Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-86-19

1986-12-01

Performance Analysis and Design of a Logic Simulation Machine

Ken Wong and Mark A. Franklin

The high costs associated with logic simulation of large VLSI based circuits has led to the need
for new computer architecture tailored to the simulation task. Such architectures have the
potential for significant speed-ups over software-based logic simulators executing on standard
sequential computers. This paper presents a model of one class of multiprocessor simulation
architectures and compares the performance of some of these machines using data obtained
from simulation of VLSI circuits. In addition, we discuss the implications of our results on
machine design and examine the sensitivity of the model to variations in circuit characteristics.
... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Wong, Ken and Franklin, Mark A., "Performance Analysis and Design of a Logic Simulation Machine"
Report Number: WUCS-86-19 (1986). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/835

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F835&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F835&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F835&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F835&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F835&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/835?utm_source=openscholarship.wustl.edu%2Fcse_research%2F835&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/835

Performance Analysis and Design of a Logic Simulation Machine

Ken Wong and Mark A. Franklin

Complete Abstract:

The high costs associated with logic simulation of large VLSI based circuits has led to the need for new
computer architecture tailored to the simulation task. Such architectures have the potential for significant
speed-ups over software-based logic simulators executing on standard sequential computers. This paper
presents a model of one class of multiprocessor simulation architectures and compares the performance
of some of these machines using data obtained from simulation of VLSI circuits. In addition, we discuss
the implications of our results on machine design and examine the sensitivity of the model to variations in
circuit characteristics.

https://openscholarship.wustl.edu/cse_research/835?utm_source=openscholarship.wustl.edu%2Fcse_research%2F835&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/835?utm_source=openscholarship.wustl.edu%2Fcse_research%2F835&utm_medium=PDF&utm_campaign=PDFCoverPages

PERFORMANCE ANALYSIS AND DESIGN
OF A LOGIC SIMULATION MACHINE

Ken Wong and Mark Franklin

WUCS-86-19

December 1986

Computer and Communications Research Center
Department of Computer Science

Washington University

Campus Box 1045

One Brookings Drive

Saint Lounis, MO 63130-4899

This research was sponsored in part by funding from NSF Grant DCR-8417709 and ONR Contract
N00014-8D-C-0761.

To be presented at the 14th International Symposium on Computer Architecture.

For Submission To
14th International Symposium on Computer Architecture

Performance Analysis and Design

of a Logic Simulation Machine®*

Ken Wong and Mark A. Franklin

Computer and Communications Research Center
Washington University
Campus Box 1115
St. Louis, MO 63130
(314) 889-6106

Abstract

The high costs associated with logic simulation of large VLSI circuits has led to the need
for new computer architectures tailored to the simulation task. Such architectures have the
potential for significant speed-ups over software-based logic simulators executing on standard
sequential computers. This paper presents a model of one class of multiprocessor simulation
architectures and compares the performance of some of these machines using data obtained
from simulations of VLSI circuits. In addition, we discuss the implications of our results on
machine design and examine the sensitivity of the model to variations in circuit characteristics.

Key Words

Logic simulation, logic simulation machines, design automation machines, hardware
accelerators, performance evaluation.

* This research was sponsored in part by funding from NSF Grant DCR-8417709 and ONR
Contract N00014-8D-C-0761

Performance Analysis and Design
of a Logic Simulation Machine®*

Ken Wong and Mark A. Franklin
Computer and Communications Research Center

Washington University
St. Louis, Missouri

1. Introduction

The high cost associated with the detection and correction of design errors once a VLSI
chip has been fabricated has led to an increased reliance on simulation techniques in the logic
design process. Logic simulation is used extensively to initially verify logic correctness and
subsequently to develop vectors for testing fabricated chips. As circuit complexity has grown,
the time delays and costs of performing logic simulation on standard, serial computers have

grown until they can consume months of machine time [PF82].

These high costs have led to the development of a number of special-purpose processors
dedicated to logic simulation [DE82, HO83, ZY83, VA84, HES5, SI85, XC86). Such processors
typically perform simulations at 10 to 1000 times the speed of standard, general-purpose
computers. The techniques employed in achieving these speed-ups vary from microcode
implementation of simulation algorithms to the development of special-purpose multiprocessors
tailored to the simulation algorithm. In addition to the approaches found in commercial
simulation engines, other possible simulation architectures have also been proposed [FR84, AS85,

HASS).

In general, it has been difficult to compare these alternative approaches because data on
the simulation process (e.g., event distributions) is not generally available in the open literature,
and developing reasonable performance models over a range of complex architecture

alternatives involves as much art as science. Furthermore, manufacturer-supplied speed

e This research was sponsored in part by funding from NSF Grant DCR-8417709 and ONR
Contract N00014-8D-C-0761.

estimates are typically based on ideal circuit characteristics and other factors which are

generally not under the control of the machine designer.

This paper shows that with a small number of special-purpose processors and a medium
performance communication network, logic simulation can be accelerated by factors of hundreds
and even thousands. These estimates were obtained from our model of multiprocessor
simulation architectures whose workload characteristics were derived from data obtained from
actual VLSI circuit simulations [WO86|. The development of this model is the central topic of
this paper. The architecture performance model increases our capability to distinguish between
good and poor designs. It also allows us to develop rules of thumb for designing multiprocessor

simulation architectures and to identify candidates which should be evaluated in greater detail.

The next section reviews several acceleration techniques employed in logic simulation
architectures. The section ends with a description of a simulation architecture taxonomy which
defines broad classes of alternative architectures, one of which is analyzed in detail in this
paper. Section 3 develops a run-time model for this class of simulators, and Section 4 derives a
speed-up expression for comparing the relative performance of two architectures. Section 5
presents the data collected from simulations of five benchmark circuits. Section 6 presents some
simplified performance bounds which result when synchronization and communication costs are
ignored. Section 6 estimates the expected speed-up for five VLSI circuits running on a variety of
hardware and discusses the implicatfons of the results. The final section presents conclusions

and discusses future research.

2. Logic Simulation Architectures

Numerous architectural options are available to the system designer for accelerating the
logic simulation task. These options fall into the two broad categories shown in Table 1. This
section reviews these techniques and describes in detail the architecture of the machine analyzed

in this paper.

Functional Specialization | - Special event-list hardware

- Special function evaluation hardware

- Special hardware for net-list operations
- Other special hardware

Concurrency Exploitation | - Multiple processors

- Pipelining

Table 1: Logic Simulation Architectural Speed-up Techniques.

Functional specialization refers to those techniques which implement a subtask of the
sequential, simulation algorithm in hardware or firmware to decrease the execution time. Prime
candidates for functional specialization are event-list manipulation, function (gate/switch)
evaluation, and net-list searching since these operations typically account for over 85% of the

time consumed by a logic simulation algorithm (WOss].

Concurrency exploitation refers to the use of hardware structures which take
advantage of either the actual concurrency inherent in the simulated circuit itself or the
potential concurrency in the simulation algorithm. Concurrency exists in the simulated circuit
as signals which propagate simultaneously over multiple paths in the circuit. This concurrency
can be exploited by distributing the cireuit components over multiple processors and letting
each processor simulate different parts of the circuit. Potential concurrency exists between
stages of the simulation algorithm because the data can be organized so that the algorithm can

be viewed as a pipeline of operations.

The architecture alternatives associated with concurrency exploitation can be further
clarified by classifying the space of design alternatives. Three classification components
common to a wide range of logic simulation architectures can be identified and used to develop
a taxonomy (Table 2) of logic simulation architectures. For example, the category
Ul/GC/Q=4/P=4/L=5 is a machine which has a Unit Increment time advance mechanism, a
Global Clock, four event-lists (Queues=4), four event/function evaluators (Processors=4), and a
five-stage pipeline (Length=5) in each event/function evaluator. Details of an earlier version of

this taxonomy and associated simulation architectures are given in FR84.

Time Control Mechanisms
Time Advance . Unit Increment Ul
Event-Based Increment EI
Time Synchronization Global Clock GC
Local Clock LC
Number of Event-Lists Q=12 ..
Event/Function Evaluation
Number of Processors P=1,2..
Pipeline Length L=1,2 ..

Table 2: A Taxonomy of Logic Simulation Architectures.

This paper considers the architecture class UI/GC/Q=P/P/L (Figure 1) where the number
of event-lists Q is assumed to be equal to the number of processors P, and both the number of
processors and the number of stages L in the pipeline are design variables. A representative of
this machine class is the ZYCAD LE-series logic simulation machines {ZY83]. The master
processor maintains the global clock time C and synchronizes slave processors through a START
signal which marks the beginning of a new unit time increment. There are P slave processors
which each contain an event/function evaluator and an event-list. Each slave processor
evaluates events scheduled for time C, communicates state information to other slave processors
over a communication network, and sends a DONE signal to the master processor when it has
completed processing all of its events scheduled for time C. Communication buffers between the
slave processors and the communication network allow message transmission to proceed in

parallel with event/function evaluation.

A. simulation cycle begins when the master processor sends a START signal to the slave
processors and ends when all slave processors have returned DONE signals to the master
processor. When the master processor receives all of the DONE signals, it increments the global
clock and starts the next simulation cycle by sending another START signal to the slaves.
Simulation cycles are repeated until the clock reaches the termination time. Note that even
when there are no events scheduled for a time point, the simulation cycle is still executed but

consists of only the sending of START and DONE signals.

This general architecture was also analyzed by Levendel, Menon, and Patel [LE82]. Our
model resembles theirs but considers a broader range of parameters, uses a workload model
based on real data, includes pipeline evaluator length as a design parameter, and employs a

random partitioning strategy in its communications model.

3. The Basic Model

The model presented in this section is developed in a top-down manner starting with a
simple model which shows the primary contributors to simulation run-time. The section begins
by describing the input (supplied) variables and design parameters in the model. Then, the
processor and communication time components are detailed. Next, 2 model of the message
volume as a function of the number of processors is developed for the case when the circuit
components are randomly distributed among P processors. Finally, the effect of processor
pipelining is added to the model. The performance measure used is the run-time of a simulation

which generates E events.

3.1. Model Parameters

The output (dependent) variables, input (independent) variables, auxiliary variables, and
design parameters of the model are shown in Table 3 below. The output variables are our
performance measures of interest and are functions of the input variables. Values for the input
variables can be obtained from measurements of a conventional, sequential simulator. The
design parameters included in this model are the number of processors (P), the length of
(number of stages in) the event/function evaluation pipeline (L), the average width of the
communication network (degree of communication concurrency) during peak load (W), and the
times for event/function evaluation (tg), communication of one event message (ty), and clock
synchronization (ts, tp). Auxiliary variables denote values which are used to simplify

expressions and are functions of other variables.

Variable Type Definition

Rp Output | Simulation run-time using P processors

S Output | Simulation speed-up over 1 processor using P processors
B Input Number of busy ticks

I Input Number of idle ticks

E Input Number of event/function evaluations

M, Input Number of messages when P=co

8 Input A measure of the degree to which work is unevenly

distributed across processors (f=1 means even
distribution, and #>1 means uneven distribution)

Design | Number of processors (event/function evaluators)
Design Number of stages in the pipeline

Design | Average width of (number of concurrent messages which
can be transmitted over) the communication network

tg Design Average time to perform one event/function evaluation

EL"‘"U

t Design Time to transmit one event message over the
communication network

tg Design | Time to send a START signal

tn Design Time to send a DONE signal

F Aux Average fanout (=M, /E)

N Aux. Average event simultaneity (=E/B)

T Aux. Speed-up due to functional specialization and

technology improvements.

Table 3. Variable Definitions.

In a2 machine with & unit increment clock, the simulation ¢lock runs for B+I simulation
ticks (cycles) during which at least one event evaluation is performed in each of B (Busy) ticks
and none during I (Idle) ticks. There are a total of E event evaluations which are distributed
over the B busy ticks and P processors. When there are multiple processors, the number of
event evaluations may be distributed unevenly across the P processors resulting in one processor
having to perform more event evaluations than the other processors. During each busy tick, the
most heavily loaded processor takes, on average, § times longer to perform its evaluations than

it would if the evaluations were evenly distributed across all processors.

The average event/function evaluation time is tg. Although some evaluations may take
more time than others, we assume that all event/function evaluations take the average
event/function evaluation time and that this time is invariant with the number of processors.

This assumption assumes the existence of a near-constant-time event-list management

capabilities [UL78].

During the I idle ticks, the system must still spend some time (perhaps small compared to
the event evaluation time) to skip over the idle ticks. This involves the transmission of the
START signal by the master processor and the processing of the subsequent DONE reply from
the slave processors, two activities which also occur during busy ticks. The time for these two
activities is tg and tp.

A change at the output of a component is an event (representing a signal change) which
needs to be propagated to the inputs of the fanout components (those receiving the new signal
value). The propagation of the event requires one message to be sent to each fanout component
and will take ty time units for each message transmission. For simplicity, we have ignored
approaches which transmit multiple events in one message transmission. During the course of
the simulation, Mp such messages are transmitted over the communication network when there
are P processors. The variable M,, denotes the limit of Mp as the number of processors P
approaches the number of circuit components. When there is more than one processor trying to
communicate across the communication network at the same time, only W messages can be
transmitted concurrently. All other messages are queued until the network can accept more

messages.

3.2. The Model Without Pipelining

The following model is a simple mean-value model of the selected architecture when an
evaluation pipeline is not employed. Let tgya, be the average time required by each of P
processors to evaluate all events and functions during a busy tick, and let togy be the average
time required to transmit all messages generated during a busy tick. Then, if communication
and event/function evaluation can proceed concurrently, the time required to simulate one busy
tick is approximately the maximum of tgys, and teoy. The overhead required by each
processor to START and stop (i.e., DONE signal) a simulation cycle is the processor

synchronization time tgyng. The total simulation run-time Rp is:

Rp = B (tsync + max (tgvar, tcom)) + Itsync (1)

This expression for the run-time makes several simplifying assumptions:

1) Event evaluations and message transmissions are evenly distributed over the B busy
ticks.

2) When communication dominates event/function evaluation, message transmission
completely overlaps event/function evaluation.

3) Evaluations begin simultanecusly (i.e., all slave processors simultaneously receive a
broadcasted START signal).

Machine speed is limited by the most heavily loaded physical component. In principle, this
bottleneck will be either 1} the slave processors, 2) the communication network, or 3) the master
processor. For example, when the communication network can process messages faster than the
event/function evaluators can generate them and little time is required for synchronization, the
slave processors will saturate, and the run-time will be approximately Btgys,. However, if the
communication network is slow compared to the processors, the communication network will
saturate, and the run-time will be approximately Btooy. Finally, if synchronization dominates
the run-time, the run-time will be approximately (B+I)tgyng. When synchronization is fast, the
design problem is to balance the number and speed of the event/function evaluators with the
communication network so that most of the hardware is utilized near its capacity at minimum

cost.

If the E event/function evaluations are evenly distributed over the B busy ticks and P
processors, each processor will perform E/(BP) evaluations during each busy tick so long as
there is at least one event for each processor (P<E/B). Let N=E/B, the maximum degree of
parallelism. When P=N and the load is evenly distributed, all processors will have one
event/function evaluation per busy tick. Adding more processors will not reduce the run-time
since there will be N processors evaluating one event and P—IN idle processors. Thus, designs
with more than N processors are not considered. If instead, the N evaluations in each busy tick
were unevenly distributed over the P processors, the processor wit,lll the most evaluations will

perform fN/P evaluations. Since tg is the time for one evaluation, the time required for all

evaluations during one busy tick is the time required for the most heavily-loaded processor to

finish, or

toa=fpts, PN, 1SF<P, N=E/B (2)
When £ is one, perfect balance has been achieved while values of 8 greater than one indicate

imbalance {# = P means all evaluations are performed on one processor).

If Mp is the number of message transmissions when there are P processors, and these are
evenly distributed over the B busy ticks, there will be Mp/B transmissions during each busy tick.
With concurrent transmissions evenly spread over the W communications channels and ty, the
mean time required to transmit one message, the time required for message transmission during

one busy tick is

P

t. = —1¢ 3

GoM = M ()

In a single time-shared bus configuration, W is equal to one. Other communication networks

like the crossbar and delta have W-values greater than one and are a funetion of the number of

processors, the message traffic distribution, and the network design parameters.

Synchronization involves the broadcasting of a START signal to all slave processors and
the subsequent sending of DONE signals from the slave processors. If the time required to begin
a simulation cycle is t5, and the time required to end a simulation cycle is tp, the
synchronization time is

tsyne = ts+tp (4)
During busy ticks, DQNE signal transmission can overlap either event/function evaluation or
other DONE signal transmissions. During idle ticks, DONE signal transmissions overlap each

other.

Substituting (2), (3), and (4) into (1} yields the run-time model for the selected architecture

without pipelining.

M
Rp = (B+D{ts+tp) + max (Bpts, w2t), P <E/B (5)
The model shows that when event/function evaluation is the dominant time component, the
run-time decreases as the number of processors P increases (i.e., linear speed-up). When

communication is the dominant component, the run-time will depend on the number of message

transmissions Mp, the communication concurrency W, and the message transmission time ta-

3.3. Random Partitioning

The message volume Mp depends on the number of processors P and how the circuit
components are distributed over the P processors. In the random partitioning scheme,
components are randomly distributed over the P processors. Although there may be
applications where a better partitioning strategy can be found (e.g., placing highly connected
components together on the same processor), the message volume associated with random

partitioning can be taken as an upper bound for other useful partitioning strategies.

A message arises when the output of a component located on processor i must be
propagated to a fanout component located on a different processor j (i=j). Since there are C/P
components on each processor, the fanout component could be any of the other (C/P)-—1
components on processor i or the C—~(C/P) components on the other processors. Because of
random partitioning, the fanout component could be any of the other C-1 components with
equal probability. Since there are M, signal propagations {message transmissions) when there

are C processors, the number of messages transmitted when there are P processors is given by:

Mp = MWI%(%)Ql ~Mu(1-1/P), O>>1 (6)
Note that the number of messages transmitted across the communication network is 0 when

there is one processor and increases with increasing P until it is equal to M., when each

component is placed on a separate processor.

-10-

3.4. Pipelining

Event/function evaluation speed can be increased by using a pipelined architecture. The
logic simulation algorithm allows about six stages [AB83] with a smaller number possible by
merging adjacent stages. If an L-stage pipeline can perform one event/function evaluation in

time tg, it can perform n of these operations in time approximately equal to

b = 2{atL-1) (7)

if the execution time of each stage is equal to tg/L. This expression can be derived by noting
that the n-th operation must wait for the n-1 operations ahead of it to complete the first stage
of the pipe and then traverse L stages to get to the output of the pipe. Thus, it takes n—14L
stage completions before the n-th operation exits the last stage of the pipe. For typical average
fanouts (F~2), it is possible and advantageous to divide the stages into nearly equal execution

times so that the maximum output rate can be achieved.*

The processor performing the largest number of evaluations during a busy tick must

perform n=pE/(BP) evaluations. The evaluation time can now be given as:

tvaL = tL—E(n+L—1), P <E/B (8)
E
n=pzp (9)

Note that when L equals 1, (8) reduces to (2), the case when no pipelining is employed. The

run-time model with pipelining is obtained by substituting (6) into (3) and then (3), (4), and (8)

into (1):
Btg(n+L—-1} M (1-1
Ry = (B+1)(s+tp) + max (DR Melol/B))0 b gy (10)
* Table IIT in AB83 indicates near-equal loading is possible for an average fanout of two

which is typical of the circuits that were in our benchmark. When fanouts are much
greater than two, the function evaluation stage of the pipeline will be the bottleneck and
its (and the pipeline’s) output rate will be smaller than the L /tg predicted by our model.

-11-

4. Speed-Up

Designers of special-purpose machines are usually interested in comparing the performance
of their machine with that of an unenhanced or base machine, with the relative speed expressed
as a speed-up factor. If the run-times of the base and special-purpose machines for identical
simulations are Ry and Rp respectively, the speed-up is

Sp = Rp/Rp (11)
where Rp is given by (10) and Ry is given by (12). Typically, the base machine is a standard,
general-purpose machine (e.g., VAX 11/750*%). The time required by the base machine to
evaluate E events is

RB L Et’E.B (12)
where tgp is the time required to perform one event/function evaluation on the base machinel.

One aspect of this speed-up may be due to a decrease in the event /function evaluation
time resulting from the use of functional specialization and technology improvements in the

special-purpose machine. The parameter H reflects this reduction in tg and is defined as

H = tgp/igs (13)

Two interesting bounds can be derived from (11) by simplifying (10) for the evaluation-
time-dominant and communication-time-dominate cases and substituting {10) and (12) into (11).
When the event/function evaluation time dominates all other time components in the special-
purpose machine (tgvaL>>tcom,tsync) and the processor load is balanced (f=1), the speed-up

becomes

HNL

. | =L _ pg (14)
Sp={ NP1’ D SN
HN, P>N

* VAX is a trademark of Digital Equipment Corporation.

T The dot notation will be used to distinguish between the parameters of the base and
special-purpose machines (e.g., tgg and tgs denote tg for the base and special-purpose
machines respectively).

=12 -

where N=E/B. Note that the use of pipelining increases the speed-up by a factor of L, and the
overall speed-up is approximately Sp=HLP when the processors are heavily loaded (N/P>>L).
When the processors are lightly loaded (N/P<<L), the end effects of filling and emptying the

pipe limit the speed-up to HN.

If instead, the communication time dominates all other time components

{(tcomM>>>tgvar,tsync) and the processor load is balanced (8=1), the speed-up becomes

EW(tgp/th)
b= ey m(l_'; ﬂ‘;‘) (15)

Note that in this case, the speed-up decreases as the number of processors increases and

approaches a limiting value of

Ph_l,]gosll = &ﬁ:ﬁﬂ (16)

Since the communication network is operating at maximum capacity, the increase in the
message volume which accompanies greater partitioning (larger P) is directly reflected in a
lengthening of the run-time of the special-purpose machine and therefore a decrease in the
speed-up. Equations (14) and (15) indicate that the general shape of the speed-up curve as a
function of the number of processors will first show an increase in the speed-up as a function of
the number of processors until the system becomes limited by the capacity of the
communication network. Then, the curve will asymptotically decrease toward the value given

in (16).

5. Simulation Data

Data for our model was collected from standard, serial simulations of five VLSI circuits.
This section describes the circuits, presents a normalization procedure for estimating the
workload parameters as a function of circuit size, and summarizes the benchmark data for

circuits scaled to 100,000 components.

The data was gathered using the lsim gate/switch-level logic simulator running on a

- 13 -

VAX 11/750. Lstm is a UNIX* /C-based simulator and was designed with data collection on the
simulation process in mind [CH85, CH86a]. It can simulate systems containing both traditional
unidirectional logic gates, and bidirectional MOS switches. Although lsim supports three types
of delay models, the data presented in this paper were from the fixed delay model in which

component delays are modeled by fixed low-to-high and high-to-low propagation times.

Random test vectors were applied to the circuits until aggregate statistics (e.g., average
event-list size, circuit activity) remained stable and most components experienced at least one

output change.

The five circuits in our benchmark were: 1} a stop watch, 2) a priority queue, 3) an
associative memory, 4) a Radiation Treatment Planning (RTP) chip, and 5) a crossbar switch.
The stop watch circuit determines the elapsed time between a start and a stop signal. The
priority queue stores 48-bit records, each divided into four fields, and retrieves the record whose
first field contains the smallest value (i.e., an event queue). The associative memory functions
like a normal random access memory as well as a memory in which records can be retrieved by
content (i.e., those matching a specified pattern). The RTP chip implements an algorithm used
in cancer treatment planning which calculates the radiation dosage at a specified point. The

crossbar switch provides an interconnection network between four input and four output ports.

These circuits reflect a mix of characteristics (Table 4) and are the product of five
graduate student design teams. The two most prevalent VLSI technologies (nmos and cmos)
and clocking schemes (synchronous and asynchronous) are represented. The circuit sizes range
from approximately 650 transistors to 8,000 transistors. The priority queue, associative
memory, and crossbar switch were designed so that they could be scaled to larger versions as
required (assuming no pin or power limitations). The test circuits were kept small enough to
insure that simulation run lengths were reasonable and disk storage availability was adequate.

The Switches and Gates columns in Table 4 indicate the number of lsim bidirectional switches

& UNIX 1s a trademark of AT&T Bell Laboratories.

- 14 -

and unidirectional gates used in defining the circuit. The right column reflects the total number

of transistors in each circuit.

Circuit Tech.* | Type* | Switches | Gates | Total | Approx. Trans.*
Stop watch nmos sync 216 131 347 650
Assoc. memory nmos async 296 454 750 1,700
Priority queue cIos sync 2,960 720 | 3,680 5,100
RTP chip nmos sync 1,422 1,746 | 3,169 6,100
Switch nmos async 0 2,648 2,648 8,000
Average 979 1,140 | 2,119 4,300

* Technology, synchronous, asynchronous, Approzimate number of trensistors

Table 4: Circuit Characteristics.

Table 5 shows the circuit dependent data used in our model for circuits with 100,000
components. The data was obtained by linearly scaling the measured data to represent 100,000
component circuits. For example, since the priority queue has 3,680 components, a priority
queue with 100,000 components will have values of E and M,, which are 100,000/3,680=27.2
times larger than measured values. Since the measured E-value for the priority queue was

592,206, the scaled value is approximately 16.1x10°.

Circuit xX* B I E (millions} | M., (millions)
Stop Watch | 2882 | 4,587 | 515414 15.1 33.3
Assoc. Mem. 1333 3,140 25,061 2.9 11.0
Priority Q. | 272 | 10,620 | 57,631 16.1 24.5
RTP Chip 316 10,225 55,274 5.8 7.8
CB Switch 37.8 | 155,000 | 480,189 12.5 25.1

* X = 100,000/{Component. Count}

Table 5. Model Data Normalized to 100,000 Components.

Some statistics which give an indication of the nature of logic simulation using the fixed
delay model are given in Table 6. B/(B+I) is the fraction of time points with one or more
scheduled events. N=E/B is the average number of simultaneous events (when there is at least

one event). The activity is the average fraction of components with output changes. F=M./E

=15 -

is the average fanout. The general picture which emerges from the data is that nothing 1is
happening at most simulation time points (B/(B+I) is small)*. When there is activity, only a
small fraction of the circuit is involved (the activity over busy time points N/(100,000
components) is small). However, there is a substantial amount of event simultaneity at each
busy time point {N=E/B is large} making the use of parallelism potentially rewarding. The
simultaneity for synchronous circuits (all circuits except the crossbar switch) is greater than
that for asynchronous circuits (crossbar switch) where the events tend to be spread over a
greater fraction of the time points (higher value of B/(B+I)). The table also shows that, except
for the crossbar circuit, attaining maximum acceleration exclusively from parallelism (N} will

require processor populations in the hundreds and thousands.

Sim. Ev.* | Activity Fan Out

Cirenit B/(B+I) | N=E/B | N/100,000 | F=M_/E
Stop Watch | .0088 3,204 033 2.2
Assoc. Mem. 1113 938 .009 3.7
Priority Q. 1556 1,517 015 L5
RTP Chip 1561 567 006 1.3
CB Switch 2440 80 001 2.0
Average .1351 1,279 013 2.1

* Sim. Ev.; Average number of simultaneous events

Table 6. The Nature of Logic Simulation.

6. Performance Bounds

Simple performance bounds give a quick indication of the potential speed-up offered by a
machine architecture. Equation (14) is an expression for the speed-up which can be obtained
when communication and synchronization costs are ignored and when events are evenly

distributed over busy ticks and processors. This section shows how the performance bounds can

* The small value of B/(B+I) for the stop watch is somewhat misleading since the clock
period for the stop watch was much larger than necessary and led to a large number of
idle time points at the end of each clock period. The values for B/(B+I) for the other
circuits are much more representative of the fixed delay model parameters.

- 16 -

be used to get a quick estimate of the speed-up potential of a variety of special-purpose,

multiprocessor machines.

Figure 2 shows curves of the idealized speed-up Sp (event/function evaluation time
dominant) as a function of the number of processors for a special-purpose machine running
simulations of 100,000-component circuits from the benchmark. The machine has a five-stage
pipeline (L=5) and has a processor whose single-event-evaluation time is 100 times faster than
the base machine (H=100). The speed-up curves show a rapid increase in the speed-up as a
function of the number of processors for small processor populations. In this region where the
event simultaneity is much larger than the number of processors (N>>P), (14) indicates that
the speed-up will be approximately HLP=500P. But as the number of processors increases, the
event simultaneity will become comparable to the number of processors, and the speed-up curve
will approach HN, independent of the number of processors. This limiting case is shown in
Figure 2 for the crossbar switch where N=80, and thus the speed-up bound is
HN=100(80)=8,000 when P>80. The idealized speed-up limit HN for the other four circuits can
be computed from the N-values in Table 6. Note that these limits are a function of the circuit

size since the event simultaneity N increases (decreases) with increasing (decreasing) circuit size.

A simple calculation shows the potential for speed-up even when a special-purpose
machine has only one processor but uses functional specialization and an evaluation pipeline.
When the processor is heavily loaded, the speed-up is approximately S; = HL. A special-
purpose machine with H=10 and a five-stage pipeline (L=5) will yield a speed-up of
approximately 50 for typical VLSI circuits (S;~#5(10)). Since a typical general-purpose machine
such as a VAX 11/750 evaluates one simple event/function in about 400 psec (a speed of
2,500 events/sec), such a special-purpose, uniprocessor machine could have a speed of
125,000 events/sec. If the special-purpose machine uses a five-stage pipeline (L=>5) with H=100,
the speed-up becomes S;=500 or 1.25M ev/sec (million events/sec). Larger speed-ups can be

obtained at higher costs. Commercial experience suggests that H-values as large as 1000 may

-17 -

be possible [BL84, PF82, ZY83]. However, five stages is about all that can be expected from

pipelining the simulation algorithm*,

Further acceleration can be achieved through the use of multiple processors. When the
number of simultaneous events is large enough to keep each processor heavily loaded
(N/P>>L-1), the speed-up is approximately Sp = HLP. All of the 100,000-component circuits
in benchmark except the crossbar switch have values of N large enough to keep the processors

in a 10-processor system with a five-stage pipeline heavily loaded.

The performance bounds discussed above are overly optimistic for several reasons. First,
the workload will seldom be evenly distributed over all busy ticks, leading to idle processors
during busy ticks when the number of processors is nearly equal to N=E/B. This inability to
keep all processors busy is particularly damaging to the speed-up when a substantial portion of
the speed-up is gained through parallelism and can lead to large errors in our speed-up
estimates for large processor populations. Second, the workload will seldom be evenly
distributed over all processors during a busy tick. This slowdown will probably be less than an
order of magnitude under typical circumstances. Third, the distribution of events over multiple
processors leads to communication costs which will eventually bend the speed-up curves
downward when the communication component of the run-time becomes more significant than
the event/function evaluation component. The eflect of these communication costs is examined

in the next section.

7. Machine Designs

The designer of a logic simulation machine is confronted with a wide range of design
options. Since higher performance components typically have higher costs, poorly matched
components can lead to unnecessarily expensive designs with unused capacity in parts of the

system. This section presents design curves and performance estimates for machines with a

* Six stages are possible, but two of them have short execution times and can be combined
without decreasing the event/function evaluation rate.

- 18-

variety of parameter combinations. The results indicate both the machine speeds which can be
expected as well as some of the resource requirements necessary for attaining the speed

estimates.

7.1. Design and Workload Parameters

The factors considered in our design space are shown in Table 7. The imbalance factor B
is assumed to be 1, and the synchronization time tgyyc is assumed to be constant. In all cases,
the time unit assumed on all time parameters (e.g., tg, ty) is one synchronization time interval
(ie., tsyno=ts+tp) called a sync. The base machine is assumed to be a VAX 11/750 running a

standard, logic simulator with tgp=4,000 syncs where a sync=100 ns (i.e., tz ;=400 ps).

Parameter Possible Values
L pipeline depth 1,5
tsync synchronization time 1 syne
tM message trans. time 2 syncs, 3 synes
w communications concurrency 1,23
H tech./specialization speedup 1, 10, 160
P number of processors 1,2, ..,50

Table 7. Design Space.

The H-values were chosen to reflect the range from no acceleration in the low end, to
acceleration due to microcoding or special hardware in the mid- and high-range [SM86]. The
values for communication concurrency (W) correspond to values typical of one to three time-
shared busses. The values for pipeline length (L) were chosen to correspond to no pipelining or
full pipelining. The values for the event message transmission time are typical values for busses
a few feet long, and the processor populations were chosen to reflect low to moderate
populations.

The speed-up curves and estimates in this section were derived for an "average"

benchmark circuit. The data for an average circuit is shown in Table 8 and was derived from

Table 6 by normalizing the simulation run-length to 60,000 ticks (busy and idle combined). For

-10 -

example, the average value of B/(B+I) from Table 6 is .1351. H we assume that B+I=60,000,
the number of busy ticks is B=.1351(B+I)=8,106 and and the number of idle ticks is
1=60,000-B=51,894. Then, since the average value of N=E/B is 1,279, E=NB=10.4 million.
Finally, since the average value of M /E is 2.1, M ,=2.1E=21.8 million. The choice of 60,000

for the simulation run-length was arbitrary and does not aflect any of our performance results.

Parameter Value Parameter Value
B 8,106 I 51,894
E 10,367,574].'mel 21,771,905

Table 8. Average Workload Characteristics.

7.2. A Comparison of Alternative Designs

Figures 3 to 5 show the speed-up for that half of the design space when ty,=3 syncs. Each
figure shows the speed-up curves for the six designs derived from varying the pipeline length
{L=1,5) and the communication concurrency (W=1,2,3) for a given performance range H. The

number of processors range from I to 50.

The top curve in Figure 3 (H=1, t)=3 syncs) is for the three cases when the machine is
pipelined (L=5) and W=1, 2, and 3. The bottom curve is for the corresponding non-pipelined
machine (L=1, and W=l, 2, and 8). Only two curves are shown because the communication
concurrency has no effect on the speed-up when the processor population is less than or equal to
50. This insensitivity to the value of W indicates that the message rate arriving to the
communication network is so low that there is still excess capacity even when W=I so that
greater communication concurrency will not improve the performance of the machines. As

expected, the two curves in Figure 3 are approximately separated by a factor of L=5.

In Figure 4 (H=10, ty,=3 synes), the top three curves are for the three cases when the
machine is pipelined (L=>5) and W=1, 2, and 3 with greater speed-up provided by the machine
with the larger communication concurrency. The bottom curve is for the three non-pipelined

machines (L=1, and W=1, 2, and 3).

The top three curves indicate that the pipelined processors are now supplying messages at
a high enough rate to saturate the communication network. Once the communication metwork
is saturated, (15} indicates that the machine speed—t‘xp is approximately proportional to the
reciprocal of the communication time and therefore a decreasing (very slowly) function of the
number of processors. Note further that it takes approximately twice as many processors to

saturate the communication network with W=2 as it does when Wm=1.

The bottom curve is for the non-pipelined case and is identical to the bottom curve in the
preceding figure except that the speed-up is 10 times larger. In fact all curves in this figure
represent speed-ups which are 10 times larger than the corresponding curves in the preceding
figure for processor populations which are small enough so that the system is not communication

limited.

The effect of insufficient communication capacity is more dramatically shown in Figure 5
which shows the speed-up curves for the high-performance machines (H=100). All six of the
high-performance designs have sufficient event/function evaluation speed to consume the entire
capacity of the communication network even for small to moderate processor populations,
There are six curves corresponding to the six designs. However, for very small processor
populations (P<3), the speed-up is insensitive to the communication concurrency because there
is excess communication capacity. On the other hand, for moderate processor populations
(P>10), the speed-up is insensitive to the pipeline length because there is excess event/function

evaluation capacity. The maximum speed-up occurs in the region between these two extremes.

The curves for the case when the message transmission time is t,y=2 syncs are not shown
because they are qualitatively identical to the cases above where ty=3 syncs. Quantitatively
though, the faster communication network accelerates the communication-limited designs by a

factor of approximately 1.5 using processor populations which are also approximately 1.5 larger.

Table 9 summarizes the data from the speed-up curves for the designs considered in Table

6. The processor populations shown in the table indicate the number of processors less than or

Y

equal to 50 which yield the maximum speed-up for each design. The entries with the number of
processors less than 50 reflect designs in which the event/function evaluation time is

approximately equal to the communication time (i.e., a balanced system).

ty=3 synes [ty=2 syncs

P! S [P s |
50 50 | 50 50
50 216 | 50 216
50 50 | 50 50
50 216 | 50 216
50| 50 [50] 50
50 | 216 | 50 | 216
50 [50 |50 | 500
15 | 680 | 50 | 970
50 | 50 | 50
29 | 1,313 | 50 | 1,938
50 | 50 |50 50
45 | 1943 | 50 | 2,155
8| 725 | 11 | 1,046
2| 992 | 3| 14%

14 | 1,365 | 20 | 1,994
4 | 1689 5 | 2373
20 } 1,994 | 30 | 2,943
5] 2373 7 | 3317

il

10 | 1

100 { 1

(%}
o o = O s (o = [t e e = e e e = en e |

n

o

Table 8. A Comparison of 36 Designs.

An estimate of the absolute event/function evaluation speed can be obtained by
multiplying the entries in Table 9 by 2,500 ev/sec, the approximate speed of our base machine.
For example, the fastest machine in Table 9 (H=100, W=3, L=5, and t)y=2 syncs) has a speed of

8.3M ev/sec.

8. Summary

This paper has analyzed a number of design alternatives for speeding up the simulation
process. A performance model of a class of logic simulation machines was developed. The input
parameters to the model included such items as number of events and number of messages and

represent the circuit dependent aspects of the problem. The design parameters concerned

-22-

architecture choices such as number of processors, pipeline length, and hardware speed.

The paper presented data on the simulation process collected from fixed delay simulations
of five VLSI circuits. The nature of logic simulation is one of low temporal and spatial activity
occurring over large component populations. This leads to sufficient parallelism for concurrency
exploitation to multiply speeds by two to three orders of magnitude for large circuits. However,

the parallelism is highly dependent on the circuit.

A range of machine designs were examined and their speed-up over a conventional,
uniprocessor base machine was estimated. The analysis showed that low-performance machines
(ie., H=I to 10) could gain some acceleration through the use of either pipelining or a large
number of processors but probably not both since large processor populations can reduce the
effectiveness of the pipeline. High-performance machines (i.e., H=100} on the other hand make

effective use of their pipelines but are limited by the capacity of the communication network.

The results indicate that the use of a moderate performance communication network
limits the speed of a high-speed machine to around 8 million events/sec even though much more
parallelism remains untapped. A faster communication network, better circuit partitioning, or
another architecture will be required to significantly increase the simulation speed beyond this

range.

Work on more accurate models which include statistical distributions and more accurate
communication network performance models are underway. Also, related research on the circuit
partitioning problem is also in progress. Experiments are being conducted to measure the
performance of heuristics in reducing the communication volume. We are also developing simple
performance models of other architectures. Asynchronous architectures may offer a higher
degree of parallelism and may smooth out any effects due to low processor loading found in the
machines analyzed in this paper. We are also looking at problems in the design of more
general-purpose simulation machines for VLSI design automation. The problem here is to design

a machine which can accelerate a variety of VLSI design automation functions using a small

- 23 -

number of powerful, integrated techniques [CH86b].

References

[AB83] M. Abramovici, Y. H. Levendel, and P. R. Menon, “A Logic Simulation Machine,” IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems CAD-2:2 (Apr.
1983), pp. 82-94.

[AS85] V. Ashok, R. Costello, and P. Sadayappan, ‘“Distributed Discrete Event Simulation
Using Dataflow,” Proc. 1985 Int. Conf. on Parallel Processing, IEEE Computer Society
Press, 1985, pp. 503-510.

[BL84] T. Blank, “A Survey of Hardware Accelerators Used in Computer-Aided Design,” IEEE
Design and Test of Computers 1:3 (Aug. 1984), pp. 21-39.

[CH85] R. D. Chamberlain, “Lsim: A Gate-Switch Level Logic Simulator,” M.S. Thesis, Dept. of
Computer Science, Washington University, St. Louis, MO., May 1985.

[CH86a]R. D. Chamberlain and M. A. Franklin, “Coliecting Data About Logic Simulation,”
IEEE Trans. on Computer-Aided Design CAD-5:3 (July 1986), pp. 405-412.

[CH86bJR. D. Chamberlain and M. A. Franklin, “A Unified Approach to Mixed-Mode
Simulation,” Technical Report WUCS-86-20, Dept. Computer Science, Washington
University, St. Louis, MO., Nov. 1986.

[CH81] K. M. Chandy and J. Misra, “Asynchronous Distributed Simulation via a Sequence of
Parallel Computations,” Comm. of the ACM 24:11 (Apr. 1981), pp. 198-206. CAD-4:3
(July 1985), pp. 239-250.

[DE82] M. M. Denneau, “The Yorktown Simulation Engine” Proc. 19th Design Automation
Conf., June 1982, pp. 55-59.

[FR84] M. A. Franklin, D. F. Wann, and K. F. Wong, “Parallel Machines and Algorithms for
Discrete-Event Simulation,” Proc. 198§ Int. Conf. on Parallel Processing, Aug. 1984,
pp. 449-458.

[HA85] W. Hahn and K. Fischer, “MuSiC: An Event-Flow Computer for Fast Simulation of
Digital Systems,” Proc. 22nd Design Automation Conf., July 1985, pp. 338-344.

[HAS82] J. P. Hayes, “A Unified Switching Theory with Applications to VLSI Design,” Proc. of
the IEEE 70:10 (Oct. 1982), pp. 1140-1151.

[HE85] P. M. Hefferan, et. al., “The STE-264 Accelerated Electronic CAD System,” Proc. 22nd
Design Automation Conf., 1985, pp. 352-358.

[HO83] J. K. Howard, R. L. Malm, and L. M. Warren, “Introduction to the IBM Los Gatos
Logic Simulation Machine,” Proc. IEEE Inter. Conf. on Comp. Design (ICCD’88), Oct.
1983, pp. 580-583.

[LE82] Y. H. Levendel, P. R. Menon, and S. H. Patel, “Special-Purpose Computer for Logic
Simulation Using Distributed Processing,” The Bell System Technical Journal, Dec. 1983,
pp. 2873-2909.

[MI86] J. Misra, “Distributed Discrete-Event Simulation,” ACM Computing Surveys 18:1 (Mar.
1986), pp. 39-65.

[PF82] G. F. Pfister, “The Yorktown Simulation Engine: Introduction,” Proc. 18th Design
Automation Conf., June 1982, pp. 51-54,

- 24 -

[SI85] Silicon Solutions Corp., “The Mach 1000 Simulation Engine,” Product Description,
Menlo Park, CA, 1985.

[UL78] E. Ulrich, “Event Manipulation for Discrete Simulations Requiring Large Numbers of
Events,” Comm. of the ACM 21:9 (Sep. 1978), pp. 777-785.

[VA84] Valid Corp., “Realfast Simulation Accelerator,” Product Description, 1984.

fWOS86] K. F. Wong, M. A. Franklin, R. D. Chamberlain, and B. L. Shing, “Statistics on Logic
Simulation,” Proc. 28rd Design Automation Conference, June 1986, pp. 13-18,

[XC86] Xcelerated Computer Aided Technology Inc., “MX and MXT Series,” Product
Description, Hopkins, MN, 1986,

[2Y83] Zycad Corp., “The Zycad Logic Evaluator,” Product Description, N. Roseville, MN,
1983.

Evall

Master Processor
+1
* Communication
° Network
Clock °
. Eval P
START =
M=

DONE

Figure 1. A Multiprocessor Logic Simulator.

OO OMK~ T Ao TN

YOy e odtn

50

10

0.5

0.1

00

50

10

Stop Watch
Priority Q.
Assoc. Mem
- RTP Chip
- CB Switch
} il |)
0 100 200 300 400 500
Number of Processors
Figure 2. Ideal Speed-Up Versus Number of Processors.
(H=100, L=5, 100,000 Components)
L=5, W=1,23
L=1, W=1,2,3
!] |]]
0 10 20 30 40 50

Number of Processors
Figure 3. Speed-Up Versus Number of Processors (H=1,t,,=3 syncs)

O M~ O e ow n

O C e oo W

—O D M~

100

10

10

‘//Fsm
| | / . Lm5, We2
| L=5, Wm=l
L=1, W=123
1 | 1 1 1
0 10 20 30 40 50
Number of Processors
Figure 4. Speed-Up Versus Number of Processors (Ha10,t,,=3 syncs)
/ L=15, W=3
L=15, W=2
L=5 L=1,5, W=1
L=1
|]| 1 ' | .|
0 10 20 30 40 50

Number of Processors

Figure 5. Speed-Up Versus Number of Processors (H=100,t,,=3 syncs)

	Performance Analysis and Design of a Logic Simulation Machine
	Recommended Citation
	Performance Analysis and Design of a Logic Simulation Machine

	tmp.1463768645.pdf.rH2Oh

