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A UNIFIED APPROACH TO MIXED-MODE SIMULATION

by

Roger D. Chamberlain and Mark A. Franklin

Computer and Communications Research Center
Washington University
St. Louis, Missouri

1. Introduction

The design of large digital systems and, in particular, the design of VLSI systems which
require extensive simulation-based design verification prior to fabrication have increased the
importance of simulation in the overall design process. As the systems being modeled have
become larger, simulation tasks have become significant bottlenecks in the design cycle [1]. One
approach to alleviating this problem has been to design special purpose machines tailored to the
simulation process. Such machines typically have significantly higher performance than that
obtainable with simulation algorithms executing on traditional sequential von Neumann
architectures. Simulation in this context is taken to include both logic and circuit simulation.
Logic simulation refers to discrete time-based simulation at the gate- or switch-level with node
voltages being modeled by logical states. Cireuit simulation refers to a continuous simulation,
modeling circuit elements by their characteristic equations (or some simplification thereof) and
numerically solving the diflerential equations that represent the circuit for the node voltages as

a function of time.

There has been much work on the design of machines specialized to logic simulation {1-11)
and circuit simulation {12-14] exclusively. In this paper we focus on methods for combining the
two simulation tasks in a uniform manner so that they can be executed as part of a single

simulation task (i.e., mixed-mode simulation). Such a unified development is needed to achieve

This research was sponsored in part by funding from NSF Grant DCR-8417709, ONR Contract N00014-8D-C-
0761, and an NSF Graduate Fellowship.
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high performance mixed-mode simulation on traditional von Neumann computers. In addition,
such a development is a prerequisite for both effective design of mixed-mode simulation engines
and implementation of mixed-mode simulators on general purpose multiprocessors (e.g.,
BBN Butterfly, N-Cube, Intel iPSC). Ultimately, of course, we would like to move in the
direction of creating a “design automation” machine which can handle the range of
computationally intensive tasks associated with VLSI design automation {e.g., logic simulation,

circuit simulation, placement and routing, etc.).

Mixed-mode simulation has several potential benefits over standard techniques where
circuit and logic simulation are treated separ_a.t»ely. First, use of mixed-mode simulators eases
the problems associated with setting up proper initial conditions on circuit simulations which
are embedded within larger digital system models. In this situation, the logic simulation can be
executed until required conditions are achieved, and then the circuit simulation can proceed
with the proper input values and system state. In general, use of mixed-mode simulators greatly
reduces the overall problems which can arise when two different but interacting simulation

models are used by ensuring that node values at the interfaces of the models are correct.

Second, mixed-mode simulation can significantly reduce the costs associated with
simulation for design verification. For example, large systems can be subdivided so that only
those portions of the system requiring detailed level analysis are subject to circuit simulation
while the remainder of the system is simulated at the logic level. The entire system need not be
simulated at the circuit level (often this is not feasible due to large execution times) and, as
each subsection is verified, it can be replaced with its logic level equivalent. Since circuit level
simulation takes roughly two orders of magnitude longer then logic level simulation, overall
simulation times can be reduced by successive replacement of circuit level models by logic level

models.

Finally, in those situations where separate special purpose circuit or logic simulation

engines are employed, the ability to perform mixed-mode simulation in a uniform manner holds
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the promise of allowing the development of new engines which can do mixed-mode simulation.
This could significantly reduce costs for the reasons given above, and because of potential

savings when two simulation engines are replaced by a one.

This paper investigates the algorithms used to perform logic and circuit simulation. Their
similarities and differences are considered, and a general framework is presented for developing
an integrated algorithm which can handle both simulation types in a uniform manner. Given
this framework, some issues relating to exploiting a multiprocessor for mixed-mode simulation

are presented.

2. General Continuous and Discrete Simulation Algorithms

Simulation can be viewed as a series of state transitions that model the behavior of the
system of interest starting from some initial state. This process can be represented as in
Figure 1, where S(¢,) represents the state of the system at time ¢, and
(¥n)(n > 0] t, < t,yy). The simulator takes the system state at time {, and derives the
system state at time f,,,. Within this general framework, the continuous and discrete
simulation algorithms may be differentiated by the types of values that are allowed in the state
variables and the methods employed to advance time. In the ideal continuous algorithm, state
variables are treated as elements of the set of reals. This set is typically implemented using
floating point numbers. In both the ideal and implemented discrete algorithm, state variables

are elements of a countable set that can be mapped onto the integers.

Sty ———a
(to) Simulator

—  S{¢ —_—
ta_.'tn-i-l (nﬁ-l)

Figure 1. General simulation
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There are two types of time advance mechanisms, both of which can be used with either
the discrete or the continuous algorithms. The simplest approach is to advance time by a fixed
amount at each step (i.e., f,,; — ¢, is a constant). This is referred to as using a “fixed step
size”” when continuous algorithms are considered and is called a “unit inerement” simulation in
the discrete case. While simple to implement, this technique does not, however, take advantage
of the fact that in both circuit and logic simulation there are often time points when little or no
activity takes place (i.e., state variables remain the same). The second type of time advance
mechanism exploits this temporal sparsity by skipping time points where there is no activity in
the system. This mechanism is referred to as a “variable step size’ in the continuous case and

an “event based increment” in the discrete case.

In addition to the temporal sparsity mentioned above, not every component in the circuit
need be evaluated even at time points that do have activity. This spatial sparsity of activity
can be exploited in both the continuous and discrete algorithms by scheduling only those
functional evaluations required rather than evaluating all components at time points with

activity. In the discrete case, an event queue is typically used for this purpose.

The task of moving from time ¢, to time f,,, involves functional evaluation of circuit
components in both the continuous and discrete algorithms. For both speed and compatibility
reasons it is advantageous, where possible, to perform the functional evaluations using table
lookup techniques. In this way, any special purpose hardware for table lookup that accelerates

functional evaluation helps the performance of both circuit and logic simulation.

3. Circuit Simulation

In circuit simulation, the circuit of interest is modeled by a set of non-linear differential
equations that are numerically solved as a function of time. Numerous options are available for
solution of such sets of differential equations. Four possibilities for use as the circuit simulation

algorithm are examined below. The criteria for comparing these methods are:
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1. whether the algorithm takes advantage of temporal and/or spatial sparsity of
activity inherent in the circuit,

2. whether the algorithm can be easily adapted for use in a distributed processing
epvironment, and

3. whether the algorithm has proven stability and accuracy properties, or if these
characteristics have been established using heuristics or empirical evidence.

3.1. Direct Methods

Direct methods take advantage of the improved speed possible using simple integration
algorithms, simple circuit component models, and correspondingly simple hardware along with a
small time step to insure convergence [12]. In this approach, the circuit is limited to
interconnected transistors with non-zero capacitances allowed between any node and ground.
The drain-source current, Jpg, is first calculated for each transistor connected to a node, using a
simplified version of the Schichman and Hodges model [15]. The currents for all the transistors

incident to the node are summed, divided by the capacitance at the node, Cg, and multiplied by

2.1ps

A, .
Cs t. This

the time step, At, to determine the change in voltage, AV. Therefore, AV =

operation is performed for each node in the circuit at each time step in the simulation.

The direct methods can employ table lookup techniques to quickly caleculate Ipg at each
time step and a special purpose machine can be built for this operation. This speed will (to
some extent) compensate for the increased number of steps required by the method. A major
disadvantage of this approach is the fact that the current and voltage calculations must be
performed at every node at each time point. The algorithm thus does not take advantage of

either temporal or spatial sparsity of activity in the circuit being simulated.

Lewis [12] presents a proposed hardware engine that uses such direct integration methods.
If a process is considered to be some partition of the circuit to be simulated, interprocess
communication is only required between neighboring processes (as defined by the circuit

connectivity). This is advantageous when working in a distributed environment as
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communications costs between processes running on distinct processors are often high. The
accuracy of the method, though, is difficult to guarantee. Lewis reports timing errors of 20 % or

more compared to an analytical solution for simple circuits.

3.2. Classical Methods

Another approach is to use implicit solution techniques to advance time from one step to
the next. These techniques are similar to the algorithms prevalent on current von Neumann
architectures [16). The strict limits on circuit connectivity and component types associated with
direct methods can be relaxed and more general circuits (even analog) can be simulated. The
differential circuit equations are formulated by the equation Cv ~ f = 0 (Kirchhofl’s current
law), where C is the nodal capacitance matrix, v is the vector of time derivatives of node
voltages, and f is the vector whose elements are the sum of the currents flowing into a node.
An implicit solution method such as Backward Euler may be used to yield a set of non-linear,
algebraic difference equations of the form g(v) = 0, where v is the vector of node voltages at the
current simulated time. These equations in turn may be solved using the Newton-Raphson
algorithm. At each iteration, Newton-Raphson yields a set of linear equations of the form

Av = b, which can be solved using Gaussian elimination or more typically LU decomposition.

This technique has the advantage of allowing a larger step size than the direct methods,
but requires a series of iterations at each time step to determine the node voltages at that step.
This implies more time will be required to implement the iterations at each step, even if
dedicated hardware is used to speed up the process. The actual step size can be made variable
(imited by truncation error and stability comsiderations) to take advantage of temporal
sparsity of activity. It has the same disadvantage as the direct methods in that every node
must be solved at each time point, thereby decreasing the solution efficiency. That is, spatial

sparsity of activity is not exploited.

The question of effectively implementing the Newton-Raphson algorithm and resulting LU

decompositicn on distributed architectures is still unresolved although certain recent
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results [17,18] are encouraging. This technique does have excellent stability properties and

proven accuracy [16].

3.3. Relaxation Techniques

The third possibility uses relaxation techniques to solve the set of differential equations
describing the circuit [19]. A relatively new solution technique, called iterated timing analysis,
has potential benefits in that it is more easily impiemented on distributed architectures than the
standard implicit methods. Given the same equation formulation as above, yielding the set of
non-linear, algebraic difference equations ¢(v) = 0, the equations are solved using a modified
Gauss-Seidel-Newton methed (i.e., at each Gauss-Seidel (GS) iteration the individual difference

3 k.. Gk k-1 L0 k-1
equa't‘lons’ gt'(vli L T 1Va

} =0, have their solution approximated by a single
Newton-Raphson iteration). This alleviates the need to linearize the equations and perform an
LU decomposition on the resulting matrix. The elimination of the LU decomposition step
ensures that only nearest neighbor (as defined by the connectivity of the circuit)
communications are required, thereby simplifying parallel implementations of the algorithm. In
addition, the algorithm is event driven (i.e., an event corresponds to a single Gauss-Seidel
iteration at a node for a particular time point), thus providing a direct similarity to discrete-
event logic simulation algorithms. Local truncation error estimates can be used to vary the

time step of the solution, which can differ for distinet nodes, thereby exploiting both the

temporal and spatial sparsity of activity inherent in the circuit.

A top level view of this algorithm is given in Figure 2. Newton [19] gives a proof of the
stability and accuracy of the method, along with a discussion of other relaxation techniques,

such as timing analysis and waveform relaxation.

3.4. The ADEPT Algorithm

The final possibility considered here is called the ADEPT algorithm. The algorithm alters

the knowns and the unknowns in the circuit equations by using voltage to sclve for time, rather
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while (termination criteria not met)
retrieve event with smallest time value from event queue
update simulated time
obtain vf, from gf(vf, - - ,whel3, - ,#f) =0 using a
single Newton-Raphson iteration
if convergence is achieved (vf,—~vf{' <¢) then
if node is not stable (v;;—%,-4 > § then
schedule node evaluation event (GS iteration 0) in
event gueue for a future time
endif
else
schedule node evaluation event (GS iteration k+l) in
event gueue at the current time
for all ncdes that can be affected by node just evaluated
if not scheduled for evaluation then
schedule node evaluation event (GS iteration 0) in
event queue at the current time
endif
endfor
endif
endwhile

Figure 2. Iterated timing analysis algorithm
than the other way around as in the prior methods. In this technique, described by and
Odryna [20], and Vidigal [21] under the name of CINNAMON, the non-linear equations above
are linearized to yield a system of linear differential equations Cv + Gv = ¢, where C and G
are n by n matrices and 1 is an n—vector. The analytical solution is a function of the matrix
¢C'6t. The circuit is then partitioned into smaller subecircuits that have a small amount of
coupling between them, C™ is calculated for the subcircuits, and the amount of time for a node

to change by a fixed voltage interval AV is determined. This time is used to schedule an event

updating the node voltage.

The solution is explicit, eliminating the cost of iterations, and the solution algerithm is
event driven (i.e., an event corresponds to an update of a node voltage at a particular time).
This allows for the exploitation of both temporal and spatial sparsity of activity., Nearest
neighbor communication is all that is required, improving the ease with which it can be

implemented on a distributed architecture. Note that the voltage interval chosen at the
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beginning of the simulation can fundamentally determine the accuracy of the simulation. This
can be alleviated to some extent by a variable voltage step (analogous to the variable time step
used in the implicit methods), but to date there have been no published reports that bound the

error in the results, only empirical evidence that the error can be kept at reasonable levels.

3.5. Algorithm Comparison

Table 1 summarizes the essential features of each of the continuous simulation algorithms
considered. The first two approaches do not take advantage of temporal and spatial sparsity of
activity. The ADEPT algorithm does not have proven accuracy. The iterated timing analysis
(ITA) algorithm both takes advantage of temporal and spatial sparsity and has guaranteed and
provable accuracy. This algorithm is further explored in this paper as the approach with the

greatest potential benefits.

4. Logic Simulation

The logic simulation algorithm simplifies the model of the electrical system being
simulated by replacing continuous voltage and conductance information with a set of logical
states. Changes in voltage or conductance are then represented by discrete jumps from one
state to another, and components are evaluated only when one or more of their inputs changes

state.

Table 1. Continuous simulation algorithms

takes advantage of: proven
Algorithm | temporal | spatial accuracy
sparsity | sparsity
Direct n n n
Implicit ¥ n y
ITA ¥ ¥ Y
ADEPT v v n

Chamberlain and Franklin Mixed-Mode Simulation November 1988
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4.1. Logic Simulation Algorithm

A top level view of the discrete-event simulation algorithm applied to logic simulation is
given in Figure 3. In this algorithm, an event corresponds to a change in the output of a
component. A node evaluation is required to handle wired-logic constructions. Given proper
component models this algorithm can handle general MOS circuits, including bidirectional
components and shared charge [22]. An alternative logic simulation algorithm due to
Bryant [23] is the MOSSIM algorithm. It is primarily intended for switch-level simulation and

does not gracefully handle circuit components at the gate level (i.e., NAND, NOR, NOT gates).

Both temporal and spatial sparsity of activity are exploited since only those components
whose inputs change are evaluated (i.e., areas of the circuit with no activity at a time point do
not have any computational cost associated with them). The distributed algorithm only
requires nearest neighbor communication, and several schemes for its implementation are given
in [8]. The general purpose discrete-event simulation algorithm has been proven to be correct
by Misra [24], with the logic simulation algorithm presented in Figure 3 being a specific instance

of that algorithm.

while (termination criteria not met)
retrieve event with smallest time value from event queue
update simulated time
update component output associated with event
evaluate node connected to component output
for each component input connected to node
evaluate component
if component output changes from current value then
schedule output change event in event queue
endif
endfor
endwhile

Figure 3. Logic simulation algorithm

Chamberlain and Franklin Mixed-Mode Sirnulation November 1986
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4.2. States and Strengths

The state of a node consists of a pair of values, a level (representing the voltage) and a
strength (modeling the conductance from the node to one of the power rails). The choice of the
number of levels and strengths to be used depends upon the amount of detail the discrete model

is intended to support. Starting with a minimum [25] of three levels,

1  high
0 low
z  unknown {0,1}

additional levels can be included in order to be able to detect design faults that are
undetectable with the minimum set (e.g., multiple threshold drops before driving the gate of a
transistor). The basic algorithm does not change regardless of the number of levels used,
although there is an effect on the table sizes required to implement the functional evaluation of

components. The minimum set above will be used for illustration purposes in this paper.

In order to handle the wired-logic constructions and charge storage inherent in MOS
circuits, multiple node strengths must also be supported. Starting with a minimum of three

strengths,

8 strong
w  weak
J float

additional strengths can be supported without changing the basic algorithm (e.g., to support

charge sharing). Once again the minimum set is used here for illustration purposes.

A state can be considered a point in the level, strength space where the full set of states is
the cross product of the level set and the strength set. Although not all MOS logic simulators
include all nine possibilities of the minimum set of states explicitly, they are typically supported
implieitly in their implementation of the simulation algorithm {e.g., the set of states used in the
author’s Istm [26] does mnot include the (0,f) and the (1,f) state explicitly, but the

implementation still supports charge storage).
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In the illustrative set of states, a weak high is represented by the state (1,w) and a strong
low is represented by {0,s). Wired logic connections are handled by defining a lattice on the set
of states shown by the Hasse diagram of Figure 4. The resulting state of a node is then
determined by taking the least upper bound of all the states driving the node. For example, if
two components outputs are driving 2 node, one (1,w) and the other (0,s), the resulting state is
(0,s).

To perform functional evaluation of components, it is often not necessary to know the
strength of its input nodes, just the level. For this reason the table sizes used to implement the

functional evaluation are dependent upon the number of levels, not the total number of states.

5. Integrating the Continuous and Discrete Algorithms

The task of combining the continuous and discrete algorithms can take advantage of the

following commonality:

L. Both algorithms rely on a common time advance mechanism.

2. Both algorithms use table lookup techniques for function evaluation.

The remaining tasks are to provide a method for the user to partition the circuit into
continuous and discrete regions and to define mechanisms for translating the voltage and

conductance information present in the continuous region into state information for the discrete

(,5)

(0.f)

Figure 4. Logical states
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region and visa versa. The sections below point out the common features of the two algorithms

and provide a mechanism for the required translations referred to above.

5.1, Time Advance Mechanisms

A unifying feature of both the discrete and continuous algorithms is the presence of an
event queue (see Figures 2 and 3). For the discrete case, an event consists of the change in state
of a component output at a particular time point (e.g., (¢,, inverterl, (0,s))). In the continuous
case, an event indicates the need to perform an iteration of the Gauss-Seidel solution at a node
at a time point (e.g., (¢, node 1, iteration 4)). The ordering of events in the event queue can
then be based on time, with multiple events at a given time point being ordered on the basis of
Gauss-Seide] iteration. Time is advanced in the simulation by removing the lowest ordered
event in the queue and updating the simulated time clock to correspond to the time of event

just removed from the queue.

5.2. Functional Evaluation

The functional evaluation of components in the both continuous and discrete domains can
be performed using table lookup techniques. In the continuous domain, node voltages are used
as entries into a table to determine branch currents for circuit components. The additional step
of performing a Newton-Raphson iteration on the node equations is then required. In the
discrete domain, the logic levels are used as entries into the table to determine component

outputs.

5.8. Circuit Partitioning

The partitioning of the circuit into continuous and discrete regions is handled by having
the user specify the set of components that are to be in the continuous region and the set of
components that are to be in the discrete region. Nodes incident to continuous components are
represented by voltages, nodes incident to discrete components are represented by logical states,

and nodes that are incident to both continucus and diserete components are points where the
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translations between voltage and states must oceur.

There are some components that typically do not have a continuous model that
completely describes the functionality of the component (e-g., gate-level components such as
NAND and NOR gates and MSI-level components such as adders and multiplexers). When these
components are included in a continuous region, a continuous interface is used at their mputs
and outputs (e.g., a load capacitance at the inputs and Thevenin equivalent at the outputs) and
the discrete model is used to represent the functionality of the component. The voltage-state
translations (described below) are then utilized to map the available continuous information
into the discrete information required for component functional evaluation. The reverse
translations are used to map the discrete output of the component into continuous information

required for the evaluation of the node connected to the component output.

5.4, Continucus and Discrete Model Interactions

There are two fundamental interactions which ¢an occur between variables in a diserete

and continuous model:

1. A discrete change may be made to a continuous variable due to actions within the
discrete model.

2. A change in a discrete variable may be made due to a continuous variable
achieving a threshold.

In logic and circuit simulation, the variables of interest typically are node voltages and branch
currents. The values associated with each node can be either continuous or discrete variables

depending upon how the user has partitioned the circuit.

For examples of these interactions consider the circuit of Figure 5. Assume both inverters,
the primary input at node 1, and the primary output at node 5 have been identified as being in
the discrete region and the pass transistor and the primary input at node 3 are in the
continuous region (within the dashed lines). This implies that a discrete to continuous

translation will have to be performed at node 2 and a continuous to discrete translation will
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Figure 5. Interaction example
have to be performed at node 4. Nodes 1 and 5 are discrete nodes and node 3 is a continuous
node. The domain of variables is denoted by an L, to represent logic level, for variables in the
discrete domain and 2 V, to represent voltage, for variables in the continuous domain. If the
logic level of node 2, Ly, is changed from “1” to “0” as a result of a change in the inverter
output, there is a discrete change in the voltage associated with node 2, V,. If the voltage at
node 4, V,, subsequently falls below a certain threshold value, say V;, the logic level of node 4,

L,, will be changed as well. The details of implementing these interactions are described below.

5.5. Mapping States to Voltages and Back Again

We now comsider the task of mapping logic levels into voltages and visa versa. To
implement the translations, a pseudo-component is placed at each node where the translation
takes place. The node is therefore separated into a discrete node and a continuous node with a
pseudo-component connecting the two. The continuous to discrete pseudo-component is
relatively straightforward. Given an input node voltage and conductance, its output is the
logical state corresponding to that voltage and conductance. The pseudo-component can have a
capacitor to ground on its input to model the load capacitance of the discrete output node. The

diagram of such a component is given in Figure 6.

To support this, there are two user definable values that are used in the voltage to logic
level mapping, V), and V;. V, is defined as the lowest voltage that, when supplied at a

component input, is interpreted as a logical high. V, is defined as the highest voltage that,
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(1l,w) —o

(z,8) T state out
(0,5)

signal in T

Figure 6. Continuous to discrete pseudo-component.
when supplied at a component input, is interpreted as a logical low (e.g, for TTL, V, = 2.4V
and V; = 0.4V). Given a continuous voltage V, the mapping from V to a level L is as follows:
1if V2V

L=qzif ViV<V, (1)
0 i yv<v,

Additional logic levels may be handled by adding additional threshold values.
The conductance to logic strength mapping is similar. Given a conductance, G, to power
or ground, the function below translates it into a logic strength S:
s if G2G,

§=1qw if G<KG<G, (2)
I il @<,

where G} is a user supplied threshold conductance to distinguish between the conductance of a

pullup and pulldown transistor. For NMOS technology, a reasonable value for G, would be

1
R,/2

, where R, is the resistance of a minimum dimension transistor. G, is intended to

distinguish between nodes that have an active transistor from the node to power or ground and
nodes that are floating (i.e., the voltage is maintained by trapped charge on a non-zero
capacitance from the node to ground). It is typically zero or near zero. Note that G, and G
are not global values as are V; and V; above, but are functions of circuit location (i.e., they
must be determined individually for each psendo-component forming the continuous to discrete

interface).
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Discrete logical state to continuous voltage and conductance require that assumptions be
made when translating ambiguous logic levels into a necessarily unambiguous voltage. A

mapping from level L to voltage V is given below:

50 if L=1
Vi + Y,
V= "—';—‘ it L=z (3)
00 if L=0

The first and last values are straightforward. The assumption made in translating the
ambiguous level into a voltage assigns the value for “z” to be the midpoint between V, and V.
The diagram of a generalized pseudo-component that implements this mapping is presented in

Figure 7 (a) [27].
The mapping from strength, S, to conductance, G, is given below:

G, i
G=1G,
Gy i

Il
o

(4)

R R
CQ?;)U)

]
I -

The values of G,, G,, and G, are also circuit location dependent. The diagram of a pseudo-

voltage out

logic level in

(a) Logic level to voltage pseudo-component.

logic strength in

conductance out

(b} Strength to conductance pseudo-component.

Figure 7. Discrete to continuous pseudo-components.
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component that implements this mapping is presented in Figure 7 (b).

An alternative approach is to use a logic level-controlled switch [28], illustrated in
Figure 8. The logic level of the input node is used to control a switch that connects one of a set
of voltage sources to the output node through a given conductance. This approach implies that
component output logic strength, and therefore output conductance, is a function of the output

logic level.

6. A Simple Example

To better illustrate the relationship between the algorithms, the cireuit of Figure 5 will be
used as an example to step through the operations performed when executing a mixed-mode
simulation. In this example, the pass transistor will be considered a continuous component and
the two inverters will be discrete components. As stated previously, this implies that a discrete
to continuous pseudo-component will be placed at node 2 and a continuous to discrete pseudo-
component will be placed at node 4. Figure 9 gives the revised circuit explicitly indicating the

existence of these pseudo-components.

signal out

logic level in —08 s

Figure 8. Logic level-controlled switch.
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Figure 9. Simple example

The non-linear, algebraic difference equation g{v) = 0 for node 2 is

Voi —Var,

2

+ IDS(VE,tm)VS,tm;V.i,:m) —FBEG =0 (5)

tm_tm—l
where E' and G are the voltage source and conductance within the discrete to continuous

pseudo-component and C, is the capacitance to ground associated with node 2. The equation

g4(v) = O for node 4 is

Vi.tm - V4,:,,,_1
| = Ios( Ve,:msva,:m»v4,:,,,) =0 (6)

tm ""tm -1

where O, is the capacitance to ground associated with node 4.

Given the following initial conditions,

Ly (1w V, 00 A 2.5
Ly (0,5) Ly (0,8) Vi 2.5
V., 00 Ly (1w} queve [ ]
V, 50 Ips 00

the activity of the simulator will be followed responding to 2 change in the value of L, from

(1,w) to (0,5} at time £, Note for this example node 4 never has logic level “z”, since V, = V;.

As a result of the change in the input level of the first inverter, it is evaluated and

determined to change output to state {l,w) at time {,. An event to implement the output
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change is therefore scheduled in the event queue:

quene = [ (¢, inv 1, (1,w)) ]
Since this event is the only event in the queue, it is then removed from the quene and simulated
time is updated to ¢;. The output of the component is changed and the discrete side of node 2

is then evaluated and determined to be (1,w).

Searching the connectivity of the circuit for those components that are in the fanout list
of node 2, the discrete to continuous pseudo-component is the only component found. The
pseudo-component is evaluated, causing a new voltage source and conductance value to be
connected to the output, and the continuous side of node 2 is scheduled for evaluation:

queve = [ (;, node 2, k=0) |

This event is removed from the queue, one iteration (V3. l) of the solution for the algebraic
difference equation g,(v) =0 is approximated by a single Newton-Raphson iteration, and the
second iteration, (¢;, node 2, k=1), is scheduled for evaluation. Since node 4 is in the fanout list
of node 2, it is also scheduled for evaluation:

queve = [ (1), node 4, k=0), (¢;, node 2, k=1) |
The first event is removed (ordered now by k), Vf,zl is approximated for g,{v) = 0, and the node
is rescheduled:

gueve = [ (¢, node 2, k=1), (¢;, node 4, k=1) ]

The first event is removed, V;}_,1 is approximated for go(v) = 0, and the node is rescheduled:
queve = [ (t;, node 4, k=1), (¢}, node 2, k=2) ]

This continues until the two nodes converge to some pair of values, V,, and Vy:,- Upon

convergence, they are compared with V,, o and Vi, respectively. If there is a sufficient

difference between the two values (i.e., the voltage is not stable over that time range), they are
scheduled for evaluation at some time f, > ¢,, determined by estimates of the stability and Jocal

truncation error of the integration method:
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queue = [ (¢, node 2, k=0), (¢;, node 4, k=0) ]

The operations in the paragraph above are repeated until V, reaches V, say at time ¢,.
Since the logic level associated with V, is now a “1” rather than a “0", the output of the
continuous to discrete pseudo-component is updated to reflect the new state, (1,w), and the
discrete side of node 4 is then evaluated and determined to be {1,w). The fanout list of node 4
is examined and the second inverter is evaluated for potential output changes. As a result of
the evaluation, an event is scheduled at time ¢, to change the output of the second inverter to
(0,5). Assuming V, and V, are still not stable, nodes 2 and 4 are scheduled for evaluation at

time ¢,,:

queve = [ (t,41, node 2, k=0), (¢,4,, node 4, k=0), (1, inv 2, (0,5)) ]

It is now useful to examine the event queue in more detail. There are currently 3 events
in the queue, node evaluation events for nodes 2 and 4, and an output modification event for the
output of the second inverter. Here, ¢, has been assumed to be greater than ta+1, but this is not
necessarily true in general. Assuming the node evaluation events do have the smallest time
value, they are removed from the event queue, V, and V, are reevaluated, and nodes 2 and 4

are potentially scheduled again for evaluation.

This procedure repeats until V, and V, have reached a stable value (.., they are no
longer changing with time). At that point, node 2 and node 4 evaluations are no longer
scheduled in the queue:

queve = [ (4,,1inv 2, (0,5)) ]
The remaining event is removed from the queue, simulated time is updated to t,, the component
output is updated, node 5 is evaluated and determined to be (0,s), the fanout of node 5 is

searched and determined to be empty, and no additional events are scheduled.

The event queue is now empty and the simulation terminates. The final value of the

variables of interest are
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L, (0:5 ) V, 5.0-Vau
L, (1Lw) L, (1,w)
Vg 50 L5 (0,8)
Vs 5.0 Ing 0.0

where Vj; is the gate to source threshold voltage for the pass transistor. The simulation time is

%, indicating that the delay through the circuit is & — ¢,

7. Multiprocessor Implementation Issues

Up to this point the mixed-mode simulation algorithm has been described as if it were
running on a traditional von Neumann architecture. This section addresses selected issues

involved in implementing the algorithm on multiprocessor-based architectures.

There are two classes of target architectures that can be distinguished here. The first
class consists of special purpose simulation engines that have been designed specifically to
perform mixed-mode simulation. A nomenclature for distinguishing between the specific
architecture styles in this class has been previously presented [8]. This nomenclature is intended
specifically for event-based simulation, and we have shown that mixed-mode simulation fits this
paradigm. Recent work [29] presents some analytical results giving performance estimates for
one type of special purpose architecture running logic simulation, and these results can be

extended to analyze the performance of mixed-mode simulation as well.

The second class of target architecture consists of general purpose MIMD multiprocessors
of the sort commercially available. Since a long term goal is the development of a “design
automation” machine, the flexibility and generality of these machines is considered important.
The remainder of this section will focus on the issues of algorithm implementation on these

general purpose machines.

Partitioning the simulation workload among 2 set of interconnected homogeneous

processors can be done in two ways.
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1. Across the simulation algorithm: Different subtasks of the algorithm (e.g., event
queue management, functional evaluation, net-list searches) can be allocated to
different processors and the data can be pipelined between the Processors.

2. Across the simulated circuit: The data itself (ie., circuit components) can be

partitioned among the processors and each processor handles each of the subtasks of
the algorithm for the data in its partition.

It should be clear that the number of subtasks in the algorithm (and therefore the maximum
parallelism that can be exploited in the first method) is limited. The data, on the other hand, is
typically quite large (e.g., 500,000 transistor chips are now possible), indicating that the

potential parallelism that can be exploited with the second method is substantial.

If the second partitioning method is chosen, it is then necessary to devise an algorithm for
performing the partitioning. The properties inherent in a good partitioning include a balanced
workload amongst the processors as well as a balance between the computational workload
performed by the processors and the communications workload for data moving between
processors. Both static and dypamic partitioning schemes are possible and various heuristic-

based algorithms to perform this partitioning are currently under investigation.

Another unresolved issue concerns the best method for time synchronization between
processors. One option is to use a single “global clock” that is common among all the
processors. Once all the processing has been completed for the current time, a single master
controller sends a message to each processor indicating the next point in time to be simulated.
When each individual processor has completed its tasks at this new time, it sends a message to
the master saying it is done and when it has more work to do (i.e., the time of the first event in
its local event queue). The master can then repeat the above cycle. This option potentially has
long periods where the overall utilization is low due to idle processors waiting for work. This is
especially true if a non-ideal partitioning algorithm has been used or if the communications

network does not efficiently handle broadcast messages.

A second time synchronization option is to allow each processor to maintain its own local

time. Different mechanisms for implementing this “distributed clock” have been presented by
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Misra [24] and Jeflerson (30]. Misra’s mechanism is based on a simple algorithm, one susceptible
to deadlock, that is enhanced with time-advance messages to perform deadiock detection and
correction. Open questions include the minimum number of messages required to guarantee the
algorithm to be deadlock free and whether the processor/communications workload can be
balanced. Jefferson’s virtual time mechanism allows a local processor to arbitrarily work ahead
in simulated time without waiting for input from other processors. If a subsequent message
from another processor invalidates some of the work already performed, simulated time is rolled
back to the time stamp on the incoming message and the simulation proceeds. Open questions
here include the overhead involved with a time rollback (i.e., processor time and memory
requirements, communication requirements for transmitting annihilator messages to invalidate

messages previously transmitted).

8. Conclusions

This paper has presented an investigation of algorithms for both logic and ecircuit
simulation. Both their similarities and differences have been considered, with the goal of
presenting a general framework for integrating the two algorithms in a uniform manner. The
resulting integrated algorithm is capable of performing mixed-mode simulation, where the
circuit has been partitioned into discrete and continuous regions, and each region is simulated
at the appropriate level. In addition, several of the issues relating to implementation of mixed-

mode simulation on multiprocessors have been presented.

Further work is needed to address the issues outlined in this paper. However, it is clear
that multiprocessor-based mixed-mode simulation can be an effective tool in the overall design

verification task.
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