Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-87-9

1987-04-01

Design of a Broadcast Translation Chip

George H. Robbert

This paper describes the design of the Broadcast Translation Chip, one of the components of a
high speed packet switch. The chip allows the packet switch to handle multi-point as well as
point-to-point connections. It will be implemented in 1.5 Um CMOS technology.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Robbert, George H., "Design of a Broadcast Translation Chip" Report Number: WUCS-87-9 (1987). All
Computer Science and Engineering Research.

https://openscholarship.wustl.edu/cse_research/824

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F824&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F824&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F824&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F824&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F824&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/824?utm_source=openscholarship.wustl.edu%2Fcse_research%2F824&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

DESIGN OF A BROADCAST TRANSLATION CHIP

George H. Robbert

WUCS-87-9

April 1987

Depariment of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

Abstract

This paper describes the design of the Broadcast Translation Chip, one of the components of a high
speed packet switch. The chip allows the packet switch to handle multi-point as well as point-to-
point connections. It will be implemented in 1.5 um CMOS technology.

This work supported by Bell Communications Research, Italtel SIT, and National Science Founda-
tion grant DCI-8600947.

DESIGN OF A BROADCAST
TRANSLATION CHIP

George H. Robbert
ghr@wucs. UUCP

1. Introduction

This paper describes the design of the Broadcast Translation Chip (BTC) for use within a broadcast
packet switching network, This network is described in [Tu85].

1.1. Packet Switch

The overall structure of the packet switch is shown in Figure 1. The switch terminates 7 fiber
optic links. The packet switch is divided into five major sections. These are: the connection processor
(cP), the Packet Processors (PPs), the Copy Network (CN), the broadcast translation chips (BTCs)
and the routing network (RN). These are shown in figure 1. The CN, BTCs, and RN are collectively
known as the Switch Fabric (SF). The PPs serve as buffers between the transmission links and also
perform the address translation required by routing. The RN routes the packets passed through it

CP

Broadcast .
Copy Network Translators Routing Network

IF'I‘EI

"'b "w"

IT_I

Figure 1: Switch Module

2 BROADCAST TRANSLATION CHIP

to the PP corresponding to the cutput link they are destined for. This information is encoded in the
routing field (RF) of the packet. The CN and BTCs are described below.

The CN’s function is to make copies of broadcast packets as they pass through. This is illustrated
in Figure 3. The packet entering at left belongs to broadcast channel 35 and is to be sent to three
different links. At the first stage, the packet is routed out the upper port. This is an arbitrary
decision—the lower link could have been used at this point. At the second stage, the packet is sent
out on both outgoing links and the fanout fields of the outgoing packets are modified. The upper
packet will generate two copies and the lower one, one.

We now describe the CN routing algorithm for broadcast packets. Let BCN and FAN be the
broadcast channel field and the number-of-copies field from the packet and let sn be the stage
number of the node in the switch, where stages are numbered from right to left, starting with 0.

o If FAN > 2*" request both output links and when the links are available, simultaneously send
the packet out on both.

~ If BCN is even, the PAN field of the upper packet is set to | (FAN + 1)/2] and the FAN field
of the lower packet is set to |FAN/2].

— If BON is odd, the FAN field of the upper packet iz set to |FAN/2| and the FAN field of the
lower packet is set to | (PAN + 1)/2].

o If FAN < 2%%, route packets alternately to each of the two output links. If the desired link is
blocked, route to the other one.

Note that this algorithm delays copying packets as long as possible. Another option is to copy the
packets early. However, this approach can lead to unbounded congestion in the CN. The late copying
algorithm Limits the potential for congestion. See [Bu85) for further details.

An important property of the copy algorithm is that given a particular combination of BCN and
FAN, one can predict which of the FAN copies can appear at each output of the copy network. Suppose
the copies of all broadcast packets were numbered from O to FAN with the indices increasing as the
output port numbers increase. Consider what happens when a broadcast packet is processed by the
copy network. Some CN output ports may receive a copy while others do not, depending on how
the arbitrary routing decisions are made. However, if an output port receives a copy, the number of
that copy is completely determined. The number of the copy that can appear at a particular output
port is called the broadcast copy indez or bes for that port. The bei is a function of the output port
number, the FAN field and the low order bit of the BCN and is denoted bcsy (FAN, BCN). An algorithm
to calculate bes (FAN, BON) appears in Figure 2.

When the copies of a broadcast packet emerge from the CN, their final destinations are yet to
be determined. The principal function of the Broadcast Translation Chips (BTC) is to assign a new
routing field to each copy of a broadcast packet in such a way that a copy is received by every
PP that is supposed to receive one. This is accomplished by a simple table lookup based on the
broadcast channel number (BCN). Each BTC contains a Broadcast Translation Table (BTT), used
for this purpose. The BTT is indexed by the BCN of the incoming packet and contains four nibble
entries. When BTCy, receives a copy of a broadcast packet, it replaces the packet’s routing field with
the contents of BTTx[BCN].

Note that two BTCs need not have identical entries in their BTTs for a given BCN, since their bcs
values may be different. This point is illustrated in Figure 3 which shows the translation process for
two packets copied from a single broadcast packet,

The addition of a new destination to a broadcast channel can radically change the mapping
required in the BTTs. In general, when a new destination is added to a particular broadcast channel,

BROADCAST TRANSLATION CHIP 3

integer function b&cix(FAN,BCN)
integer s, f;
Let the binary representation of k be b,—j ... by bo,
where n is number of stages in copy network.
8 :=0; f :=FAN;
p := the least significant bit of BCN.
for £:=n—1downto 0 —
if f>2°—
ifby=0—
f=(f+1~p)/2);
I N = 1 —_—
s+ [(f +1-p)/2];
L(f+p)/2];

s
f:

rof;
return s;
end;

Figure 2: Computation of Broadcast Copy Index

the CP must calculate a new bic for each of the BTCs and use that information to update all their
BTTs. Since this can happen frequently, it appears likely to present a substantial computational
burden for the CP. Fortunately, there is a simple solution to the problem. It requires that for
0 < k < 7, BTCy contains a table, the Broadcast Copy Indez Table (BCIT), that it can use to
compute bey(FAN,BCN). Since, FAN < 8 and only the least significant bit of the BCN is needed to
compute bet, the table has 32 entries, each one nibble long. Note that this table is static and is
different for each BTC. Now, when the CP wishes to update the BTTs for a particular broadcast
channel, it sends 2 control packet of the form shown in Figure 10. The CN replicates the packet
so that each BTC receives a copy. When BTCy receives its copy, it extracts FAN and BCN from the
packet, then uses its lookup table to compute § = beix (FAN,BCN) and finally copies RF; from the
packet to BTTx[BCN].

Using this scheme, the CP keeps a copy of the BTT_update packet in its memory. To add a new
destination, it increments the FAN field, adds a new RF to the end of the packet and sends it out
to the RN. To remove a destination, it decrements the FAN field, removes the proper RF from the
packet and sends it out.

BROADCAST TRANSLATION CHIP

] =]

L ,'B,1,35 [P,7,18
1 1
2 1 ,B,1,35 P,3,27

B,3,35 3 _I
— P,3,27

Figure 3: Example of Broadcast Processing

BROADCAST TRANSLATION CHIP 5

1.2. Packet Format

RC
FAN/ ADR

— BCN/LCN

CTL
SRC

k parity

Figure 4: Packet Format

The format of the packets processed by the BTC is shown in Figure 4. The packet is organized as __
a sequence of four bit wide nibbles. Each packet contains exactly 80 nibbles, the first six of which
constitute the packet header. The meanings of the fields are given below.

e Routing Control (RC). This field determines how the packet is processed by the nodes. 0000
signifies an empty packet slot, 0001 signifies a normal point-to-point data packet, 0011 signifies
a normal broadcast packet, 0111 signifies a test packet.

e Fanout (FAN). If RC = 0011, the second nibble of the packet is taken to be the fanout, that is
the number of switch fabric output ports that require copies of the packet.

e Address (ADR). If RC = 0001, the second nibble of the packet is taken to be the address of the
packet, that is the switch fabric output port to which the packet is to be delivered.

® Broadcast Channel Number (BCN). If RC = 0011, the third and fourth nibbles of the packet
are taken to be the broadcast channel number. All packets within a particular multi-point
connection have the same broadcast channel number.

BROADCAST TRANSLATION CHIP

e Logical Channel Number (LON). If RC = 0001, the third and fourth nibbles of the packet are
taken to be the outgoing logical channel number, On the external fiber optic links, logical
channel numbers are used to identify which connection a packet belongs to.

e Control Field (CTL). This field identifies various types of control packets. The possible values
of the field and the corresponding functions are listed below.
0 Ordinary date packet.
1-4 Packet Processor Control Packet.
5 Switch Test Packet.

6 Read BTT Block. Directs BTC to read and return a block of 16 entries from the BTT.
Nibble 0 of the I field specifies which of four blocks to read. The data is written into
nibbles 1-64 of the I field.

7 Write BTT Block. Directs BTC to write information into a block 16 entries of the BTT.
Nibble 0 of the I field specifies which of four blocks to write to. The data to be written
appears in nibbles 1-64 of the I field.

8 Update BTT. Directs BTC to update one entry in the BTT. See operation below.
9 Read BCIT. Directs the BTC to read the contents of the BCIT into nibbles 0-31 of the

packet.
A Write BCIT. Directs the BTC to write the information in nibbles 0-31 of the packet into
the BCIT.
B-F Reserved.

® Source (SRC). Identifies which switch fabric input port the packet came from.

e Information (1). Normally contains user information. In the case of control packets, may
contain additional control information. Individual nibbles are denoted 1[0),1[1],1[2],... with
1[0] being the first nibble of the I field.

2. Chip Specification

2.1. Interface

Here is a specification of the interface for the Broadcast Translation Chip (BTC) described above.
The external leads of the BTG are shown in Figure 5 and described briefly below. This figure, as well
as the others describing major pieces of the BTC use a form of dependency notation. A description
of this notation may be found in [IE]|

o Upsiream data leads (udg —udg) Incoming data from upsiream neighbors. Four bits wide (one
nibble).

e Upstream parity (up) Odd parity on incoming data from upstream neighbor.

¢ Downstream data leads (ddg — dd3) Outgoing data to downstream neighbors. Four bits wide
(one nibble).

e Downstream parity (dp) Odd parity on outgoing data to downstream neighbor.

o Packet Time (pt). Goes high when first nibble of packet is present on ud leads.

BROADCAST TRANSLATION CHIP 7

® Reset (rat) Initialize internal state machines.

[]

Soft Reset (srst) Reset error flags on chip.

Parity Error {e0) Report parity error.

Conirol Error (e1) Report bad OTL field of packet

Framing Error (e2) Report inappropriate pt assertion.

Error (err) Report parity violation or other error. This signal is the logical OR of e0 through
e2,

[]

Test Data Leads (exto — srtg) Chip Testing outputs. These are the outputs of the last stage
of the packet header storage register. Four bits wide (one nibble).

Test Data Parity (srtp) Odd parity on Chip Testing outputs.

Clock (¢1, ¢2). Two-phase, non-overlapping clock.

Power and Ground (P,G).

MOyl
pt — V2l—el
V2l—e2
ret —
srat — 2|—err
l [ddo
udO h— lD T I - ggé
udli — 1D T L _gds
— 1T -— dp
ud2 1D I ___ sgg
+ — 8
ud3 — lD T I . srtg
T — srt
up —1D T | :rtp

Figure 5: BTC Connections

8 BROADCAST TRANSLATION CHIP

%.2. Operation

The BTC operates on the basis of a packet cycle which starts when the pt lead goes high. This
indicates that the first nibble of an incoming packet is present on the upstream data leads ud.
Successive nibbles of the packet then arrive on successive clock cycles.

The chip is clocked by a two phase non-overlapping clock. The desired clock rate is 10 MHs
giving a clock period of 100ns. When ¢, is high, the signals on the ud and up leads of the chip are
valid. The pt lead goes high while ¢, is low and stays high for one clock cycle. The first nibble of
an incoming packet is present when both ¢, and pt are high. Successive up-going transitions of Pt
are at least 80 clock cycles apart.

Odd parity is computed across every nibble as it is received and checked against the parity bit
on the up lead. Any discrepancies cause the error lead to be asserted. Parity is also computed
across every nibble as it leaves the chip and the new parity value is transmitted on the dp lead.

The BTC contains two internal tables. The Broadcast Translation Table (BTT) is used to modify
the headers of broadcast packets as they pass through the BTT. It has 64 entries, each of which is
four nibbles wide. The +*® entry is denoted BTT[s]. Parity is also stored for each nibble and checked
when data is read from the BTT. Parity errors cause the error lead to be asserted. The Broadcast
Copy Indez Table (BCIT) is used for updating the BTT. It consists of 32 entries, each of which is one
nibble wide. Again parity is stored for each nibble and checked when data is read.

Normal point-to-point data packets (those with RC = 0001 and CTL = 0) pass through the BTC
unchanged, experiencing a delay of 16 clock cycles. The same goes for control packets that don’t
affect the BTC. The actions taken by the BTC on broadcast data packets and BTC control packets
are described in figure 8. Note that, in some cases (writes to BTC memory), the BTC does not pass
the packet through. In all other cases, the (possibly modified) packet is passed through, with a delay
of 16 clock cycles.

3. High Level Design

The BTC may be divided into three basic sections: The shift register, the memory, and the associated
control circuitry. A block diagram is shown in figure 7.

3.1. Shift Registers

The heart of the BTC is a shift register 5 bits wide and 16 stages long. It provides sufficient buffering
to allow the proper action to be taken on the packet. Various stages of this shift register may be
either read or written to get information from the packet or to modify it. A second shift register is
used to store the packet header and the first nibble of the I field. The first 7 nibbles of a packet are
shifted into this shift register and stored since they may be used by the control circuitry throughout
the packet cycle.

3.2. Memory

There are two memories in the BTC. The larger one is the BTT. It stores the new routing information
for the broadcast packets that this BTC is translating. The smaller one, the BCIT, is used for updating
the BTT. It is used to calculate the Broadcast Copy Indez via table lookup. Since the Broadcast Copy
Indez is unique for each BTC, this table is implemented in RAM. All the BTC chips are identical and
the BCIT in each is loaded with the unique function values for that chip. Both of these memories are

BROADCAST TRANSLATION CHIP 9

if CTL=0ARC =0011—
Replace the first four nibbles of the packet with BTT/BCN].
If new ADR field equals SRC field, do not propagate the packet.
| CTL =6 —
% 1= 16 » 1[0];
for j€([0,15] —
Copy BTT[t + 5] to I[47 -+ 1], I[45 + 2], I[45 + 3], I[45 + 4].

rof;
|eTL=7—
i 1= 16 * I1|0];

for j€(0,15] —
Copy I[45 + 1), I[45 + 2], I[45 + 3, I[45 + 4] to BTT[i + 5].
rof;
Do not propagate the packet.
| cTL = 8 —
= (1[0] << 1) | (BcNy, & 01);
7 = BCIT|i);
Copy I{45 + 1},1[{45 + 2],1[47 + 3],1[45 + 4] to BTT[BCN].
Do not propagate the packet.

| cTL=9 —
for j €[0,31] — Copy BoIT(j] to I[j]. rof;
|cTL=4A—

for j € [0,31] — Copy I[5] to BCIT[]. rof;
Do not propagate the packet.

| else
Pass packet unchanged.

§;

Figure 6: BTC Packet Actions

accessed from the main shift register. To improve reliability, both memories store parity for each
nibble. This is checked when the memory is read.

3.3. Control

The control section of the BTC is distributed into four functional blocks. Three of these control
specific gections of the packet processing while the fourth coordinates their actions. The sections
controlled by these three are:

» memory refresh
e block reads and writes of the BTT and BCIT

e controlling packet propagation

There is also a counter to keep track of the position within the current packet. Another counter
is used to determine which of the “*new packet headers” to write to the BTT in a single entry update.

10 BROADCAST TRANSLATION CHIP

Master Control

rd‘;.i
HiJ :
YT o
refresh
block control
mode
control «L—
- %
- * M3 BTT
64 x 20
: bits
L — i \rho-L BCIT
= __éﬂj. 8 x 20
£ = bits
; header
k ghift =

data

16 bit Shift Register |, data

parity
check

Figure 7: Circuit Diagram

BROADCAST TRANSLATION CHIP 11

4. Node Operation

All packets begin processing in the same manner. The header is shifted into both the header storage
and main shift registers. At this point the BTC determines what type of packet it is and proceeds
accordingly. Point to point packets and all others that the BTC doesn’t recognize are merely passed
through the main shift register to appear unchanged at the output. Other types of packets require
special processing. Two examples are given below.

4.1. Normal Broadcast Packet

Figures 8 and 9 illustrate the processing of a simple broadcast packet. In figure 9, the thick lines
indicate which datapaths are used in broadcast translation. The BCN field of the packet header is
used to index the BTT and obtain new routing information for the packet. This replaces the original
packet header in the main shift register. If the new destination is the same as the originator of the
packet (SRC), the packet is not propagated. Otherwise, the modified packet is output.

4.2. Load Single BTT Entry

Figures 10 and 11 illustrate the processing of a update single BTT entry packet. In figure 11, the
thick lines indicate which datapaths are used in BTT updates. The broadcast copy indez is calculated
by looking it up in the BCIT. The low order bit of the BON and the new FAN (held in 1[0]} are used
to address the BCIT. The low order 2 bits of this address select the correct nibble from the slice of
4 nibbles read from the BCIT. The rest is used to address the BCIT memory array. This selects the
correct bes value from the table. A map of how BCIT holds the bes values is shown in figure 12. This
value read from the BCIT {ie. bet(FAN', BCN)) is loaded into the down counter which is decremented
every 4 nibble times. When it reaches 0, the appropriate RF is ready to be loaded into the BTT.
The BCN is the address of the location in the BTT where the new RF is to be written.

The block reads and writes of the BTT and BCIT are done similarly. However, the calculation of
the broadcast copy sndex is not required in these cases. Also the memory addresses come from the
block mede control section instead of from the packet header.

12

BRrROADCAST TRANSLATION CHIP

Incoming Outgoing
Packet Packet
B = 0011 BTT P = 0001
FAN ADR
— BCN — ~— LCN —
CTL =0 CTL

—e P |ADR| LcN 5SRO
I 1
Figure 8: Broadcast Packet Translation
h
blk rfs
ctl
_—
BTT
h - BCIT
e
s
d 4
g E“Q‘J\a par | o par
) ‘ !
LIS, RN N R S B R BN EAn e s S |
in—J—b Shift Register —» out

par

Figure 9: Broadcast Packet Translation

BROADCAST TRANSLATION CHIP

Incoming
Packet
B = 0011
FAN

I _l BCIT
CTL = 1000
}__

SRC . .
N——— s——1» j = bci(FAN’, BCN)

FAN'

— RPFg —
—] BTT
— — ; . BTT[BCN| = RF;
Figure 10: BTT Update (single entry)
rish
blk
ctl
—\
BTT
- BCIT
e -
a
d -
. Eﬁﬂy\g par | Mo par
¥ ‘ ‘ 8
i_n—Lb Shift Register —= out
par

Figure 11: BTT Update (single entry)

14

BROADCAST TRANSLATION CHIP

7 | bes{14, even) | bei(14, odd) | bei(15, even) | bei(15, odd
6 | bei(12, even) | bes(12, odd) [bei(18, even) | bei(13, odd
5 | bei(10, even) | bes(10, odd) [bei(11, even) | bei(11, odd
4| bei(8,even) | bei(8,0dd) [bei(9, even) | bei(9, odd
3| bei(6, even bei(6, odd) | bci(7,even bet(7, odd
2 | bei(4, even bei(4, odd) | bei(5,even bes(5, odd
1| bei(2,even) | bei(2,0dd) | bei(3, even) | bei(3, odd)
0 | bei(18, even) | bei(18, 0dd) | bei(1, even) | bei(1, odd)

Figure 12: Map of BCIT Entries

BROADCAST TRANSLATION CHIP 15

5. Medium Level Design

This section contains a more detailed description of each of the functional blocks described previously.

5.1, Shift Register

Both of the shift registers use the same basic dynamic latch cells. This 8 transistor 2 phase latch
was chosen for its simplicity, size and speed. These are described below.

5.1.1, Main Shift Register. The main shift register is 16 stages long and 5 bits wide. Since
data is constantly being shifted, there is no penalty for using dynamic circuitry here. A simple
multiplexor allows some stages of the main shift register’ to be loaded from either the previous
stage {for shifting) or from an external source (ie. the memory).

The interface of bit slice n of the main shift register is shown in figure 13. Note: to match figure
7, this figure must be turned on its side (rotated 90° counterclockwise). Five such slices compose
the main shift register. Here are the interface signals.

e Data Inputs (data_ing — data_ing) The 5 bits of serial input to the shift register. These are
the upstream data leads plus the upstream parity lead (udg — udz and up).

o Data Outputs (data.outg — data_outy) The 5 bits of output from the shift register. These
are the downsiream data leads plus the downstream parity lead (ddg — dds and dp).

e Load From BCIT (read bcit) Load stages 4 through 7 of the shift register with the value read
from the BCIT instead of the shifted in value. Connected to BLOCKMODE _BLK/beit_read.

e Load From BTT {read btt} Load stages 8 through 11 of the shift register with the value
read from the BTT instead of the shifted in value. Input from BLOCKMODE BLK/btt_read +
MASTER BLK/btt_read.

e Input Data From BCIT (bcit_ing, o — beit_ing,yg) Data output by the BCIT. In these
labelings n is the number of this bit slice. So, for bit slice 0, these would be labeled bcit. ing,
beit_ing, becit_ingg and beit.ingg. The other inputs and outputs from memory are labeled
similarly. These inputs are loaded into the shift register during BCIT block reads. Input From
BCIT/bit.outg — BCIT/bit_outyg.

e Input Data From BTT (btt_inp, o — btt_iny,15) Data output by the BTT. Loaded into
the shift register during BTT block reads and broadcast packet translation. Input from
BTT/bit_outy — BTT/bit_outyg.

¢ Output Data To BCIT (becit_outy, o —beit_outy 45) Data to be written to the BCIT. These
outputs are used during BCIT block writes. Qutput to BCIT/bit_ing — BCIT/bit_ingg.

e Output Data To BTT (btt_outy o —btt_outy, 1g) Data to be written to the BTT. These out-
puts are used during BTT updates and block writes. Qutput to BTT/bit_ing —BTT/bit._injg.

e Clock {#1 and ¢2} Two-phase, non-overlapping clock. Data is loaded into the shift register
and shifted on ¢1. Qutputs are latched on ¢2.

e Propagate Packet (propagate) If this lead is true, the packet is propagated. If false, 0 nibbles
are output. Input from PKTPROP_BLK/zero. out.

1Specifically stages 4 through 11.

16

SRG16
$1 —C1/—
$2 — C2
read_bcit — M3
read _btt — M4
propagate - EN5
C
datain, — 1D
beiting, 415 —{ 3,1D 2D — beit_out,4 15
beit ing 410 — — beit_outyi10
citing 45 — — beitoutpys
beit_ing 4o — — beit_out,o
btt_ing 415 — 4,1D 2D — btt_outn+15
btt_ing, 410 — — btt_out,+10
tt_in, 45 — — btt_out, 5
btt_ing, o — — btt_out, o
2D —
2D — data_out,,

Figure 13: One Bit Slice of Main Shift Register

BRCADCAST TRANSLATION CHIP 17

5.1.2. Packet Header Shift Register. The packet header shift register is 8 stages long and
5 bits wide. Since the maximum length of time data is to be held (without shifting) is one packet
time, dynamic circuitry may also be used here.

The interface of bit slice n of the packet header shift register is shown in figure 14. This figure
is inverted from its orientation in figure 7. Five such slices compose the packet header shift register.
Here are the interface signals.

® Data Inputs (data.ing — data_ing) The 5 bits of serial input to the shift register. These are
the upstream data leads plus the upstream parity lead (udp — uds and up).

o Stage 0 outputs (1[0]o - i[0]4) These are the I[0] inputs to the master control block.

¢ Stage £ outputs (ctlg — ctly) These are the CTL inputs to the master control block.

o Stage 3 oufputs (bcn_lp — ben.1y) These are the low order 4 bits of the BCN input to the
Memory Address Multiplexor.

e Stage 4 outputs (bcn hg — ben hy) These are the high order 4 bits of the BCN input to the
Memory Address Multiplexor.

e Stage 6 outputs (rcg — rcy) The 5 bits of output from the shift register. These are the test
data leads plus the test data parity lead (srtg — dd3 and srt). These are also the RC inputs
to the master control block.

o Shift Enable (shift_ena) This input enables the shifting for this shift register. When it is
true, data is shifted on ¢1, When it is false, data is held.

e Clock (¢1 and $2) Two-phase, non-overlapping clock. Data is shifted on #1, if shifting is
enabled. Qutputs are latched on ¢2.

SRG7
$1 —{3(C1/—)
2 —C2
shift_ena —{ G3
~
data_in, —{1D 2D — I[01,
2D

— ctl,
t—ben_1,
— benhy,
— re,

Figure 14: One Bit Slice of Packet Header Shift Register

18 BROADCAST TRANSLATION CHIP

5.2. Memory

Both memories are implemented using the same 3 transistor dynamic RAM design. Our design gives
a cell size of 30 x 30A for 1 bit. The row decoders are implemented uging a dynamic nor. Since a
three transistor cell is used, the sense amplifiers can be simple inverters. The sense amplifiers /column
drivers contain the circuitry to precharge the bit lines in the array, a latch for data to be written to
the memory and the sense amplifying inverter.

The memory has two basic operating cycles: read and write. Refresh is handled by a read
immediately followed by a write. Hand calculation of the delays through the larger of the two arrays
(BTT) yields an access time of about 275ns. Since we need < 400ns access time on each of the
memories, we have not tried for a more precise estimate of the delay through it.

Both memories are read and written in 4 nibble words in order to obtain the needed throughput.
Since the BTT is only accessed 4 or more nibbles at a time it poses no problem. In operation, the
entire BCIT is read or written, or a single nibble is read. When a single nibble is of interest, 4 nibbles
are read from the BCIT and the desired nibble is selected by a multiplexor.

A timing diagram for the memory interface is shown in figure 17. Note: for highest throughput
states SO and S4 may be overlapped (i.e. S4 of transfer n is the same as SO of transfer n + 1).

5.2.1. BTT Interface. The interface of the BTT is shown in figure 15. Here are the interface
signals for the BTT.

o Address Lines (Ag — Ag). The address lines for the memory.

* Refresh Address Lines (rAg — rAg). The address lines for the memory refresh address. Input
from REFRESH_BLK/rAp — REFRESH BLK/rAg.

o Address Select (addr_sel). This selects which set of address lines is used. When it is high,
the refresh address is used, otherwise the normal address is used. Input from BCIT/addr_sel
and BTT/addr_sel.

® Input Data lines (btt_ing —btt_ingg). The value to be written into the memeory. Input from
SHREG/btt.outo - SHREG/btt_outo.

¢ Output Data lines (btt_outp — btt_outyg). The value read from the memory. Output to
SHREG/btt_ing - SHREG/btt_inj.

» Start Memory Cycle (memrc) This line indicates that the memory should begin a read or write
cycle. Input from MASTER.BLK/memrc - BLOCKMODE _BLK /memrc + REFRESH BLK /memrc.

o Precharge Clock (prech) This clock precharges the dynamic logic in the memories.
» Evaluate Clock (eval) This clocks the various functions within the memories.

e Clock (#1 and ¢2) Two-phase, non-overlapping clock. Prech and eval are generated from
these and memrc.

o Input latch (in_latch) Clock for input data latches.

o Refresh Latch (rfsh_ latch) Clock for refresh data latches. These latches hold the word just
read from memory in the refresh cycle. Input from REFRESE BLK/rfsh_latch.

o Write Cycle (wr') The read/write line. This indicates which type of memory cycle to perform.
When it is high, the memory is configured for reading. When it is low, the memory is configured
for writing.

BROADCAST TRANSLATION CHIP

19

MUX |RAM 64 x 20
addr_sel —{ G1
A b .
0o—1 1
rdop—1 0\
Ay —
!‘A]_ b T1
Az — 1,
I'Ag b > AL
Ag — 63
I'Aa — IE
Ay —
I'A.4 — T4
Ag —
I‘A5 - s /
wr' +HEN
e
1 —] CLKING]
gz — 1 |prech]
memrc — 1+7,C2 [eval]
inJatch — C4
rfsh latch — C5
8,6D l_
1.5 T A,Z6—
btt_ing — 4D A,2D . btt. outq
bttin; — — btt_out;
btt_l:.ng — — bit_outs
btt_!.ns — — bit_outs
btt_ing — — bit_outy
btt_ing — — btt_outs
btt_ing — — btt_outg
bt iny — — btt_outy
btt_ing — — btt_outg
btt_ing — — bitt_outy
bttinio — — btt_out;g
bttiny; — — btt_out;,
btting; — — btt.out;s
bttin;s — — btt_out,s
btt_in14 — — btt.Olltl.;
btt_in; 5 — — btt_out,g
bttin;g — — btt_out;q
btt_i.lll'f h— — btt.out"
btt_inlg — — btt_O'lltlg
bttinje — — btt_out;g

Figure 15: Broadcast Translation Table

20 BROADCAST TRANSLATION CHIP

5.2.2. BCIT Interface. The interface of the BCIT is shown in figure 16. Here are the interface
signals for the BCIT.

e Address Lines (Ag — Ag). The address lines for the memory.
® Refresh Address Lines (rAg — rAg). Same as BTT.
¢ Address Select (addr_sel). Same as BTT. Input from BCIT/addr_sel.

¢ Input Data lines (bcit_ing — beit.ingg). The value to be written into the memory. Input
from SHREG/bcit_outy - SHREG/beit_out;o.

e Output Data lines (bcit_outg — beit_outyg). The value read from the memory. Cutput to
SHREG/bcit_ing - SHREG/bcit_injs.

e Start Memory Cycle (memrc) Same as BTT.
e Precharge Clock (prech) Same as BTT,

e Evgluate Clock (eval) Same as BTT.

e Clock (¢1 and $2) Same as BTT.

¢ Input latch (in-latch) Same as BTT.

¢ Refresh Latch (rfsh_latch) Same as BTT.

e Write Cycle (wr') Same as BTT.

BROADCAST TRANSLATION CHIP

MUX {RAM 64 x 20
addr_sel — G1
A 5 B
o—i1 1
rAg —1 g 0
A, — 1y A3
I'Al b
Az — i
rAs — 2
wr' -+ EN
Uer
—J CLKING
$1 _[l-[prec]:l]
memrc — 17,C2 [eval]
in lateh — C4

rfsh latch — C§

,_

+6,5D .
+A,2D A,Z6— beitout,
lﬁci:.jno P : : beit oul:0
cit_iny — — beit_out;
bcit_in; —i — bcit_outy
bcit_ing —] beit_outg
beit_ing — ~— bcit_outy
bcit ing — — bcit_outs
bcit ing — — bcit_outg
beit iny — — bcit_outy
beit ing — — bcit_outs
beit_ing — — bcit.outg
beit_ingg — — bC}t_O‘llﬁlo
bcit_iny; — — beit_out;;
beitdng; — — beit_outy»
beit_ingg — — beit_outys
beit.ing 4 — — beit_outyg
beit_iny s — — beit_outys
beit_ingg — — bcit_outle
beit inyy — — bcit_outy 7
bc:it.illls b — bC}t_Outlg
beitiny g — — bcit_out g

Figure 16: Broadcast Copy Index Table

22 BROADCAST TRANSLATION CHIP

83 S4
$11\ A A
$2]_ [\ S\ L\
memre | I i

prech | 1\
eval | / \
Ao — Ag [IOANIT

wr' NI

Yy TR

FRERECERTLEC]

bit -in i‘ l'l'l'l’l‘l‘i’l‘l’i'it 'l‘l‘l’l‘l‘l'l’l‘l‘l'l‘l‘t'l’l‘l'l'l'l’l‘l‘l'a‘l'n

AIETEEERLD crd ChpaTti et reripepyn

ey

Y Y P YNV NPV Y LR A LR Y YV

1

T)r

(iR

s

bit_out

rfsh_latch |

Figure 17: Memory Signal Timing

BROADCAST TRANSLATION CHIP 23

5.3. Control

This section contains a more detailed description of each of the control blocks mentioned previously.

$1 —C1/G7
$2—C2
] [
start_rfsh —— Control [1D 2D addr_sel
Teset PLA write
13 memrc
14 iD (2D 7 rfsh latch
1s 1D [2D Z3+
16 1D |2D 241
1D |2D Z5+
1D (2D Zé CTR6
1D (2D G1 ol—ra
20T=0 | ;A"
$1 — C2/1+ — rA,
¢2 — — rAs
— I’A4
51— rA5

Figure 18: Memory Refresh Control Block

5.8.1. Memory Refresh Controller. A diagram of the refresh control block is shown in
figure 18. This block controls the refresh for both the BTT and BGIT. Here are the interface signals.
A timing diagram of them is shown in figure 19.

o Start Refresh (start.rfsh) This signal indicates that the refresh controller should begin a
refresh cycle. Input from MASTER.BLK/start_refresh.

® Master Reset (reset) This is the master reset signal for the whole chip. It aborts any refresh
cycle currently in progress and initializes the refresh controller.

® Address Select (addr_sel) This line is asserted when the two memories (BTT and BCIT)
should use the address supplied by the refresh controller. Output to BCIT/addr_sel and
BTT/addr_sel.

e Write Enable (write) This line indicates that the memory should treat this cycle as a write
cycle, It is ORed with BLOCKMODE BLK/bcit_write and output to BCIT/wr’, and it is ORed
with BLOCKMODE BLK/btt_write and MASTER BLK/btt_write and output to BTT/wr'.

e Start Memory Cycle (memrc) This line indicates that the memory should begin a cycle. It
is ORed with MASTER BLK/memrc and BLOCKMODE_BLK/memrc and output to BCIT/memrc and
BTT/memrc.

® Refresh Latch (rfsh_latch) This is the clock for the refresh data latches in the memory. It is
output to BCIT/rfsh_latch and BTT/rfsh.latch.

The function of the refresh controller is to generate the signals for the refresh sequence upon
receiving start.rfsh. It loops in state SO until this signal is asserted. States SO and S8 are
overlapped if two refresh cycles immediately follow one another. In other words; upon leaving state
38, if start_rfsh is asserted, the next state will be S1.

24 BROADCAST TRANSLATION CHIP

S0 81 $S2 83 S84 S5 S6 87 S8

s1l AL AL A AL AL AL AL

¢2T_ﬂ_f'_/'\ﬁFLﬂ M\
start.rfsh | T T AR

count_disable]

addr.sel | | \
memrc| [|\ 1\

write | / [
rfsh latch |

Figure 19: Refresh Control Signal Timing

BROADCAST TRANSLATION CHIP 25

48 Ja o ||
—l r‘ ¢2— CT=X11111
c%nLterl 1D 2D CT=0 5 Eig
master_rst 1D [2DZ3 T ———— bAl
start_block_xfr —— bAO
beit_btt
S s of]

done
|\|_ — btt _write
— Ecit_wr‘:iite
— btt_rea
write PLA + beit_read
é1 —] — in_latch
— memrc

Figure 20: Block Transfer Control Block

5.3.2. Block Transfer Controller. A diagram of the block transfer controller is shown in
figure 20. Here are the interface signals. A timing diagram of them is shown in figure 23.

*

Start Block Transfer (start_block xfr) This signal indicates that the block transfer controller
should begin a block transfer. Input from MASTER_BLK/start_block xfr.

Master Reset (reset) This is the master reset signal for the whole chip. It aborts any block
transfer currently in progress and initializes the refresh controller.

BCIT or BTT (bcit_btt) This signal indicates which of the two memories (BCIT and BTT)
should be involved in this transfer. When it is high, the BTT is selected, when it is low, the
BCIT is selected. Input from MASTER BLK/bcit. btt_block.

Transfer Direction (write) This signal indicates whether the block transfer will be to or from
the memory. Input from MASTER BLX/block.direction.

Write BTT (btt_write) This indicates that the BTT should treat this cycle as a write cycle.
It is ORed with MASTER BLK/btt_write and REFRESH BLX/write and output to BTT/wr'.

Write BCIT (bcit_write) This indicates that the BCIT should treat this cycle as a write cycle.
It is ORed with REFRESH BLK/write and output to BCIT/wz'.

Load Shift Register from BCIT (bcit_read) This indicates that the shift register should
load data from the BCIT in stages 4 through 7 instead of shifting on through. Output to
SHREG/read. bcit.

Load Shift Register from BTT (btt_read) This indicates that the shift register should load data
from the BTT in stages 8 through 11 instead of shifting on through. Output to SHREG/read btt.

26 BROADCAST TRANSLATION CEIP

e Start memory cycle (memre) This line indicates that the memory should begin a cycle. It
is ORed with MASTER BLK/memrc and REFRESH BLK/memrc and output to BCIT/memrc and
BTT/memre.

o Input Data Latch (in_latch) This line latches the data to be stored in memory from the shift
register. Output to BCIT/in_latch and BTT/in_latch.

¢ Block Transfer Done (block done) This line is asserted when the block transfer controller
has completed the block transfer requested. Output to MASTER BLK/block done and AD-
DRESS_MUX/select.

® Block Transfer Address (bAO0 - bA3) These are the 4 low order address lines for block transfers.
For transfers to and from the BTT, the high order 2 address lines are taken from I[0].

The function of the block mode controller is to generate the signals for the block transfers to and
from the BTC memory. It loops in state Sw until start_block xfr is detected. It then performs
8 or 16 memory transfers and asserts done upon completion. The algorithm is shown in figure 21.
The logic equations for the output signals are shown in figure 22.

BROADCAST TRANSLATION CHIP

27

integer 1;
do start block xfr=0 —
wait;
od
1:=0
Negate done;
if (bcitbtt =0Avrite=1) —
Asgert btt_write;
| (becit btt =1Aurite=1) —
Assert beit_write;
f
do —
if write=0—
Strobe memrc and in_latch;
wait;
wait;
wait;
| write =1 —
wait;
wait;
wait;
if beit btt=0—
Asgert btt_read;
| beit btt =1 —
Assert becit_read;
i
fi
until (£ = 7 Abeit.btt = 1) V (§ = 15 Abcit_btt = 0) od
if {bcit_btt =0Awrite=1) —
Negate btt_write;
| (bcit btt = 1A write=1) —
Negate bcit_write;
fi
Assert done;

Figure 21: Blockmode Controller Algorithm

btt_write = done Awrite Abcit btt
beit write = done Awrite Abcit_btt
btt read = done Awrite Abcit_btt A counterg A counter;
bcit.read = done Awrite Abcit_btt A counterg A counter;
in_latch = done Awrite A counterg A counter; A ¢1
memrc = done A countery A counter;

Figure 22: Blockmode Controller Qutput Signals

28 BROADCAST TRANSLATION CHIP

Sw S0 S1 S2 83 S4 S5

$1 A AN AT AT A
2] AL AL UL AL

Dooonoe

i HH

YV RYYY)

becit_btt

‘v'|'|‘|'v'v‘|‘r' “‘ ‘t' '. 0 ‘Ilr."r

AlAbadibL s lrty

write

start_block_xfr il b R T v
done | \
btt_write | /
beit_write | /
in_latch |
memrc | [T
btt_read | [_\
beit_read | /_ __\

Figure 23: Blockmode Controller Signal Timing

BROADCAST TRANSLATION CHIP 29

¢#1—C1
$2 — C2
] [
start pkt —] 1D |2D — zero_output
R D [2D
SR control CDRID
PLA 1D |2D Z3+
13 1D _|2D Z4%
|i4 1D [2D Z5+
-5
CTR4 ClR4
CT=14} CT=15H
1CT=0 - 1CT=0
1 —{C1/+ [p1]c1/+
$2 — $2—

Figure 24: Packet Propagation Control Block

5.3.3. Packet Propagation Controller. A diagram of the Packet Propagation Controller is
shown in figure 24. It keeps track of whether there is a packet in the shift register, where it is, and
whether to propagate it or not. The Packet Propagation Controller is in one of § states depending
on the shift registers occupancy. These are shown in figure 25. The transitions between states are
shown in figure 26. Here are the interface signals.

o Start Packet (start_pkt) This signal indicates that a packet is about to enter the main shift
register. Input from INPUT/pt.

® Master Reset (reset) This is the master reset signal for the whole chip. It stops propagation
of any packet currently in the shift register and resets the Packet Propagation Controller to
having no packet in the shift register.

o Don’t Propagate This Packet (noprop) This input indicates that the packet currently in (at the
front of) the main shift register should not be propagated. Input from MASTER_BLK/noprop.

o End of Packet (eopkt) This signal indicates that the current packet’s end is at the beginning
of the main shift register. Input from MASTER_BLK/eopkt.

¢ Don’t Propagate Output (zero_output) This output tells the main shift register to output zero
nibbles instead of whatever is coming through it. Output to SHREG/propagate.

30

BROADCAST TRANSLATION CHIP

S0

51

52

S 3 \ l‘l‘l) lll‘l.d';'l'l'l'l'l‘l'l'] l‘l‘l';'l‘l

s [m

shift register empty
packet entering
shift register full

packet leaving

2 packets in
shift register

Figure 25: States of Packet Propagation Controller

Figure 26: State Machine for Packet Propagation Controller

BROADCAST TRANSLATION CHIP 31

5.3.4. Master Controller. A diagram of the Master Control Block is not shown in a Figure
yet. The Master Control Block co-ordinates the actions of the other control blocks. It also handles
simple broadcast translation and single entry BTT updates. Here are the interface signals.

® Master Reset (reset). This is the master reset signal for the whole chip. It aborts any action
in progress and resets all controllers,

o Start Refresh Cycle (start_refresh). This signal tells the memory refresh controller to begin
a refresh cycle.

e Start Block Transfer (start blk xfr). This signal tells the block transfer controller to begin
a block transfer.

* BCIT block or BTT block (bcit btt.block). This signal tells the block transfer controller
which of the two memories is involved in the block transfer.

o Block Transfer Direction (block direction). This signal tells the block transfer controller in
which direction (to or from memory) the block transfer will be.

® Block Transfer Done (block.done). This input from the block transfer controller tells that the
requested block transfer iz done.

e Don’t Propagaie this Packet (noprop). This signal tells the packet propagation controller not
to propagate the current packet.

o End of Packet (eopkt). The master controller asserts this signal when the last nibble of a
packet is at the beginning of the main shift register.

¢ Down Counter = 0 (dncnt_0). This input is true when the down counter is equal to zero.

o Enable Down Counter (cnt_dn en}. This signal tells the down counter to decrement by 1 on
the next clock cycle.

¢ Load Down Counter (Lload beit_ctr). This signal indicates that the down counter should be
loaded from the output of the BCIT output mux.

o Shift/Hold for Header Shift Register (shift header). This output indicates that the header
shift register should shift the input data on through this cycle instead of holding it.

o Start Memory Cycle (memrc). This output indicates that the memory should begin a cycle. It
is Ored with BLOCKMODE BLK/memrc and REFRESH BLK/memrc and output to BCIT/memrc and
BTT/memrc.

® Load Shift Register from BTT (read btt). This output indicates that the shift register should
load data from the BTT in stages 8 through 11 instead of shifting on through. It is ORed with
BLOCKMODE BLK/btt_read and output to SHREG/read btt,

e BTT Input Data Latch (btt_inlatch). This line latches the data to be stored in memory from
the shift register. Output to BTT/in.latch.

e Write BTT (btt_write). This output indicates that the BTT should treat this cycle as a
write cycle. It is ORed with BLOCKMODE BLK/btt_write and REFRESH BLK/write and output
to BTT/wr’.

BROADCAST TRANSLATION CHIP 33

6. Cell Designs

This section provides manual pages for all of the low level cells used in the BTC. The manual page
for each cell describes the cell’s function and physical characteristics. Each cell also is documented
with a layout and and circuit diagram. The stipple paterns used in the layouts are shown below.

wadadatay
xarprersed

34 BrROADCAST TRANSLATION CHIP

e
..hhq"h‘-»"
e R] "

MEMCELL2(MEMORY) 35

NAME
MEMCELL2 — 3-transistor RAM cell

SYNOPSIS
The basic 3-T RAM cell.

PROPERTIES
Size
30 x 30X
Interface
label name layer ecap
inputs read read line metal2 .022pf

write write line metal2 .018pf

bidirectional bit bit line metall .083pf
Simulation
esim

DESCRIPTION
MEMCELL?2 is a 3-T RAM cell. To write into the cell, bit is driven to the desired value and
write is strobed. To read from the cell, bit is first precharged to Vdd. Then read is strobed.
The complement of the value stored is placed on the bit. Since both reading and writing entail
charge sharing between bit and the cell, bit’s capacitance must be high encugh to maintain
good logic levels.

TESSELATION
Abuts horizontally, Forms mirrored pairs vertically, overlapping 4\ to share ground; pairs
then abut vertically.

LOGIC DIAGRAM

write read

L
_|

t+—bit

36

bit_ 11

CoL_DRIVE(MEMORY)

37

NAME
COLDRIVE ~ column driver/sense amplifier

SYNOPSIS
The column driver, sense amplifier and refresh data latch for the dynamic memory.

PROPERTIES
Size
125 x 34
Interface
label name layer cap
inputs bit_.in data input metall
prech precharge clock polySi
write write enable polySt
rfsh_latch buf refresh latch clock polySi
rfsh latch buf’ refresh latch clock polySi
in_latch_buf input latch clock polySi
in_Yatch_buf’ input latch clock polySi
outputs bit_out data output metall
bidirectional bit.line bit line metall
DESCRIPTION

COL_DRIVE is the column driver and sense amplifier for the dynamic ram.

TESSELATION
Forms mirrored pairs vertically, overlapping 4A to share ground; pairs then abut vertically.

LOGIC DIAGRAM
bit_out bit.in

in Tatch —9

prech —ci —4 rfshlatch —

bit_line b i

write —I ——{ rfshlatch —

in latch —

I e N N s I R
|

38 BROADCAST TRANSLATION CHIP

B

rowbit0

sample_row_driver

ROW_ENDRIVER(MEMORY)

NAME

ROW_ENDRIVER ~ Row decoder/driver endpiece
ROWBITO — Row decoder low address bit
ROWBIT1 — Row decoder high address bit
ROW_END — Row decoder other endpiece

SYNOPSIS

Major part of dynamic NOR row decoder driver

PROPERTIES

Size

ROW_ENDRIVER
ROWBITO
ROWBIT1
ROW_END

Interface

inputs

outputs

Timing

label

rd

wr

an

ml
prech_buf’
eval_buf
read
write

Simulation

DESCRIPTION

ROW_ENDRIVER is the basis for the row decoders and drivers of the dynamic memory. It uses a
dynamic NOR structure for the address and read /write decoding. The NOR is precharged on
phase prech and evaluated on phase eval. Read or write is selected by the pair of comple-
mentary signals rd and wr. The cells for selecting the address lines are ROWBITO and ROWBIT1

126 x 302
17 x 30A
17 x 30X

9 x 30X

name
read input
write input
address line
address line
precharge clock
evaluate clock
read line

write line

layer
polysilicon
polysilicon
polysilicon
polysilicon
metal2
metal2
metal2
metal2

cap
.016pf

.016pf
.026pf/.006pf
.006pf/.026pf
.060pf

.032pf

.099pf

.10pf

respectively. Also ROW_END handles the final pulling down of the NOR.

TESSELATION
All abut vertically.
ROW_ENDRIVER: Abuts horizontally with rowbit0 or rowbitl,
ROWBITO, ROWBIT1: Abut horizontally with 1A overlap.
ROW_END: Abuts horizontally with 1)\ overlap with rowbit0 or rowbit1.

40 BROADCAST TRANSLATION CHIP

LOGIC DIAGRAM

et ﬂ - u@ﬁ%

| eval _buf —|

prech_buf

wr_”:ao_":‘, m_“::l_l :read

I eval_buf —[

Row_ENDRIVER(MEMORY)

41

42 BROADCAST TRANSLATION CHIP

in_latch_buf

pru'l:f_."hrt_%uﬂr_ uf

RADRV(MEMORY)

43

NAME

RADRV — Driver for row and column drivers

SYNOPSIS

memory row and column driver driver

PROPERTIES
Size
125 x 124
Interface
label
inputs prech
eval
wr’
in_latch
rfsh latch

outputs prech_ buf’
prech_bufi’
eval buf
rd _buf
wr_buf
write
rfsh_latch_buf
rfsh_latch. buf’
in_latch_buf
in_latch_buf’

DESCRIPTION

RADRV generates the control lines for the row decoder/drivers and the column drivers.

TESSELATION

name

precharge clock
evaluate clock
read /write

input Iatch clock
refresh latch clock
precharge clock
precharge clock
evaluate clock
read select

write select

write strobe
refresh latch clock
refresh latch clock
input latch clock
input latch clock

Abuts horizontally to COL_DRIVE and ADDR.MUX

layer
metall
metall
metall
polycontact
polycontact
metal2
polySi
metal2
polySi
polySi
polySi
polySi
polySi
polySi
polySi

44 BROADCAST TRANSLATION CHIP

LOGIC DIAGRAM

in_latch_buf’
in_latch —W in_latch_buf
rfsh_latch_buf’
rfsh_latch rish_latch_buf

prech prech buf’

o

prech_bufl’
eval_buf

write

wr_buf
rd_buf

eval —[
H

wr'

Y

b 4

(RgOoWEN)suavy

B

Ng

MEMORDRV(MEMORY)

47

NAME

MEMORDRV — Driver for memory address multiplexors

SYNOPSIS
memory address multiplexor driver

PROPERTIES
Size
51 x 125X
Interface
label name
inputs eval evaluate clock
sel_1 refesh address select

outputs eval buf evaluate clock
sell buf refresh address select
gel0 buf normal address select

DESCRIPTION

MEMORDRV generates the control lines for the refresh address multiplexor.

TESSELATION
Abuts horizontally to ADDR_MUX and MEMCG.

LOGIC DIAGRAM

layer
metall
polycontact
polySi
polySi
polySi

eval —>~— eval’ buf
sel_1— gel0_buf
>—gell _buf

48 BROADCAST TRANSLATION CHIP

e

55 8 0

MEMCG(MEMORY)

49

NAME

MEMCG — Clock generator for dynamic memory

SYNOPSIS
memory clock generator

PROPERTIES

Size
113 x 98X
Interface
label name
inputs memrc start memory cycle
phi ¢1 clock
ph1’ @1 clock
ph2 $2 clock
ph2' ¢2 clock
outputs prech precharge clock
eval evaluate clock

DESCRIPTION

layer

metal2
metal2
metal2
metal2
metal2
metall
metall

MEMCG? generates the two phase asymetric clock for the memory from the system-wide clock.
One memory clock cycle takes 4 system clock cycles. It may be stretched by holding memrc

high for more that one system clock cycle.

TESSELATION
Abuts horizontally to MEMORDRV

LOGIC DIAGRAM

prech
hY
$2 *
—C L C —C C C
memrc D Q D Q D D D
C] —qC C C

2this cell's layout needs to be redone

eval

50 BROADCAST TRANSLATION CHIP

R s

@% N
RN

RN
: }5;‘2@“‘.\3-4. 3
o

ﬁg\%ﬁ

<l g-\%,“.
202 L2020

SHREG1(SHIFT REGISTER) 51

NAME
SHREG1 ~ basic shift register cell

SYNOPSIS
Dynamic shift register cell. (One bit)

PROPERTIES

Size
44 x 68
Interface
label name layer cap
inputs shin datain metal2
shout data out metal2
phi ¢1clock metal2
phl' ¢1clock metal2
ph2 ¢2 clock metal2
ph2’ $2clock metal2
output shout dataout metal2

DESCRIPTION
SHREG1 is a dynamic shift register cell. On ¢1 the data (shin} is latched in. On ¢2 the input
value is transfered to the output (shout).

TESSELATION
Abuts horizontally, Forms mirrored pairs vertically, overlapping 4\ to share power and ground.

SEE ALSO
SHREG2, SHREG3

LOGIC DIAGRAM

shin —¢ p shout

T B By BN

SHREG2(SHIFT REGISTER) 53

NAME
SHREG2 — Shift register input multiplexor

SYNOPSIS
Input multiplexor for dynamic shift register

PROPERTIES

Size
32 x 68X
Interface
label name layer cap
inputs bit_in shift data in metal2
load_in load datain via
load load enable polySi
shift shift enable polySi
outputs bit_out data cutput metal2

DESCRIPTION
SHREG2 is an input multiplexor for the dynamic shift register cell SHREG1. The shift and load
inputs should be complementary.

TESSELATION
Abuts horizontally. Forms mirrored pairs vertically, overlapping 4\ to share power and ground.

LOGIC DIAGRAM

load load.in
—l
bit_in —¢ bit_out
L[r

shift

BROADCAST TRANSLATION CHIP

e

*.'-v-{f-'{ o
e

SHREG3(CONTROL) 55

NAME
SHREG3 - Shift register output driver

SYNOPSIS
Output driver for dynamic shift register

PROPERTIES

Size
32 x 68X
Interface
label name layer cap
inputs in datain metal2
outputs out data out metal2

DESCRIPTION
SHREGS is an output buffer for the dynamic shift register cell SHREG1.

TESSELATION
Abuts horizontally. Forms mirrored pairs vertically, overlapping 4 to share power and ground.

SEE ALSO
SHREG1, SHREG2

LOGIC DIAGRAM

in out

BROADCAST TRANSLATION CHIP

56

G

Dp_FLIP(CONTROL)

57

NAME

Dd flip - quasi-static D flip-flop

SYNOPSIS
Quasi-static D flip-flop

PROPERTIES

Size
130 x 34X
Interface
label name
inputs in data in
phi #1 clock
phl’ 41 clock
ph2 2 clock
ph2’ ¢2 clock
outputs out data out

DESCRIPTION

layer
metal
polySi
polySi
polySi
polySi
metal

cap

DDFLIP is a quasi-static D flip-flop. On 41 the data (in) is latched in. On ¢2 the input value
is transfered to the output (out).

TESSELATION

Abuts horizontally. Forms mirrored pairs vertically, overlapping 4 to share power and ground.

LOGIC DIAGRAM
¢1

$2

B

#1

$2

out

58

ph3*

vdd

phi’!

NE

LATCH(CONTROL) 59

NAME
LATCH - Dynamic 2 phase latch

SYNOPSIS
Dynamic storage element. {One bit)

PROPERTIES

Size
20 x 66X
Interface
label name layer cap
inputs D datain metal2
phi ¢1 clock polySi
phl’ 41 clock polySi
ph2 ¢2 clock polySi
ph2’ #3 clock polySi
output @ data out metal2

DESCRIPTION
LATCH is a 2 phase dynamic register cell. On ¢1 the data (D) is latched in. On ¢2 the input
value is transfered to the output (D).

TESSELATION
Abuts horizontally and vertically.

LOGIC DIAGRAM

0

|
T e IR
L, |
1

60 BROADCAST TRANSLATION CHIP

PARITY(CONTROL) 61

NAME
PARITY — 5 bit parity checker.

SYNOPSIS
Five bit dynamic odd parity checker.

PROPERTIES
Size
116 x 91X
Interface
label name layer cap
inputs bit[43210] datain polycontact
phi &1 clock via
output odd odd parity metal2
DESCRIPTION

PARITY iz a dynamic 5 bit odd parity checker. On ¢1 the array is precharged. On §1 the
output is discharged if an even number of ones are present on bit0 through bit4.

TESSELATION
Abuts horizontally.

LOGIC DIAGRAM

P
i I-_ LT W] A
e E% - L
T T T T
_ I 8 Wy o W Ny o W Moy ol W ol
g1 —||:l
P S D)) s e

bito bitl bit2 bit3 bit4d

62 BROADCAST TRANSLATION CHIP

Phi*load

Phi*load’

8at

0 3
P 7]

s

ci

¥
Lo

COUNT.LOAD(CONTROL) 63

NAME
COUNT_LOAD - loadable counter cell
SYNOPSIS
One bit of a loadable binary up-counter with set and reset
PROPERTIES
Size
79 % 94X
Interface
label name layer eap
inputs ci-1’ carry input metall
bit.in load data in metall

Phl*count ¢l clock for count metal2
Phi*count’ ¢1 clock for count metal2
Phi#load ¢1 clock for load polySi
Phis*load’ ¢1 clock for load polySi

Ph2 ¢2 clock metal2

Ph2’ 92 clock metal2

outputs ¢i' carry output metall

bit_out data out metal2
DESCRIPTION

COUNT_LOAD is a single bit of a dynamic binary up-counter with set, reset and synchronous
load. In normal operation (counting) ¢1 - count and ¢2 are used to clock the counter. Ci' of
the low order bit is held low to enable counting.

TESSELATION
Abuts horizontally.

LOGIC DIAGRAM

[:“’_ _'{[:”’— reset bit_out

I,_ ¢l - count $2

=
l B Y oms |__ $2
l_ set
=

o
[

|
[

64 BROADCAST TRANSLATION CHIP

ot
ke

PR AR Samgaats
e S
'

r)

% T, T

R

S
B
S

COUNT.LOADDRV(CONTROL) 65

NAME
COUNT_LOADDRYV - driver for loadable counter

SYNOPSIS
driver/control decoder for loadable counter

PROPERTIES

Size

79 x 94
Interface

label name layer cap
inputs enable count enable metal2

load load/count metall

Phi #1 clock metall

Ph2 ¢2 clock metal2

Ph2’ 2 clock metal2
DESCRIPTION

COUNT.LOADDRV generates the various control signals needed by the loadable counter (COUNT_LOAD),

TESSELATION
Abuts the left edge of COUNT_LOAD overlapping by 4.

SEE ALSO
COUNT_LOAD

LOGIC DIAGRAM

- #1-Toad
load ngﬂ.m
¢1-load
D—gtﬁl - load

66 BROADCAST TRANSLATION CHIP

sz
22

2
;
,

fa*ﬁ%g- : SR R
- - .

SN
e
TN

COUNT_CELL(CONTROL) 67

NAME
COUNT_CELL - counter cell

SYNOPSIS
One bit of a binary up-counter with reset

PROPERTIES

Size
72 x 78X
Interface
label name layer cap
inputs Cin’ camry input metall
Phi ¢1 clock metal2
Phl’ 41 clock metal2
Ph2 2 clock metai2
Ph2' ¢2 clock metal2
outputs Ci’ carry out metall
bit i data out metall

DESCRIPTION
COUNT_CELL is a single bit of a dynamic binary up-counter with reset. In normal operation $1
and ¢2 are used to clock the counter. Ci’ of the low order bit is held low to enable counting.

TESSELATION
Abuts horizontally.

LOGIC DIAGRAM

' s x
L
=

68 B T CH

PN

St

:
R
AN

TR

or

ord

BROADCAST TRANSLATION CHIP 69

NAME
OR — 2 input static OR gate
OR4 — 4 input static OR gate
AND — 2 input static AND gate

SYNOPSIS
Basic gates
PROPERTIES
Size
32 x 68X
Interface
label name layer cap
inputs a polycontact
b polycontact
c polycontact
d polycontact
outputs f metall
DESCRIPTION
These cells provide three basic gates to be used in “gluing” the the other pieces of the chip
together.
TESSELATION

Abuts horizontally.

LOGIC DIAGRAM

bk

or

or4 and and similar

70 BROADCAST TRANSLATION CHIP

References
{Tu85] Turmer, Jonathan S. “Design of a Broadcast Packet Switching Network,” Washington
University Computer Science Department, WUCS-85-4, 3/85.

|WeEs85] Weste, Neil H. E. and Eshraghian, Kamran Principles of CMOS VLSI Design, Addison-
Wesley, 1985.

[Bu85] Bubenik, Richard. “Performance Evaluation of a Broadcast Packet Switch.” M.S. thesis,
8/85, Washington University, Computer Science Department

[IE] Mann, F. A. “Explanation of New Logic Symbols,” in The TTL Data Book, Vol 1, Texas
Instruments, 1984.

	Design of a Broadcast Translation Chip
	Recommended Citation

	tmp.1462913377.pdf.e6wML

