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ABSTRACT OF THE THESIS 
 
 

Prediction of Optical Properties of Plasmonic Composites:  

Applications to Solar Energy Harvesting 

by 

Satvik Navinbhai Wani 

Master of Science in Energy, Environmental and Chemical Engineering 

Washington University in St. Louis, 2010 

Research Advisor: Professor Radhakrishna Sureshkumar 

 

The finite difference time domain method was used to simulate the optical response of  

plasmonic composites with one and two nanoscale spherical metallic inclusion(s) (Ag/Cu in 

Air/SiO2) with various diameters and compositions. Fair agreement was found between 

simulation and effective medium theories for binary and ternary composites. Responses of  

ternary Ag/Cu/ SiO2 composites with various Ag:Cu ratios were found to be in fair 

agreement with the experimental data obtained from literature. Experiments with 

photosynthetic microalga Chlamydomonas Reinhardtii and Cyanothece showed that the 

wavelength specific backscattering in the blue region of  the spectrum from an Ag 

nanoparticle suspension could promote microalgal growth by more than 30%. This was 

because the photoactivity of  green microalgae is non-monotonic across the electromagnetic 

spectrum. The wavelength and light flux of  the backscattered field were found to be 

controllable through the variation of  the geometric features and/or concentration of  the 

nanoparticles in the suspension.  
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Chapter 1 
 
Introduction 
 

1.1 Motivation 
 
Efforts to realize the implementation of the idea of a “solar economy” are at their fullest in 

today’s world. Processing, materials and installation costs of solar energy harvesting methods 

are some of the major concerns [1]. Naturally, maximization of the operating efficiency of a 

solar unit is very important. Out of the various methodologies that are being explored today, 

plasmonics based efficiency enhancement techniques have shown promising results, 

especially in the case of photovoltaic (PV) devices [1]. The philosophy behind this is can be 

summarized in the following manner. While one way to improve the efficiency of PV 

devices is to use materials different form silicon based materials, such materials come with a 

set of challenges mainly in the form of development of the processing technology, 

optimization of processing cost, materials cost etc. Another way is to explore the use of well 

established materials and technologies with a set of enhancing modifications that do not add 

significant process and materials technology development transition costs. As summarized 

by Atwater et al. in Ref. [1], plasmonics based enhancement in PV devices generally require 

adding noble metal nanoparticles on or in existing device architectures. This retrofitting 

simplicity makes application of plasmonics to solar energy harvesting a very attractive 

candidate for the future of solar technologies. 
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Plasmonics concerns itself with the fundamental study and utilization of the interaction of 

light with electron plasma (typically in noble metals) at the nanoscale [2]. A plasmon is the 

quantized version of these plasma waves. It is possible to excite plasmons by light in a metal 

at a metal-dielectric interface. These electron density waves near the surface in the metal are 

called surface plasmons. In case surface plasmons are excited on isolated nanostructures 

embedded in a dielectric, they are called localized surface plasmons. The electron plasma and 

the incident electromagnetic field form a damped oscillator like system for low intensities of 

radiation. Here, the attractive Coulombic force acting on displaced electrons can be seen as 

the restoring force and the resistivity of the metal causes the damping. Hence, a resonance 

condition exists for a particular system. Resonance occurs at )2min( mp εε +  where pε  is 

the permittivity of the spherical metallic particle and mε  is the permittivity of the medium 

[2],[3]. This resonance occurs at visible wavelengths of light typically for noble metals like Au 

and Ag. This makes them viable candidates for enhancing the light harvesting efficiency of 

solar devices in the visible range of the electromagnetic spectrum.  

 

Fig. 1.1 shows the spatial distribution of the logarithm of the Poynting vector magnitude 

||log10 S  at resonance wavelength 392=λ nm (fig 1.1a) and at off-resonance wavelength 

400=λ nm (fig. 1.1b) for a 10 nm diameter Ag nanoparticle in air. Notice the reduction in 

concentration of radiant flux at the off-resonant wavelength. This concentrated radiant flux 

can be funneled into an active PV device by placing such nanoparticles (NPs) on or into the 

device [1],[4]. Further, as discussed in chapter 4, plasmonic NP suspensions can be used as 

wavelength specific backscattering devices for promoting functional microalgae growth.   

 



 

3 
 

 

Figure 1.1: Spatial distribution of Poynting vector S on a logarithmic scale for a 10 nm diameter 
spherical Ag nanoparticle in air at (a) resonant wavelength (392 nm) and (b) off-resonant wavelength 

(400 nm.) FDTD simulation were done with an input power of 1 W/m2. 
 

A more general approach to utilization of plasmon based enhancement for solar energy 

harvesting has been proposed by Trice et al. [5]. The central idea was that plasmonic 

composites can be thought of as solar energy harvesting devices by themselves owing to the 

enhanced plasmon based absorption. They have also discussed design rules for such 

composites based on existing simple mixing rules and their extensions proposed by Garcia et 

al. [6]. Further, it was shown that multiple metal composites can utilize the combination of 

individual resonant responses to absorb in a broad range of the solar spectrum and hence, 

may be thought of as broadband solar antennae. This was the starting point of the current 

work. 
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1.2 Objectives and Problem Formulation 
 
Solar electromagnetic (EM) radiation, in principle, is one of the few uninterruptible sources 

of energy that is readily accessible. The most general way to capture this radiant flux is 

through interception by an absorbing object. Any passive object placed in the path of 

radiation interacts with it in two ways: 

• Absorption A: Some intercepted radiant power is absorbed into the mass m of the object. 

• Scattering S: Some power is deflected as a result of interaction with the object. For large 

enough objects, this can be subdivided into Reflection R and Transmission T, especially for 

slab like geometries. 

This translates to: 1=+ AS  or 1=++ ATR . Efficient harvesting of solar radiant energy is 

then primarily governed by the following: 

• Maximization of absorption in the intercepting object. 

• Minimization of the mass of the intercepting object.  

The last point takes economics into consideration. Therefore, a Solar Energy Harvester 

(SEH) can be defined as any device which can absorb solar radiant energy. A simple figure 

of merit  for a SEH can, then, be defined as: 

 







=

S
A

m
1ϕ .                                                  (1.1) 
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A perfect SEH would have: ∞→ϕ . This is a very basic definition. A more rigorous figure 

of merit should take into account the aspect of utilization/conversion of the absorbed 

power. This is outside the scope of the present study. 

  

Ray optics can be applied to objects that are much larger than the wavelength of the incident 

radiation. In order to maximize interception, an object’s surface must be perpendicular to 

the incident radiation. Solar radiation is primarily made up of parallel beams [7]. Hence a 

SEH should ideally be an object with least possible mass and largest flat surface. This, 

naturally, means that thin-films are the ideal candidates.  

 

Objects comparable to or smaller than the wavelength of incident radiation do not follow 

ray optics because of diffraction [3],[8]. In this case, interception can be quantified by the 

absorption and scattering cross-sections of the object. These cross-sections are complex 

functions of the object’s structure, size, surroundings and composition. Therefore, unlike the 

previously discussed case, it is impossible to choose the ideal structure based on purely 

geometrical arguments [3].   

 

Scattering and reflection occur at an interface where the refractive index is spatially 

discontinuous [8]. We neglect the case of objects that are small compared to the wavelength 

of light for reasons discussed previously. Then, for the case of a thin-film SEH, 

scattering/reflection can be reduced if there are no spatial discontinuities in the refractive 

index at the surrounding medium and SEH interface. Schubert et al. have shown that graded 

refractive index SiO2/TiO2 films can be used to practically eliminate Fresnel reflection from 
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AlN substrates [9]. Similarly materials with graded real and imaginary refractive indices can 

be used as perfect absorbers [10]. Such materials have been realized with layered cermets 

(ceramic matrix/metal composites) [11],[12]. A perfectly matched layer (PML) used in finite 

difference time domain simulations is also, in principle, a perfect absorber. However, a PML 

is not physically realizable for solar radiation as it requires a non-zero imaginary part of 

magnetic permeability [13]. A SEH with a high  also ultimately requires a large absorption 

coefficient λπα /4 k≡  to maximize absorption for a given mass. Here, k  is the imaginary 

part of the refractive index or the extinction coefficient and λ  is the wavelength of light in 

vacuum. Dreissen et al. have discussed this for NbN thin-films [14]. 

 

Homogenous single phase materials have a unique refractive index for a given wavelength. 

In order to create a gradient, it is necessary to vary the refractive index in a smooth manner. 

Heterogeneous materials can be tailored to have effective intermediate optical properties for 

this purpose. In this work noble metal nanoparticle/dielectric matrix optical composites are 

considered. The nanoparticles are considered spherical for simplicity in the analysis. Noble 

metal NPs are chosen because the optical properties of their composites are influenced by 

the localized surface plasmon resonance (LSPR). LSPR is known to occur in the solar 

spectrum for noble metals like Ag, Au and Cu [2]. LSPR leads to a large value of absorption 

cross-section in these NPs and hence a large value of absorption coefficient of the optical 

composite. The resonant response depends on the material, size and structure of the NP 

allowing tunability [2],[3]. Hence, in principle, the control of inclusions’ concentrations along 

with the above mentioned tunable parameters can allow for the design of optical composites 

with desired spectral optical constants (see for example Ref. [5]). 
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If the practical difficulties in fabrication are neglected then, the problem of rational design 

criteria for such metal NP/dielectric matrix composites still stands. With this in mind, an 

attempt at solving the following set of problems forms the main part of this work.  

1. Prediction of optical properties of non-graded single and two metal NP/dielectric 

composites through the finite difference time domain (FDTD) simulation method with 

focus on variation with the following parameters: 

 NP diameter d 

 Volume fractions f 

 Ratio of the individual NP species volume fractions in case of ternary 

composites. 

2. Comparison of the predicted properties with some widely used effective medium 

theories (EMTs) and their extensions. 

3. Demonstration of plasmonics-based solar energy harvesting for a real system; namely 

wavelength specific control of light intensity for phototrophic growth of microalgae. 
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Chapter 2 
  
Theory and Computational Methods 

 
2.1 Introduction 
 
Spatially inhomogeneous, complex or composite media assume physical properties that are 

different from their component materials. In itself a “small sample” exhibits spatially 

inhomogeneous physical properties but a “bulk sample” exhibits a homogeneous set of 

physical properties. This occurs as a result of spatial averaging of associated fields in the 

bulk. The definition of bulk depends on the length scale of the inhomogeneities. In case of 

optical composites, the physical properties under consideration are the relative electric 

permittivity rε  and the magnetic permeability rµ . The associated fields are the electric E  

and magnetic H  fields. The homogenized or effective physical properties are taken to be 

effε  and effµ (the subscript ‘r’ representing relative is dropped from now on for simplicity). 

The governing equations are the Maxwell’s equations in the following form. 

 

( ) 00 =⋅∇ Erεε                                                  (2.1a) 

 

0=⋅∇ H                                                      (2.1b) 

 

tr ∂
∂

−=×∇
HE µµ0                                               (2.1c) 
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EEH σεε +
∂
∂

=×∇
tr0                                             (2.1d) 

 

All variables in eqs 2.1 take real values. Here σ  is the conductivity of the medium and; 0ε  

and 0µ  are the permittivity and the permeability of the vacuum. The magnetic response of 

materials in the UV-Visible-IR (Solar) frequency region is negligible and hence 1=µ  in eqs. 

2.1. Hence only effε  was the effective property under consideration here. It is assumed that 

there was no free charge or current present in the medium under consideration. The 

following are the boundary conditions that are applicable to an interface separating two 

materials with different relative permittivities. 

 

nEnE ˆ)(ˆ)( 2211 ⋅=⋅ εε                                             (2.2a) 

 

nEnE ˆˆ 21 ×=×                                                 (2.2b) 

 

21 HH =                                                       (2.2c) 

 

Here n̂  is a unit vector normal to the interface. The interface under consideration is between 

materials with relative permittivities 1ε  and 2ε . Notice that the subscript ‘r,’ representing 

relative has been dropped for the sake of simplicity. Eq. 2.2a means that the normal 

component of the electric displacement ( )Eε  is continuous across the interface. Eq. 2.2b 
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implies that the tangential component of E  is continuous across the interface. Magnetic 

field H  is continuous across the interface according to eq. 2.2c.  

 

The time-dependent Maxwell equations (eqs. 2.1) can be simplified to a time-independent 

vector Helmholtz equation (VHE) for an electric field with a complex time-independent 

amplitude )(~ rE . This is done by substituting a plane wave like solution of the form 

titi ee ωω −−⋅ = )(~~ )~(
0 rEE rk  into eqs. 2.1. Here 0

~E  is the complex amplitude of the wave, k~  is 

it’s complex wave vector and ω  is it’s angular frequency [3]. Eq. 2.3a is the obtained VHE 

and eq. 2.3b gives the form of k~ .  

 

0~)~~( 2 =⋅+∇ Ekk                                               (2.3a) 

 

pk ˆ)(~2~ ωεπω
c

=                                               (2.3b) 

 

In eq. 2.3b, p̂  is a unit vector in the direction of propagation and )(~ ωε  is the complex 

permittivity of the medium. Complex values are used to simplify the analysis. By doing so, it 

is possible to incorporate the loss due to electron transport in the imaginary part of the wave 

vector and permittivity. Complex value of the field amplitude θie00
~ EE =  incorporates the 

phase information through θ .  
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In the electrostatic case ( 0k →~ ), the VHE can be further simplified to a Laplace equation. 

In this case, eq. 2.1a fully describes the electric field E . If φ−∇=E , where φ  is a potential; 

and the medium under consideration is homogenous, then eq. 2.1a transforms to the Laplace 

equation as in eq. 2.4. 

 

02 =∇ φ                                                        (2.4) 

 

Continuity of the potential φ  across an interface supplements the boundary conditions 

represented by eqs. 2.2. Eqs. 2.1-4 completely describe the behavior of electric and magnetic 

fields inside a homogenous material for various conditions described above. The boundary 

conditions represented by eqs. 2.2 are applicable without loss of generality to eqs. 2.3a and 

2.4. 

 

2.2 Effective Medium Theories 
 
Effective linear dielectric response effε  of a composite material is a function of the following 

variables: permittivity of the matrix mε ; permittivities of the n species of inclusion particles 

piε  (i=1, 2, 3 … n); volume fractions fi of each inclusion species; and size, shape and spatial 

distributions of each inclusion species. Fig. 2.2 is a schematic of a finite region of an infinite 

2-D binary composite with spherical inclusions of permittivity pε  embedded in a matrix of 

permittivity mε . Presence of inhomogeneities leads to local perturbations in E  and H . The 

effective permittivity effε  corresponds to the spatially averaged fields vgaE  and vgaH .  
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Figure 2.2: (a) A schematic of the microstructure of a 2-D composite with one type of inclusion 
embedded in an infinite matrix with a perturbed electric field, (b) homogenized composite with 

uniform average electric field and permittivity. 
 

For the purpose of this work it is assumed that the inclusions are monodisperse spheres 

randomly distributed in the matrix. They do not touch each other. Further, it is assumed that 

the effective properties correspond to an infinite 3-D composite at a steady-state with 

respect to the applied field; and the effective properties could be estimated by averaging over 

a volume that was large enough compared to the spatial scale of the inhomogeneties.  

 

Traditionally, the methods of estimating the effective properties are called effective medium 

theories (EMTs), effective medium approximations (EMAs) or mixing rules. Various EMTs 

have been proposed [15]. The first one was proposed in 1905 by J. C. Maxwell-Garnett [16]. 

Each EMT is based on a set of simplifying assumptions. Here, some widely used EMTs for 

spherical inclusions based composites will be discussed. Simplest EMTs are for binary 

composites i. e., composites with only one type of inclusions in a homogenous lossless 

dielectric matrix. Further, it is assumed that the inclusions are spherical, vanishingly small 

compared to the applied wavelength of light, spatially random, and have a very low volume 
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fraction. The Maxwell-Garnett EMT (MGEMT) is based on the solution of the Laplace 

equation (eq. 2.4) [15] and gives the following result.  

 

)2()1(
)22()21(

),,(
ff

ff
mfp

mp

mp
meff ++−

−−+
=

εε
εε

εε .                              (2.5) 

 

Here f is the volume fraction of the inclusions in the composite. Note that the denominator 

in eq. 2.5 represents the plasmon resonance condition for 0→f i. e., mp εε 2−= . As f 

increases, there is a red-shift in the resonance wavelength. Further, eq. 2.5 only accounts for 

the presence of one type of inclusion. Garcia et al. have proposed an extension wherein 

multiple species of inclusions (pi) can be accounted for by first calculating ),,( mfp iieffε  

followed by application of the MGEMT to these effective permittivities in a hierarchical 

manner [6].   

 

2.3 The Finite Difference Time Domain 
(FDTD) Method 

 
The FDTD method was used to simulate the linear dielectric behavior of binary and ternary 

plasmonic composite materials subject to solar frequency range (UV-Vis-NIR) radiation. 

Commercial software OptiFDTD was adapted for the simulations. The FDTD method is a 

direct march-in-time simulation of the Maxwell’s curl equations (eqs. 2.1) over a decretized 

spatial domain. The Yee cell, shown in fig. 2.3, is used as the 3-D spatial unit cell. The 

Maxwell’s equations are decretized in the following manner [13]. 
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Figure 2.3: A schematic of the Yee cell. Notice that the E and H field components are located at edge 
and face centers of the cuboid grid in order to facilitate the decretization of Maxwell’s curl equations. 
 

Superscript n denotes the time iteration number and subscripts i, j, and k represent the 

discretized spatial coordinates of the electric field ))(),(),(( tEtEtE zyx  and the magnetic 

field ))(),(),(( tHtHtH zyx . Field components ),,( zyx EEE  and ),,( zyx HHH  are not 

located at the vertices ),,( kji  but instead at the edge and face centers of the cuboidal lattice. 

Hence they assume coordinates like ),,
2
1( kji − , ),

2
1,

2
1( kji ++  etc. The electric field 

components ),,( zyx EEE  lie on the edge centers and the magnetic field components 

),,( zyx HHH  lie on the face centers in fig 2.3. The assignment of edge and face center 
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positions to the field components is arbitrary in the sense that their positions can be 

interchanged without altering the computational scheme. The main reason for such a 

position assignment is the facilitation of iterative calculation of the curl of each field at each 

time step as is required by the Maxwell’s equations. The numerical scheme is second order 

accurate as it considers central differences in space and time. The scheme is explicit in nature 

and requires the following (Courant-Friedrichs-Lewy) stability condition be satisfied [13]: 

222 )(
1

)(
1

)(
1

1

zyxn
c

t

∆
+

∆
+

∆

≤∆                                 (2.7) 

Here t∆  is the time step; and x∆ , y∆  and z∆  represent the Cartesian mesh in 3-

dimensions. The refractive index of the medium under consideration is given by n and c is 

the speed of light in vacuum. The time step and the mesh are kept constant throughout the 

simulation. The mesh size is chosen in such a way that 

 

Special boundary conditions know as “perfectly matched layers” (PML) are used for FDTD 

simulations as artificial reflectionless perfectly absorbing layers to truncate an infinite 

simulation domain. For the purposes of the current work, asymmetric or uniaxial PML 

(APML) boundary conditions were used to truncate the domain in ±Z directions. APML 

works by choosing ε  and µ  for the absorbing boundary layer subject to the condition that 

the Fresnel reflection coefficient is zero for all angles of incidence. The parameters ε  and µ  

for the APML that is perpendicular to the Z direction and adjacent to a material with an 

isotropic permittivity 0
iε  are given by the following relationships [13]: 
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where, m

m

d
zz

z 0max)(
−

=
σ

σ .                                      (2.8b) 

 

Here, the boundary is located at z = z0; d is the thickness of the APML layer, m>1 is the 

power of the polynomial that describes the increasing conductivity )(zσ and maxσ is a pre-

multiplier. Conductivity )(zσ is made to vary with z to make the transition into the APML 

smooth for minimal Fresnel reflection. Note that from the form of eqs. 2.8a, it is necessary 

for 0
iε  to be real, i. e., an APML boundary cannot be placed adjacent to a lossy material. In 

the present study, the theoretical reflection coefficient (disregarding spatial descretization of 

the APML) was set at 0.3%.  

 

The software was benchmarked by comparing theoretical and simulated reflectances Rth and 

Rsim respectively for a t = 300nm thick SiO2 slab with refractive index 
2SiOn  for the 

wavelength range λ = 300 to 800nm. Rth was calculated with the following equations. 
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−
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=                                                  (2.9c) 

 

Fig. 2.4 shows a comparison of the theoretical and simulated values of R. The values are 

seen to be in good agreement with one another. The difference was attributed to that fact 

that experimentally obtained values of 
2SiOn were used for computing Rth while a Lorentz-

Drude fit to the experimental values was used to obtain Rsim [13],[17]. 

 

 

Figure 2.4: A comparison of theoretical and simulated reflectances (Rth and Rsim) from a 300 nm 
thick SiO2 slab over the wavelength range of interest.  
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Fig 2.5 shows the 2-D projection of the 3-D domain used in the simulations. The following 

conditions were used for all simulations. 

• A 10d X 10d X 10d box was used to represent the composite with spherical 

inclusions with diameters d. The simulation domain was a 10d X 10d X 12d box with 

a 1d spacing before and after the composite in the Z direction. 

• The spherical inclusions were assigned spatially random locations in the box. 

However, their locations were assigned is such a way that each particle did not touch 

any other particles. Further, the particles were constrained to be fully inside the box 

so that they maintained their spherical identity.   

• A normally incident Y-polarized Gaussian modulated rectangular wave travelling in 

the Z+  direction with a carrier wavelength of 400 nm was chosen to be the input 

field. The half width was set to obtain data in the 300 to 800nm wavelength range. 

This facilitated extraction of spectral information from a single simulation. The input 

plane was set at dz 2.0= . 

• It was assumed that a thin slab of thickness d10  was a good representation of the 

composite. Hence, APML boundary conditions were used for Z±  boundaries and 

periodic boundary conditions were used for X±  and Y±  boundaries. 

• Observation areas for measuring the reflectance R  and transmittance T  were set so 

they were one mesh point outside the composite. This was done so that radiant 

power in all directions could be accounted for.  
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The effective permittivity effε  was extracted from the measured R  and T  values by 

simultaneously inverting eq. 2.9c for theoretical reflectance thR  along with the following 

equation for the theoretical transmittance thT : 

 

2

2

2

1
)1(
br

brT th

−
−

= .                                              (2.9d) 

 

 

Figure 2.5: A schematic of the simulation domain used for the FDTD simulations. 
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Chapter 3 
 
Binary and Ternary Composites  
 
3.1 Binary Composites 
 
The Maxwell-Garnett effective medium theory (MGEMT) is applicable to both 

dielectric/dielectric and metal/dielectric (plasmonic composites) binary composites. In order 

to verify the applicability of the FDTD simulation approach, it was first tested against the 

MGEMT for a dielectric/dielectric composite with varying volume fractions. The simulation 

conditions were as mentioned in the previous chapter, except that the simulations were 

performed for a continuous wave input field with λ = 3000 nm. The inclusion particles were 

assigned a permittivity of 9=pε  while the permittivity of the matrix was set to 1=mε . The 

particle diameter was set to 20 nm so that the parameter 1<<=
λ
επ md

x . This condition is 

necessary for the MGEMT to be applicable [3]. Simulations were performed for random as 

well as cubic ordered composites. Fig. 3.1 shows the extracted effective permittivities for 

both the cases. A good agreement was found between MGEMT and simulations for small 

values of volume fraction f . In case of a cubic arrangement, the theory over-predicted the 

effective permittivity while in case of random arrangement, there was an under-prediction. 

The deviation increased with f. This was attributed to an increase in the inter-particle field 

interactions as they were packed closer to each other. Further, the slight deviation that does 

exist, even at small values of f, is due to the fact that x  is finite. 
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Figure 3.1: Comparison of MGEMT with extracted effective permittivities for random and ordered 
dielectric/dielectric composites with various inclusion volume fractions.( d=20nm and λ=3000nm) 

 

Fig. 3.2 shows a comparison of the simulated absorptance A  of Ag/air binary plasmonic 

composites slabs in air with f = 0.02, d = 1, 10 and 100nm and thickness t = 10d with the 

corresponding MGEMT values of λ = 300 to 800nm. The mesh size was set to 

dzyx 1.0=∆=∆=∆ . A deviation was observed in the plasmonic peak position and the 

overall shape of the response even for small values of d (1 and 10nm). This was attributed to 

the coarseness of the mesh. As fig. 3.3 shows, for d = 10nm, there was an improvement in 

the response in comparison to the MGEMT when the mesh was refined to 

dzyx 05.0=∆=∆=∆  and d0334.0 . Large deviations from the theoretical value occur for 

400>λ nm. This is attributed to the fact that the small penetration depth at those 

wavelengths (fig. 3.3, inset) leads to an enhanced sensitivity to the mesh size. Further, as fig. 

3.4 shows, the contribution to the error in A due to consideration of only one realization 
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was negligible. In it, the error in A  over five realizations for f = 0.02 and d = 10nm was 

~2%.  

 

Figure 3.2: Comparison of MGEMT and simulated absorptances A for Ag/Air plasmonic composites 
with various d. Mesh size was 0.1d.  
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Figure 3.3: Effect of mesh refinement on the response of d=10nm Ag/Air plasmonic composite 
compared to MGEMT. The inset shows the variation of optical skin depth of Ag with the wavelength.  

 

Figure 3.4: Variation in A for five realization for Ag/Air plasmonic composite with f=0.02. 
 

3.2 Ternary Composites 
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Ag/Cu/SiO2 ternary plasmonic composites were considered for this part of the work. 

Magruder et al. [18] have fabricated such composites with various Ag:Cu ratios. They have 

done this by sequentially implanting Ag and Cu ions in to SiO2 substrates. The substrates 

(Corning 7940) had a thickness larger than one millimeter. The concentration profiles were 

measured with the Rutherford backscattering (RBS) technique. The maxima in the 

concentrations of Ag and Cu were reported to be ~140nm and ~130nm respectively. This 

ensured that both the species were approximately present at similar depths in the sample. 

Further, the samples were fabricated at 270K and not annealed after that. This ensured 

presence of Ag and Cu as separate species and hence formation of a ternary composite. The 

average particle diameter was reported to be 30nm [18]. Hence, simulations were performed 

for a composite slab with inclusion diameters d = 30nm. The process of ion implantation 

leads to the formation of a spatially non-uniform ion concentration profile through the 

depth of the sample. The implanted ions form particles by the process of diffusion. Hence a 

particle size distribution along with a depth profile of the particle volume fraction is 

expected from this fabrication technique. The actual ternary composite existed only near one 

surface of the sample. The total volume fraction f of the inclusions was assigned an arbitrary 

value of 0.02 for the purpose of the FDTD simulations. 

 

The optical properties were reported as the optical density (OD). OD is defined in the 

following manner: 

2

10log
SiO

sample

T
T

OD −≡                                               (3.1a) 
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where, IIT −= 0 .                                              (3.1b) 

 

Here T is the transmittance, )(0 λI  is the probe intensity and )(λI  is the measured intensity. 

Fabry-Perot like oscillations in the spectrum caused by multiple internal reflections can be 

neglected as the sample under consideration is orders of magnitude thicker than the optical 

wavelengths. This means that a sample without implantation would always have had 

1~
2SiOT . Thus, OD

sampleA −−101~ .  

 

Fig. 3.5 shows a comparison of simulated and experimental values of absorptance A  for 

Ag:Cu ratios 1:1 and 1:3. The extracted absorbance values from the experimental data were  

scaled by an arbitrary multiplying factor to accommodate for the uncertainty in thickness and 

volume fraction. A fair agreement was found, although the peaks associated with Ag and Cu 

appeared at marginally different wavelengths. This was attributed to the fact that there 

existed a particle size distribution and a spatial profile in the experimental samples as 

discussed previously. Size distribution gives rise to peak broadening and shifting while spatial 

profile leads to a spatial variation in the volume fraction and hence the optical properties.  

 

Fig 3.6 shows a comparison of absorptance A calculated with Garcia et al.’s extended EMT 

for ternary composites [6] and FDTD simulations for Ag/Cu/SiO2 ternary plasmonic 

composites mentioned previously. Simulated peak for Cu was blue-shifted and was red-

shifted for Ag. Disagreement was attributed to two main factors: (1) coarseness of mesh and 

(2) the fact that FDTD simulation requires a Lorentz-Drude fit of experimental permittivity 

data.  
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Figure 3.5: Comparison of simulated and experimental [18] optical response of Ag/Cu/SiO2 
plasmonic composites for two Ag:Cu ratios. The experimental data was rescaled to accommodate 

experimental uncertainty. Mesh size for the FDTD simulations was 0.05d. 
 

 

Figure 3.6: Comparison of FDTD simulation and Garcia et al.’s EMT [6] based calculations of the 
optical response of Ag/Cu/SiO2 plasmonic composites. Mesh size was 0.05d. 
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Chapter 4 
 
Plasmon-Enhanced Microalgal Growth in 
Mini-Photobioreactors 
 
(Contents taken from: S. Torkamani, S. N. Wani, Y. J. Tang and R. Sureshkumar, “Plasmon-
enhanced microalgal growth in miniphotobioreactors,” Appl. Phys. Lett., vol. 97, 2010, p. 
043703) 
 

4.1 Introduction 
 
In this chapter, the application of wavelength specific reflective nature of plasmonic 

composites to enhancement of photosynthetic microalgal growth is discussed. Here, the 

composite is in the form of a suspension. As discussed earlier, the ability to tune the 

plasmon resonance frequency by varying the size, shape, architecture and/or concentration 

of the NPs offers a means to tailor materials to a desired application requiring wavelength 

specificity [2].  

 

The metabolic activity of several photoactive microalgae is not uniform throughout the 

electromagnetic (EM) spectrum, e.g., green microalga (MA) Chlamydomonas reinhardtii, exhibits 

two peaks, in the blue and red regions of the EM spectrum [19]. (A comparison of the 

spectral range of photoactivity of Chlamydomonas reinhardtii with the calculated plasmon 

resonance frequency of spherical Ag NP suspensions used in this work can be found in Fig. 

4.1.) This is because algal photoactive pigments work only in specific ranges of the spectrum 

[20], while certain other wavelengths (e.g. 520-680 nm) may cause photoinhibition [21],[22].  

Hence, it is advantageous to enhance light only in the wavelength range favorable to the 
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growth of the organism. Further, light selectivity in bioreactors would reduce the growth of 

contaminant photosynthetic microorganisms that are photoactive in the wavelength range in 

which the desired species is not photoactive.  

 

 

Figure 4.1: Plasmonic response spectra of spherical Ag NPs of various radii R suspended in water 
compared to the absorption spectrum of microalga Chlamydomonas reinhardtii. Notice the red-shift 

and loss in the sharpness of the peak for increasing NP radius. R ~ 25 nm gives highest peak 
 

Algal growth requires both sufficient light intensity and optimal wavelength. Various 

methods have been proposed to reduce the light intensity attenuation in the cell culture 

[23],[24]. However, to date, wavelength specificity of backscattering of light has not been 

utilized as means for promoting phototrophic algal growth. The present approach takes 

advantage of LSPR of metal nanoparticles (NPs). Resonant interactions of light (photons) 

and surface plasmons can be used to amplify light absorption/scattering at specific 
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wavelengths. This idea was verified for a miniature microalgal photobioreactor (PBR). In a 

broad sense, the NP suspension functions as a mirror but with important advantages. First, 

the scattered total light flux to the microalgae culture can be precisely controlled by changing 

the NP concentration and size [2]. Hence photoinhibition can be avoided. Second, the 

frequency of the scattered light can be tuned by varying the shape and size of the NPs. For 

example, spherical Ag NPs scatter light in the blue region of the EM spectrum [3] which can 

be utilized for MA growth. Third, the fluid nature of NP suspensions allows shape flexible 

and efficient backscattering in PBRs. Such plasmonic mini-PBRs (PMPBRs) have potential 

applications in MA-based biosensors to detect toxic compounds [25-27]  in the natural 

environment, especially under limited ambient light. 

 

4.2 Mathematical Model 

The PMPBR configuration used in the present study is schematically illustrated in Figure 

4.2a. It consists of two separate compartments: one containing the MA culture and the other 

containing the NP suspension. Light is incident perpendicular to the top surface of the MA 

compartment. For this system, a mathematical model is developed to test the feasibility of 

the approach and offer guidelines to the experiments. This model describes the irradiance 

and the resulting microalgal growth for Chlamydomonas reinhardtii as function of NP (Ag) 

concentration and size. Let the autotrophic specific MA growth rate be denoted by pµ (s-1). 

Then growth rate Xr pX µ≡  where X is the biomass concentration (kg m-3). Light 

dependency of photosynthetic growth is modeled as:19  
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.2max

II
I

p

K
FFK

F

++
= µµ                                             (4.1) 

 

In eq. 4.1, KI is the half saturation constant (mol photon m-2 S-1), KII is the inhibition constant 

(mol photon m-2 S-1) and F is the irradiance (mol photon m-2 S-1) which is a function of space 

and time. The two flux model is used for F which is assumed to vary only along the depth (z) 

of the culture [28]: 

 

.1 FbEFbEFE
dz

dF
X SSa −+=± ±±

±

                              (4.2) 

 

In eq. 4.2, Ea  and ES represent the mass absorption and scattering coefficients (m2 kg-1), b 

represents the backscattering coefficient of the MA/NP and the superscripts +/- denote 

forward/backward travelling fluxes respectively. The parameters related to phototrophic MA 

growth in eqs. 4.1 and 4.2 are obtained from the literature [29],[28]. The values of Ea and ES 

for the NPs are calculated by utilizing Mie theory assuming spherical NPs in a dilute 

monodisperse suspension with b = 0.5 [3]. Eqs. 4.1 and 4.2 are solved numerically for the 

entire PMPBR with appropriate (continuity) boundary conditions to calculate the available 

irradiance F(z,t)=F+(z,t)+F-(z,t). The enhancement in the biomass concentration, x, is 

defined as ,/)( XXXx NP −≡  where the subscript NP signifies growth conditions in 

presence of backscattering from the NP suspension while X corresponds to the control 

experiments which entailed algal growth without backscattering. 
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Figure 4.2: (a) schematic of the PMPBR, (b) the calculated effect of spherical Ag NP radius R and 
number density C on the relative biomass increase x for Chlamydomonas reinhardtii (c) the available 
irradiance F(z, t) in the microalgae compartment for t = 24, 48, 72 and 96 hr (from top to bottom) for 
C=1016 m-3 and R=45 nm and (d) corresponding scenario for the control which has no backscattering 

device. Source irradiance: 50 µ mol photon m-2 S-1, MA culture and NP suspension depths: 1 cm 
each, the initial biomass concentration: 0.007 g L-1. 
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Model predictions reported in Figures 4.2b-d clearly show that the presence of 

backscattering from the NP suspension increases the available flux and hence the relative 

biomass. Enhancement in the light flux obtained by increasing NP concentration or 

scattering cross-section promotes biomass growth. However, wavelength specificity 

diminishes for NPs because of multipole excitations [3]. The largest increase in the scattered 

light intensity in the blue region of the spectrum occurs for Ag NPs with radius of 

approximately 25 nm (Fig. 4.1). Note that the attenuation of light in the algal culture 

increases with increase in the biomass concentration. When growth reaches the late 

exponential phase (≈30 hours), the light flux available to MA becomes l imited, hence the 

plasmon-enhanced growth is also reduced. The model indicates that plasmon-enhancement 

becomes less effective when the culture depth is increased beyond 1 cm.  

4.3 Experimental Method and Results 
Experiments were conducted to study the growth of Chlamydomonas reinhardtii (green alga) 

and Cyanothece 51142 (green-blue alga) in a PMPBR. The laboratory design of the PMPBR 

consisted of transparent cylindrical Petri dish (VWR #25364-090) containing the MA placed 

on top of that containing the NP suspension (Fig. 4.2a). The entire external surface except 

the top of the PMPBR was covered with black tape such that the incoming light could only 

enter from the top of the MA compartment. A fresh MA culture was inoculated into the 

PMPBR for each experiment. The initial biomass concentration of Chlamydomonas and 

Cyanothece was set to ~0.2 g L-1 and ~0.1 g L-1 respectively. The medium for Chlamydomonas 

was a minimum medium enriched with 20 mM NaHCO3 [30],[29]. The ASP2 medium was 

used for Cyanothece [31],[32]. The NP suspensions were prepared by diluting a 10 wt% 
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NP/ethylene glycol suspension (Sigma-Aldrich) with water to obtain number densities 1015, 

1016 and 1017 m-3. Average NP size was approximately 50 nm. The individual volumes of the 

MA culture and NP suspension in the PMBPR were 10 ml. Incident irradiance was kept at 

50 µ mol photon m-2 S-1 and the temperature at 25○C and 30○C for Chlamydomonas and 

Cyanothece respectively. The cultures were grown over 96 hours without shaking. The biomass 

concentration was measured by its optical density (675 nm and 730 nm probes were used for 

Chlamydomonas and Cyanothece respectively).  

 

It was inferred from figs. 4.3a-c that using the Ag NP suspension as a means for wavelength-

specific backscattering leads to increase in microalgal growth in both species by more than 

30%. The peak in the biomass growth manifests at later times (t ≈ 72 hr). The experimental 

data for plasmon-enhanced biomass growth is qualitatively consistent with the model 

predictions reported in fig. 4.2b. The quantitative disparity could be attributed to several 

factors: (1) the kinetics parameters we used in obtaining the theoretical predictions are based 

on growth data obtained from a large scale well-mixed PBR [29], which is likely to have 

different growth kinetics from the unstirred mini-size PMPBR employed in the present 

experiments, (2) the growth kinetics of MA contains an apparent lag phase which is not 

included in the model, (3) commercially available NPs may have non-uniform size and 

shape, which is inconsistent with model assumption of monodisperse spherical NPs and 

thus could alter the plasmonic response, and (4) the initial biomass concentration used in the 

experiments is much higher than that in the model since a critical initial biomass 

concentration is necessary to induce growth.  
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Figure 4.3: (a) Experimentally observed increase in microalgal biomass for Cyanothece (NP 
concentrations: 1017 m-3 (▲) and 1016 m-3 (●)) and Chlamydomonas reinhardtii (NP concentrations: 
1017 m-3 (▲), 1016 m-3 (●) and 1015 m-3 (■)) with Ag NP suspension (R = 25 nm), Growth pattern of 
Chlamydomonas reinhardtii (b) and Cyanothece (c) for varying NP concentrations. Zero represents 

the control sample without the backscattering device. 

 



 

36 
 

4.4 Effect of Nanoparticle Size and Architecture 
on Plasmonic Response 

The size and architecture of plasmonic NPs can be used to tune the spectral response [2], 

specifically, Ag based NPs can be tuned to scatter light in blue and red regions of the EM 

spectrum where the microalga Chlamydomonas reinhardtii is most photoactive. We explore this 

idea theoretically by calculating and comparing plasmon responses of spherical, prolate 

ellipsoid and core (SiO2)-shell (Ag) composite Ag NPs of various sizes suspended in water 

with the absroption spectrum of  Chlamydomonas reinhardtii as show in figs. 4.4-6 respectively. 

The extinction efficiencies for the NPs were calculated with Mie theory. Note that Mie 

theory only completely describes extinction by spherical NPs. The quasi-static (point dipole) 

approximation with anisotropic depolarization factors was therefore used to describe the 

response of prolate ellipsoid NPs (assumed mono-disperse and randomly oriented in a 

suspension) [3].  
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Figure 4.4: Plasmonic response spectra of spherical Ag NPs of various radii R suspended in water 
compared to the absorption spectrum of microalga Chlamydomonas reinhardtii. Notice the red-shift 

and loss in the sharpness of the peak for increasing NP radius. R ~ 25 nm gives highest peak. 
 

  
 

Figure 4.5: Plasmonic response spectra of prolate ellipsoidal Ag NPs of various major radii a and 
fixed eccentricity a/b compared to the absorption spectrum of microalga Chlamydomonas reinhardtii. 
Eccentricity induces a large red-shift in the plasmonic response leading to scattering in the red region 

of the spectrum (600-700 nm). Eccentricity a/b = 3.5 gives a good matching. 
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Figure 4.6: Plasmonic response spectra of SiO2 core-Ag shell composite NPs with varying core radii R 
compared to the absorption spectrum of microalga Chlamydomonas reinhardtii. Presence of a 

dielectric core also induces a large red-shift in comparison to spherical Ag NPs making them usefull 
in the red region of the spectrum (600-700 nm). R ~ 12 nm gives a good matching. 
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Chapter 5 
 
Conclusion and Directions for Future 
Work 
 

The FDTD method was adapted for the prediction of  optical response of  plasmonic 

composites for application to solar energy absorption in the visible region of  the 

electromagnetic spectrum. Fair agreement was obtained with experimental data and 

theoretical models. Spectral spread of  absorption was found to increase with the addition of  

multiple plasmonically active nanoparticles in the composite. This was found to be a 

beneficial route to covering the visible region of  the solar spectrum between 300 and 800 

nm. Especially, the incorporation of  Ag and Cu into the composites led to absorption in 

most of  the visible region. Effective medium theories were found most suitable in case of  

small particles and small volume fractions. Current simulations were limited by available 

computational power. In the future, more accurate simulations with custom built software 

could be used for more accurate predictions. Further, emergent non-linear properties of  

high volume fraction graded multi-metal composites could be explored with a possibility of  

getting closer to a perfect absorber response in the solar or any other application driven 

region of  the electromagnetic spectrum. 

 

It was also demonstrated that the use of  plasmonic NP suspensions as wavelength specific 

backscattering devices in miniature PBRs could significantly promote the growth of  

photosynthetic microorganisms. In the experiments, the faster growth was facilitated by 



 

40 
 

enhancing the available irradiance in the blue region of  the EM spectrum. However, optimal 

microalgal growth required light in two spectral regions, namely blue and red. It is 

impractical to mimic this bimodal behavior using a single NP species. In the present 

experiments, Ag NPs were selected for scattering blue light because it contains higher light 

energy under constant photon flux. However, backscattering in the red region (600-700 nm) 

can be facilitated by using prolate ellipsoids or composite core-shell spheres [2]. Hence, it is 

plausible that suitable mixtures of  NPs, e.g. spheres and prolate ellipsoids, could be utilized 

to produce backscattering in both blue and red regions of  the spectrum to achieve higher 

biomass growth rates. This is demonstrated in figs. 4. 3-5. Since the NP suspensions were 

confined and not dispersed within the culture medium, they can be used safely multiple 

times, thereby enabling the recovery of  the additional material cost over a finite period of  

time. This observation motivates further explorations of  practical and environmentally safe 

implementations of  plasmon-enhanced biomass growth in small scale systems that could be 

used as biosensors as well as large scale applications aimed at harvesting algal biomass for 

the sustainable production of  fuels and chemicals 
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