables to detect mental disorders in the general public remains questionable.

We explored detecting depression and anxiety disorders with commercial wearable activity

trackers in a large public dataset consisting of more than 11,000 people. The dataset has a

wide spectrum of age, race, ethnicity, and education levels. We proposed a novel deep model

that combines a transformer encoder and convolutional neural network, which can directly

learn from the raw wearable data. Our method can achieve an area Under the Receiver

Operating Characteristic curve (AUROC) of 0.717 (S.D. 0.009), affording new opportunities

in using wearables to assist in the diagnosis of mental health disorders.

1.3 Dissertation Organization

My dissertation is structured as follows. Chapter 2 first presents RespWatch, which targets

robust measurements of respiratory rate on the commercial smartwatches. In this work, we

introduced a hybrid approach that exploits the complementary advantages of signal processing

and deep learning techniques to handle the noisy raw signal data from the sensor. Then

in Chapter 3, we introduced two categories of stress detection models on the commercial

7



smartwatches. The model pipeline was built upon noise elimination techniques in Chapter

2. Chapter 4 demonstrates the application of wearables in a randomized controlled trial to

predict the patients’ outcome in two arms (i.e., control and intervention). Chapter 5 presents

the application of wearables in the detection of depressive and anxiety disorders among a

large cohort. Finally, Chapter 6 concludes this dissertation.
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Chapter 2

Robust Measurements of Respiratory

Rate on Smartwatches

In this chapter, we present RespWatch, which targets at using smartwatches to measure a

low-level physiological signals (i.e., respiratory rate). We proposed a robust signal processing

pipeline to handle the noisy raw sensor data, which is also the foundation of our work in

Chapter 3.

2.1 Introduction

Respiratory rate (RR) is an important physiological variable associated with serious health

conditions such as cardiopulmonary arrest [43]. In addition to the clinical applications, RR is

important for ascertaining driving safety [104, 216], assessing sleep quality [13], monitoring

stress [65] and even detecting opioid overdose [125]. However, unobtrusive monitoring of

RR outside of laboratory and hospital settings is difficult. Traditional approaches for RR

measurements rely on the use of the specialized equipment, e.g. capnography system and
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nasal/oral pressure transducers[22]. These approaches are not suitable for "free-living" or

long-term measurement outside controlled clinical environments. Robust RR measurements

with a popular commercial device can renovate the approaches to the real-time detection and

long-term monitoring of respiration-related health conditions.

In this paper, we address the problem of robust RR monitoring using photoplethysmography

(PPG) sensors on commercial smartwatches. The adoption of wearable devices, and smart-

watches in particular, has increased exponentially over the past decade [20]. PPG sensors have

been commonly embedded in smartwatches to measure heart rate and detect various health

conditions, such as atrial fibrillation [181] and sleep apnea [86]. And smartwatches have the

potential to enable unobtrusive longitudinal RR monitoring outside clinical environments

with the PPG sensor.

However, RR monitoring on smartwatches with PPG faces several challenges. First, many

previous studies [85, 109, 149] focused on PPG sensors for measuring light signals transmitted

through fingertips, whereas smartwatch PPG sensors measure signals reflected from the wrist,

which degrades signal quality and introduces noise artifacts [160]. As such, it is essential to

develop robust approaches to extract RR from noisy PPG signals [162], and to investigate

the feasibility of reliable RR measurements on off-the-shelf smartwatches. Second, previous

research on RR monitoring with PPG usually targeted use cases with minimum or no motion

(e.g., a patient wearing a pulse oximeter in an Intensive Care Unit (ICU) bed) [85, 150,

200], whereas we aim for RR monitoring in the presence of some user motions and noise

artifacts. It is inevitable to the motions with a wrist-worn smartwatch in the unconstrained

settings. Therefore, smartwatch-based RR measuring system must be consistently robust for

the longitudinal monitoring. Finally, smartwatches have limited computational resources and

power. For any real-time and long-term RR monitoring system running on the smartwatch,
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data processing pipelines and algorithms should be highly efficient and capable of continuous

execution on the resource-constrained platform.

Towards this end, we present RespWatch, a wearable sensing system for robust RR mea-

surements with built-in PPG sensors on commercial smartwatches. RespWatch provides

end-to-end processing pipelines from the raw PPG signals to RR measurements that can

maintain high accuracy in the presence of some noise and motion artifacts. We explore

and compare both signal processing and deep learning approaches, and develop a hybrid

approach to combine their complementary strengths. Furthermore, RespWatch is capable to

run completely on commercial smartwatches which allows for non-obtrusive RR monitoring.

Specifically, the main contributions of this research are as follows:

• A signal processing estimator with fine-grained elimination of noise artifacts, which

achieves efficiency and accuracy in the presence of moderate noise artifacts;

• A deep learning estimator for extracting RR from noisy PPG signals, which exhibits

robustness in the presence of increasing noise artifacts;

• A hybrid approach which dynamically switches between signal processing and deep

learning based on a novel Estimation Quality Index (EQI), achieving both robustness

and efficiency;

• A comparative evaluation of the RR estimation approaches on a dataset including 30

participants of various activities, which demonstrates the complementary strengths of

the signal processing and deep learning estimators and the advantage of combining

both approaches in the hybrid estimator;
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• Implementation and experimentation of RespWatch on commercial Wear OS smart-

watches, which demonstrates the feasibility and efficiency of RR monitoring on smart-

watch platforms.

2.2 Related Work and Background

2.2.1 Non-contact RR Measurement

Recently, non-contact sensing approaches have been developed for measuring RR. Techniques

based on radio frequency (RF) detect respiration based on changes in RF signals caused

by inhalation and exhalation motions. RR has been estimated using Frequency Modulated

Carrier Waves (FMCW) [210] and Doppler radar [219]. WiFi signals have also been adopted to

estimate RR based on the received signal strength (RSS) [144] and channel state information

(CSI) [211]. Other non-contact sensing techniques for RR measurement exploit energy

spectrum density (ESD) of acoustic signals [216] and ground movement from geophones

[83]. As these non-contact approaches rely on external devices in the environment, they are

constrained to instrumented environments and cannot provide monitoring when users leave

such environments.

2.2.2 IMU-based RR Measurement

Smartwatches provide a portable platform with built-in sensors that can be utilized for unob-

trusive sensing. Previous research [54, 64, 107, 197] on RR measurement with smartwatches

exploited the inertial measurement unit (IMU) to capture subtle motions owing to respiration.

However, this micro-motion is easily overwhelmed by motion artifacts [107] during normal

activities. Hence, IMU-based RR monitoring is usually limited to constrained settings with
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minimum motion. For instance, Sun et al. [197] designed a total variation filter to extract

respiratory signals from accelerometer data captured by smartwatch during sleep. Similarly,

Hao et al. [54] developed the MindfulWatch to monitor respiratory during meditation, using

a similar filtering approach. To extend the RR measurements in daily living activities, Liaqat

et al. [107] proposed to identify accurate sensor readings with respiration information using a

machine learning model, and extract RR only from those accurate sensor readings. However,

since the micro-motions associated with respiration could be of the same order of magnitude

as the sensor noise [54] and several orders of magnitude lower than other body motions, the

signal-to-noise ratio (SNR) can often drop below the threshold for valid measurements.

2.2.3 PPG-based RR Measurement

PPG is an optical sensing technology that detects pulsatile blood volume changes in tissues

[165]. Compared to IMU, PPG sensor readings are less vulnerable to motion artifacts,

as PPG measures the optical changes that are not directly impacted by the motions. As

illustrated in Figure 2.1, a PPG sensor consists of a light-emitting diode (LED) to illuminate

the tissue and a photodiode (PD) to measure the light transmitted through or reflected by

the tissue. Transmission-mode PPG is commonly used in fingertip pulse oximeters, whereas

reflectance-mode PPG is usually used on wrist or forehead for heart rate monitoring. The

mode and placement of the PPG sensor has impacts on its sensing accuracy and waveform

shape [160].

RR measurement is based on the fact that the PPG waveform is modulated by the respiration

process. As illustrated in Figure 2.2, the PPG waveform contains three types of respiratory-

induced variations caused by amplitude, intensity and frequency modulation [85, 119].
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Figure 2.2: PPG waveform and respiratory-induced variations. RIAV: respiratory-induced
amplitude variation; RIIV: respiratory-induced intensity variation; RIFV: respiratory-induced
frequency variation.

• Amplitude modulation leads to respiratory-induced amplitude variation (RIAV), which

is related to changes in peripheral pulse strength [85]. RIAV is reflected in the different

amplitudes of the peaks and corresponding valley for each pulse in the PPG waveform,

and can be extracted as a time-series of the vertical distances from the peak to the

valley for each pulse.

• Intensity modulation leads to respiratory-induced intensity variation (RIIV), which

is related to the intrathoracic pressure variation [85]. RIIV is reflected in a baseline

wander [119] in the PPG waveform, and can be extracted as a time-series of the peak

heights.
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• Frequency modulation leads to respiratory-induced frequency variation (RIFV), which

is related to an autonomic response to respiration. RIFV, also referred as respiratory

sinus arrhythmia (RSA) [85], is reflected in different inter-beat intervals, and can be

extracted as a time-series of the horizontal distances between the successive peaks in

the PPG waveform.

RR can be estimated in two general steps [21]: (1) extracting the respiratory variation

signals, and (2) estimating of RR from the variation signals. Karlen et al. [85] used the

Incremental-Merge Segmentation method to detect artifacts and extract the three respiratory-

induced variations (RIIV, RIAV, RIFV). RR can then be obtained from the variations by Fast

Fourier Transform (FFT) with smart fusion. Pimentel et al. [150] improved the reliability of

RR measurements with multiple autoregressive (AR) models for determining the dominant

respiratory frequency in the three variations. Compared to the fusion method from [85], the

AR models can retain more data windows. The aforementioned studies on PPG-based RR

measurements [21, 85, 109, 150] focused on fingertip sensors in clinical settings or during

sleep with limited motion. Since the signal admission control in those studies discards entire

sampling windows affected by noise artifacts, the approaches may lead to low data yield in

the presence of user activities. How to robustly distill respiratory information from the raw

PPG signal remains challenging especially in the presence of noise.

Video-based PPG has also been explored to measure RR with smartphone cameras[167]. Due

to its reliance on video taken by cameras, this approach is not suitable for long-term and

non-obtrusive RR monitoring during daily activities.

Recent studies [80, 110, 200] applied similar signal processing approaches to measure RR with

reflective PPG sensors. Jarchi et al. [80] and Longmore et al. [110] explored measuring RR

at different body positions (including wrist) with reflective PPG sensors. They found that

15



upper-body positions (e.g., head and neck) produced the best respiration signals. Trimpop et

al. [200] demonstrated a system on commercial smartwatches for RR monitoring during sleep

and evaluated it on four users, but without revealing the details of the methodology. As those

studies [80, 110, 200] adopted similar signal processing approaches to those developed for

fingertip PPG, they did not address the more significant noise artifacts with user activities

and the reflectance mode of PPG sensor. In contrast, we present novel signal processing

techniques specifically designed to robustly estimate RR in the presence of noise artifacts

and user activities. Moreover, we explore deep learning to further enhance the robustness

of RR measurements against noise and motion artifacts, and integrate both approaches to

balance robustness and efficiency of RR monitoring on commercial smartwatches.

2.2.4 Deep Learning on Smartwatch

Deep learning with wearable data has drawn great attentions in activity recognition [11,

157], Parkinson Disease monitoring [53, 202], atrial fibrillation detection [148, 181] and other

mobile health applications [107, 216]. Ravichandran et al. [163] had proposed a dilated

residual inception model to regress the respiration waveform from the PPG waveform. But

their study was limited to the fingertip PPG signals collected in the intensive care unit

(ICU), and cannot estimate the respiratory rate directly. Those application-driven studies

have demonstrated that deep learning is capable to handle some sophisticated problems with

the wearable data. However, further empirical evaluations of the deep learning models are

required to test their capability of running on the wearable devices in real life.
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2.3 Design of RespWatch

Towards RR measurements outside the clinic settings, our RR monitoring system shoots the

following goals:

• Accuracy. The system should produce accurate RR measurements.

• Robustness. The system should maintain accuracy and data yield in the presence of

noise artifacts.

• Efficiency. The system should have light-weight and efficient processing pipeline on

smartwatches.

We exploited both signal processing and deep learning approaches to the RR estimations.

In this section, we first design a signal processing estimator that achieves efficiency and

accuracy in the presence of moderate noise artifacts. We then build a deep learning estimator

that is more robust against increasing noise artifacts while incurring higher processing cost.

Finally, we develop a hybrid estimator that balances robustness and efficiency by dynamically

switching between the signal processing and deep learning estimators.

2.3.1 Signal Processing Estimator

The signal processing estimator employs digital signal processing techniques, which are

training-free and allow for efficient processing on a commercial smartwatch. We designed a

signal processing pipeline comprising three stages (see Figure 2.3).
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Figure 2.3: Architecture of the signal processing estimator in RespWatch

1) In the preprocessing stage, we use a bandpass filter to eliminate noise outside the cardiac

and respiratory bands from the raw signals, and then divide the signal waveform into 60-second

windows.

2) In the artifact elimination and pulse peak finding stage, we employ a fine-grained technique

to remove data points corrupted by noise artifacts within the cardiac and respiratory bands.

We then use a novel PPG pattern detector to find the pulse peaks in the remaining data

points. To facilitate finding the pulse peak, the PPG pattern detector employs a novel
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forward-backward highpass filter to remove respiratory band information while preserving

the time-domain features. This allows the identified pulse peaks to be mapped to the original

waveform with the respiratory information.

3) Finally, we extract the respiratory-induced variation signals, using the pulse peak positions

found by the PPG pattern detector. Then, we mapped the variation signals to the RR

estimations with an adaptive peak finding method. In addition, we introduce a novel

estimation quality index (EQI) to assess the accuracy of our RR measurements, which enables

the hybrid estimator to dynamically switch between signal processing and deep learning

estimators, maintaining high accuracy and efficiency.

In the following we detail the design of each stage.

Preprocessing

The sampling rates of the PPG sensors vary across smartwatches and are usually higher than

100 Hz. In order to minimize the effect of the differences of sampling rates, we re-sample

the collected PPG data at a fixed rate of 50 Hz based on data timestamps. The raw PPG

waveform contains many noisy frequency components. A sixth-order Butterworth bandpass

filter is first applied to remove the unwanted noisy components with cut-off frequency of

0.14Hz and 3Hz, only keeping the information from respiratory band to cardiac band [126].

The preprocessing does not remove noise artifacts within the ranges of respiratory and cardiac

bands, which is handled in the next stage. The signal is then re-scaled to the range from -1

to 1. We divide the PPG data into 60-second windows for RR estimation in following stages.

There is no overlap between the adjacent windows. The 60-second length has been used for

RR studies in previous literature [85, 150].
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Artifact Elimination and Pulse Peak finding

Noise artifacts are inevitable on smartwatches due to the wrist movement and poor contact

between the sensor and skin. Previous research [21, 85, 109, 150] has often discarded any data

window containing noise artifacts. Although this approach can help in avoiding noise artifacts,

it leads to significant drop in RR measurement yield, especially during user activities. To

support long-term RR monitoring in the presence of noise artifacts and improve data yield,

we introduce a sliding sub-window technique to discard noise artifacts at a finer granularity

while preserving the valid data samples in the same 60-second data window. The sliding

sub-window has a size of 10 seconds and a step size of 2 seconds. Each 10-second sub-window

from the 60-second window is passed through the PPG pattern detector to evaluate whether

it is free from noise artifacts, and to identify valid pulse peaks simultaneously. The entire

procedures for artifact elimination and pulse peak finding are summarized in Algorithm 1.

Algorithm 1: Artifact Elimination & Pulse Peak Finding
Data: 60-second preprocessed PPG waveform

1 Sliding sub-windows with size of 10s and step of 2s;
2 for each sub-window do

/* begin of PPG pattern detector */
3 2nd-order highpass forward-backward filtering;
4 Re-scale the waveform with range of [-1,1];
5 Find the peaks higher than 0;
6 Calculate heart rate, peak intervals, peak-to-valley distances ;

// PPG pattern matching
7 if heart rate ≤ 180 and heart rate ≥ 40 and STD(peak intervals)<0.4s and

STD(peak-to-valley distances)<0.4 then
8 mark the sub-window as valid ;
9 end

10 end
11 Merge the consecutive valid sub-windows into valid sequences;
12 Merge the peaks from the valid sequences into peak lists;

Result: Valid sequences and corresponding peak lists
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In the PPG pattern detector, we first filter out the respiratory band information in the

sub-window, as the respiratory band can impact the accuracy of finding the pulse peaks. A

novel design of the PPG pattern detector is the adoption of a second-order forward-backward

highpass Butterworth filter with cut-off frequency of 0.6 Hz. The forward-backward filter is a

zero-phase filter in which the phase response slope is zero at all frequencies. It achieves the

zero-phase response by filtering the input data twice, first in the forward direction and then

in the reverse direction. Hence, the order of the filter is doubled, and the filter is non-causal

due to the reverse filtering [190]. Since the processing of sub-windows is performed once we

have the 60-second large window, there is no requirement of the causality of the filter.

The forward-backward filter is a key component of the PPG pattern detector. A significant

benefit of the zero-phase filter is that it is able to preserve important time-domain features in

the filtered signal. Specifically, the pulse peaks in the filtered waveform appear at the same

positions as the pulse peaks in the unfiltered waveform in the time domain [33]. This allows

us to directly map the pulse peaks found in the filtered waveform back to the unfiltered

waveform. Consequently, we can find the pulse peaks in the unfiltered waveform in the

60-second window when iterating through the sub-windows containing the filtered signals.

The pulse peaks in the unfiltered waveform will be used to extract the respiratory-induced

variation time-series in the next stage.

Figure 2.4 shows the advantage of the forward-backward filter with the real PPG data collected

as part of our study. The blue curve shows the unfiltered waveform containing the respiratory

band components. It has a large respiratory-induced baseline wander. Additionally, the

pulses are not clearly distinguishable, making it difficult to find pulse peaks using standard

peak finding methods[84, 183]. The green curve shows the waveform after it is processed

using our forward-backward filter. Clearly, the peaks are distinguishable making it easier to

check whether the waveform contains valid PPG patterns with a pattern matching method,
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Figure 2.4: Comparison of preprocessed PPG waveform with traditional Filter and forward-
backward filter.

and identify each peak by detecting local maxima above a certain threshold. It is important

to note that these pulse peaks can be mapped back to the unfiltered curve (see the vertical

dashed lines in Figure 2.4). In contrast, the orange curve is the filtered waveform after being

processed by a traditional fourth-order Butterworth filter with the same cut-off frequency.

We can observe variable time shifts in the peak positions after the traditional filter, making it

impossible to map the pulse peaks back to the blue curve. As a result, the forward-backward

filter not only removes the respiratory band to facilitate PPG pattern matching and peak

finding, but also allows the mapping of pulse peaks back to the unfiltered PPG waveform

containing the raw respiratory information.

After forward-backward filtering, we re-scale the signal to a range of [−1, 1], and identify

all the peaks whose amplitude are higher than 0. Then, we implement our PPG pattern

matching method derived from [135] to detect whether the PPG signal is valid using three

rules: (1) extracted heart rate based on the peaks should be within 40 and 180 bpm; (2) the

standard deviation of the peak intervals should be less than 0.4s; (3) the standard deviation

of the peak-to-valley distances should be less than 0.4, where the peak-to-valley distance is

the vertical distance from the peak to its previous valley. We find the valleys via the local

minimum between two adjacent peaks. Only those sub-windows satisfying all three rules are

marked as valid.
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Figure 2.5: Examples of PPG pattern matching.

Figure 2.5 shows real examples of a valid sub-window and an invalid sub-window with artifacts

identified by the PPG pattern detector. The valid sub-window contains pulses satisfying

the aforementioned rules, whereas the invalid sub-window has the standard deviation of the

peak-to-valley distances larger than 0.4, not satisfying the third rule.

Once we have iterated through all the sub-windows with the PPG pattern detector, consecutive

valid sub-windows are merged into larger valid sequences, and the peaks in the valid sub-

windows are also merged into longer lists of peaks (see Figure 2.3). Here, the valid sequences

mark the start and end points of a preprocessed PPG waveform free of noise artifacts, and

the peak lists contain timestamps of the pulse peaks in the corresponding valid sequences. A

60-second preprocessed PPG waveform can have multiple valid sequences and valid peaks

lists, if the invalid sub-windows appear in the middle of the 60-second period.
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Respiratory-induced Variations Extraction and Adaptive Peak Finding

As described in Section 2.2.3, the respiratory-induced amplitude variation (RIAV) is the

time-series of the vertical distances from the peak to the valley for each pulse. The respiratory-

induced intensity variation (RIIV) is the time-series of the height of each pulse peak. The

respiratory-induced frequency variation (RIFV) is the time-series of the horizontal distances

between successive pulse peaks in the time domain. All the three variation time-series are

closely related to pulse peaks that need to be extracted from the preprocessed PPG waveform

containing the respiratory band information. We directly adopt the peak lists from the last

stage, and map the pulse peaks from the filtered waveform to the preprocessed PPG waveform.

The valleys in the preprocessed waveform are then obtained by finding the local minimum

between two adjacent peaks. The adoption of peak lists from the second stage improves the

accuracy of extracting the three time series, because we avoid directly finding pulse peaks

in the preprocessed PPG waveform in which the respiratory band information can degrade

the accuracy of pulse peak finding. And it also saves us from the pulse peak finding twice

for the PPG pattern matching and respiration signal extraction, making the system more

energy-efficient.

The time-series of RIAV, RIIV and RIFV are not equally sampled in time domain, so we

re-sample the three at fs = 5Hz with linear interpolation. We also employ a bandpass

filter to keep only the respiratory band (0.14-0.9Hz) information. To robustly detect all the

respiratory peaks in the RIAV, RIIV and RIFV, we apply an adaptive peak finding method

derived from [84]. The method starts with initial thresholds for the distance between two

adjacent peaks. We find all the peaks whose amplitude are higher than 0, and calculate

the horizontal distance from the current peak to the last peak. If the distance is below the

lower threshold, the current peak will be discarded and the lower threshold decreases. If the
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distance is beyond the higher threshold, a virtual "peak" will be inserted in the middle of

the current peak and the last peak, and the higher threshold increases. The initial thresholds

and the adjusting rates are set based on [126]. Adaptive peak finding method can handle the

cases in which the artifacts cause a spurious peak or obliterate a possible peak in the signals,

based on the assumption that the RR is constant within a short period of time.

After we get the respiratory peaks in the three variations, the respiratory rate (RR) is

calculated for each valid sequence:

RRRIXV,i =
60

MEAN(peak_intervals(i))/fs
(2.1)

where RIXV is one of the three respiratory-induced variations, MEAN(·) is the average

value of ·, fs is the sampling rate, i is the index of the valid sequences, and peak_intervals(i)

is the respiratory peak intervals detected by the adaptive peak finding method for the ith

valid sequence. The final RR measurement RespWatchRIXV is the length-weighted average

of RRRIXV,i:

RespWatchRIXV =

∑
iRRRIXV,i · seq_length(i)∑

i seq_length(i)
(2.2)

Estimation Quality Index (EQI)

Furthermore, we introduce an estimation quality index (EQI) as a novel metric to estimate

how accurate our RR measurement is. EQI is based on the two intuitions: (1) the respiration

is rhythmic, so the standard deviation of the respiration peak intervals should be small, and

(2) RR measurement is more accurate on the longer sequence. Specifically, the EQI of each

valid sequence is formulated as:

EQIRIXV,i = α ·
STD(peak_intervals(i))

seq_length(i)
(2.3)
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where α is a fixed scaling factor, STD(·) is the standard deviation of ·, seq_length(i) is the

length of the ith valid sequence. The final EQIRIXV is the sum of EQIRIXV,i for each valid

sequence:

EQIRIXV =
∑
i

EQIRIXV,i (2.4)

EQI offers several important advantages. First, most prior studies only focus on the RR

estimation without providing an accuracy estimation. Lack of confidence of the measurement

could lead to wrong decision in some practical cases. For example, the inaccurate high RR

measure could give a false alarm of respiration conditions. Second, although past studies

focused on motion as the main factor influencing PPG-based sensing accuracy [162, 181],

other factors (e.g., light conditions and sweat) may also affect accuracy. EQI therefore

captures noise artifact in a more comprehensive manner than motion artifacts alone. Finally,

as EQI utilizes only the characteristics of the RR estimation process itself, it does not require

external inputs (e.g., motion intensity, light, and sweat).
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Figure 2.6: MAE vs. window sizes. All the data windows are free from artifacts
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To assess our assumption that the accuracy of RR measurement improves with larger data

windows, Figure 2.6 shows the mean absolute error (MAE) of RR measurements with different

window sizes. From data collected from our user study (see Section 2.4), we randomly sampled

100 data windows at each window size, and all the sampled data windows were free from

artifacts. We can observe that the MAE decreases with larger window size, which supports

our assumption.

2.3.2 Deep Learning Estimator

This section presents the deep learning estimator for RR measurement. Our work was inspired

by recent success of deep learning in processing smartwatch data [107, 181]. Particularly,

Shen et al. [181] showed that a convolutional neural network (CNN) model with residuals was

robust in the presence of motion artifacts for detecting atrial fibrillation with the smartwatch

PPG. Building upon this, we designed the deep learning estimator with a CNN model. After

some basic preprocessing steps, our CNN model can directly output the estimation of RR

using the PPG waveform. To the best of our knowledge, our deep learning estimator is the

first deep neural network to estimate RR with wrist PPG on smartwatches. The high-level

architecture of the deep learning estimator is illustrated in Figure 2.7.

Preprocessing

Although the CNN model can directly learn from raw signals, preprocessing is still needed to

account for issues associated with the PPG signals. Specifically, raw PPG signals exhibit

different ranges and amplitudes under different conditions, and the noise outside the respiratory

and cardiac bands can lead to the overfitting of the CNN model. To standardize data and

reduce noise, we re-sampled the PPG signal at 50Hz, applied the same bandpass filter used
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Figure 2.7: Architecture of the deep learning estimator in RespWatch
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in the signal preprocessing estimator, and normalized the signals to a zero mean and a unit

variance.

CNN Model

As shown in Figure 2.7, we developed our deep learning approach based on the residual neural

network. Unlike previous classification tasks with PPG [181], our aim is to output the RR

estimation with continuous values. As the PPG sensor on smartwatches contains only one

channel, we adopted 1D convolutional layers across the network.

An initial 1D convolutional layer with kernel size of 100 is adopted to down-sample the input

and reduce the computation complexity. Then, 16 basic blocks sharing the same topology with

residuals bypass and 1D convolutions are applied. Each basic block contains 2 convolutions

and a shortcut connection. The shortcut connections can optimize the training by allowing

information to propagate in deep neural networks [59] and make the optimization process

tractable. Batch normalization (Batch Norm) and a rectified linear unit (ReLU) activation

layer are also employed after each convolutional layer. The 16 basic blocks are grouped into 4

stages consisting of 3, 4, 6 and 3 blocks, and the number of output channels for each stage is

64, 128, 256 and 512, respectively. The spatial map of the signal is down-sampled while the

channels are incremented stage by stage. After the last stage of the basic blocks, we append

a 1D average pooling layer and a fully connected layer. The fully connected layer performs

the regression tasks of the final RR estimation. We employed the mean squared loss and

the stochastic gradient descent optimizer with the momentum. During training, we ensured

there is no overlap between the training and testing signal. All the convolutional layers were

initialized with He initialization [60], and batch normalization layers were initialized with

weight of 1, bias of 0.
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2.3.3 Hybrid Estimator

A key finding in our experimental results (see Sections 2.5 and 2.6) is that the signal

processing and deep learning estimators have complementary strengths in efficiency and

robustness, respectively. Specifically, the signal processing estimator achieves higher accuracy

in the presence of moderate noise artifact. It also incurs lower processing cost on smartwatch

platforms. In contrast, the deep learning estimator exhibits more robustness against increasing

noise artifact. To maintain accuracy, robustness, and efficiency under varying noise artifact,

we developed the hybrid estimator to combine the strengths of both the signal processing and

deep learning estimators. Under increasing noise artifact, the hybrid estimator automatically

switches from signal processing to deep learning to take advantage of its higher level of

robustness. Conversely, the hybrid estimator switches back to signal processing when noise

artifact diminishes to benefit from its higher efficiency and accuracy.

The key to the design hybrid estimator is to identify the metric used to make the switching

decision. We explored motion intensity and EQI as two alternative metrics used to choose

between the two estimators. Motion intensity is defined as the standard deviation of the

magnitude of the tri-axial acceleration in a 60-second window [181]. It can be obtained from

the IMU sensor in smartwatches. In comparison, as defined in Section 12, EQI characterizes

the estimation quality that may be influenced by noise artifact in general, which may include

both motion and other sources of noise (e.g., poor sensor contact).

For either motion intensity or EQI, we applied a grid search to find the best switch threshold

that leads to the lowest mean absolute error (MAE) in RR measurements. We found

experimentally (see evaluation in Section 2.5) that EQI outperforms motion intensity in

accuracy and efficiency. In addition, EQI is derived from the PPG signal itself, which does

not rely on external sensors such as the IMU.
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Figure 2.8: Architecture of hybrid estimator. RespWatch_RIIV is the output from signal
processing estimator with RIIV; RespWatch_DL is the output from deep learning estimator.

The EQI-based hybrid estimator is illustrated in Figure 2.8. The EQI is first generated from

the signal processing estimator. Since the signal processing method is highly efficient, the

execution of the signal processing estimator incurs minor overhead for the whole system.

After we get the RR measurement and EQI from signal processing estimator, if the EQI is

below the switching threshold, the hybrid estimator directly output RR measurement from

signal processing estimator. Otherwise, it invokes the deep learning estimator to produce the

RR measurement.

2.4 User Study

We collected PPG data through a user study involving 32 healthy volunteers. The data

collected in this study was primarily used to evaluate the accuracy of the RR estimations

(see Section 2.5). The run-time efficiency of the estimators was empirically evaluated on

smartwatches in Section 2.6.

2.4.1 Devices

We instrumented mainstream smartwatches, Fossil Gen4 Explorist, to collect raw PPG signals

used to evaluate the RR estimations from RespWatch. The ground truth was obtained with

Vernier Respiratory Go Direct Respiration Belt, which was used in the previous respiration
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Fossil Gen4 Explorist

o PPG at 200Hz

o IMU at 50Hz

Duration (minutes)
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B. C.
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Res�ng

Figure 2.9: (A). Sequence of activities of the collecting procedure. (B). Fossil Gen4 Explorist
smartwatch instrumented for this study. (C). Vernier Respiratory Go Direct Respiration Belt
as ground truth.

studies [36, 123]. We also collected acceleration data from the IMU on the watch to measure

motion intensity during the study. During data collection, each participant was asked to

wear the belt over their chest and the smartwatch on their non-dominant hand. A custom

application was installed on the smartwatches to record the data from the PPG sensor at

200Hz and IMU at 50Hz. The data were initially stored locally on the smartwatches, and

then uploaded to a secure server.

2.4.2 Study Protocol

32 healthy volunteers were recruited through flyers posted across the campus at Washington

University in St. Louis. All the participants met the inclusion criteria (between 18 and 69

years of age, with no heart disease, not pregnant at the time of recruitment, and not having

an implanted pacemaker). At the end of the study, a compensation of a $25 was provided.

The institutional review board (IRB) of Washington University in St. Louis approved this

study, and written consents were obtained from all participants (IRB#2019-04150). The

data was collected in various scenarios, including (1) watching a video, (2) preparing and

delivering a speech, (3) doing mathematical tasks on computers, and (4) holding a cold object
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for an extended period. All the activities involved motions to same degree. The timeline of

the data collecting procedure and the devices is shown in Figure 2.9.

Two participants’ data were lost due to issues during data upload. As a consequence, only

30 participants’ data were used in the analysis and evaluation. Additionally, we exclude the

data when the ground truth is not available, i.e., the Respiration Belt failed to acquire valid

RR measurements. This occurred during some segments when participants were delivering

the speech, as speaking caused unreliable RR measurements [65].

2.4.3 Impacts of Activities
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Figure 2.10: RR measurements, motion intensity, and EQI of one user participating in the
study.

To show the impacts of noise or activity on RR measurements, we plot the RR time series

produced by the RespWatch estimators for one user over the entire session, as shown in

Figure 2.10 (excluding the speech activity as mentioned in the last subsection). The top
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graph shows the motion intensity and EQI overtime. We observed that both motion intensity

and EQI have larger variations during math and free time periods. However, the correlation

between the EQI and motion intensity was only around 0.17 (Pearson Correlation, p < 0.5),

which suggests that motion might not be the only source of noise artifact for the PPG sensor.

The solid red vertical lines mark the timestamp when the signal processing estimator failed

to produce RR measurements when a data window contains no valid sequence after the

artifact elimination. In the bottom graph of Figure 2.10, we show the ground truth and the

output from the signal processing and deep learning estimators. Since estimations from RIIV

outperforms those from RIAV and RIFV (see Section 2.5), we only displayed the output

with RIIV here. During the video period, we had fewer motions with lower EQI, and the

signal processing outputs (RespWatch_RIIV) were closer to the ground truth than the deep

learning outputs (RespWatch_DL). This shows that the signal processing estimator achieved

high accuracy in the presence of moderate noise artifact (as indicated by the low motion

intensity and EQI). However, when the motion or EQI increased, e.g., during math or free

time periods, the signal processing estimator produced larger errors than the deep learning

estimator. This demonstrates that deep learning estimator is more robust against higher

level of noise, and highlights the advantages of our hybrid approach that utilizes the signal

processing for high accuracy when EQI is low, and deep learning for robustness when EQI is

high.

2.5 Evaluation of RespWatch

This section presents an evaluation of the three estimators supported by RespWatch. The

accuracy of RR measurements was assessed using the mean absolute error (MAE) in breaths
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per minute (bpm), defined as:

MAE =
1

n

n∑
i=1

|ŷi − yref,i| (2.5)

where n is the number of data windows, ŷi is the estimated RR and yref,i is the reference RR

from ground truth. Moreover, we analyze the trade-off between accuracy and yield of RR

measurements.

2.5.1 Signal Processing Estimator

We compared the performance of our signal processing estimator to existing methods for

measuring RR based on PPG.

We implemented three state-of-the-art methods from [85, 150] as the baselines for performance

evaluation. Those methods were previously evaluated on large data sets, and have been

adapted to work with wrist-worn PPG [110]. The first two baseline methods were the simple

fusion and smart fusion methods from [85], which utilized Fourier transform and fusion

techniques. The third baseline method [150] utilized autoregressive (AR) models. All the

three baseline methods have the data admission controls, which discard an entire data window

that are found to contain noise artifacts. Table 2.1 shows the performance of the baseline

methods on our dataset. We observed that a large portion of data windows were discarded

due to the admission control. Unlike the baseline methods, our signal processing estimator

employs fine-grained artifact elimination and can estimate RR even with some artifacts in

a data window. We only discarded 13.86% of the data windows that contained no valid

sequence after the artifact elimination. Hence, our signal processing estimator achieved a

significant higher yield of 86.14% than the baseline methods.
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Table 2.1: Baseline methods on our dataset

Method Yield MAE (bpm)

Karlen (2013) (Simple Fusion) 14.95% 1.876
Karlen (2013) (Smart Fusion) 11.87% 1.603
Pimentel(2017) (AR models) 14.29% 1.704
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RIIV(EQI sorted)

RIFV(EQI sorted)

Karlen(2013) simple fusion

Karlen(2013) smart fusion

Pimentel(2017)

Figure 2.11: MAE vs. Yield. Different colors represent the estimations from RIAV, RIIV
and RIFV, respectively. The line styles indicate different sorting criterion (Motion, EQI).
The baselines are illustrated as dots with different shapes and colors.

We analyzed the trade-off between accuracy and yield of RR measurements. Figure 2.11

shows the MAE-yield curves for the signal processing estimator. As motions are previously

used as a metric to reject the PPG measurements [140] and the proposed EQI is also capable

for the same propose, we rank the data windows based on the corresponding motion intensity

and EQI, respectively, to investigate the accuracy at different yields. For motion intensity, we

computed the motion intensity for each PPG data window, and sorted the data windows by

ascending motion intensity. Then, we calculated the MAE of RR measurements with motion

intensity in the lowest α-th percentile, ranging from 5% to 100%. Similarly, we also calculated
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the MAE for different yields using EQI as the metric for sorting the data windows. In Figure

2.11, Different colors distinguish the estimations from different respiratory-induced variation

signals (RIAV, RIIV, RIFV), and different line styles distinguish the different ranking criterion

(Motion intensity or EQI). For example, the dashed lines with square markers are the MAE

curves with increasing motion intensity. Each point (α, e) on the dashed lines indicates the

MAE of e on the subset of data windows whose motion intensities are in the lowest α-th

percentile, corresponding to the yield of α%. The max yield of the signal processing estimator

is 86.14% because we discarded 13.86% of the data windows that contain no valid sequence.

In contrast, as the baseline methods have fixed data yield due to their data admission control

policies, the results of the baseline methods are displayed as three discrete data points in the

figure.

Observing the dashed lines with square marks in Figure 2.11, we found that all the three

outputs from the signal processing estimator, RIAV(motion sorted), RIFV(motion sorted)

and RIIV(motion sorted), had an increasing trend, suggesting that the motions indeed have a

negative influence on the estimation accuracy. In practice, we may select the motion intensity

threshold to achieve the desired trade-off between accuracy and yield of RR measurements
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based on Figure 2.11. RIIV(motion sorted) outperforms all the baselines when at the same

yield level. And RIIV(motion sorted) has the lowest MAE at any yield level among the three

outputs from the signal processing estimator. This suggests that the RIIV is the most suitable

respiratory-induced variation signal to estimate RR from the smartwatch PPG signals.

Next, we investigate the relations between the EQI and the accuracy of RR measurements. We

note that RIIV(EQI sorted) significantly outperformed the three baseline methods, achieving

around 3-fold decrease in MAE for the same yield, and also around 3-fold increase in yield

for the same MAE. The solid curves in Figure 2.11 shows that the MAE also increases with

EQI. However, the three solid lines are below the corresponding dashed lines with same color,

especially for the RIIV and the RIAV. This indicates that when targeting the same yield,

using EQI to reject PPG data can have lower MAE than using motion intensity. In another

viewpoint, when targeting at the same accuracy, using EQI as the criterion to reject data

can have a higher yield. Therefore, EQI is a more accurate indicator of measurement quality

than motion intensity, as noise artifacts may be caused by sources other than motion.

The above evaluations demonstrated that our signal processing estimators can provide the

flexibility to balance accuracy and yield according to the application requirements. Since the

RIIV shows the best result, we focused on the signal processing estimator with RIIV for the

following evaluations.

2.5.2 Deep Learning Estimator

In this subsection, we compared the deep learning estimator and the signal processing

estimator. The deep learning estimator directly learns from the waveform and does not

rely on any admission control or artifact elimination, so it produced estimations for all data

windows, achieving 100% yield. We employed a 5-fold sample-based cross validation (CV)
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scheme to train and test our deep learning estimator. We ensured there is no PPG waveform

overlap between the training and testing set. The out-of-sample error is reported in the

evaluation. Figure 2.12 and 2.13 plot the MAE-yield curves of the different estimators when

the RR measurements are sorted based on EQI and motion intensity, respectively. The EQI

is from the signal processing estimator with RIIV. For those 13.86% of data windows that

signal processing estimator cannot estimate RR, we assigned an EQI of infinity. We observe

that the signal processing estimator (RIIV) achieved lower MAE than the deep learning

estimator when the EQI or motion intensity are lower. However, as EQI or motion intensity

increases, the deep learning estimator becomes more accurate, suggesting a higher level of

robustness against noise artifacts. The MAE dynamic range of deep learning is also not as

large as it of signal processing, indicating deep learning is less sensitive with varying noise

artifacts. The crossing point of the signal processing and deep learning curves in Figure 2.12

is at yield of 63%, while it is only at yield of 37% in Figure 2.13. And the deep learning curve

in Figure 2.12 is relatively smooth compared to it in Figure 2.13. These once again show

that the EQI can indicate the accuracy for RR measurements more accurately and smoothly

than the motion intensity even for deep learning estimations.

2.5.3 Hybrid Estimator

For the evaluation of our hybrid estimator, we report the outputs dynamically chosen from

signal processing and deep learning based on the best switching point. The best switching

point of either EQI or motion intensity was obtained offline via the grid search. For real use,

the hybrid estimator automatically switches between the signal processing and deep learning

according to the best switching point without human efforts.

We first evaluated the EQI as the switching criterion. The green curve in Figure 2.12 shows

the results of the hybrid estimator with EQI (Auto_switch_EQI ). It achieves the best MAE
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Figure 2.14: MAE in different yield bins with the EQI sorting criterion.

(2.017 bpm) compared to both deep learning and signal processing. The best switching point

based on the grid search is around EQI = 2.3, corresponding yield of 53%, which means

that the hybrid estimator automatically chooses signal processing when EQI ≤ 2.3, and

chooses deep learning when EQI > 2.3. We further investigated the relationship between

MAE and EQI for the signal processing and deep learning estimators, as shown in Figure

2.14. The data windows were still sorted with the increasing EQI. Each bin contains the

data windows with EQI from α-th to (α + 10)-th percentiles. We observe that the MAE

of RespWatch_RIIV becomes significant higher than RespWatch_DL from the sixth bin,

corresponding EQI of range [2.01, 2.45]. The grid search was in a finer granularity, so we

found the best switch point of EQI at round 2.3.

Besides, we explored the hybrid estimator switching with motion intensity, using the same

grid search approach to find the best switching point of motion intensity. The green curve

in Figure 2.13 shows the results. The hybrid estimator switching with motion intensity

demonstrates slightly higher MAE (2.076 bpm vs. 2.017 bpm) than switching with EQI. And
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it jumped to deep learning earlier at the yield of 13%, which utilizes significantly more times

of deep learning outputs. This makes the hybrid estimator with the motion intensity less

efficient. As a result, EQI is a better switching criterion in terms of both the accuracy and

efficiency. So, in real implementation of RespWatch, we developed our hybrid estimator with

the EQI = 2.3 as the switching threshold.

2.6 System Experimentation

2.6.1 Implementation on Smartwatches

Table 2.2: Information of the testing smartwatches

Device Platform RAM System PPG Sensor

Fossil Gen4 Wear 21001 512MB H PAH80112(200Hz)
Fossil Sport Wear 31003 512MB H PAH8011 (100Hz)

We have implemented RespWatch on Wear OS in mainstream smartwatches. Wear OS [50] is

a version of Android operating system tailored for smartwatches and other wearables. For

the CNN model in the deep learning estimator, we first trained the model on the server in

PyTorch [142] framework, and then transcripted the model into mobile version[153] on Wear

OS. For the hybrid estimator, we chose the switching scheme of EQI = 2.3 based on our

results in Section 2.5.3.
1https://www.qualcomm.com/products/snapdragon-processors-wear-2100
2https://www.pixart.com/products-detail/27/PAH8011ES-IN
3https://www.qualcomm.com/products/snapdragon-wear-3100-platform
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2.6.2 Empirical Evaluation

Two smartwatches were used in our empirical evaluation, shown in Table 2.2. Each experiment

was repeated 500 times, and the average of running time and resource usage are reported in

Table 2.3 and 2.4.

Table 2.3: Profile of Signal Processing Estimator

Devices Preprocessing Art. Elim.* &
Pulse Peak Finding

RIXV* Extraction &
Adaptive Peak Finding Total Time Ave. CPU( %) Energy

Fossil Gen4 (H) 5.836ms 19.139ms 19.919ms 44.895ms 53.53% Light to Medium
Fossil sport (H) 5.385ms 16.058ms 16.621ms 38.064ms 50.25% Light to Medium

*Art. Elim.: Artifact Elimination
*RIXV: Respiratory-Induced Variations (RIAV, RIIV, RIFV).

Table 2.4: Profile of Deep Learning and Hybrid Estimator

Devices Prep.
(ms)

CNN
(ms)

Deep learning
Total Time (ms)

Ave. CPU
(%) Energy Hybrid with

EQI*
Hybrid with
Motion Intensity*

Fossil Gen4 (H) 8.856 6504.262 6592.828 85.34% >Medium 2879.811ms 5780.655ms
Fossil sport (H) 8.472 7934.962 7943.434 70.23% ∼=Medium 3453.740ms 6948.851ms

*The running time of hybrid estimator is the expected running time based on our dataset with the corresponding best
switching threshold.

The signal processing estimator was highly efficient with a total running time less than 50

ms (see Table 2.3), whereas the deep learning estimator had a total running time higher

than 6000 ms (as shown in Table 2.4). The average energy consumption and average CPU

utilization were acquired through the Android Profiler [4]. The signal processing estimator

consumes less energy with lower CPU utilization. For the deep learning estimator, the CNN

model consumed about 98% of the total time, suggesting the need for optimization in the

future. For the hybrid estimator based on the best switching threshold on our dataset, the

expected running time of switching with EQI was significantly lower than switching with

Motion Intensity.
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Our results established the feasibility to run RespWatch locally on smartwatches for RR

monitoring. Even though the deep learning estimator takes about more than 6 seconds to

run per RR measurement, it only needs to be executed every 1 minute for a RR sampling

rate of once per minute. The results also highlight our hybrid approach, which only invokes

the deep learning estimator in the presence of significant noise artifacts with high EQI. The

hybrid method drastically lowers the running time and saves energy while maintaining high

accuracy.

2.7 Discussion

We have demonstrated our RespWatch in this study, which outperforms the state-of-the-art

baseline methods. The empirical evaluations also quantitatively reveal the execution efficiency

and capability of running on the commercial smartwatches. Nevertheless, there are still some

room for future improvement.

RR measurement with excessive motions. Our RespWatch system has been tested in

various activity scenarios involving motions, but it did not cover all scenarios in our daily

life. The evaluations in this paper shows the feasibility and high accuracy of RespWatch in

situations, like working in front of computer, resting and others activities with motions to

some degree. The applicability of RespWatch, especially in scenarios with excessive motions

(e.g. running) still needs to be evaluated.

Inter-individual Difference. For both the signal processing estimator and deep learning

estimator, we applied the same parameters for all the subjects. The differences between

individuals (e.g., skin tone and wearing habits) may have impacts on PPG signals. Earlier

studies [74] show the personalized models may mitigate the impact. A potential research
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direction is to leverage personalized models while minimizing the burden of the personalizing

process.

Detection of Potential Respiratory Diseases. Currently, our evaluation is limited

to healthy volunteers. Further studies are needed to test the feasibility of wearable RR

monitoring for patients and exploit the technology to detect respiratory conditions.

2.8 Conclusion

RespWatch is a wearable sensing system for robust RR monitoring on smartwatches with

PPG. We explored signal processing, deep learning and hybrid approaches to measure RR

based on PPG signals. We collected a large dataset from 30 participants who performed

multiple activities with the smartwatches. The signal processing estimator achieved higher

accuracy in the presence of moderate noise artifacts, while the deep learning estimator was

more robust to significant noise artifacts. Given the complementary strengths, we developed

a novel hybrid estimator that can automatically switch between the signal processing and

deep learning based on the EQI. The hybrid estimator not only achieved the best accuracy

but also leveraged the high efficiency.
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Chapter 3

Detecting Objective and Subjective

Stress Using Smartwatches

This chapter introduces stress detection models using smartwatches. Unlike the respiratory

rate measurements, stress is a more complex physiological or psychological response.

3.1 Introduction and Related Work

Stress is a common health concern and chronic stress is associated with the development

of depression and anxiety [204], immune function dysregulation [122, 176], cardiovascular

disease [112], decreased work-related performance [6], quality of life [169], and drug use [185].

In the United States, over 50% of the adult working population have described their work

productivity being affected by stress [7]—resulting in diseases, absenteeism, presenteeism,

and staff turnover. Such loss in productivity cost nearly 187 billion dollars [56].

45



The accumulated daily stress contributes to chronic stress. In spite of its significant impact,

routine measurement of stress has been challenging. The complexities of measurement arise

from difficulties in discerning appropriate physiological and subjective measures of stress,

and the considerable intra- and inter-individual differences in the manifestations of stress

[49]. Objective measurements have relied on the measurement of cortisol and inflammatory

cytokines [69, 141] that have been used as successful objective proxies for measuring stress

[96]. However, such measurements are not pragmatic in real-world, routine stress situations.

The most widely used method for measuring stress is through questionnaires. Survey scales

such as the Perceived Stress Scale (PSS) [28], and Depression Anxiety Stress Scales (DASS)

[132] have been shown to be effective in measuring perceived stress in different cohorts [166,

186]. Although useful, these self-reported questionnaires are time-consuming, suffer from

recall bias and provide only a snapshot view of an individual’s perceived stress [49].

Newer approaches using mobile or internet-enabled devices with ecological momentary assess-

ments (EMA) and participant self-reports, can considerably increase the sampling frequency,

providing insights into individuals’ activities, affect and behaviors [182]. Within this context,

EMAs or self-reports afford a viable mechanism to detect and characterize the evolution and

progression of stress [209]. However, even EMAs or self-reports with a high frequency of

contact have shown to decrease the quality and response rate among participants over time

[76, 209]. This is because EMAs and self-reports have been shown to be affected by recall

bias, fabrication, and falsification in reporting [70].

The exponential growth and adoption of wearable technology have afforded new opportunities

to measure and monitor a number of physiological signals including skin conductance,

skin temperature, electrocardiogram (ECG) and photoplethysmogram (PPG). Physiological

measurements derived from these sensors have also been used to develop machine learning-

based prediction models [70, 94, 151, 175]. For developing these models, most of these studies
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have relied on laboratory-based trials where artificial stress stimuli were induced. For example,

Hovsepian et al. used a combination of ECG and respiration inductive plethysmography

to predict stress using machine learning algorithms [70]. Similarly, King et al. focused on

a cohort of pregnant women to develop stress models from laboratory-based studies and

translated these models for “in the wild” studies [94]. Several other studies have also developed

similar models using a combination of sensors relying primarily on laboratory-based studies

[151, 188].

Although these models had relatively high performance in laboratory-based settings, there

are several challenges. First, most of these studies used a combination of multiple body-

worn sensors that are pragmatically difficult to translate for real-world clinical applications.

The chest belts that were used in several of these studies [70, 94, 151], are cumbersome

to use in free-living situations, limiting user compliance and data yield. Second, many of

the machine learning models that were developed using the laboratory-based trials may

not be applicable in free-living settings, where we would need to rely on participant self-

reports rather than specific induced stress stimuli. To address these gaps, we had the

following methodological and research objectives: first, to instrument a commercially available

smartwatch for detecting and predicting stress in controlled scenarios. Such measurements

with a commercial smartwatch—using both physiological measurements and associated self-

reports—have translational potential for use in clinical settings. Second, to compare the

objective markers of stress with participant-reported subjective markers of stress from self-

reports. Such a comparison can help in establishing the viability of using self-reports as

a potential proxy measurement mechanism for stress. Finally, to develop an approach for

creating personalized stress models by accounting for inter-individual differences.
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3.2 User Study

The user study was the same in Chapter 2. Here we elaborate on some details related to

stress.

3.2.1 Participants

32 healthy volunteers were recruited through flyers posted across the campus at Washington

University in St. Louis. Respondents who met the inclusion criteria—between 18 and 69

years of age, with no heart disease, not pregnant at the time of recruitment, and not having

an implanted pacemaker—were screened over the phone; if participants met all inclusion

criteria, they were recruited for the study. All participants received a $25 Amazon gift card.

The institutional review board of Washington University approved this study, and written

consents were obtained from all participants (IRB#2019-04150).

3.2.2 Study Design and Procedure

Participants completed an approximately 2-hour laboratory-based phase and a 24-hour field-

based phase. This study mirrors previous experimental designs utilized for detecting stress

patterns using wearable sensors [70, 175].

In the laboratory-based phase, recruited participants first completed two surveys on paper:

the 10-item Perceived Stress Scale (PSS) [28] and the 42-item Depression Anxiety Stress

Scales (DASS) [132]; both of these surveys have been shown to be effective in the measurement

of perceived stress and depression [27, 136]. After the completion of the surveys, participants

were asked to wear the Fossil Gen4 Explorist (see Figure 3.1 (B)) smartwatch on their

non-dominant hand.
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Figure 3.1: Study procedures and devices

The laboratory-based phase included several stages (see Figure 3.1 (A) for the sequence).

First, participants had a 20-minute resting period, during which they watched a relaxing

nature-oriented program, as a “non-stressed” period [70, 136, 151] (we refer to this period

as “video-based resting period”). During this period, participants were left alone in a room

and asked to relax as much as possible. If participants felt stressed or uncomfortable during

this video-based resting period, they were instructed to discuss with the study coordinator

to potentially stop their continued participation. No participants withdrew during this

video-based resting period.

After the first 20-minute resting period, participants were provided with general instructions

regarding a series of tasks related to public speaking, mental arithmetic, and cold stressor.

These tasks corresponded to social, cognitive, and physical stressors and have been applied as

stress-inducing stimuli in controlled settings in previous laboratory-based studies [70, 87, 151].

Participants completed each of these stressor tasks in the same order, with 5-minute resting

and recovery periods between each stressor task. We asked the participants to hold their

watch-wearing hand as still as possible during the laboratory-based phase, as the physiological

signals recorded from the smartwatch are vulnerable to physical motion [187].
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The first task was the public speaking task. For this task, participants were given a topic,

a 4-minute preparation time, and then were asked to speak to the study coordinator and

a researcher in the room for a period of 4 minutes. At the end of the public speaking task,

participants were given a 5-minute rest and recovery period. Next, participants were given

instructions regarding a mental arithmetic task. This task was completed on a computer

using an application that we developed (see Figure 3.1 (C)). The task involved mentally

adding the digits of a number, and then adding the total to the original number. For example,

if the initial number was 234, the sum of the digits was 9, and the next number would be

243. On the application, there was a countdown timer (for 4 minutes), and an indicator for

the number of errors that the participant made. If a participant made three consecutive

errors, they had to restart the task. Participants were asked to achieve at least 20 accurate

responses. Participants completed the arithmetic tasks sequentially twice, once standing up,

and once seated on a chair, in the same order. At the end of the arithmetic task, participants

were given another 5-minute rest and recovery period.

The last task was the cold stressor task. We used a custom-made solid stainless-steel cylinder

(10 centimeters high, 5 centimeters diameter) that is routinely used for cold allodynia tasks

[206]. The rod was kept in the refrigerator for a period of 12 hours and measured approximately

at 4℃ at study time. The task involved each participant holding the rod for a period of

90 seconds on each hand (first, in their dominant hand, followed by the non-dominant, in

that order). If the pain was unbearable, participants were asked to release their hold prior

to the end of the testing period (i.e., 90 seconds). At the end of the cold stressor task,

participants were asked to watch another nature-oriented program for a period of 20 minutes

as a relaxation period.

As previously described, at the end of each stressor task, there was a 5-minute resting and

recovery period that potentially allowed for the stressor to subside prior to the next exposure.
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Additionally, at the end of each stressor task, participants were automatically sent a self-report

on the watch that asked them regarding their “stress” with a 4-option response: “[Happy]

[Stressed] [Tired] [Neutral].” This self-report was based on scales used in previous studies

on the measurement of stress [70, 94, 151]. For example, Zachary et al. showed that the

“Happy” response was negatively correlated to the intended stress, which can be used as an

indicator of non-stress [94]. The “stressed” and “neutral” responses were direct indicators of

self-reported (i.e., subjective) stress and non-stress.

At the completion of the final resting and recovery period, participants were given instructions

for the field-based phase on wearing the watch, charging, and responding to self-reports. In

addition, participants were given the smartwatch, its charger, and a paper-based physical

activity tracker. Participants recorded their physical activity that they participated in while

wearing the watch along with the start and finish times on the paper-based physical activity

tracker. Additionally, all participants had a return date and time scheduled at the end of the

field phase such that all materials could be collected. At the return visit, all participants

were given a $25 Amazon gift card for their study participation. The data collected in the

field phase was exploratory to evaluate the viability of collecting self-reports and collecting

physiological data regarding stress in free-living situations.

3.3 Method

3.3.1 Definition of Subjective and Objective Stress

As previously described, we used two descriptors for categorizing the signals drawn from

the smartwatch. First, we used the signals drawn from the stressor tasks (social, cognitive,

physical) as “stress periods”, categorizing them as objective stress. We defined objective stress
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as the biological reaction to a stressful exposure that manifests with biological reactions or

changes (e.g., changes in cortisol levels) [100, 177]. Second, we used the self-reported responses

from participants (categorized as stressed, not stressed) as the labels for categorizing the

stressor tasks. We call this subjective stress or a subjective feeling of “being stressed” [49].

Figure 3.2: Comparing objective stress and subjective stress.

Based on a participant’s self-reported response after a task, we labeled the preceding task

as “stressed” or “not stressed.” Our framework for analysis compared the performance of

stress prediction models developed using objective stressors and the subjective responses (i.e.,

self-reports) for each of the stressor tasks (see Figure 3.2). This approach established the

potential for using subjective responses as a proxy for stressors.

3.3.2 Data Preprocessing

We conducted several data pre-processing tasks to translate the raw data file into interpretable

physiological readings. This preprocessing pipeline was based on the RespWatch (see Chapter

2). Across all study participants, there was an average sampling rate of 206.02 Hz for the
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PPG sensor and 48.81 Hz for the IMU sensor. As the sampling rates were not stable, we

synchronized data based on the timestamps of each sensor event and then re-sampled the

synchronized PPG and IMU data at 200Hz with Hermite spline interpolation [129]. The

re-sampled data were segmented into sliding windows with a window size of 60 seconds and a

step size of 20 seconds. The 60-second window size has been previously used for stress-related

studies [70, 94].

Intense movement and poor physical contact between the PPG sensor and skin can potentially

degrade the quality of the PPG signal. Towards this end, we first employed a forward-backward

Butterworth bandpass filter to remove the noise outside of heart rate and respiration band

with a cutoff frequency of 0.15Hz and 4Hz in each window [44]. To screen out motion artifacts

and poor signal sequences within the heart and respiration band, we further utilized a sliding

sub-window approach, which divided each 60-second window into 10-second sub-windows

with a 2-second step size. The motion detector [54] and heartbeat pattern detector [135]

were then applied on each of these 10-second sub-windows. The motion detector detects

movement based on the IMU sensor. The heartbeat pattern detector can validate whether a

PPG waveform matches a valid heartbeat pattern.

Only the sub-windows that passed both detectors were marked as valid signals. Once we

iterated through all sub-windows within the 60-second window, valid consecutive sub-windows

were merged into a larger “valid” segment. Features were extracted only from these valid

segments of signals. This approach helped in eliminating short invalid signal periods within

60-second windows and increased the availability of testing samples (see a similar approach

in [94]). Figure 3.3 shows an example of how we translated the raw PPG signal into “valid”

and “invalid” segments. We set a threshold of 25% for the invalid period. If the invalid period

was more than this threshold, the entire 60-second window was discarded.
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Figure 3.3: Overview of the multi-stage data processing, machine learning for objective and
subjective stress machine learning pipeline. (LOSO: leave one subject out.)

We also retrieved self-reported responses from participants at the end of each stressor task.

The self-reported responses were grouped into two categories: “stressed” (with responses of
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stressed) and “not stressed” (with responses of happy, tired, or neutral). These responses were

used as labels for the analysis for determining subjective stress patterns (see Section 3.3.1).

3.3.3 Feature Extraction

Features were extracted from valid segments in the 60-second window after pre-processing.

We used the peak detection method with adaptive filtering [34] to extract the inter-beat

interval (IBI) series from PPG data. IBI refers to the time interval between individual heart

beats. Figure 3 displays the waveforms from the PPG sensor. Each peak (marked by a red

dot) represents one heartbeat. By detecting the peaks of the waveform and calculating the

horizontal distances between the dots, we can extract the time series of the IBI.

Heart Rate Variability (HRV) features and other non-HRV features were derived from the IBI

series. We also used the Detrended Fluctuation Analysis (DFA), a method to measure the

statistical self-similarity of a signal, to determine non-stationarity within the IBI series [146].

In addition, we extracted respiration-related features, which have been known to be associated

with stress [66, 70]. Though the smartwatch sensors do not directly provide respiratory

rate, we estimated respiratory rate based on three respiratory-induced variations from the

IBI series and the PPG signal, similar to what has been used in previous research [80,

85]: respiratory-induced amplitude variation (RIAV), respiration-induced intensity variation

(RIIV), and respiratory-induced frequency variation (RIFV). RIAV is the change in peripheral

pulse strength, caused by reduced ventricular filling, and is the peak height change in the raw

PPG waveform. RIIV is the change of perfusion baseline, caused by the intrathoracic pressure,

and is the intensity change in each peak-to-valley in the raw PPG waveform. Finally, RIFV

is the change of heart rate, caused by the autonomic response to the respiration cycle, and is

represented as the heartbeat interval change. We interpolated these three variations using
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linear interpolation at 100Hz. Since the respiration is cyclic, the respiration-induced variations

could be also cyclic. We employed Fast Fourier Transfer (FFT) with a Hamming window to

calculate the major frequency for each respiration rate variation in the data window. The

major sinusoidal frequency in the FFT was used as an estimation of the respiratory rate.

Table 3.1: Features that were extracted from the IBI and PPG signals.

Category Features

HRV features

SDNN, RMSSD, SDSD, pNN20, pNN50,
low frequency (LF) energy (0.04-0.15 Hz),
high frequency (HF) energy (0.15-0.40 Hz),
LF/HF energy ratio (LF_HF)

Non-HRV IBI features

mean, median, minimum, maximum,
interquartile range (iqr), 20th percentile,
80th percentile,
detrended fluctuation analysis (DFA),
heart rate

Respiration-related features FFT_RIIV, FFT_RIAV, FFT_RIFV
HRV features [180]: SDNN, standard deviation of the IBI of normal heartbeats; RMSSD, root-
mean-square of successive differences between normal heartbeats; SDSD, standard deviation of
differences between adjacent IBI; pNNX, percentage of successive IBIs that differ by more than X
milliseconds. Non-HRV features are other features extracted from the IBI time series. Respiratory-
related features: FFT_RIIV, FFT_RIAV, FFT_RIFV extracted with the RespWatch-based
pipeline and FFT.

A total of 20 features were extracted (see Table 3.1). All features were standardized using

a normalization method, where the median was removed, and each feature was divided by

its interquartile range. As there are large differences in an individual’s physiological signal

manifestations, we applied this normalization method on each individual’s feature data to

alleviate the subject-specific components in the feature data [70, 94, 189].
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3.3.4 Model Training and Validation

We focused on the machine learning analysis during the lab phase, as the primary goal was

to compare the objective and subjective stress detection performance. The presence of well-

defined “ground truth” data—the objective stressor tasks and subjective self-reports—during

this phase enabled such a focused analysis.

We used multiple machine learning models for both the objective and subjective stress

detection including support vector machine (SVM), random forest (RF), AdaBoost, gradient

boosting decision trees(GBDT) and logistic regression (LR). These models have been widely

applied in the literature on developing similar health-related models [12, 94]. These models

also generate probability estimates for each prediction. By tuning the threshold probabilities,

it is possible to achieve a desired sensitivity or specificity. We used a fixed threshold for the

prediction, where a signal with a probability>0.5 was categorized as stressed.

The hyperparameters for each model were tuned with grid search to achieve the highest

F1-Score. F1-score is the harmonic mean of the precision and recall [8]. When training the

model, we up-sampled the minority class to avoid skewed prediction on the majority class, as

we have more data in the resting period (non-stressor) than in the stressor tasks. We applied

leave-one-subject-out (LOSO) cross validation; in other words, we evaluated each participant’s

data with a model trained on all the other participants’ data. This ensured that there was no

overlap for each participant between the training and validation dataset. After choosing the

model with the best F1-score, we ran the feature selection algorithms to eliminate the highly

correlated [52] and unimportant features. For the SVM model with radial basis function

(RBF) kernels, we employed the multi-kernel learning for feature selection. The feature

importance was ranked based on the kernel weight coefficient for each feature [161]. For the

tree-based models, the feature importance was derived from the Sklearn Python package
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[1]. For the LR, the weight coefficient of each feature was regarded as feature importance.

Feature selection helped in trimming the model and avoiding overfitting.

For both objective and subjective stress models, we computed the area under receiver

operating curve (AUROC), accuracy, sensitivity (recall), specificity, and precision (positive

predictive value). All the evaluations were run 10 times, and an average performance metric

with standard deviations was used for all reported results. In the machine learning models

described above, we first used the same threshold of probability estimates (=0.5) for each

participant. In other words, we classified data signals as stressed if the probability estimates

exceeded this threshold.

3.3.5 Personalized Subjective Models with Adaptive Threshold

The subjective self-reported response usually suffers from individual differences in responses

[193], as it is “subjective” to individuals. To address the challenge induced by those inter-

and intra-individual differences in the experience of stress, previous literature [70, 151] had

investigated training separate machine learning models for each individual. Nonetheless, this

approach requires a complex individual training process before the deployment, and could

potentially incur overfitting issues. To handle the inter-individual differences and alleviate

the burden of training personalized models for each person, we proposed a novel personalized

subjective model with an adaptive threshold. We observed that the mean PSS score of

people who reported being stressed was larger than those who reported not being stressed,

for both the social and cognitive stressors. Although the differences between the non-stressed

and stressed groups were not statistically significant (see Table 3.2), they could be possibly

used to guide subjective stress prediction models. As such, we incorporated a personalized

threshold into the general subjective stress model, by exploiting the correlation between the

model prediction threshold and the participant’s pre-study PSS score.
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Table 3.2: Differences in the pre-study PSS scores for participants reporting as stressed or
non-stressed with each of the stressor tasks (on self-reports).

PSS score
Difference of mean p value

Social (Speech) 3.14 0.085
Cognitive (Math) 3.18 0.055
Physical (Cold) 1.67 0.243

First, we trained a general subjective stress model based on the self-reported response. Then,

we used a grid search to extract the threshold achieving the best prediction accuracy score

of subjective stress detection for each participant in the training set. Based on the best

threshold, we used ridge regression [58] to fit the relationship between the best threshold and

a participant’s pre-study PSS score. The threshold for each individual in the testing set was

generated from the regression model, and we used this threshold to classify signals as stressed

or as not stressed for the individual. This approach personalizes the stress detection with

the generated threshold from the PSS score regression model, while avoiding the complexity

of training a personalized machine learning model for each individual (See Figure 3.4 and

Figure 3.3).

Train the general
subjec�ve stress

model

Grid search the best
threshold for each person

based on accuracy

Pre-study PSS score from
each user

Ridge regression of best
threshold and PSS score

General subjec�ve 
stress model &

threshold regressor

Applica�on to 
unseen user

Figure 3.4: Workflow of the personalized subjective stress detection model
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3.4 Evaluations

3.4.1 General Characteristics

All participants (n=32) successfully completed the entire study protocol. Participants were

primarily female (n=24), with an average age of 36 years (S.D.=12.6). Except for nine

participants who only completed part of the cold stressor tasks, all other tasks were completed

by all participants. In total, we captured 1700 minutes of PPG signal data, with a 1160-minute

resting period, and a 540-minute stressor period. However, data on two participants were not

used for final analysis due to a partial malfunction of the smartwatch.

The average PSS score across participants was 11, showing the participants had average

low or moderate perceived stress (S.D.=5.0); based on the PSS score range [27, 128, 147],

10 participants reported moderate stress, 22 participants reported low or no stress, and

no participants reported high stress. The average stress score on the DASS scale was 5.2,

(S.D.=4.5). A moderate positive relationship was observed between the PSS and DASS

(r=0.53, p<0.005).

3.4.2 Predicting Stressed and Non-Stressed Periods from Stressor

Tasks (Objective Stress)

We first investigated the ability of machine learning models to predict objective stress. Based

on the objective stress definition, we labeled the data during the stressor tasks as “stressed”

and the video-based resting period as “not-stressed”. A fixed threshold of 0.5 was adopted for

the probability output from the machine learning models: i.e., if the probability was greater

than 0.5, we classified the signal as stressed (and vice-versa).
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We found that the SVM outperforms other machine learning models, with an F-1 Score of

0.623, highlighting that these models have predictive capabilities of differentiating stress and

resting periods (see Table 3.3)

Table 3.3: Predictions of stressed and non-stressed periods using multiple machine learning
algorithms for objective stress. Mean (S.D.) are reported.

Model Precision Recall Specificity F-1 score Accuracy AUROC

SVM1 .625(.023) .621(.010) .888(.011) .623(.014) .826(.073) .790(.007)
RF2 .598(.030) .632(.011) .872(.012) .614(.013) .817(.074) .804(.013)
AdaBoost .472(.012) .641(.012) .785(.013) .543(.006) .750(.072) .749(.015)
GBDT3 .528(.011) .652(.010) .825(.006) .584(.009) .784(.072) .790(.011)
LR4 .516(.008) .649(.012) .817(.008) .575(.005) .776(.077) .772(.014)
1Support vector machine; 2Random Forest; 3Gradient Boosting Decision Trees; 4Logistic regres-
sion.

Next, we investigated whether the machine learning models can differentiate between the

three induced stressor tasks, i.e., the social (speech), cognitive (math), and physical (cold)

stressors. As the SVM achieved the best performance for differentiating stress and non-stress

periods, we evaluated its performance on each of the stressor tasks.

We found that the performance of the SVM model was highest for the social (F-1 score=0.685),

followed by the cognitive stressor (F-1 score=0.610). The cold stressor had the worst

performance (F-1 score=0.202), suggesting the difficulty to differentiate the cold stressor task

from a resting state, using features derived from PPG data (See Table 3.4).

We investigated the potential causes for the lower performance of the physical (cold) stressor

tasks. Using t-distributed stochastic neighbor embedding (t-SNE), an unsupervised approach,

we visualized the extracted features across the three stressor tasks (See Figure 3.5). The

t-SNE plot showed that features from the social and cognitive stressor tasks (yellow and red

dots) were separated from the large cluster of resting tasks (dark green dots). We can observe
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Table 3.4: Predictions of social, cognitive and physical stressor tasks using the SVM model.
Mean (S.D.) are reported.

Stressor Task Precision Recall Specificity F-1 score Accuracy AUROC

Social (Speech) .634(.023) .747(.033) .967(.004) .685(.020) .951(.004) .963(.006)
Cognitive (Math) .541(.025) .700(.033) .956(.004) .610(.023) .940(.004) .933(.006)
Physical (Cold) .124(.037) .740(.053) .745(.004) .202(.046) .732(.004) .744(.006)

a relatively clear separation boundary between the social and cognitive stressors and the

video-based resting period, but no clear separation boundary between the physical stressor

and the video-based resting period. This lack of a clear boundary or separation between the

physical stressor and the resting period potentially explains the lower performance on the

physical stressor.

3.4.3 Predicting Stressed and Non-Stressed Periods from Self-reported

Responses (Subjective Stress)

For predicting the subjective stress, we used the participants’ self-reported responses after

each stressor task as the ground truth. When a participant’s self-reported response was “not

stressed,” we labeled the data during that stressor task as “non-stressed” (and vice-versa).

Nearly 48% stressor tasks were labeled as “stressed” based on participants’ self-reported

responses. We first used the fixed threshold of 0.5 as the cutoff to classify the stressed and

non-stressed (same as the objective stress model).

Similar to objective stress, SVM achieved the highest F-1 score (0.520). However, the

model performance was lower, indicating that the subjective stress was potentially harder for

machine learning algorithms to detect.

We performed one-way ANOVA tests on all features (from Table 3.1) for each stressor task

comparing self-reported responses of “stressed” and “non-stressed” (See Figure 5). Comparing
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Figure 3.5: Clusters of various stressor activities based on t-distributed stochastic neighbor
embedding (t-SNE).

Table 3.5: Predictions of stressed and non-stressed periods using multiple machine learning
algorithms for subjective stress. Mean (S.D.) is reported (based on the fixed threshold of
0.5).

Model Precision Recall Specificity F-1 score Accuracy AUROC

SVM1 .469(.015) .584(.014) .801(.011) .520(.012) .744(.102) .719(.007)
RF2 .584(.030) .408(.017) .913(.007) .480(.022) .798(.099) .726(.007)
AdaBoost .458(.010) .521(.014) .815(.007) .487(.011) .744(.093) .694(.013)
GBDT3 .508(.009) .478(.014) .861(.004) .492(.010) .771(.094) .697(.009)
LR4 .433(.011) .598(.009) .765(.008) .502(.010) .717(.102) .720(.006)
1Support vector machine; 2Random Forest; 3Gradient Boosting Decision Trees; 4Logistic regres-
sion.

each stressor with the video-based resting (i.e., social stressor-resting (S-R), cognitive stressor-

resting (C-R), physical stressor-resting (P-R)), we found that the HR during social and
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cognitive stressors was significantly higher than during video-based resting. The SDNN and

LF were significantly lower during the cognitive stressor. SDSD and RMSSD were higher

for the social stressor. Other HRV features did not show significant differences between the

stressor and video-based resting.

Similarly, respiration-related features such as the RIAV_FFT and the RIIV_FFT were

significantly higher during the cognitive stressor. Nonetheless, comparisons between the

physical stressor and the resting phases showed fewer features with significant differences.

Similarly, we found that periods labeled using self-reported stress (i.e., subjective stress) had

fewer significant differences in the considered features compared with the objective stressor

models (See the last column of Figure 3.6), which were consistent with their lower machine

learning performance.

3.4.4 Predicting Subjective Stress with a Personalized Threshold

We used grid search to find the prediction threshold achieving the best accuracy for each

participant. Table 3.6 shows the prediction results using the best threshold. The results have

a significant improvement compared with the result with the fixed threshold (=0.5) (See

Table 3.5). However, this method involved the ground truth to select the threshold, which is

not generalizable to the unseen datasets.

To investigate the relationship between the PSS scores and the best probability threshold, we

measured the degree of association using Pearson’s correlation coefficient. There was a negative

correlation between the PSS score and the best probability threshold with r = −0.32, p = 0.07.

Participants reporting that they were stressed on their self-reports tended to have a higher

PSS score (i.e., higher perceived stress), and had a lower threshold of being predicted as
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Each row represents a feature; each column represents the comparison of stressed and not stressed groups. Colors represent
positive(red) or negative(blue) differences. For example, the heart rate (HR) is significantly higher (i.e., red) during social
stressor compared to during video-based resting. (S: social stressor; C: cognitive stressor; P: physical stressor; ALL: all three
stressors; R: video-based resting; Reported_1: stressed based self-reported response; 0: not-stressed based on self-reported
response and video-based resting; ∗p < 0.05, ∗ ∗ p < 0.005).

Figure 3.6: Differences of means for each feature between stressed and non-stressed (in both
subjective and objective stress).

Table 3.6: Model performance with using the best threshold for each participant. Mean
(S.D.) are reported.

Model Precision Recall Specificity F-1 score Accuracy AUROC

SVM1 .732(.014) .639(.017) .930(.005) .682(.013) .864(.105) .745(.007)
RF2 .649(.024) .620(.015) .899(.010) .634(.015) .831(.091) .768(.003)
AdaBoost .741(.044) .422(.029) .955(.012) .536(.025) .837(.110) .721(.016)
GBDT3 .705(.052) .603(.021) .923(.018) .650(.033) .850(.097) .755(.014)
LR4 .734(.014) .581(.017) .937(.006) .648(.007) .856(.116) .694(.024)
1Support vector machine; 2Random Forest; 3Gradient Boosting Decision Trees; 4Logistic regres-
sion.
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stressed. With a lower threshold, the machine learning models have a higher probability to

predict the signals as stressed.

Taking advantage of this observation, we trained the linear regression model with ridge

regression between the best threshold and the PSS score on the training set, Then, in the

test set, we generate the threshold from the trained regression model for each participant.

Unlike the best threshold, which needs the ground truth label in the test set to select for

each participant, the regression model is obtained from the training set, and the participants

in the test set do not rely on any specific ground truth labels, it can be generalized to new,

unseen participants.

Table 3.7 shows the LOSO cross-validation results with the personalized threshold retrieved

from the linear regression. The SVM model had the best performance with an F-1 score

of 0.599. The performance of the models dropped compared to the best threshold models

(Table 3.6) but were still considerably better than the fixed threshold (Table 3.5).

Table 3.7: Model performance using the threshold derived from the linear regression. Mean
(S.D.) are reported.

Model Precision Recall Specificity F-1 score Accuracy AUROC

SVM1 .598(.018) .601(.011) .879(.007) .599(.014) .810(.102) .751(.011)
RF2 .592(.017) .576(.016) .888(.009) .583(.018) .806(.093) .775(.006)
AdaBoost .332(.139) .021(.009) .988(.003) .039(.017) .783(.156) .714(.019)
GBDT3 .556(.012) .603(.011) .856(.006) .579(.010) .794(.116) .759(.012)
LR4 .504(.010) .564(.012) .833(.005) .532(.010) .767(.109) .693(.025)
1Support vector machine; 2Random Forest; 3Gradient Boosting Decision Trees; 4Logistic regres-
sion.
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3.5 Discussion

The impact of stress on the development of chronic and diseases is well-acknowledged—with

its label as a “silent killer.” [49]. In spite of its considerable effects on long term health,

we have limited mechanistic characterization of the causal underpinnings of stress. An

understanding of the interplay between subjective and objective markers of stress can provide

preliminary insights to address the deleterious effects of stress. There is limited consensus in

the current literature regarding the associations between subjective and objective stress. For

example, Föhr et al. found that subjective, self-reported stress was associated with objective

HRV-based stress and recovery, but was affected by several external factors (i.e., physical

activity and body composition). Others have noted that objective and subjective measures of

stress, in fact, measure different things, and may have different pathogenic consequences [169,

185], although both could lead to adverse outcomes [7]. We investigated subjective stress and

objective stress separately using data-driven approaches with machine learning techniques

and evaluated potential associations between them.

Towards this end, we conducted a laboratory-based study collecting physiological data on

a smartwatch on objective markers of stress and subjective participant responses (using

self-reports) on episodes of stress. Using machine learning techniques, we compared the

performance of models that used physiological signals to detect stress with the objective

markers, and with the subjective participant responses using self-reports. We found that

the performance of subjective stress models was lower than that of the objective models of

stress; however, the use of personalized thresholds, derived from standardized scales such as

the PSS improved the performance of the subjective models of stress. This study, conducted

using a commercial off-the-shelf smartwatch, affords new opportunities and directions for the
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study of stress in routine situations. We discuss the directions for future research on the

measurement of stress using smartwatches.

First, as opposed to prior studies our study utilized only a single smartwatch as opposed

to multiple body-word sensing devices [70, 151], and achieved a reasonable performance

compared to similar studies [70, 94, 151]. One of the highlights of our study is that the

smartwatch usage did not add additional stress to participants compared to the complex

body-worn devices used in other studies [152], which allows in capturing robust, potentially

unbiased signals. With the advances in wearable technology and modeling techniques, there

is considerable potential for improving the performance of stress prediction models. Closely

related is the fact that we used some respiration-related features from the raw PPG signal;

some of these features (RIAV_FFT, RIFV_FFT) showed significant differences between

periods of stress and resting and were used for the models. This suggests potential use for

utilizing respiration-related features for stress prediction. Although we are currently limited

to the respiration-related features available from the PPG sensors, this provides a potential

direction for future research.

Second, although commercial smartwatches, such as the one we used, afford considerable

capabilities for real-time, unobtrusive capabilities for physiological signal monitoring, there

are challenges to effective signal processing. We created a multi-stage data processing pipeline

that could be used for future studies relying on physiological signals from smartwatches. The

forward-backward filter that we used can remove high-frequency noise and baseline drift

without phase shifts. Given the impact of motion artifacts on smartwatch-based sensing,

our multi-stage approach could be used to mitigate the noise in the smartwatch signal data.

Our approach involved creating sliding windows and associated sub-windows (10s duration

with 2s step size) for feature extraction and noise elimination. Within the sub-windows, the

combination of the motion detector and heartbeat pattern detection can detect both motion
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artifacts and poor contact of the PPG sensor, potentially guaranteeing the elimination of

the noisy data. This contributes to a higher data yield, as we can preserve data after the

elimination of noisy spikes. Features extracted from the windows that are free from the

motion artifacts and noise are likely to introduce fewer confounders in the prediction models.

Third, our approach of utilizing inter-individual differences as an input for model prediction

offers new directions for modeling stress in free-living situations. Although in our case the

model performance did not improve much compared with the objective stress model, this

approach affords a realistic way to the personalized stress models. Previous studies (e.g.,

Hovsepian, K. et al. [70]) have explored the potential for developing personalized models based

on participants’ training data. However, such models are dependent on a limited amount

of participant training data and often do not scale to real-world applications. Additionally,

such models also tend to overfit on each participant, restricting generalizability. Smets et al.

conducted a large-scale stress study with wearable sensors in a free-living setting [189]; their

prediction model had an F-1 score of 0.4. In contrast, our approach utilizes a generic model,

relying on a standardized stress scale for each participant, with a personalized threshold. In

our models, we investigated the relationship between the survey responses and the threshold.

Additional variables such as age, work environment, lifestyle and behaviors could potentially

be incorporated into building a more informed personalized threshold. Such an approach can

provide new directions toward a precision medicine approach for stress, utilizing personalized

models that adjust for physiological stress response.

Finally, although we found that the models using subjective stressors had lower performance,

our methodological approach has several pragmatic uses. Much of the research on self-reports,

especially those using non-standard scales, has used it as a “gold standard”, relying on its

ecological validity rather than using objective measurements for comparison [15, 91]. In this

study, using a novel comparison using machine learning techniques, we compared the objective
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and subjective (self-reported) measures of stress. Our mechanism for such a comparison

relied on appropriately timed smartwatch-based self-reports [76]. Such self-reports delivered

via smartwatches offer a sustainable approach to capturing subjective markers as they offer a

quick and easy mechanism for participants to respond to questions. Our response rate during

the laboratory-based study was 100% across all tasks (n=96). Although not reported in this

paper, the overall response rate of the self-reports during the free-living phase was nearly

90% with an average response time of <30 seconds, showing the potential for participant

compliance to such short self-reports. As such the smartwatch-based self-report approach

can be particularly useful for capturing subjective responses in a variety of settings.

We acknowledge several limitations of this study. This was a single site study with 32

participants, and as such the results may not be generalizable. This is because the laboratory-

based study is unlikely to account for the complexities associated with capturing physiological

signals in free-living settings. We did not counterbalance the order of presentation of the

stressor tasks. This may have affected the stress perception later, like the cold stressor tasks.

It is also potentially possible that the stressor tasks did not induce the necessary stress in the

participants, which may have affected their subjective self-reported responses. The stressor

tasks were developed from previously used experiments using wearable sensors [70]. These

tasks were simplified versions of the Trier Social Stress Test [97] and the physical stressor.

Although previous literature has shown that deep learning techniques could potentially

address the motion artifacts and noisy data (See e.g., [181]), the relatively small set of

participants made it difficult to apply such models to our data. As such, we relied on our

proposed data modeling algorithms to remove noisy fragments of the physiological signals to

ensure maximum data availability.

This was an exploratory study comparing the performance of machine learning-based models

for stress prediction using subjective and objective markers of stress. Although the subjective
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stress models had a lower performance when compared to objective stress models, additional

research with a potentially larger sample of participants is required. Our approach, however,

establishes an approach for commercial smartwatch-based stress detection, developing and

comparing objective and subjective stress prediction models, and a framework for personalized

stress prediction models. Finally, we did not report on the data collected for a day, once

the participants completed the laboratory-based portion of the study. The purpose of data

collection during this phase was to evaluate the viability of collecting self-reports in the

wild and mapping them to corresponding physiological signals from a smartwatch. However,

because of the relatively small data sample (1 day), we could not perform any meaningful

computational analyses. We are currently exploring the possibility of expanding our models

for stress prediction in free-living situations.
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Chapter 4

Multi-Task Learning for Randomized

Controlled Trials with Wearables

In this chapter, we present the application of wearables in a randomized controlled trials

with integrated intervention. We proposed a multi-task learning framework to enhance the

depression outcome predictions. Depression is a long-term disease with more adverse impacts

compared to the stress.

4.1 Introduction

A randomized controlled trial (RCT) is considered the gold standard for evaluating treatment

efficacy, including in the case of mental health interventions [55]. Patients enrolled in an

RCT are randomized into two groups: an intervention group and a control group. Statistical

methods (e.g., survival analysis and analysis of variance) are often used to assess the differences

between the two groups to determine population-level differences and hence the effectiveness

of an intervention. Although the statistical methods are powerful in assessing the value of an
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intervention for clinical practice, they do not help in assessing “which patient” can achieve

the desired outcome, if treated with a particular intervention. For behavioral interventions,

sometimes outcomes are achieved without any treatment (e.g., a wait-and-watch approach).

As such, predicting whether an intervention can have a potential impact on a “specific”

patient is of great significance, given that interventions are often expensive and require

time investment by both clinicians and patients. To support personalized predictions in

conjunction with RCTs, a machine learning (ML) model can be trained based on data

from an RCT and be used to predict the outcomes of an individual with and without the

intervention. Such a predictive model can assist a physician in determining whether a specific

intervention is suitable for that patient. For example, if a patient has a high likelihood of

having a positive outcome without receiving the intervention, a physician may stick to the

wait-and-watch approach; if a patient is likely to have a positive outcome with the treatment,

the physician may prescribe the treatment for the patient. Conversely, if the patient has a

high likelihood of having a negative outcome, the physician can revise the current treatment

plan accordingly. This is the essence of precision medicine–facilitating patient-centered

decisions and personalized treatment [14].

In this paper, we exploit ML techniques for personalized predictions in the context of an

RCT designed to evaluate an integrated intervention for depression. Depression is a serious

mood disorder; The World Health Organization (WHO) estimates that there are over 300

million people worldwide living with depression [134]. This "silent killer" is a major public

health burden costing more than $1 trillion US dollars every year [61]. Wearable devices

provide a convenient way for continuous remote activity monitoring, owing to their popularity,

pervasive availability and relatively low cost. Recent studies [24, 127, 208, 209] have been

reasonably successful in tracking depression using wearables, showing the association between

depression and physical activity [131, 164]. Although previous studies with wearables were
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observational in nature, we focus on developing a predictive model using both the control

and the intervention groups in an RCT.

ML models in conjunction with RCTs often employ separate models for different groups of

patients. If the model is developed on the control group to predict the clinical outcome without

intervention, it is called risk modeling [90]. If the model is developed on the intervention

group to predict the intervention outcomes, it is called treatment-specific modeling [90].

However, separate models may not be suitable for RCTs in mental health interventions due

to the limited number of patients. It is challenging to recruit mental health patients for such

studies, considering the cost of intervention. For example, our RCT recruited 106 patients

with depression, who were randomized in a 2:1 ratio to receive the integrated intervention

(n=71) or usual care (n=35). It is challenging to develop accurate ML models based on the

small sample size, and splitting the dataset between the two groups further exacerbates the

challenge. Also, separate models cannot capture the commonalities of the two groups with

similar patient characteristics and target outcomes.

Instead of training separate models (i.e., treatment-specific modeling or risk modeling on

either group) in conjunction with RCTs, we propose a multi-task learning (MTL) approach

for learning from both groups of patients. Our proposed unified multi-task model is capable

of predicting depression remission outcomes of a patient with and without the treatment,

respectively. The MTL approach is motivated by the commonalities across the two groups in

an RCT: (1) two groups share similar statistical characteristics at the baseline of a trial [55];

(2) both groups share the same outcome, e.g., depression remission in our RCT. Our MTL

approach effectively enlarges the training dataset by combining the intervention and control

groups to learn a single model. This modeling approach can potentially benefit many RCTs

with small patient cohorts, which are typical for mobile health trials. Furthermore, we devise

a hierarchical model architecture to aggregate data from different sources and different stages
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of the trial, which allows the MTL model to capture the differences between two groups in

an RCT. We demonstrate the advantages of our MTL approach over single-task learning and

traditional MTL approaches using an RCT involving 106 patients monitored with wearable

devices. The application of MTL techniques to RCTs is novel and provides a new frontier for

precision treatment on already successful, evidence-based treatment methods. Specifically,

the contributions of this work are as follows.

• We propose a novel multi-task learning model in conjunction with RCTs using clinical

and wearable data. Our MTL model can exploit the similarity and differences between

the intervention and control groups in an RCT.

• We utilize task uncertainties to dynamically weigh the task loss during the training

processes. This technique can balance the task contributions and alleviate the negative

transfers among the tasks when applying MTL in the RCT.

• We apply our MTL approach in a case study of an RCT with depression intervention

treatments, which demonstrates the proposed MTL model outperforms both group-

specific single-task models and traditional MTL models with hand-tuned task weights.

• We identify predictive features in our model through model interpretation, which shows

the contribution of wearable data to the predictions of depression remission in our RCT.

4.2 Related Work

4.2.1 Mental Health with Mobile and Wearable Devices

Mental health disorders, such as depression, anxiety and stress, usually have common

attributes [40, 199], and can have an adverse impact on our daily life [39]. Modern smartphones
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offer an easy and inexpensive way to monitor physiological signals and behavioral patterns,

including step count, voice, semantic location, and physical activity. Many studies [10, 16,

45, 209] have investigated the association between behavioral patterns and mental health

disorders, by utilizing a smartphone. For example, Wang et al. conducted an observational

study using the StudentLife Android application to continuously assess the impact of activities

on mental well-being and academic performance. Several significant correlations between

the smartphone sensor data and mental health outcomes were observed in the study. As the

semester progresses and the workload increases, stress appreciably rises while positive affect,

sleep, conversation and activity drop off among the student cohorts [209]. In another study

with bipolar patients, a combination of increased GPS position changes, erratic accelerometer

movements, and increased social activity were found to be suggestive of a manic phase [45].

Voice data from smartphones can also be applied to discover potential markers of mental

illnesses using machine learning and natural language processing techniques [30]. However,

challenges of standardizing voice data collection with privacy concerns remains challenging in

such studies.

In addition to the smartphone-based studies, wearable devices have also played a key role in

assessing mental health outcomes. Compared to smartphone sensing, a wearable device can

have direct contact with the skin providing increased sensing capabilities and finer-grained

data. Heart rate, oxygen saturation, and sleep measurements are pervasive on modern

wearable trackers. Wearable trackers have also become part of fashion statements, increasing

their adoption and adherence in some mobile health studies[72]. Zhang et al. employed a

wristband tracker to monitor sleep, and associated the depressive symptom severity with

the sleep quality [221]. The finer-grained tracking of electrodermal activity (EDA) level

and heart rate variability measured by a wristband-type sensor were reported to be strong

indicators of construction workers’ physical and mental health status [81]. Similarly, Kim et

76



al. used a wearable wristband that recorded galvanic skin response (GSR) to detect stress

in drivers, with an accuracy of 85.3% [92]. Another study by Seoane et al. suggested that

multi-parametric testing (including GSR, temperature, respiratory rate, and heart rate) had

superior accuracy in the detection of stress than any single measurement [179].

Recently, several studies [79, 113] have investigated the multi-task or multi-kernel learning

to assess individual well-being. Multi-task learning is a sub-field of machine learning in

which multiple learning tasks are solved at the same time. Considering that mental disorders

are usually highly interconnected [40, 199], MTL could potentially benefit different mental

health prediction tasks when learning together. In [113], researchers modeled depression

prediction with data from different mobile platforms as an MTL problem. The proposed

MTL method provided a way to analyze sensor data from different sources for the same task

goal. In [79], researchers modeled five well-being components (happiness, health, alertness,

energy, and stress) with an MTL support vector machine (SVM) at the same time. This

modeling technique demonstrated better performance than a single-task learning (STL) model.

Nonetheless, the five components were interwoven in SVM kernels, making it impossible to

differentiate the feature importance and identify important features [113].

Most studies on mental health outcomes using mobile and/or wearable devices have been

observational studies on a single group of patients, which do not include an active treatment

or a comparison arm. Comparison between the two groups in RCTs can help us to delineate

the underlying differences brought by intervention treatment, and reveal the important factors

for determining precision treatment for patients [14].
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4.2.2 Personalized Predictions in Randomized Controlled Trials

RCTs are regarded as the gold standard to test the effectiveness of mental health treatment.

Other than the standard statistical approaches, researchers have explored utilizing machine

learning models in RCTs [23, 93, 158, 207], to determine individual-level predictions. Previous

wearable studies usually belong to the risk modeling category [90] to estimate the potential

risk for the user without intervention treatment. The treatment-specific modeling, on the

other hand, can help in determining which patients are likely to respond (or not respond)

to the treatment. Chekroud et al. [23] conducted an RCT to evaluate the efficacy of the

antidepressant treatment, and built treatment-specific models with 25 predictive variables.

Their model demonstrated an accuracy of 64.6% [23], considerably better than a random

guess. Owing to the nature of large inter-individual differences, the accuracy in similar mental

health studies usually ranges from 60% to 90% [14, 77, 143]. Lhmig et al. [75] presented

an anxiety level detection study using machine learning tools on an RCT. Even though it

was a four-group RCT, only three groups of data were used to build the model, and bagged

trees proved to be the most suitable classifier (with an accuracy of 89.8%) in their study. In

another RCT study on the use of a music-based intervention for relaxation [158], the authors

developed a decision tree combining data from both groups in the RCT at the same time.

The decision tree model used the group indicator to generate the leaves, which is similar to

building separate models for each group. There is actually no information exchange between

the groups. Also, the decision tree method tends to suffer from overfitting. Other than

directly predicting the final outcomes, Wallert et al. [207] used a supervised machine learning

model to predict the treatment adherence in an RCT for the intervention group, as adherence

to the treatment is a key factor for the success of a positive outcome. Most clinical-related

RCT studies [23, 93, 158, 207] focus on either treatment-specific modeling or risk modeling.
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Adaptive trials [3, 46, 62] have also been developed to evaluate personalized interventions

as well. For example, the sequential multiple assignment randomized trials (SMART) can

operationalize strategies leading to individualized sequences of treatment [3, 124]. A SMART

trial involves more than one randomization process during a trial, which will occur at different

time points based on treatment responses, facilitating potentially improved outcomes for

the patients [3]. Moreover, the N-of-1 trials have become popular in devising personalized

interventions [46, 99, 108, 120], and are focused on devising optimal therapy for a single

individual, via periodic switching from active treatment to placebo or between different types

of active treatments [99]. A strength of the SMART and N-of-1 trials is that they are designed

to personalized interventions prospectively, while our machine learning models are trained and

validated on data collected during RCTs retrospectively. However, SMART and N-of-1 trials

are complex and require considerably more resources and effort than regular RCTs. As such,

regular RCTs remain a widely used approach to evaluating an already-developed intervention

with a theoretical basis [3]. Additionally, SMART may have imbalanced stratified random

allocations and the N-of-1 focuses on a single patient’s intervention, making it difficult to

develop generalizable inferences. In this work, we focus on novel machine learning techniques

in conjunction with traditional RCTs, providing personalized predictions for an evidence-based

treatment approach.

4.3 Clinical Trial and Data Processing

In this section, we describe the clinical trial, problem formulation, collected data, and data

preprocessing in our study.
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4.3.1 Clinical Trial

Our clinical trial (ClinicalTrials.gov, NCT #03841682) was designed to examine the patient’s

response to an integrated collaborative care intervention for co-morbid depression and obesity.

In this paper, we will focus on the prediction of depression. We recruited a sample of 106

adults from March 2019 to March 2020 from the internal medicine clinic at an academic

medical center. The participants met the following inclusion criteria:

• at least 18 years old and not pregnant,

• depression (PHQ-9 [101] scores no less than 10),

• with body mass index no fewer than 30.0 (or 27.0, if Asian),

• with no significant medical comorbidities(e.g., diabetes or cardiovascular disease),

• with no psychiatric comorbidities (e.g., psychotic or bipolar disorders).

Study coordinators obtained written informed consent from each participant. Among the

patients, 77.5% were female and 22.5% were male. 18.3% were Non-Hispanic White, 57.8%

were African American, 2.8% were Asian or Pacific Islander, 14.1% were Hispanic and 7.0%

were of other races. The average age is 46.7 (SD=11.7). Figure 4.1 shows the diagram of our

RCT study.

During the orientation sessions, patients completed baseline assessments consisting of a series

of surveys and clinical measurements, then were randomized in a 2:1 ratio to receive the

integrated intervention (n=71) or usual care (n=35). Each patient had been followed for 6

months (primary endpoint). The integrated intervention included behavioral activation for

depression care management over 6 months. There were check-point visits at 2 months, 4
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Figure 4.1: Diagram of our RCT study.

months and 6 months, during which we collected required assessments. The patients were

required to continuously wear a wearable activity tracker (Fitbit Alta HR, San Francisco,

CA4) during the entire trial. To promote retention and compliance with the trial, the study

coordinators adopted an incentive strategy, which includes a reward of up to $220 [115]. The

bottom part of Figure 4.1 shows the timeline of our RCT study.

We chose depression remission as our primary target, as one of the goals of the integrated

intervention was to mitigate depression symptoms. Depression remission was defined as

having an SCL-20 score below 0.5 [25, 26]. If a patient achieved remission, we marked that as

a positive outcome. Specifically, our machine learning targets are to (1) predict the probability

of one patient having depression remission with intervention treatments (in the intervention

group), and (2) predict the probability of one patient having depression remission without

intervention treatments (in the control group). The baseline clinical characteristics and first

2-month wearable data were used as the input since we want to have the outcome estimation

at an early stage for each patient.
4https://www.fitbit.com/gb/shop/altahr
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4.3.2 Data Collected

We excluded patients (1) who failed to take the end-trial (i.e., 6-month) assessments for

the outcome labels, and (2) who had a total yield of wearable data lower than 10%. Fitbit

provides minute-by-minute heart rate readings. The heart rate reading only exists when the

patient correctly wears the tracker. Ideally, we would have collected 1440 points of heart rate

(HR) for each patient in a day. The total yield of the wearable data was calculated as the

portion of total valid heart rate readings during the study period. We selected the total yield

threshold of 10% for the trade-off between patient coverage and data quality [106]. After

excluding the patients who failed to satisfy the two criteria, 89 patients remained for the

following analysis with 59 patients in the intervention group and 30 patients in the control

group. No significant correlations were found between the patient exclusions and the group

splits (χ2 test of independence, degree of 1, p > 0.05). We used two major sources of data in

our analysis: clinical characteristics at baseline and wearable data during the first 2-month

period.

Clinical Characteristics

At baseline, we collected a variety of clinical characteristics including multiple self-reported

surveys and clinical measurements. These surveys and measurements were administrated by

the clinicians or professional therapists. To reduce potential confounders from other unrelated

variables, we focused on the depression-related candidate predictive variables verified by the

clinical experts. Table 4.1 shows the baseline clinical characteristics used in our analysis.

Between the two groups, the Analysis of variance (ANOVA) test for continuous variables and

the χ2 test for categorical variables were performed. We can observe that there was little

difference in the baseline clinical characteristics between the two groups.
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Table 4.1: Clinical characteristics at baseline in the intervention and control group

Variable Intervention (n=59) Control (n=30) p value
Age, year 46.86 ± 12.11 47.47 ± 12.88 0.829
Female, % 76.2% 76.6% 0.824
Race/Ethnicity, % 0.191

Non-Hispanic White 18.6% 13.3%
Non-Hispanic Black 55.9% 50%

Asian/Pacific Islander 3.3% 0%
Hispanic 13.5% 33.3%

Other Race 8.4% 3.3%
Education, % 0.497

High school/GED or less 6.7% 16.7%
Some college 42.3% 33.3%

College graduate 28.8% 30%
Post college 22% 20%

Weight, kg 100.73 ± 15.46 99.54 ± 14.19 0.726
SBP, mmHg 122.95 ± 14.96 120.63 ± 15.96 0.5
DBP, mmHg 77.25 ± 8.69 75.83 ± 10.45 0.498
Leisure, MET mins/week [98] 654.58 ± 819.72 953.20 ± 1131.43 0.158
Work, MET mins/week [98] 336.27 ± 937.05 217.33 ± 999.95 0.581
Energy expenditure, kcal/kg/d [116] 33.52 ± 2.23 33.64 ± 2.32 0.807
SPSI-R:S raw score [31] 12.88 ± 2.41 13.13 ± 2.40 0.639
PPO raw score [31] 10.59 ± 4.54 12.58 ± 3.33 0.037
NPO raw score [31] 7.07 ± 3.48 8.62 ± 3.52 0.051
RPS raw score [31] 10.46 ± 4.48 11.29 ± 3.67 0.382
ICS raw score [31] 4.05 ± 3.65 4.74 ± 3.22 0.382
AS raw score [31] 5.54 ± 4.54 4.84 ± 3.46 0.461
PROMIS sleep disturbance t score [218] 57.96 ± 7.44 57.08 ± 8.05 0.611
PROMIS sleep impairment t score [218] 56.95 ± 8.80 54.83 ± 9.09 0.291
SCL-20 score [47] 1.21 ± 0.67 1.15 ± 0.59 0.695
GAD-7 score [195] 7.10 ± 5.12 6.63 ± 3.77 0.659
PTSD severity score [5] 36.12 ± 14.57 33.77 ± 10.25 0.432
SF-8 physical component score [201] 45.00 ± 8.48 47.38 ± 8.30 0.21
SF-8 mental component score [201] 39.65 ± 11.37 42.57 ± 9.00 0.225
COPE total scores [19] 57.02 ± 12.09 57.40 ± 14.63 0.896
BRISC total scores [215] 30.12 ± 6.23 31.07 ± 6.06 0.495

Abbreviations: AS, avoidance style; COPE, COPE Inventory survey, including 14 components
[19]; BRISC, BRISC questionnaire of emotional resilience and self-efficacy Survey, including 3
components [215]; DBP, diastolic blood pressure; GAD-7, generalized anxiety disorder scale-7;
ICS, impulsivity/carelessness style; MET, metabolic equivalent task; NPO, negative problem
orientation; PPO, positive problem orientation; PROMIS, Patient-Reported Outcomes Measure-
ment Information System; PTSD, post-traumatic stress disorder; RPS, rational problem solving;
SBP, systolic blood pressure; SCL-20, Symptom Checklist-20; SF-8, Short Form 8 Health Survey;
SPSI-R:S, Social Problem Solving Inventor -Revised: Short Form.
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Wearable Data

Fitbit activity trackers provide a variety of data, including the minute-by-minute heart rate,

energy consumption, sleep and other activity measurements. Considering our study spanned

several months, we analyzed the wearable data at the day-level. The fine-grained measure-

ments from wearable devices were aggregated into daily semantic features. Specifically, the

following daily semantic features were extracted to depict the patients’ activity characteristics.

• Sedentary minutes (sedentaryMinutes). Fitbit provides estimations of the active

minutes through the metabolic equivalents (METs) [82, 214]. One MET is the rate of

energy during rest or sitting quietly. This feature represents the duration when a user’s

MET is less than or equal to 1 during a day.

• Lightly active minutes (lightlyActiveMinutes). Analogous to the sedentary min-

utes, the lightly active minutes correspond to the duration with METs greater than 1

but less than 3. This feature represents the duration when a user is in a lightly active

state during a day.

• Minutes of heart rate zone in fat-burn (HRzoneFatBurnMinutes). The min-

utes of heart rate zone in fat-burn is measured based on the heart rate sensors and

ages. In decreasing order of intensity, Fitbit defines four zones of heart rate: peak,

cardio, fat-burn, and out-of-range. When working out in the fat-burn heart rate zone,

our body consumes energy from the fat stores [18]. And this feature represents the

duration when a user’s heart rate is in the fat-burn zone during a day.

• Minutes of heart rate zone in cardio (HRzoneCardioMinutes). Similar to the

minutes of the heart rate zone in fat-burn, this feature represents the duration when

the heart rate is in the cardio zone during a day.
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• Total walking distance (distanceTotal). The total walking distance is calculated

based on the step counts and/or GPS locations. This feature represents the total

amount of distance traveled during a day.

• Activity calories (activityCalories). Fitbit combines the basal metabolic rate

(BMR) [63] and the activity data to estimate the calories burned. This feature represents

the total calories the user consumes during a day.

• Minutes awake in main sleep (minutesAwake). Fitbit captures the stages of

sleep based on the motions and heart rate. The main sleep is the longest sleep of the

day, which is usually overnight. There could be multiple records of sleep. In our study,

we only considered the main sleep. This feature represents the duration when a user is

awake in the main sleep.

• Restless count in main sleep (restlessCounts). Analogous to the minutes awake

in main sleep, Fitbit captures the restless counts using the motions and heart rate

sensors. This feature represents the restless count in the main sleep.

• Efficiency in main sleep (sleepEfficiency). Fitbit provides the calculation of the

efficiency of sleep [51]. We directly adopted the calculated efficiency from the device as

a daily feature.

• Time in bed of main sleep (timeInBed). This feature represents the duration

spent in bed during the main sleep, including all sleep stages.

4.3.3 Wearable Data Preprocessing

The 10 daily semantic features from the wearable data have been shown to be effective in

similar studies on mental health outcomes [113, 208]. For each patient, we used these 10
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features for 60 days (i.e., a total of 60× 10 wearable data points during the first two months).

Even though the daily semantic features aggregated the minute-by-minute data to distill

the information, 600-dimension data frame is too large to build a valid machine learning

model, due to the "curse of dimensionality" [174]. As such, we employed a high-level feature

engineering approach [106] to lower the input dimensions of wearable data. We applied

the Singular Spectrum Analysis (SSA) to each of the daily semantic features. SSA is a

nonparametric spectral estimation method for time series data, which can decompose the time

series into a sum of components. Using the first component from the SSA, we can denoise and

impute the time series data. Then, five statistical features (i.e., maximum, minimum, median,

slope, and intercept) were extracted from the first component of each daily semantic feature

time series. The slope and intercept were obtained via a linear fit of the first component. As

a result, we transformed the original wearable data into 5× 10 high-level statistical features.

These 50 statistical features were flattened as machine learning model input candidates.

4.3.4 Feature Selection

Even though the high-level wearable features reduced the input dimension, there remained 108

features (consisting of 58 clinical characteristic features and 50 wearable high-level statistical

features). Considering that there were only 89 patients in our analysis, we employed an

additional univariate feature selection [38] on the training dataset in our pipeline. Univariate

feature selection works by selecting the top features based on statistical tests, which can

effectively reduce the input dimensionality while improving the generalizability of machine

learning models [38, 57, 172]. First, we performed statistical tests in the combined group

between the patients that have a positive outcome (i.e., depression remission) and the patients

that have a negative outcome (i.e., no depression remission). For continuous variables, ANOVA

tests were applied, and for categorical variables, χ2 tests were applied. Then, we ranked
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the clinical characteristics and wearable features based on the p−value from the statistical

analysis, respectively. The top 10 features from each feature category were selected as the

machine learning inputs [103].

4.4 Multi-task Learning for Randomized Controlled Tri-

als

In this section, we elaborate on our proposed multi-task learning model. There are two

primary tasks in our study: (1) treatment-specific modeling: to predict if a patient achieves

depression remission in the intervention group, and (2) risk modeling: predict if a patient

achieves depression remission in the control group. To simplify, we used the intervention task

and the control task to represent the prediction tasks in the corresponding group, respectively.

We proposed a multi-task learning (MTL) framework to learn the two tasks simultaneously.

The MTL is inspired by human learning activities where people often apply the knowledge

learned from one task to help learn another task. We exploited the commonalities of the two

tasks, improving one task’s performance by knowledge transfer from the other task. Unlike

the previous MTL on mental health studies that focus on outcome transfers (e.g., mood and

stress) [79], our MTL model focuses on group transfers. The rationale behind the group

transfer is that the two tasks corresponding to the groups have the same prediction target

(i.e., having depression remission or not), and patients in the intervention group and control

group have no statistical difference at the baseline. However, there are still several challenges

for building MTL models for group transfer in RCTs:

• Non-unified data– In an RCT, a patient can only have the outcome in either the

intervention or the control group, which means we cannot have the two task labels for

one patient at the same time. Traditional MTL models usually have all the task labels
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for each data sample. Besides, the available features may also be different in the two

groups (e.g., extra treatment measurements). To train a single MTL model, we need to

handle the non-unified data between the intervention and control groups.

• Task weight optimization– MTL learning needs to assign task weights during the

training, which controls task contributions to the whole model. The negative transfer

may occur when the task weights are not optimal, thus degrading the overall performance.

We need to find an optimal way to assign the task weights.

• Limited Dataset size– Even though the MTL can enlarge the training dataset by

combining the two groups of patients during training, the total number of patients

could still be limited. We need to avoid potential overfitting due to small sample size.

In the following subsections, we describe our MTL framework that addresses the above

challenges. While we present the MTL framework in the context of the clinical trial described

above, the approach can be generalized to other RCTs. To our best knowledge, our work is

the first MTL framework specifically designed for RCTs.

4.4.1 Multi-task Learning Model Architecture

To exploit the commonalities as well as the differences in the two groups from an RCT,

we proposed a two-layer MTL framework with hierarchical inputs, as shown in 4.2a. The

hierarchical inputs accommodate the discrepancies of the inputs. In an RCT, the data

collected after randomization may show differences between the intervention and control

groups, due to treatment effects. In order to learn the unique characteristics after the group

randomization, we feed the data before the randomization into the shared layer and the data

after the randomization into the task-specific layer. This framework can be easily adapted to

other RCTs.
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Figure 4.2: (a) MTL framework for randomized controlled trials; (b) MTL Model structure.

Given the small sample size, we only employed two dense layers for our MTL model, limiting

model complexity. In the first layer, we feed the baseline clinical characteristics and force

a hard parameter sharing at the first layer. Clinical characteristics at baseline showed no

statistical difference between the two groups, so we wanted to capture the commonalities

between the groups. The first shared layer has an output size of 8, followed by a batch

normalization and a ReLU activation function. Since the wearable data were collected after

the start of the treatment intervention, we do not feed the wearable features into the first

layer. Instead, we concatenate the wearable features to the output of the first layer, and

use the concatenation as the input for the second layer, a task-specific layer. There is no

parameter sharing between the tasks in the second layer, for accommodating the differences

between the groups. The final prediction for each task is from the corresponding task-specific

layer followed by a sigmoid function. Figure 4.2b illustrates the model architecture.

To overcome potential overfitting and enforce parameter sharing, we employed the two types

of regularization in our MTL model. The first one is the block-sparse regularization [78, 159],

which is to enforce the sparsity of the parameter matrix in the first layer. We assume that

two tasks in the RCT share a set of features, and other non-shared features should have
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small or zero weights. Let matrix A = {a1, a2, ..., ad} ∈ Rk×d be the parameters of the shared

layer, where ai is a column vector, d is the number of input features at baseline and k is

the dimension of output from the shared layer. Usually, we have k smaller than d to ensure

dimension compression and parameter sharing. Based on the block-sparsity assumption [78],

matrix A should only have a few columns with non-zero weights for the shared features, and

other columns have zero weights for the non-shared features. We employed the mixed-norm

constraints [159], which can enforce the block-sparsity for A. Basically, it first applies an l2

norm on the feature column vector ai, then applies an l1 norm:

Rblk = ‖|a1|2 , |a2|2 , ..., |an|2‖1 (4.1)

Next, we applied the second regularization to the task-specific layers. Similar to the ridge

regression, we add the l2 regularization to the loss function, which can lower the complexity

of the models. Let column vector bj ∈ R1×mj be the task-specific layer parameters for the

jth task, where mj is the number of the input dimension of the task-specific layer for the jth

task. We have the task-specific regularization:

Rtsk,j = ‖bj‖2 (4.2)
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4.4.2 Training MTL with a Non-unified Dataset

Another challenge of applying MTL in RCTs is to handle the non-unified labels of the dataset.

Traditional MTL models usually assure the one-to-many structure; that is, a single training

sample has all the task labels at the same time. However, each sample in our case only has

one valid task label. It is the label either in the intervention group or in the control group.

As such, we adopted a label mask for each sample during training. When calculating the

loss, we only kept the task output corresponding to the sample’s group, and ignored the

output from the other task. For example, if a patient is from the intervention group, we

only calculate the patient’s loss for the intervention task. Given that we used the batch

training process and a single batch consisted of the samples from both groups, the overall loss

contained the information from both groups. The outcome in our study is binary for each

task(i.e., depression remission or not), so we adopted the binary cross-entropy loss. Formula

4.3 shows the overall masked classification loss function for all tasks:

Lossclf =
1

N

T∑
t=1

N∑
n=1

wt ·maskn,t ·BCE(yn,t, ŷn,t) (4.3)

where wt is the weight for the task t, T is the total number of tasks, N is the total number

of training samples, BCE is the vanilla binary cross-entropy loss, yn,t is the output of the

n-th sample for task t, and ŷn,t is the ground-truth label of the n-th sample for task t. The

maskn,t is the mask for each sample (maskn,t = 1 only if the n-th sample belongs to task

t). For example, if the sample is from the intervention group, the mask will be 1 for the

intervention task and 0 for the control task. The MTL model always has all task outputs for
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each sample, but we only have one ground-truth label from one task. The masks enable us

to calculate the loss only from the tasks with corresponding labels. The summation of the

masked losses from all samples enables the MTL model to utilize the information from both

groups.

4.4.3 Dynamic Task Weights

In the above subsection, we elaborated on the masked classification loss. There is a task

weight wt in the formula, which controls the contribution of each task to the overall model.

The weights of the tasks need to be carefully tuned; otherwise, negative transfer may occur

between tasks. For instance, if we put a large weight on one task, the model could ignore the

information from the other task, incurring a performance drop for the task with a smaller

weight. Manually tuning wt could be time-consuming, and it is often hard to achieve the best

performance for every task in a single MTL model. So, we employed a dynamic weight tuning

technique in our MTL framework, which has demonstrated good performance in computer

vision problems [89]. Previous work [89] focused on a unified dataset. Each sample has

all task labels at the same time. The core idea of the dynamic weights is to use the task

uncertainty to weigh the loss for each task during the training. Large uncertainty of the

task means there could be a large error for the task, so we want to lower its contributions to

the overall MTL model. A task output can be regarded as an object’s state based on some

observations. In physics, an object’s state can be modeled with the Boltzmann distribution

[171], and the object is less stable when it is at a higher temperature. The uncertainty of a

task is akin to the temperature of an object in the Boltzmann distribution. So, we adapted

the task probability output with an uncertainty parameter. The uncertainties are trainable

parameters in the loss function of the MTL model, which can be dynamically updated during

the training process to adjust the task weights. In our study, we have two binary classification
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tasks with the non-unified dataset. We extended the dynamical task weighing to the MTL in

conjunction with RCTs, as illustrated below.

For a binary classification problem, we have two outcomes: positive and negative. We adopted

the sigmoid function for the probabilities of positive outcome pt, where t means the t-th task.

Therefore, the probability of a negative outcome is 1− pt. We added a trainable uncertainty

factor σt to the sigmoid function to mimic the temperature in the Boltzmann distribution.

The σt was automatically adjusted in each batch training:

y′n,t = p(yn,t = 1|ft(xn), σt) = Sigmoid(
1

σ2
t

ft(xn)) =
eft(xn)/σ

2
t

1 + eft(xn)/σ
2
t

(4.4)

where y′n,t is the updated probability output of the n-th sample for task t with the uncertainty

parameter σ2
t , ft(xn) is the output of the n-th sample before the sigmoid activation function

for the task t. Basically, if we have large σ2
t , there could be larger uncertainty for the task,

thus a lower probability output. σt is squared to match the form of standard deviation in the

normal distribution. Ignoring wt and using the probability output with the uncertainty in
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Formula 4.3, we have:

Loss′clf =
1

N

T∑
t=1

N∑
n=1

maskn,t ·BCE(y′n,t, ŷn,t) (4.5)

=
1

N

T∑
t=1

N∑
n=1

maskn,t · [−ŷn,t · log(y′n,t)− (1− ŷn,t) · log(1− y′n,t)] (4.6)

=
1

N

T∑
t=1

N∑
n=1

maskn,t · [−ŷn,t
ft(xn)

σ2t
+ log(1 + eft(xn)/σ

2
t )] (4.7)

=
1

N

T∑
t=1

N∑
n=1

maskn,t · [−
1

σ2t
ŷn,tft(xn) +

1

σ2t
log(1 + eft(xn)) + log

1 + eft(xn)/σ
2
t

(1 + eft(xn))
1

σ2t

] (4.8)

=
1

N

T∑
t=1

N∑
n=1

maskn,t · [
1

σ2t
BCE(yn,t, ŷn,t) + log

1 + eft(xn)/σ
2
t

(1 + eft(xn))
1

σ2t

] (4.9)

≈ 1

N

T∑
t=1

N∑
n=1

1

σ2t
·maskn,t ·BCE(yn,t, ŷn,t) +

T∑
t=1

log(σt) (4.10)

In Equation (4.9), we used an approximation: (1+eft(xn))1/σ2
t ≈ 1/σ2

t (1+e
ft(x)/σ2

t ) [89]. When

σt = 1, it becomes equality. In Equation (4.10), We can see that 1/σ2
t happened to be at

the same place as the original wt, which is to control the weights for each task in the loss.

If we have large uncertainty σt, 1/σ2
t will be small, thus lowering the contributions from

task t. There is another term: log(σt), which can be viewed as a regularization to avoid

the uncertainty σt to be infinity, as infinity will make the first term in the loss to be zero.

Replacing the classification loss Equation (4.3) with Equation (4.10) and summing up the

regularization terms, we can then obtain the updated total loss for our MTL framework:

Loss =
1

N

T∑
t=1

N∑
n=1

1

σ2
t

·maskn,t ·BCE(yi,t, ŷi,t) +
T∑
t=1

log(σt) +Rblk +
T∑
t=1

Rtsk,t (4.11)
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By optimizing the above loss function, we can train our MTL model for our RCT, and output

predictions for both intervention and control groups simultaneously.

4.5 Evaluations

In this section, we present the detailed evaluation of our MTL model. The performances of the

two tasks in the RCT were compared to each STL model. Since one of our motivations is to

validate the feasibility of wearable devices in mental health studies, we also demonstrated the

contribution of the wearable data in the model performances. Finally, we explored shedding

more light on our MTL model with state-of-the-art deep learning explanation tools, as it is

essential for applications in healthcare.

4.5.1 Evaluation Settings

Our targets are to predict: (1) the probability of one patient having depression remission with

intervention treatments (in the intervention group), and (2) the probability of one patient

having depression remission without intervention treatments (in the control group). We

compared each prediction task between the MTL model to the STL models, respectively. The

five-fold cross-validation (CV) approach was adopted to evaluate the model performances. In

the CV, we stratified the whole dataset into five folds. Each fold contains the same portions

of patients from the two groups. Every time we chose 4 folds to train the models, and used

the remaining fold to evaluate the model performance. This procedure was repeated five

times until all the folds had been used as testing once. To avoid opportune splits of the

dataset, we conducted 20 runs of the CV to report the average and standard deviation of

model performances.
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It is worth noting that our dataset is imbalanced. 42% of the patients in the intervention

group had a positive outcome (i.e., depression remission), whereas only 23% of the patients

in the control group had a positive outcome. Therefore, we used the area under the receiver

operating characteristic (AUROC) and the area under the precision-recall curve (AUPRC) as

the major metrics. Those two metrics can well gauge the performance with the imbalanced

dataset when the positive outcomes are of more interest. We included the following three

groups of models in our evaluations:

• STL-separate: baseline shallow STL models that were trained for the intervention

and control group tasks separately.

• STL-unified: baseline shallow STL models that were trained on the combined groups,

treating the two tasks as a single task.

• MTL: three MTL models, of which the only difference was the task weight assignment.

MTL-1 is the MTL model that was trained only on a single group, via setting the

task weight of one group at 1 and the other group at 0; MTL-fixed is the MTL model

that was trained on the combined group of patients, and used a grid search to find

the optimal performance of a single task; MTL-dynamic is the MTL model that was

trained on the combined group of patients with the dynamic task weights.

For both STL-separate and STL-unified, we included six models: (1) support vector machine

(SVM with rbf kernel), (2) random forest (RF), (3) Adaboost trees (Ada), (4) gradient

boosting decision trees (GBDT), (5) logistic regression (LR) and (6) 3-layer artificial neural

network (ANN). The ANN model has two hidden layers with ReLU activation, and an output

layer with sigmoid activation. The STL-separate models were trained on the intervention

group and control group separately, resulting in two STL-separate models corresponding to

96



each task. The STL-unified models were trained on the combined group of patients, and we

only had one model for the two groups. It simply treats the prediction in the two groups as a

single task by adding a group indicator in the input. The patients were differentiated by the

group indicator, and the performances of the STL-unified models were evaluated for the two

groups separately. There are three MTL models (i.e., MTL-1, MTL-fixed, MTL-dynamic)

sharing the same architecture in our evaluations. MTL-1 is actually a single-task model by

setting one task weight to zero. The loss function only contains the task loss from one group,

so it reduces to the single-task learning. Similar to STL-separate, we trained two MTL-single

models–one for the intervention group and one for the control group. This is to have fair

comparisons between the MTL and STL by eliminating the impacts of model architecture

change. MTL-fixed is the MTL model trained on the combined groups of patients, using the

fixed task weights. We also trained two MTL-fixed models for the two groups separately.

Each MTL-fixed model was optimized to achieve the best performance for only one task via a

grid search to find the best task weights. MTL-dynamic is our proposed MTL that learns the

two tasks simultaneously with the dynamic task weights. We trained only one MTL-dynamic

model to predict the probabilities for the two groups. The MTL models were implemented

with the Tensorflow framework [118]. We used an Adam optimizer (learning_rate=0.001,

β1 = 0.9, β2 = 0.999) [95], with a single batch of all training data. The number of training

epochs (300) of the MTL models was empirically selected based on the train/test loss from

several history runs. The hyperparameters of the STL and MTL models were tuned within

the training dataset using grid-search CV [139] to achieve the best AUROC. Table 4.2 lists

all the hyperparameters tuned in our experiment.
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Table 4.2: List of hyperparameters for grid search CV

Model Hyperparameter Candidate values Model Hyperparameter Candidate values

LR penalty "l1", "l2"
Ada

base estimator decision stump [138]
C 0, 0.5, 1, 10 number of trees 20, 50, 100

SVM
kernel "rbf" learning rate 0.1, 0.5, 1
C 0.1, 1, 10 ANN hidden size (1st) 16, 8, 4

gamma 0.01, 0.1, 1 hidden size (2nd) 16, 8, 4

RF
number of trees 50, 100, 200

GBDT
number of trees 50, 100, 200

max depth 3, 10, None learning rate 0.01, 0.1, 0.5
max features 5, 10, 20 max depth 3, 10, None

MTL
block regularization 1e-4, 1e-3, 1e-1
task regularization 1e-4, 1e-3, 1e-1

task weights
(only for MTL-fixed ) 0, 0.05, 0.1,...,1

4.5.2 Selected Features

The univariate feature selections were performed on the training dataset. In each cross-

validation (CV) split, we selected the top 10 features with the smallest p-values. Since there

were variances across different splits, the selected features also varied slightly. Nonetheless,

the selected features remained the same in most of the splits. As we conducted 20 runs of the

five-fold CV, the maximum selected time of a feature is 100. Table 4.3 shows all the selected

features and their corresponding selected times.

4.5.3 MTL vs. STL

Table 4.4 shows the performance evaluations of all the STL and MTL models. We use the

group name to represent the prediction task in that group: "Intervention" is the model

performance of predicting task in the intervention group, whereas "Control" is the model

performance of predicting task in the control group. We first compared the STL-separate

models. Each shallow model was trained separately for the two group tasks. The logistic

regression (i.e., STL-LR) shows the best performances in both tasks. For STL-unified models,

logistic regression also shows the best performance in the control task, whereas GBDT shows
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Table 4.3: Features from univariate feature selection

Selected clinical features Selected wearable features

Features Ave.
stat Ave. p Times Features Ave.

stat Ave. p Times

PROMIS sleep disturbance t score 15.68 2.95E-04 100 distanceTotal_median 5.54 3.55E-02 99
PROMIS sleep impairment t score 12.43 1.24E-03 100 restlessCounts_intercept 2.61 1.23E-01 99
SCL20 baseline score 8.88 5.81E-03 100 restlessCounts_min 2.75 1.19E-01 98
NPO raw score 5.41 3.03E-02 100 minutesAwake_intercept 2.31 1.45E-01 97
COPE acceptance score 5.20 3.36E-02 99 minutesAwake_min 2.94 1.17E-01 91
PTSD severity score 4.70 4.49E-02 99 distanceTotal_intercept 2.80 1.30E-01 86
Work, MET mins/week 5.06 3.10E-02 97 restlessCounts_slope 3.47 9.76E-02 84
Sex 4.27 4.77E-02 90 lightlyActiveMinutes_min 2.11 1.78E-01 75
COPE denial score 4.36 4.89E-02 89 minutesAwake_slope 2.87 1.27E-01 64
BRISC skill scores 4.16 5.21E-02 65 HRzoneFatBurnMinutes_min 1.92 1.90E-01 57
SF-8 mental component score 3.81 6.33E-02 40 restlessCounts_max 2.16 1.70E-01 42
SF-8 physical component score 3.94 5.84E-02 12 distanceTotal_max 2.00 1.95E-01 31
GAD-7 score 3.70 6.52E-02 4 HRzoneFatBurnMinutes_slope 2.37 1.72E-01 30
DBP 3.09 8.34E-02 2 sedentaryMinutes_median 1.98 1.84E-01 22
COPE plan score 3.04 8.57E-02 1 sedentaryMinutes_min 1.76 2.13E-01 12
COPE active score 2.22 1.41E-01 1 HRzoneFatBurnMinutes_median 2.56 1.69E-01 4
Energy expenditure 2.15 1.47E-01 1 lightlyActiveMinutes_intercept 1.98 1.79E-01 3

sedentaryMinutes_slope 1.68 2.12E-01 2
minutesAwake_max 1.21 2.77E-01 2

minutesAwake_median 1.49 2.27E-01 1
lightlyActiveMinutes_max 1.28 2.61E-01 1

*Ave. stat: average statistic of either ANOVA test or χ2 test from different CV splits.
*Ave. p: average p−value of either ANOVA test or χ2 test from different CV splits.

the best performance in the intervention task. However, when comparing the STL-unified

with STL-separate with the same shallow models, we can find that the STL-unified usually

has worse performance. These results indicate that simply combining the group of patients

does not improve the performance. The shallow models are not capable to well exploit the

group commonalities and differences via the group indicator.

When comparing our MTL models with the best STL models, we observe that our MTL-1

models show comparable performance to the best STL models. The MTL-1 is effectively

single-task learning, since it only utilized the information from one group. There is no

performance gain from the MTL-1 model, suggesting that changing the model architecture

from the shallow models to the proposed 2-layer MTL model has no impact on the task

performances. However, when comparing MTL-1 to MTL-fixed and MTL-dynamic, we can

observe that both MTL-fixed and MTL-dynamic outperform the MTL-1 (Wilcoxon rank-sum

test [41], p < 0.05). The MTL-fixed and MTL-dynamic models were trained on the combined
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Table 4.4: Model Performance in different groups

Intervention Control
Category Model AUROC AUPRC AUROC AUPRC

STL-separate

SVM 0.607(0.053) 0.556(0.052) 0.734(0.063) 0.561(0.112)
RF 0.667(0.040) 0.601(0.046) 0.755(0.066) 0.538(0.089)
Ada 0.615(0.042) 0.567(0.045) 0.681(0.076) 0.433(0.086)
GBDT 0.657(0.061) 0.582(0.060) 0.724(0.098) 0.487(0.072)
ANN 0.659(0.040) 0.581(0.051) 0.754(0.081) 0.548(0.136)
LR 0.697(0.050) 0.636(0.063) 0.794(0.067) 0.601(0.093)

STL-unified

SVM 0.533(0.062) 0.477(0.057) 0.683(0.107) 0.458(0.091)
RF 0.649(0.053) 0.587(0.063) 0.704(0.077) 0.474(0.086)
Ada 0.609(0.056) 0.562(0.062) 0.619(0.093) 0.340(0.064)
GBDT 0.650(0.060) 0.596(0.067) 0.555(0.089) 0.332(0.076)
ANN 0.629(0.071) 0.561(0.054) 0.734(0.045) 0.528(0.056)
LR 0.639(0.049) 0.571(0.059) 0.759(0.047) 0.569(0.084)

MTL
MTL-11 0.695(0.032) 0.641(0.051) 0.784(0.049) 0.589(0.073)
MTL-fixed2 0.707(0.052) 0.653(0.046) 0.807(0.063) 0.615(0.083)
MTL-dynamic 0.725(0.059) 0.668(0.068) 0.813(0.077) 0.637(0.061)

1MTL-1 is the single task learning but with the same architecture of our proposed MTL model.
2MTL-fixed is trained on the combined group, but the performances of two tasks are from
separate models.

group of patients, which utilized the information from both groups. The performance gain

demonstrates that it is the positive knowledge transfers between the groups that improve the

performance compared to the STL.

It is also worth noting that the MTL-fixed models were trained for the task separately, even

though they utilized the information from the two groups. Each MTL-fixed model was

optimized for one task, using a grid search to find the weights with the best AUROC for

that task. Figure 4.3 shows the performances of the MTL-fixed models with varying task

weights. Without losing generalizability, we fixed the sum of task weights at 1. The x-axis

represents the weight of the intervention task (wInt), so the weight of the control task is wCon

= 1− wInt. From left to right, the intervention task weight increases while the control task

weight decreases. When wInt = 0.85 and wCon = 0.15 (marked by the blue vertical line), the

intervention task achieves the best performance. When wInt = 0.20 and wCon = 0.80 (marked
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Figure 4.3: Performances with varying task weights.

by the orange vertical line), the control task achieves the best performance. It is obvious

that the two tasks achieve their best performance with different weight settings. So, we need

two MTL-fixed models to achieve optimal performances for both tasks separately.

We also marked the performances from the MTL-dynamic models in Figure 4.3 with horizontal

dashed lines. We can see that our MTL-dynamic models can achieve better or comparable

performance than the MTL-fixed models. The difference between the MTL-dynamic model

and the MTL-fixed model is the way we assign weights in the classification loss. The task

weights in the MTL-fixed model were fixed and never changed during the training process,

whereas the MTL-dynamic model utilized a trainable parameter–"uncertainty", to mimic the

weights between the tasks. The MTL-dynamic model only needs to train once for the two

tasks. Since "pseudo task weights" (1/σ2
t ) in MTL-dynamic were dynamically updated every

epoch, it is possible that we can achieve the best performances for both tasks as the training

progresses [89].
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4.5.4 Contribution of the Wearable Data

The wearable device played an important role in our RCT study. It fills the gap of remote

monitoring with continuous data collection outside the hospital. To quantify the contributions

from the wearable device, we evaluated the model performance without the wearable data.

Table 4.5 shows the model performances with and without wearable data. We only demonstrate

the performance of our proposed MTL-dynamic model, as it shows superior results in previous

evaluations. The model with wearable data significantly outperforms the model without

wearable data in both intervention and control tasks (Wilcoxon rank-sum test, p < 0.05),

attesting the wearable data indeed encodes some information that can improve the model

performances. Previous studies [113, 208] also demonstrated that wearable data show

predictive power in mental health applications.

Table 4.5: Performance comparison with and without wearable data

Intervention Control
AUROC AUPRC AUROC AUPRC

W/ wearable data 0.725(0.059) 0.668(0.068) 0.813(0.077) 0.637(0.061)
W/O wearable data 0.652(0.041) 0.601(0.056) 0.727(0.081) 0.513(0.088)

4.5.5 Model Explanation

It is of great importance to understand the underlying logic of the model predictions, especially

when a machine learning model is applied in real clinical practices. We employed the state-

of-the-art model explanation tool, the SHapley Additive exPlanations (SHAP) [114], to have

the model-agnostic explanations. The general principle behind SHAP is to employ the game

theoretic approach to explain the output of any machine learning model with Shapley values

[114]. The SHAP for deep models is built on a connection with DeepLIFT [184], using
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a distribution of background samples and Shapley equations to linearize the components

in the deep network. Figure 4.4 shows the SHAP summary plots for the two tasks in our

MTL-dynamic model. The model was retrained on the whole dataset, with the top 10 most

frequent features selected from each feature category (i.e., clinical and wearable) and the most

frequent selected hyperparameters in the cross-validation. We depicted the top 10 features

based on the SHAP value, and marked the wearable features with "I" in the summary plots.

For each patient, we computed the SHAP values for each feature, which are shown as dots in

the summary plot. A dot in the plot encodes both the true feature value and the computed

SHAP value. The true feature value is represented via the color map, in which the blue color

represents a lower feature value and the red color represents a higher feature value (except

for Sex, where blue signifies male). The SHAP value is represented by the x-axis value. The

absolute SHAP value marks the relative importance of the corresponding feature, and a

positive SHAP value (i.e., on the right side of the x-axis) means the model tends to have a

positive prediction, and vice versa. All the features were ranked in their order of importance

in the figure, based on the average of the absolute SHAP values from all dots. For example,

the sleep disturbance score (sleep_disturb) is the most important feature for the intervention

task, since its average absolute SHAP value is the largest. The model tends to predict a

patient having depression remission if the patient has a lower sleep disturbance score, as a

lower sleep disturbance score (i.e., blue color) corresponds to a positive SHAP value (i.e., on

the right side of the x-axis).

In the two SHAP summary plots, there are six clinical characteristic features for each task,

and five out of the six are shared between the two tasks, demonstrating our MTL model

effectively utilized the overlapping clinical features between the tasks. For both intervention

and control tasks, our model tends to predict the patient will have depression remission if the

patient has a low sleep disturbance score (i.e., sleep_disturb), a low sleep impairment score
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Figure 4.4: Model explanation for MTL-dynamic models.

(i.e., sleep_impair), a low SCL-20 score at baseline (i.e., scl20_score), and a high BRISC

skill score (i.e., brisc_skill) [215]. Both low sleep disturbance score and low sleep impairment

score mean a high sleep quality, and a high sleep quality marks a lower risk of depression [42].

It matches that our model has positive Shapley values for the low sleep disturbance score and

low sleep impairment score. For the baseline SCL-20 score, the higher score means a more

severe depressive disorder. So, it is not strange that our model has a negative SHAP value

for a high baseline SCL-20 score. The median of daily distance (i.e., distance_total_median)

also plays a key role in both tasks, corresponding to the fact that our model has a positive

SHAP value for the high median of daily distance. Previous literature [196] has shown that

exercise could be a helpful treatment to depression, and daily walking predicts an improved

depression outcome[32, 121]. Our model demonstrates a similar trend as well.

4.6 Discussions and Conclusions

In this paper, we exploited machine learning (ML) models for personalized predictions in

the context of an RCT. ML with RCTs usually has separate models for different groups of

patients. In contrast, we formulated the outcome prediction problem for different groups
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as a multi-task (MTL) learning problem, and proposed a novel MTL model for RCTs. The

MTL can predict outcomes of a patient with and without the treatment, using a single

model. We proposed a hierarchical input architecture, enabling the model to take advantage

of the commonality and differences between two groups in an RCT. To overcome potential

negative transfers, we employed the dynamic task weighing technique, which can balance the

contribution of each task in the MTL model during training.

We evaluated our MTL approach on an RCT case study that was designed to test an integrated

collaborative care intervention for depression. We recruited 106 patients (2:1 randomized)

longitudinally monitored with wearable devices. The MTL model was trained on the dataset

that combines both groups, effectively enlarging the training dataset. Our MTL model

is capable of predicting depression remission outcomes of a patient with and without the

intervention. The results demonstrated that the MTL with knowledge transfers between the

two groups outperforms single-task models.

Since depression is usually a long-term disorder [113], automatic estimations of the outcome

could be beneficial to monitoring depression status over time, and potentially assist the doctor

in devising personalized treatments. Table 4.5 and Figure 4.4 demonstrate that wearable data

played an important role in our MTL model, providing additional evidence that wearable

devices can be used as a powerful tool to monitor depressive disorders. In the context of

precision medicine, our approach contributes to streamlining the clinical point-of-care use of

an already successful intervention by considering clinical characteristics and wearable-device-

based activity characteristics. This not only helps in intervention choice decisions, but also

in potentially changing the frequency/dose (e.g., number of times a particular therapy) of

an intervention. The application of MTL techniques to RCTs is novel and provides a new

frontier for precision treatment on already successful, evidence-based treatment methods.
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Limitations: We note that our MTL model is designed to work in conjunction with RCTs.

It assumes that a patient’s treatment path does not change after group splitting, and the

model needs to be trained retrospectively on groups of patients. Our method may not be

applicable to clinical trials that involve adaptive interventions. For example, the sequential

multiple assignment randomized trials (SMART) and N-of-1 trials can adapt the treatments

for individual participants during a trial, based on their response to an intervention.

Besides, even though we have applied multiple techniques to avoid fitting, our RCT study

still has a limited sample size. More confidence in our method will be gained with more and

larger RCTs.

Lastly, we did not evaluate the impact of different lengths of wearable data when building the

models. The lengths of the wearable data are determined by the prediction timeline. Since

we were interested in having the prediction at an early stage of the intervention, we only

built and evaluated the models with two-month wearable data.

Future Work: There are some future directions to advance our work in this paper. First, we

can recruit more patients, and cross-validate the model in other institutions to enhance the

statistical power of our analysis. Second, we can build MTL models at different checkpoints

based on previous RCT data, helping in devising personalized treatments in a finer granularity.

For example, our model can be trained to estimate whether a new patient should receive the

treatment or not, when we only utilize the baseline data at the first visit.
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Chapter 5

Predicting Mental Disorders with

Wearables: A Large Cohort Study

In the previous chapter, we introduced the application of wearables in randomized controlled

trials for predicting mental health outcomes with or without treatment. The study cohorts

restrict to certain patients with depressive disorders in controlled settings. In order to justify

the applications of wearables in a larger population, this chapter presents the detection of

mental disorders in the general public with wearables.

5.1 Introduction

Depression and anxiety are among the most prevalent mental disorders, and they are usually

interconnected [40]. Patients with depression often have features of anxiety disorders, and

those with anxiety disorders commonly always have depression [199]. Although those two

mental disorders have drawn increasing attention due to their tremendous negative impacts

on working ability and job performance [117], over 50% of patients are not recognized or
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diagnosed [111]. The gold standard for assessing depression and anxiety relies on clinical visits

by means of questionnaires, e.g., the 20-item Symptom Checklist Depression Scale (SCL-20)

[47] and General Anxiety Disorder-7 (GAD-7) [195]. Nonetheless, attaining an appointment

with mental health clinicians is not an easy process and usually demands considerable time

and money, thus hindering in-time diagnosis and intervention in the general public. Both

patients and healthcare providers would benefit from an automated passive detection of

depression and anxiety symptoms if only minimum extensive equipment is required.

The growing adoption of wearables affords a promising way for longitudinal monitoring

of a range of digital phenotypes, including physical activity, heart rate and sleep. These

can be used to obtain individual health profiles and indicators of depression and anxiety

symptoms [68, 209]. Leveraging data-driven approaches, such indicators with remote access

from healthcare providers could help narrow the gap in the diagnosis of depressive and anxiety

disorders. Recently, an increasing amount of research has explored utilizing wearables or

mobile devices to detect mental disorders [94, 113, 209]. Wearables are also of benefit to the

patients who need or undergo mental health treatments. People with depressive and anxiety

disorders sometimes hesitate to seek help or treatment because, for example, they think they

can get over the symptoms on their own, fear discussing their symptoms, or simply do not

know where to find the essential assistance. Wearables can remind the patients to receive

treatment, and keep track of the progress of the treatment [35].

Nonetheless, previous wearable studies on depressive and anxiety disorders were usually with

a small or restricted cohort [94, 113, 209]. Multiple findings suggest that physiological and

psychological responses tend to be person-dependent [37, 73]. The small cohorts may not be

enough to cover all inter-individual differences. To unleash the full power of the wearables on

the detection of mental health disorders for the ordinary, a large dataset with a wide spectrum

is essential for data-driven approaches to capture those inter-individual differences, thus
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establishing personalized risk profiles. In this work, we tackled the challenges of discovering

potential patients with depressive and anxiety disorders. We presented a study on a large

dataset consisting of more than 11,600 participants from the "All of Us" program [203], whom

were longitudinally monitored by wearable activity trackers. To the best of our knowledge,

no previous research has investigated depression and anxiety detection with wearables in

such a large cohort. Specifically, our contributions are in three folds:

• We built a large dataset from the "All of Us" program consisting of 11,600 participants,

and statistically analyzed the wearable data and static characteristics among the

participants with and without mental disorders.

• We proposed a deep learning model combining the transformer encoder and convolutional

neural network, which demonstrates superior performances over other state-of-the-art

models.

• We systematically investigated the model performances in various settings, and used

the modern model explanation tool to illustrate the underlying feature importance of

our model.

5.2 Related Work

A growing body of literature suggests that daily physical activity and human behavior

patterns are associated with mental health conditions. Recent studies have used sensing

data collected from smartphones and wearables to capture those daily physical activities and

human behavior patterns, thus quantifying the mental health conditions [16, 30, 45, 113,

189, 209, 217]. Wang et al. conducted an observational study among college students, and

found several significant correlations between the smartphone sensor data and mental health
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outcomes [209]. In another study with college students, Xu et al. used association rule mining

approaches to extract contextually filtered features from passively collected, time-series

mobile data, and fed those features to machine learning models to predict depression with an

accuracy of 81.8% [217]. Beyond the work in identifying mental health issues on campus,

Kim et al. used a wearable wristband that recorded galvanic skin response (GSR) to detect

stress in drivers, with an accuracy of 85.3% [92]. Zachary et al. proposed a framework with

microinteraction-based ecological momentary assessment and wearable sensors to detect the

stress period on pregnant women in real-world settings. Zhang et al. employed a wristband

tracker to monitor sleep, and associated the depressive symptom severity with the sleep

quality [221].

Beyond the physical activity and human behavior measurements, voice data from smartphones

can also be utilized to discover potential mental illnesses using machine learning techniques

[30]. Asif et al. [173] proposed a weakly supervised learning framework for detecting social

anxiety and depression from long audio clips. However, it remains challenging to perform

privacy-preserved voice data collection and analysis. Radio signals could be utilized for

depression screening as well. Shweta et al. [212] explored an approach that uses data collected

from Wi-Fi infrastructure for large-scale automatic depression detection, with an F-1 score of

0.85, demonstrating comparable performance to the approaches using the sensing data from

smartphones and wearables. Nonetheless, the study [212] was also restricted to university

campuses, even though having a relatively large cohort.

5.3 Dataset and Statistic Analysis

Our study cohort is a part of the "All of Us" research program5 funded by the national

institute of health (NIH) in the United States. The research program targets enrolling a
5https://allofus.nih.gov/
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diverse population to accelerate biomedical research and precision medicine [203]. Multiple

mobile/wearable health techniques are incorporated into the program, not only to help

manage the enrollment and retention of participants, but also to gather digital phenotypes.

Participants with any Fitbit devices (Fitbit, Inc. San Francisco6) can share their wearable

digital phenotypes via the Fitbit Bring-Your-Own-Device (BYOD) project [2], which links

participants’ Fitbit accounts to the "All of Us" program. More than 11,600 participants

contribute to the Fitbit dataset, which contains the Fitbit daily summary time series, intraday

heart rate time series and intraday step time series.

More importantly, there is important health information associated with the Fitbit data,

including professional clinical surveys, electronic health records (EHRs), and biosamples. We

can directly extract the diagnoses of mental health disorders from the EHRs, which contain

the formatted condition codes (e.g., ICD-10 [154], SNOMED[194]) and the timestamp when

the patient was diagnosed. Those diagnoses were from hospitals or clinics with professional

healthcare practitioners. In addition, the demographic and some other characteristics (e.g.,

family disease history) are also provided in the "All of Us" program.

In the following, we elaborate on the basic information and statistic analysis of our study

dataset from the "All of Us" program, targeting the predictions of depressive and anxiety

disorders.

5.3.1 Labeling and Inclusion Criteria

Depressive and anxiety disorders are interconnected [199], and are often shown as comorbidities.

It is sometimes difficult to separate one from another. Besides, there are some subtypes of

diagnoses (e.g., posttraumatic stress disorder [220]) that can be categorized as depressive
6https://healthsolutions.fitbit.com/aboutus/
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and/or anxiety disorders as well. As such, we included a combination of 20 diagnoses (see

Table 5.1), and treated them as the defined depressive and anxiety disorders in our analysis.

Those 20 diagnoses were verified by clinical experts. Among all the participants with Fitbit

data, we searched the associated EHRs and labeled the participants as positive if he/she

has any one of those 20 diagnoses. Participants without any one of those 20 diagnoses were

labeled as negative. For convenience, we will use "positive" or "negative" to represent the

participants with or without the defined depressive and anxiety disorders, respectively.

Given that the depressive and anxiety disorders are usually long-term conditions [29, 88], we

chose our primary wearable data window as 60 days when performing the analysis unless

specifically stated otherwise. All the data windows should satisfy a yield threshold. The

yield is defined as the ratio of days with non-zero total steps to the length of the window.

The threshold can be varied, which is a trade-off between participant coverage and data

quality [106]. A yield of 10% was used in our primary analysis, that is, we only kept the

data window having as least 10% days with non-zero steps. Figure 5.1 illustrates our window

sampling strategy. For each positive participant, we extracted one data window right before

the diagnosis time. If the participant has multiple diagnoses with qualified windows, we

chose the earliest window. For each negative participant, we randomly sampled one window

that satisfied the yield threshold. If we could not find a valid window for a participant,

this participant would be excluded. After the exclusion, there remained a total of 8,996

participants with 1,247 positive cases. Table 5.1 displays the distribution of the diagnoses of

participants with a valid window.

Other than the wearable data, we incorporated some static characteristics into our analysis,

as mental health disorders and activity measurements were reported to be associated with

some static factors (e.g., age and gender) [156, 191]. Two criteria were enforced for the

inclusion of the static characteristics. First, only common characteristics that were available
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Figure 5.1: Wearable data sampling strategy (using a window size of 60 days as an example).

Table 5.1: Diagnosis distribution

Diagnosis Name Number of participants
None 7749

Anxiety disorder 489
Major depression, single episode 295
Generalized anxiety disorder 134

Moderate recurrent major depression 59
Depressive disorder 44

Posttraumatic stress disorder 37
Dysthymia 36

Acute stress disorder 29
Mild recurrent major depression 23

Recurrent major depression 22
Panic disorder without agoraphobia 22
Mild major depression, single episode 15

Moderate major depression, single episode 12
Recurrent major depressive episodes, moderate 9

Recurrent depression 7
Chronic post-traumatic stress disorder 6
Mixed anxiety and depressive disorder 3

Panic disorder with agoraphobia 2
Recurrent major depressive episodes, mild 2

Recurrent major depressive episodes 1

in most populations were selected. This made our predictive model reach higher applicability.

Second, characteristics that were strongly correlated with the diagnosis of depressive and

anxiety disorders were excluded (e.g., mental health history), to avoid potential label leakages

when building predictive models. As such, we included seven common characteristics: age,

race, ethnicity, gender, education, alcohol history, and smoke history.
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5.3.2 Statistical Analysis of Wearable Data

"All of Us" program provides the daily summary time-series data obtained from the Fitbit

cloud, which includes 10 variables that are in a day-by-day granularity:

• Total steps (totalSteps). Fitbit provides step measurements using the embedded inertial

measurement unit (IMU). This is the total steps the user takes for one day.

• Calories BMR (caloriesBMR). Total number of BMR calories burned for one day when

the user is sedentary.

• Calories out (caloriesOut). Total number of BMR calories burned for one day, associated

with the activity, goal, summary totals. This variable includes the calories BMR and activity

calories.

• Fairly Active Minutes (fairlyActiveMinutes). Total minutes when the user is fairly/

moderately active for one day.

• Marginal calories (marginalCalories). Total marginal estimated calories burned one the

day.

• Very active minutes (veryActiveMinutes). Total minutes the user is very active for one

day.

• Average heart rate (averageHeartRate). Average heart rate for one day.

• Activity calories (activityCalories). introduced in Chapter 4.3.2.

• Lightly active minutes (lightlyActiveMinutes). introduced in Chapter 4.3.2.

• Sedentary minutes (sedentaryMinutes). introduced in Chapter 4.3.2.

To demonstrate possible differences in wearable data between the positive and the negative

participants, we conducted statistical analysis on the daily summary variables. We adopted the
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Table 5.2: Wearable Statistical features. Mean (S.D.) are reported per group.

Variables Positive participants
n = 1,247

Negative participants
n= 7,749 Statistic p-value

averageHeartRate_intercept 57.01 (32.74) 68.87 (17.72) 369.72 <0.005
caloriesOut_intercept 1718.64 (1094.34) 2173.42 (764.91) 342.24 <0.005
caloriesBMR_intercept 1110.12 (666.41) 1360.44 (405.82) 340.54 <0.005

sedentaryMinutes_intercept 590.21 (349.84) 717.30 (222.53) 299.79 <0.005
totalSteps_intercept 5099.27 (4210.90) 7245.23 (4214.18) 289.19 <0.005
averageHeartRate_std 11.80 (11.19) 7.65 (8.65) 234.52 <0.005

lightlyActiveMinutes_intercept 156.47 (116.03) 198.05 (85.79) 233.79 <0.005
activityCalories_intercept 717.51 (590.13) 961.77 (527.10) 230.97 <0.005

totalSteps_median 5038.14 (3914.17) 6874.21 (4109.60) 225.59 <0.005
caloriesOut_min 1198.72 (1023.89) 1614.52 (933.60) 214.85 <0.005

caloriesOut_median 1734.94 (982.75) 2088.54 (784.34) 209.33 <0.005
sedentaryMinutes_min 395.50 (315.52) 513.29 (272.17) 198.93 <0.005

marginalCalories_intercept 391.73 (359.36) 538.68 (346.78) 198.09 <0.005
caloriesBMR_std 215.14 (226.25) 137.80 (176.96) 195.06 <0.005
totalSteps_min 3123.46 (3481.09) 4726.41 (3896.07) 194.42 <0.005

caloriesBMR_min 803.24 (662.77) 1046.95 (572.98) 192.3 <0.005
averageHeartRate_min 40.37 (32.68) 51.89 (27.10) 188.88 <0.005

averageHeartRate_median 57.92 (28.42) 66.42 (19.09) 187.93 <0.005
sedentaryMinutes_median 591.48 (295.92) 686.77 (221.17) 185.73 <0.005

caloriesBMR_median 1131.57 (589.98) 1315.51 (430.81) 180.38 <0.005
activityCalories_min 443.55 (479.31) 639.78 (493.24) 177.92 <0.005

activityCalories_median 711.82 (550.64) 913.32 (513.72) 167.92 <0.005
marginalCalories_min 235.60 (279.10) 349.04 (299.13) 163.43 <0.005

lightlyActiveMinutes_min 99.90 (100.86) 134.71 (90.79) 158.53 <0.005
sedentaryMinutes_std 140.81 (122.04) 101.50 (101.63) 156.76 <0.005

lightlyActiveMinutes_median 156.02 (104.70) 188.61 (85.27) 151.74 <0.005
marginalCalories_median 387.19 (341.10) 509.92 (333.37) 150.08 <0.005

caloriesOut_std 358.27 (331.87) 259.39 (265.58) 142.94 <0.005
veryActiveMinutes_intercept 12.20 (20.76) 20.79 (25.64) 131.92 <0.005
veryActiveMinutes_median 11.61 (19.47) 19.26 (24.05) 118.94 <0.005
averageHeartRate_slope 0.04 (0.72) -0.12 (0.45) 104.35 <0.005

caloriesBMR_slope 0.63 (13.81) -2.31 (8.86) 101.53 <0.005
veryActiveMinutes_min 4.93 (13.09) 10.22 (18.33) 100.13 <0.005

caloriesOut_slope 0.76 (21.53) -3.71 (14.62) 89.29 <0.005
fairlyActiveMinutes_intercept 11.85 (17.25) 17.24 (19.44) 88.23 <0.005

lightlyActiveMinutes_std 38.99 (29.66) 31.81 (25.55) 83.95 <0.005
sedentaryMinutes_slope 0.38 (7.90) -1.18 (5.49) 77.21 <0.005

fairlyActiveMinutes_median 11.21 (16.43) 15.67 (17.54) 73.27 <0.005
fairlyActiveMinutes_min 4.90 (10.95) 8.02 (12.43) 72.78 <0.005

lightlyActiveMinutes_slope 0.05 (2.09) -0.35 (1.60) 62.55 <0.005
activityCalories_slope 0.14 (10.09) -1.71 (8.16) 53.25 <0.005

totalSteps_slope 0.83 (71.98) -12.46 (63.64) 46.71 <0.005
marginalCalories_slope 0.07 (5.85) -0.96 (4.97) 45.68 <0.005
veryActiveMinutes_std 5.06 (5.73) 6.25 (6.03) 44.57 <0.005
activityCalories_std 186.09 (149.12) 164.69 (132.14) 28.13 <0.005

fairlyActiveMinutes_slope 0.00 (0.29) -0.03 (0.28) 16.16 <0.005
fairlyActiveMinutes_std 5.03 (5.11) 5.62 (5.41) 13.43 <0.005
veryActiveMinutes_slope -0.00 (0.31) -0.03 (0.33) 12.22 <0.005
marginalCalories_std 106.39 (90.31) 98.98 (82.92) 8.68 <0.005

totalSteps_std 1357.31 (1032.97) 1318.56 (979.65) 1.72 0.19
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hierarchical feature engineering approach in Chapter 4.3.3 to transform each daily summary

time series into five statistical features (i.e., median, min, max, slope, intercept). Then we

used the one-way Analysis of variance (ANOVA) test on each statistical feature between

the positive and the negative groups. Table 5.2 lists all the transformed wearable statistical

features. Most of the extracted wearable features show significant differences between the

positive and the negative (one-way ANOVA, p−value < 0.005), suggesting the potential

discrimination power of wearable data when assessing the depressive and anxiety disorders at

a group level.

5.3.3 Statistical Analysis of Static Characteristics

20 40 60 80
0.000

0.005

0.010

0.015

0.020

D
e
n
si
ty

Postive
Negative

Age

Figure 5.2: Age distribution (the positives and the negatives are normalized respectively).

Unlike previous studies [16, 30, 45, 113, 189, 209, 217] with a cohort from a single population

or having less than 100 participants, our study has a wide spectrum of participants. Figure

5.2 displays the age distributions. Our study cohort has a wide range of ages from 15 to

90, with an average age of 48.6 (S.D. 15.9) for the entire cohort. We observed two peaks

for both the positive and negative, which is at around age 35 and age 65. We hypothesize
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that the younger (around age 35) are more fond of wearables due to fashion statement, and

that the older (around age 65) adopt more wearables due to the growing need for health

monitoring. A significant difference in mean age was found between the positive and the

negative (Wilcoxon rank-sum test, p = 0.002).

An overview of all static characteristics is presented in Table 5.3. Among all the participants,

69.2% were female, 28.9% were male and 1.9% were not specified, demonstrating that females

are more likely to take part in this study with wearables. Also, the female tends to be

more vulnerable to depressive and anxiety disorders (χ2 test of independence, p < 0.005).

Previous literature [130] exhibited a similar observation. In terms of the race in the whole

dataset, 83.4% were White, 5.0% were Black or African American, 3.2% were Asia, 5.4%

were none of those (i.e., White, Black, Asia), 2.1% were more than one races and 0.7%

skipped the question. Even though our study cohort is heavily skewed to the White, the

absolute number of participants in each category is still considerably large compared to

previous studies [16, 30, 45, 113, 189, 209, 217]. The mental disorders show a significant

correlation to the race (χ2 test of independence, p < 0.005). As for the ethnicity in the

whole dataset, 91.9% were not Hispanic or Latino, 6.6% were Hispanic or Latino and 1.5%

skipped the question. No significant correlation between the diagnosis and the ethnicity was

found (χ2 test of independence, p = 0.790). In the light of participants’ highest education

levels, 72.7% of the participants had college graduate or advanced degrees, 21.3% had college

associate or technical school degrees, 5.0% had Grade 12 or high school degrees, 0.3% had

below high school degrees and 0.3% had skipped the question. A significant difference in

education level was observed between the positive and the negative (χ2 test of independence,

p < 0.005). On average, the negative group concentrates more on the college graduate or

above degree when compared to the positive group. In addition to the basic demographic

characteristics, we incorporated two other static characteristics: drink frequency and smoke
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frequency. Comorbidity of alcohol use with some mental disorders is well established [170]. In

the general population, the overlap between alcohol abuse/dependence and broadly classified

depressive disorders is greater than expected by chance [170]. Also, smoke dependence

demonstrates a similar link to depression [155]. In our analysis, we found both the drinking

frequency and smoke frequency show significant differences between the positive and the

negative (χ2 test of independence, p < 0.005).
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Table 5.3: Participant static characteristics

Static Characteristics Positive participants
n = 1,247

Negative participants
n= 7,749 p-Value

Age, years, mean ± SD 47.3 ± 15.3 48.8 ± 15.9 <0.005
Gender, n (%) <0.005

Female 1045 (80.1) 5185 (67.4)
Male 232 (17.8) 2366 (30.8)

Not specified 27 (2.1) 141 (1.8)
Race, n (%) <0.005

White 1127 (86.4) 6381 (83.0)
Black or African American 53 (4.1) 398 (5.2)

Asian 20 (1.5) 268 (3.5)
None of these 69 (5.3) 421 (5.5)

More than one population 25 (1.9) 167 (2.2)
Skipped 10 (0.8) 57 (0.7)

Ethnicity, n (%) 0.790
Not Hispanic or Latino 1205 (92.4) 7065 (91.8)

Hispanic or Latino 81 (6.2) 514 (6.7)
Skipped 18 (1.4) 113 (1.5)

Education, n (%) <0.005
College graduate or above 815 (62.5) 5734 (74.5)

College One to Three 370 (28.4) 1555 (20.2)
Twelve Or GED 106 (8.1) 348 (4.5)

Below high school 9 (0.7) 26 (0.3)
Skipped 4 (0.3) 29 (0.4)

Drink, n (%) <0.005
4 or More Per Week 153 (11.7) 1130 (14.7)

2 to 3 Per Week 196 (15.0) 1395 (18.1)
2 to 4 Per Month 322 (24.7) 1903 (24.7)
Monthly Or Less 432 (33.1) 2095 (27.2)

Never 163 (12.5) 778 (10.1)
Skipped 38 (2.9) 391 (5.1)

Smoke, n (%) <0.005
Every Day 46 (3.5) 144 (1.9)
Some Days 33 (2.5) 122 (1.6)
Not At All 408 (31.3) 1983 (25.8)

Skipped 817 (62.7) 5443 (70.8)
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5.4 Predictive Models
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Figure 5.3: WearNet model architecture.

In this section, we discussed machine learning models to predict the defined depressive and

anxiety disorders, using wearable data and static characteristics. We presented WearNet,

a novel deep model combining a transformer encoder with a convolutional neural network,

which can efficiently handle the long time-series sequences and show superior performances.

WearNet comprises three key components: (1) a transformer encoder that identifies important

patterns across multiple timestamps; (2) a convolutional layer that integrates neighborhood

patterns; and (3) a global max-pooling layer that captures the overall patterns for the final

probability prediction. Figure 5.3 illustrates the architecture of the WearNet.
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Transformer Encoder

The inputs of the wearable data are in the form of multivariate time series, which usually

have a length ranging from tens to hundreds of steps, depending on sampling frequency

and window size. Recurrent neural network (RNN) has been previously used to handle

time-series data as it can potentially capture positional and semantic information. But RNN

suffers from the computational complexity and vanishing gradient problem, especially for

long sequences[168]. Recently, the attention mechanism has become an alternative to the

recurrent neural network, showing abilities to capture dependencies of various ranges (e.g.,

shorter-range vs. longer-range) within a sequence. In our proposed model, we utilized the

transformer encoder [205], including the multi-head self-attention mechanism, to distill the

raw wearable information.

Suppose we have a multivariate wearable time-series input xwear ∈ RT×D, the self-attention

is calculated as following:

Attention(Q,K, V ) = softmax(
KQT

√
dk

)V (5.1)

Q = xwearW
Q, K = xwearW

K , V = xwearW
V (5.2)

Where Q,K, V represent the queries, keys, and values, respectively; WQ,WK and W V are

linear projection parameter matrices; dk is the dimension of the keys. Then, we have a

multi-head operation, which is basically performing the single self-attention multiple times.

Multi-head self-attention allows the model to jointly attend to information from different

representation subspaces at different positions.
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h = MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O (5.3)

where headi = Attention(xWQ
i , xW

K
i , xW

V
i ) (5.4)

Where the WQ
i ,W

K
i and W V

i are linear projection parameter matrices for the i-th head; h is

the output of the multi-head self-attention operation. In our work, we employed 16 heads.

After the multi-head self-attention, we added the position-wise feed-forward network (FFN)

with a ReLU activation:

FFN(h) = max(0, hW1 + b1)W2 + b2 (5.5)

Where W1,W2, b1 and b2 are kernel weights and bias in the feed-forward network. There are

shortcut connections (see Figure 5.3) for both the multi-head self-attention and feed-forward

network to avoid being trapped by spurious local optimum while training [59].

Convolutional Neural Network

We found that adding a 1-dimensional convolutional layer promotes predictive performance

(see Section 5.5.5). The convolutional layer contains a set of filters, which is to capture the

patterns from neighborhood time steps. In our work, we have 10 filters with a kernel size of 3

and a step size of 1.
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Global Maximum Pooling

The global maximum pooling enables the model to select one outstanding global pattern

from all timestamps. It reduces the time-series feature maps into a single instance of feature

map (without temporal dimension), by having the maximum feature value in each feature

channel from all the temporal information. There is no parameter to optimize in the global

maximum pooling layer, thus making it a robust transformation to avoid overfitting.

Integration of Wearable and Static Information

After the global maximum pooling layer, we further condense the feature map into an

8-dimensional vector with a dense layer and a batch normalization. Similarly, the static

characteristics are also condensed into an 8-dimensional vector with a dense layer and a

batch normalization. Then, we concatenated the two 8-dimensional vectors into a single

16-dimension vector, followed by a dense layer and a sigmoid activation to generate the

probability estimates of a person having the defined depressive and anxiety disorder.

5.5 Experimental Evaluation

In this section, we evaluated the proposed WearNet from three perspectives: (1) comparison

of predictive performance with other state-of-the-art models, (2) influence of missing data

imputation, and (3) influence of the window size of wearable data. More importantly, we

utilized a model-agnostic explanation tool to shed light on the prediction from the WearNet,

which demonstrates the relative feature importance and the feature contribution directions

(e.g., this feature makes the model tend to have a positive prediction). All the experiments

were conducted on the dataset introduced in Section 5.3.
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5.5.1 Evaluation Setting

We employed a time-based train/validation/test splitting scheme that is closest to practical

clinical application scenarios. All the participants were ranked based on the first date in

their wearable data window. The oldest 80% of participants were used during training and

validating, out of which 10% were for validating. And the rest 20% of the participants were

used during testing.

It is worth noting that the test dataset was imbalanced, with only 13.4% positives. Therefore,

we used the area under the receiver operating characteristic (AUROC) and the area under the

precision-recall curve (AUPRC) as the major metrics. Those two metrics can well gauge the

performance with the imbalanced dataset when the positive outcomes are of more interest. All

the experiments were run 10 times, and the average performances with standard deviations

were reported.

5.5.2 Comparing with Baselines

In this experiment, we evaluated the predictive performance of WearNet in comparison to a

set of state-of-the-art models. We imputed the wearable data with an indicator variable (i.e.,

-1), except for those models designed for time-series prediction and imputation simultaneously.

The window size is 60 days with a yield threshold of 10%.

The first category of the baseline is shallow machine learning models with traditional feature

engineering techniques [106], including logistic regression (LR) with L2 regularization, random

forest (RF), gradient boosting decision trees (GBDT), and support vector machine (SVM)

with radial basis function kernel. Basically, we employed a one-dimensional concatenation of
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the wearable statistical features listed in Table 5.2 and static characteristics listed in Table

5.3 as the input for those shallow machine learning models.

The second category of baselines is deep learning-based models, including the followings:

• bidirectional long short-term memory (bi-LSTM):a basic bidirectional recurrent

neural network (RNN) model with LSTM unit.

• BRITS [17]: a bidirectional RNN model with a built-in imputation component for

handling missing values in the input. BRITS learns the missing values in a bidirectional

recurrent dynamical system, without any specific assumption.

• CrossNet [105]: a bidirectional RNN model with a built-in imputation component

that integrates static and time-series clinical data in deep recurrent models through

multi-modal fusion.

• Temporal convolutional network (TCN) [133]: temporal convolutional network

with dilation designed to handle long input sequence of time-series data.

• Informer [222]: a computationally efficient transformer-type model for long sequence

predictions. We only utilized one encoder from Informer as we target at a classification

task.

• WearNet: our proposed deep neural network with a combination of a transformer

encoder and a convolutional neural network.

We employed the same concatenation components to integrate the static characteristics for

the deep models, except CrossNet. CrossNet has its own mechanism to learn from the static

characteristics via multi-modal fusion and static hidden state initialization [105]. All the
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models were implemented in TensorFlow [118] or Scikit-learn [145] Python framework. The

hyperparameters were tuned with grid search.

Table 5.4: Predictive performances of all models

Category Model AUROC AUPRC

Shallow Models
with feature engineering

LR 0.701(0.000) 0.351(0.000)
SVM 0.592(0.000) 0.290(0.000)
RF 0.661(0.005) 0.349(0.007)

GBDT 0.685(0.001) 0.365(0.000)

Deep Models

bi-LSTM 0.702(0.015) 0.464(0.011)
BRITS 0.693(0.012) 0.445(0.011)
CrossNet 0.682(0.021) 0.429(0.014)
TCN 0.629(0.021) 0.235(0.024)

Informer 0.705(0.008) 0.428(0.011)
WearNet 0.717(0.009) 0.487(0.008)

Table 5.4 shows the performances of all the models. It is obvious that WearNet shows

the best performance, suggesting the effectiveness of our proposed architecture to learn

from the wearable time-series data and the static characteristics. bi-LSTM demonstrates

better performances than BRITS and CrossNet, even though they are all RNN-based models.

CrossNet shows worse performance, possibly due to the fact that CrossNet focuses on the multi-

modal fusion to boost performance which needs more information from the static features, but

our dataset has limited statistic features. TCN shows the worst performance among the deep

models, indicating the temporal convolution architecture is not suitable to distill information

from the wearable time-series data in our dataset. Informer demonstrates a similar AUROC

but a lower AUPRC compared to WearNet. Both Informer and WearNet are attention-based

models, but Informer utilized a sampling strategy to lower the computational complexity of the

attention mechanism. When compared to the shallow models with feature engineering, all the

deep learning models show superior performances, indicating the advantages of deep learning
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on the large dataset. The feature engineering approach requires significant efforts on the

hand-crafted features, and is hard to comprehensively capture the underlying inter-individual

differences.

5.5.3 Impacts of Imputation Values

The missing data is inevitable for the wearables. There are various factors that can lead to

missing data. For example, the device needs to charge or the participants forget to wear the

device. Most machine learning models need intact inputs without missing values. Both BRITS

and CrossNet have dedicated components to handle the missing values in the time-series data,

using data-driven imputation approaches. BRITS utilized the correlations from history values

and other time-series variables for the imputation, while CrossNet additionally incorporated

the static characteristics (e.g., demographic characteristics and other clinical lab tests) for

the imputation. Nonetheless, those dedicated components did not promote the performance

compared to the WearNet with a fixed value (i.e., -1) imputation (see Table 5.4).

Moreover, we evaluated another common imputation strategy that is to use personal mean

value to fill the missing value, in comparison to the fixed value (i.e., -1) imputation used in

the previous experiment. Table 5.5 shows the performance comparisons. The mean value

imputation did not show improved performances either.

Table 5.5: Imputation impacts

Model AUROC AUPRC

WearNet(mean impute) 0.664(0.006) 0.231(0.008)
WearNet(-1 impute) 0.717(0.009) 0.487(0.008)
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Both the mean value imputation and data-driven imputation (e.g., BRITS and CrossNet)

might ignore the missing patterns. Those patterns could be suggestive of mental disorders.

For example, the participants were staying at home and not wearing the activity tracker, thus

incurring missing values. The staying-at-home event itself may be a predictor. If we use some

values from the imputation methods to fill in the missing values, spurious information will be

introduced and the model may treat these values as normal, ignoring the missing patterns.

As such, it is reasonable to just add an indicator (e.g., -1) to represent the missingness. The

above results also proved that our proposed WearNet can effectively handle the missing data

via a simple fixed indicator, which shows even better performances than the deep model with

dedicated imputation components.

5.5.4 Impacts of Window Size

Previously, we evaluated the models with a fixed window size of 60 days, given the long-term

characteristics of the mental disorders. To validate the feasibility of the proposed model

with different window sizes, we conducted experiments with varying window sizes. The yield

threshold is still fixed at 10%. Figure 5.4 illustrates the performances with varying window

sizes.

We can observe that the performances increase when the window size varies from 15 days to

90 days, which is especially obvious from 15 days to 60 days. This trend indicates that a

relatively large window size (e.g., from 60 days to 90 days) indeed helps in predicting the

defined depressive and anxiety disorders. However, when the window size becomes even

larger (from 90 days to 120 days), the performances drop a bit. We hypothesize that it is

due to the fact that the model may not well process the long sequences. A larger window

size not only incurs more model complexity, but also makes the prediction less "real-time",

as it requires a longer period to collect the data. As such, it is reasonable to choose 60 days
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Figure 5.4: WearNet performances with varying window sizes

as the window size in our primary analysis, given the trade-off between the performance and

many constraints of the large window size.

5.5.5 Ablation Study

Our WearNet has an additional convolutional layer compared to a traditional transformer

encoder. To support the performance gain from the convolutional layer, we evaluated our

model without the convolutional layer. Besides, we also evaluated our model with different

sensing modalities. Table 5.6 shows the performances of WearNet with different settings.

We can observe that adding a convolutional layer after the transformer encoder indeed

boosted the performance. Dropping the static characteristics makes the WearNet have a

slight performance decline, and performance declines even more when dropping the wearable

data. This observation attests that the wearable data played a more significant role than the

static data in our model, but combining both achieved the best performances.
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Table 5.6: Ablation study performances

Model AUROC AUPRC

WearNet 0.717(0.009) 0.487(0.008)
WearNet(without convolutional layer) 0.673(0.008) 0.251(0.008)
WearNet(without static characteristics) 0.702(0.007) 0.456(0.007)
WearNet(without wearable data)* 0.650(0.003) 0.222(0.003)

*The model reduces to a single-layer perceptron if we drop components for wearable data.

5.5.6 Model Explanation

We utilized the integrated gradients (IGs) [198], an explainable AI technique that aims to

explain the relationship between a model’s prediction in terms of its input values. The IG

assigns an importance score to each input value by approximating the integral of gradients of

the model’s output along the linear path from given references to the inputs [198]. We randomly

sampled reference values from the training dataset, and we calculated the expectations of

IGs for each of the inputs in our testing dataset.

As the wearable data are in the form of multivariate time series, we were interested in the

aggregated IGs for the whole time series instead of the single value in each timestamp. Those

aggregated IGs will be used as relative feature importances. For example, we aggregated IGs

for daily step time series by averaging the calculated absolute gradients in each time step,

then compared the aggregated IGs with other time series (e.g., activity calories). Figure 5.5

demonstrates the ranking of feature importance quantified by the aggregated IGs. The total

step (i.e., "totalSteps") time series is the most important in our model for detecting the defined

depressive and anxiety disorders. Previous literature has confirmed the predictive power of

the daily steps [32, 121, 178]. Other time series show moderate importance, including calories

out, calories BMR, activity calories and sedentary minutes. The very active minutes time

series shows the least importance, which could possibly owe to the fact that the participants
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only have an occasional period that was classified as very active by the Fitbit [214], thus

making it too sparse to contain useful information for the model.

Relative feature importance
veryActiveMinutes
fairlyActiveMinutes
averageHeartRate

lightlyActiveMinutes
marginalCalories

sedentaryMinutes
activityCalories

caloriesBMR
caloriesOut
totalSteps

Figure 5.5: Wearable time series feature importance

For the static characteristics, we directly adopted the IGs for each value as they are one-

dimensional without the temporal dimension. The positive IG means that the value increases

the probability of the positive prediction (i.e., having the defined mental disorders), whereas

the negative IG means that the value decreases the probability. Figure 5.6 demonstrates the

IGs for the static characteristics. Different colors signify different values of that characteristic.

For example, the blue in gender signifies the woman, and the red signifies the man. If the

characteristic can be ranked, the red color represents a higher value. For example, the red in

smoke represents a higher smoke frequency. It is obvious that the model tends to predict a

woman having a higher probability of mental disorders, which has been proved in previous

literature [130]. People who smoke more frequently also tend to have a higher probability of

mental disorders. However, for the race, alcohol, age and ethnicity, there seem to be no clear

separations or unique patterns based on the IGs.
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Figure 5.6: Static characteristic feature importance

5.6 Discussion and Conclusion

Depressive and anxiety disorders are usually long-term disorders, which could span for several

months or even several years. Although highly prevalent, those mental disorders are usually

hard to identify due to numerous factors. Current gold-standard assessment relies on clinical

visits by means of questionnaires, which usually demands a large amount of time and money.

Passive monitoring with wearables could greatly help alleviate those burdens.

In this work, we explored detecting depressive and anxiety disorders with wearables on a

large public dataset. We proposed a novel deep neural network that combines the transformer

encoder and convolutional neural network, which can effectively distill information from

time-series data. We evaluated our model on a large cohort consisting of more than 11,000

participants. The model primarily takes 60-day wearable data and basic static characteristics

as inputs, achieving an AUROC of 0.717 (S.D. 0.009) and an AUPRC of 0.487 (S.D. 0.008),

which outperforms other baseline models. We also evaluated the impacts of imputation
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techniques, demonstrating the effectiveness of the fixed indicator imputation. Fixed indicator

imputation can encode the information of the patterns when there are missing values. The

missing pattern itself may reflect the information of the user habits. We found that the input

window size of the wearable data has an impact on the performances as well. A larger window

size would improve the model, but the gain drops when the window size increases beyond

90 days. There is a trade-off between the model performance and the model constraints.

Therefore, we chose the 60-day window. More importantly, we quantified the contributions

of the data modalities using the ablation study and model explanation tool. In terms of

the model performances, the wearable data shows more predictive power than the static

characteristics, but combining them achieves the best. The total step time series account for

the most importance among the wearable data. Gender and smoke history are the top two

important static characteristics, which suggests that females and frequent smokers tend to be

more vulnerable to depressive and anxiety disorders. Those findings in the model explanation

match our statistic analysis, verifying the rationality of the predictions from our proposed

model.

To the best of our knowledge, our study is based on the largest and most diverse cohort,

and demonstrates decent predictive performances. Wide accessible, and not intrusive or

burdensome, our approach with wearables represents a promising step in discovering depressive

and anxiety disorders in public, in complementary to the traditional diagnostic tools from

healthcare providers.

5.7 Limitation

We note several limitations in this work. First, even though our dataset is the largest dataset

with the wearables for studying depressive and anxiety disorders, there is an inherent bias in
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the dataset from the "All of Us" program. In Section 5.3, we observed the cohort has more

females than males, and the race, as well as ethnicity, are also not evenly distributed. Second,

we did not include the minute-by-minute heart rate and step time series in our analysis. Those

fine-grained time series could boost the model performances if with an effective approach.

Third, the dataset only contains the wearable data from Fitbit devices. The applicability of

other wearables remains to be investigated.
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Chapter 6

Conclusion

The advancements in wearables pose new research challenges in the area of smart sensing

and clinical outcome predictions. This dissertation has studied the applications of wearables

in various scenarios from physiological signal measurements to mental health predictions.

Those applications constructed a promising path toward the practical adoption of wearables

in healthcare and clinical monitoring, solving challenges at different levels.

RespWatch (in Chapter 2) investigated the low-level respiratory rate measurements from a

commercial smartwatch, using a hybrid approach combining deep learning and signal process-

ing. The signal processing shows high accuracy under moderate noise, whereas deep learning

shows more robustness to significant noise. Our hybrid approach dynamically leverages

the complementary advantages for both signal processing and deep learning. However, the

efficiency of the hybrid approach is still not comparable to the signal processing techniques.

And our user study was limited to measuring respiratory rate under some types of activities.

Further optimizations of computational resources and evaluations of applicability under more
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circumstances are needed to unleash the full potential of measuring respiratory rate and

monitoring respiratory-related disease with a smartwatch.

In Chapter 3, we studied stress detection with the RespWatch pipeline, by comparing the

performances of the machine learning models in detecting subjective and objective stress.

Stress is a much more complicated physiological and/or psychological response compared

to respiratory rate. Long-term stress is even labeled as a "silent killer". The systematical

evaluations of stress detection models in our study provide some preliminary understandings of

the interplay between subjective and objective markers of stress. Nonetheless, we acknowledge

several limitations of this study. This was a single-site study with 32 participants, and as

such the results may not be generalizable. Future larger studies with more people are needed,

especially in a free-living setting.

Following the detection of stress, Chapter 4 explored using wearables and multi-task learning

(MTL) techniques in predicting the depression outcome along with integrated behavior

therapy in a randomized controlled trial (RCT). Insights from RCTs are often translated into

clinical practice. Our idea helps in streamlining the clinical point-of-care use of an already

successful intervention by considering patient-specific characteristics such as baseline clinical,

and wearable-device-based activity characteristics. The application of MTL techniques to

RCTs is new and provides a new frontier for precision treatment. While this approach is

powerful and useful in assessing the value of an intervention for clinical practice, our model

does not directly help in assessing "which patient" should receive an intervention. Our

model relied on the baseline clinical characteristics and 2-month’s wearable data, which

assumed that the patient’s treatment plan (i.e., intervention or control) was already known.

For behavioral interventions, sometimes outcomes are achieved without any treatment (e.g.,

a wait-and-watch approach). For example, some participants in the control group would

show some depression outcome improvement without the treatment intervention. In the
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future, we may build the MTL model, purely utilizing the baseline data that does not depend

on any information on treatment assignments, so that we can help in deciding whether a

patient should receive the treatment at the point of care. This not only helps in intervention

choice decisions, but also in potentially changing the frequency/dose (e.g., number of times a

particular therapy must be used) of an intervention.

Finally, in Chapter 5, we investigated the applicability of wearables in detecting depressive and

anxiety disorders with a large cohort consisting of a wide spectrum of populations. Although

highly prevalent, those mental disorders are usually hard to identify due to numerous factors.

We can passively employ our detection model to assist in the diagnoses of mental disorders in

the general public. The findings in this study could potentially benefit more people compared

to previous studies, as the study cohort has fewer restrictions. The wearable activity brings

minimum burdens to the users, as it has already been a part of daily life for many people.

However, cautions for bias are still needed when applying the model and analyzing the results.

First, our training data is skewed to female and White people. Even though we have a

considerable number of people in other gender or races, the model may have a potential

incline to the majority. Second, the labels in the dataset are far from perfect. Some people

may not get diagnosed, and the diagnosis time from the electronic health records may not be

truly accurate, as some patients may get a delayed diagnosis.

6.1 Closing Remarks

While the application studies in this thesis afford a promising path toward the practical

adoption of wearables in healthcare, there are still some limitations we need to address, such

as the inherent bias of the training dataset, small sample size, and applicability under more

complex circumstances. Within the foreseeable future, the development of hardware and
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software platforms, and wearable-based artificial intelligence analytic tools will help us to

address those limitations and boost more applications of wearables in healthcare. We believe

the wearables will continue to meet the emerging demands, and we will observe a more

significant role of wearables in precision medicine with personalized healthcare solutions.
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