Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-86-18

1986-11-01

Data Engineering in Software Development Environments

Gruia-Catalin Roman

The design of a Software Development Environment (SDE) represents a very interesting point of
contact between data engineering and software engineering. In this context data engineering
becomes the cornerstone for successful software engineering practices. This paper attempts to
bring about a better understanding of the difficulties associated with this task by considering
sources of complexity in SDE design.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Roman, Gruia-Catalin, "Data Engineering in Software Development Environments” Report Number:
WUCS-86-18 (1986). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/834

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.


https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F834&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F834&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F834&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F834&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F834&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/834?utm_source=openscholarship.wustl.edu%2Fcse_research%2F834&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

DATA ENGINEERING IN SOFTWARE
DEVELOPMENT ENVIRONMENTS

Gruia-Catalin Roman

WUCS-86-18

November 1986

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

As appeared in Proceedings of the 3rd International Conference on Data Engineering, February
1987, pp. 85-86.






DATA ENGINEERING IN SOFTWARE DEVELOPMENT ENVIRONMENTS

Gruia-Catalin Roman

Department of Computer Science

WASHINGTON UNIVERSITY
Saint Louis, Missouri 63130

ABSTRACT

The design of a Software Development
Environment (SDE) represents a very interesting
point of contact between data engineering and
software engineering. In this context data
engineering becomes the cornerstone for successful
software engineering practice.  This paper
attempts to bring about a better understanding of
the difficuities associated with this task by
considering sources of complexity in SDE design

1. Imtroduction

A Software Development Environment (SDE)
is a coordinated coliection of computers and
software tools dedicated to supporting the
development and maintenance of software systems.
The SDE, as we know it today, is essentially a
highly sophisticated information system subjected
to continual evolutionary pressures, For these and
other reasons the design of 2 SDE is 2 major data
engineering undertaking executed in the context of
a very chalienging software engineering exercise.

The SDE represents & very interesting point
of contact between date engineering and software
engineering. In this context data engineering
becomes the cornerstone for successful software
engineering practice. The challenges facing the
data engineer are enmormous. This paper attempts
to bring about z better understanding of the
difficulties associated with this task by considering
some of the sources of complexity present in the
design of a SDE.

Since there is no prototypical SDE, one way
to approach this topic is to consider several
different dimensions along which SDEs may be
classified [1). lo the remainder of this paper we
discuss three key dimensions and we examine the
data engineering requirements originating with
each of them.

2. SDE Dimensions

The dimensions we have selected are:
organizationa] principle, mode of interaction, and
accessibility to information

Organizsational principle. In our work we
have identified several different crientations or
organizing principles for software development
envIronments:

Incongruovs. An incongruous development
environment does not have a single orgamizing
principle.

Lenguage based. A language-based
environment concentrates its support on software
written 1n a specific language, e.g., Ada® or Lisp.
Ip its purest form, this type of SDE is merely a
collection of tools that allow one to configure, edit,
compile, run, and debug programs. Data
engineering concerns are either peripheral or
subordinate to the greater programming language
issues.

Operating system based. A development
environment may be based on the concepts and
features of a particular operating system, e.g.,
UNIX®. In such SDEs tool kit integration via file
system and interface design 15 the dominant data
engineering concern.

Tool based. A tool-based environment is
built around the concepts and capabilities of one
or more key, highly versatile tools. An editor, a
parser, or 2 database package may be the tool in
question. The nature of the tool determines the
role to be played by data engineering. A parser
will enjorce specification standards and check
syntactic relationships while a database package
will place the emphasis on modelling,
representation, semantic  consistency, query
processing, ete. It is generally acceptied, however,
that database support s essentral to a modern
SDE.

Process model based. The central concept of
this class of environments is a2 model of the series
of activities required to create or modify a software
system. Using the model, the environment can
guide the software developer through the necessary
steps, checking that the actions taken at each step
are correct. A project rnanagemment system s
representative of this category of SDEs. (We know
of no SDE ir which this paradigm is dominant, but
methodologies based on it do exist, e.g., rapid
prototyping.) By necessity, a process based model
involves plans, strategies, and historical records.
As such, software life-cycle models must be
integrated into the traditional project data
management system. The latter must also be
augmented by a sophisticated, evolving knowledge
base.



Specification model based. This type of
software development environment is organized
around a formal semantic model of the objects
created during the development or maintenance of
a software system and the relationships among
these objects. The environment can syntactically
and semantically validate each object and cross-
check it with related objects. The choice of an
appropriate conceptual model is the difficult task
here—{iew question its desirability.

Our own effort in this area has been directed
toward the use of formal logic for the specification
of Geographic Data Processing (GDP) requirements
[2]. The emphasis was placed on modelling data
and knowiedge requirements rather than
processing needs. A subset of first order logic was
proposed as the principal means jor constructing
formalizations of the GDP requirements in a
manner that is independent of the data
representation. HRequirements executability was
achieved by selecting a subset of logic compatible
with the inference mechanisms available 1n Prolog.
Concepts that are important within the context of
GDP (e.g., time, space, and accuracy) have been
added to the formalization without losing Prolog
implementability or separation of concerns

Most SDEs do not fit exactly into one or the
other of the categories listed above. What is
important to note, however, is the fact that
increased sophistication of the SDE organizational
principle is accompanied by a commensurable
increase in the importance and complexity of the
data engineering concerns. This trend s
reenforced by our analysis of the other two SDE
dimensions.

Mode of interaction. The mode of
interaction describes the level of user involvement
with a software tool. We divide modes of
interaction into four categories:

Static. In this mode of interaction, users are
pot involved during processing. They merely
examine the tool output.

Dynemic. The dynamic interaction mode
enables users to trace the internal processing
actions while they occur as well as to examine the
results of an activity. The static and dynamic
modes do not place any special demands on data
crganization.

Interective. An interactive mode enables
users to guide a process by exchanging information
with the process while it is active. The user and
tool actions are viewed as separate. The data
organization becomes visible via the constraints it
imposes over the user /SDE interactions.

Synergistic. Synergistic interfaces transcend
the capabilities of interactive interfaces to merge
the user's actions with those of the computer. By
merging the capabilities of tools with those of the
human, the efiectiveness of each is magnified.

Increased data visibility and rapid access to large
data volumes are required to support this mode of
interaction. This places significantly greater
demands on the data engineering tasks.

Accessgibility to information. Although
the level of sophistication built into the mode of
interaction generally correlates with increased
accessibility to data, difierent degrees of data
accessibility may be considered for a given mode;

Localized. With localized access users have
access only to 1nformation inmside of their current
contexts, eg., to information contained in the file
that they are currently processing. There is no
formal organization or cross-referencing of related
information from different contexts.

Structured. Structured access organizes the
different information environments in some well-
defined way (perhaps hierarchically). Although
users may not have direct access to related non-
local information, they can follow a well-defined
path of context changes to access the information.

Totel. Total access means that all related
information 1s immediately available to the user
regardless of the context in which 1t is specified.
This mncludes both access to basic data stored by
the SDE and logical inferences that could be
reached starting with the basic data. The current
trend 1s toward total access and 1s reenforced by
attempts to merge data and knowledge bases.

3. Conclusions

The idea that software engineering and data
engineering have a very close relationship 1s seli-
evident. This paper points out that the success of
modern SDEs rests heavily on data engineering
and that this reliance increases with the the
sophistication level of the SDE.

4. References

1] Roman, G-C. et al "Long-Range
Technological Impact on Computer-Aided
Product Development at DMA,™ Finel Report,
RADC/DMA  Contract F30602-83-K-0065,
1986.

[2] Romar, G-C. "Formal Specification of
Geographic Data Processing Requirements,”
Proceedings of the 2nd Internationa! Conference
on Data Engineering, (Outstending Paper
Aweard), pp. 434-446, February 1986,



	Data Engineering in Software Development Environments
	Recommended Citation

	tmp.1463768645.pdf.xlGTa

