Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-87-8

1987-04-01

A Unified Systolic Array for Adaptive Beamforming

Adam W. Bojanczyk and Franklin T. Luk

We present a new algorithm and systolic array for adaptive beamforming. Our approach
improves on McWhirter's pioneering work in two respects. First, our algorithm uses only
orthogonal transformations and this should have better numerical properties. Second, the
algorithms can be implemented on one single pxp triangular array of programmable processors
that offers a throughput of one residual element per cycle.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Bojanczyk, Adam W. and Luk, Franklin T., "A Unified Systolic Array for Adaptive Beamforming" Report
Number: WUCS-87-8 (1987). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/823

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/823?utm_source=openscholarship.wustl.edu%2Fcse_research%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

A UNIFIED SYSTOLIC ARRAY FOR
ADAPTIVE BEAMFORMING

Adam W. Bojanczyk and Franklin T. Luk*

WUCS-87-8

April 1987

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

*Cornell University

The work of the second author was supported in part by the Office of Naval Research under contract
N00014-85-K-0074.

A Unified Systolic Array for Adaptive Beamforming

Adam W. Bojanczyk

Department of Computer Science
Washington University
St. Louis, Missouri 63130

Franklin T'. Luk

School of Electrical Engineering
Cornell University
Ithaca, New York 14853

ABSTRACT

We present a new algorithm and systolic array for adaptive
beamforming. Our approach improves on McWhirter’s
pioneering work in two respects. First, our algorithm uses only
orthogonal transformations and thus should have better
numerical properties. Second, the algorithm can be
implemented on one single pXp triangular array of
programmable processors that offers a throughput of one
residual element per cycle.

The work of the second author was supported in part by the Office of Naval Research under contract N0O0014-
85-IC-0074.

1. Imtroduction

The problem that we consider in this paper may be expressed as follows. Given a kX p
(k< p) matrix C of direction constraints, a k-vector f, and an nXp (n> p—k) data matrix

X{(n), we wish to solve the constrained least squares problem:

min || X(nJu(n) Il (11)

subject to
Cw(n)=f. (1.2)
The symbol |-]| = [|- ||, denotes the euclidean norm. For certain beamforming applications, we

are not interested in the unknown weight vector w(n), but rather in the last element of the

residual vector e{n}, which is defined by

e(n) = [ein), eofn), - -, ea(n} ¥ 1= X(n)w(n). (1.3)
The {th row z(:)¥, where 1< n, of the nX p matrix X{(n) represents data collected at time ¢,
and p represents the sample size [A]. On arrival of a new data row z(n+1)7, we construct the
corresponding new data matrix X(n+1):

X(n)

z(n+1)7 (14)

?

X(n+1) =

and set out to compute the new residual element e,..(n+1).

In this paper, we present a new algorithm and a new multiprocessor array for the problem.
McWhirter and Shepherd [MS] have developed an algorithm that directly extracts the residual
element e,(n), without using the weight vector w(n). Our approach improves on their
pioneering work in two respects. First, our algorithm uses only orthogonal transformations and
so may have better numerical properties. Second, we propose a single pX p triangular array of
programmable processors that implements the algorithm with the throughput of one residual

element per cycle.

2. Background

The usual way of solving a linearly constrained least squares problem is to transform the
problem into an unconstrained one. The transformation is realized via the QR decomposition of
both the data matrix X{(n) and the constraint matrix ¢'. In this section we briefly outline the

procedure; more details can be found in [GV] and [LH].

Assume that both matrices X(n) and C have full rank. Construct a pXp orthogonal

transformation P that “triangularizes” the kX p matrix C:
CP=[0,L] (2.1)

The matrix L is kX k reverse lower triangular, i.e., it has the following form:

XX X X XX

X X oooo
XX X ooo
XX XX oo
XX XXX o

X oo oo o

The orthogonal matrix P is chosen as a product of plane rotations G i

kE_p—f
P=1] ﬁ Giiv (2.2)

F=1 1=l
where the rotation Gy, operates in the (4,i+1) plane and is chosen to zero out the (7,%)

element of ¢ Accordingly, we change variables

y(n) = PTw(n), (2.3)
and consider the effects. First, the constraint (1.2) becomes

[0,L]y(n)=7;

so we may easily determine the last & components of y{rn). That is, by partitioning the vector

(n) into two subvectors, a (p—k)-vector z(n) and a k-vector v:

y(n) = { z(n)}} (2.4)
we can find v by solving the “triangular” set of equations:

Lv=jf. (2.5)
We also transform the data matrix:

Y(n) = X(n)P, (2.8}

and compute its QR factorization (assuming n>p):

Y(n) = Q(n) [f("’], @)
where @(n) is nXn orthogonal and R(n)is pXp upper triangular. (If n<p, we get
Y(r} = Q(n)R(n),
where R(n)is nXp upper trapezoidal.) So, the function (1.1) becomes
[FX(n)w(n) || = {| R(n)y(n) |I.

Partitioning R(n) in the same conformal manner:

5(n) T(n)
R(“)m[0 Uln)

(2.8)

H

where S(n) is (p—k)X(p—*k) upper triangular, we obtain the desired unconstrained problem

min || [Os(n)}z(nn {i((?)} I, (2.9)
where
t{n) = T(n)v and u(n):= U(n)v.

One more simplification is useful for the next section. Let @,{n) be an nXn orthogonal

transformation such that

t(n) t(n)
Q'(n)[u(n)] =1t | (2.10)

where
po=llu(n)|l.
Since ¢, (n} does not modify S(n), we get an equivalent minimization problem:

n t{n)
min u[{f()}z(n)-a- b |11, (2.11)
G

and thus the minimum equals g#,. Once z(n) is found by solving
S(n)z(n) + t(n) =0, (2.12)

the solution vector w(n) can be obtained from (2.3). Finally, the desired residual element e,(n)

can be computed as an inner product:
ex(n) = z(n)Tw(n).

A way to determine the residual element without computing z(n) has been given by McWhirter

[M]. We will use the same idea to develop our new algorithm in the next section.

3. A Recursive Algorithm

In this section, we present a mew recursive algorithm for updating the residual element.
Suppose that we have computed the residual element ¢,(n) for the nXp problem, and that we
want to tackle the (n+1)Xp case. The quantities P, v, S(n), t(n) and g, are known, and the

function to be minimized is

R{n)
| X(r+Dw(n+1) l| =11 | 0 v(n+1) I, (3.1)

where
y(n+1) = PTw(n+1) and b(n4+1)7 = z(n+1)T P.

Partitioning the two vectors into subvectors of dimensions p—k and k as before, we get

z(n+1) h(n+1)
y(ntl) = | and d(n+1) = s(nt1) |
The function {3.1) becomes
5(n) £(n)
0 Foa
I 0 z(n+1) + 0 I, (3-2)
h(n+1)T Tas1

where

Yot = g(n+1)T v,

We need to triangularize the matrix in (3.2) using a sequence of plane rotations
Viests Yonsn « -5 Vpogaa- The transformation Vi, is (n+1)X(n+1) and has the familiar

form

in the {#,n+1) plane. Let us define

Vi=Vokntt Voohotnas = - Vit s (3.3)

and

t{n+1) t{n)
A (34
K Tnt+1
The (n+1)-dimensional constrained minimization problem
min || X(n+1)w(n+1) |, st Cw(n+l)=d
thereby simplifies to
S(n-+1) t(n+1)
min || g 2{n+l) + gu I, (3.5)
0 Kngl

and the minimum value is (p2 + £2,,)%.

Let us explain how we avoid computing 2(n+1). The residual vector e{n+1) is given by

0

Q(n)T 0][@u(n)T © Fn
"(”“)"“"[OT(n) 1H0T 1]VT o |
Ent1

and the desired residual element is the last component of the vector

0
Hn

VII.‘R—!-I Vg,'n-i-l to Vf—-k,n-{-l 0 . (36)
fnt1
We have chosen the special order of rotations V; ,.,’s to generate the neat result that

ean(n+l)=cfed - ¢ pkau . (3.7)

Finally, the parameter x,;, is annihilated by a rotation in the (p—k+1,n+1) plane. The

operation amounts to updating both g, and @,(n), as

Bagy = (17 + 724)* (3.8)

and

Qufn) 0]
The quantity g,,; is calculated explicitly, but the matrix @y(n+1) is not. This ends the
description of the (n+1)st step of the adaptive procedure. An outline of the the algorithm is

given below.

Algorithm Beamforming

Initialization

1. Triangularize the matrix € as in (2.1), with the orthogonal transformation P
stored in factored form (2.2).

2. Find v by solving (2.5).
3. Determine the QR factorization (2.7} of Y{p—£).

4. Calculate the vector ¢(p—k) = T(p—Fk)v , and set p, ; =0.

Loop
Forn = p—k, p—k-+1, - -+ repeat
h(n+1)
= - T
5. Compute b{n+1)= g(n+1) z(n+1)TP

6. Compute 7,4, = g{n+1)Tv.

t(n+1)

7. Compute S§(n+1) from §(n) and h(n+1), and | . .
13

Tn4+1

from [t(n) .

8. Compute e, (n+1) using (3.8).

8. Compute g, using (3.9). =]

The algorithm described here is a combination of the standard approach detailed in §2
and the method of McWhirter for directly extracting the residual element. In [MS] McWhirter
and Shepherd used an elimination technique for transforming the constrained problem to the
equivalent unconstrained one. Since elimination without pivoting may cause serious numerical

errors, we propose here an approach based on orthogonal transformations.

4. Systolic Implementation

For a systolic implementation of our algorithm, we propose a mesl}-connected triangular
array of processors. As the algorithm is heterogeneous, it is not surprising that the array is,
too; for different regions of the array execute different subtasks of the algorithm. In order to
attain such flexibility we postulate that the cells be microprogrammable, i.e., a program
executed by a cell can be changed if required. By allowing such generality we can guarantee a
very smooth flow of data. For the sake of exposition we begin by describing a possible
implementation of individual steps of the algorithm. Later we will combine these separate

arrays into one unified triangular array.

As the first subtask we consider Step 1, the triangularization of the matrix ¢, for which
we propose a systolic array similar to that described in Bojanczyk et al.[BBK]. The array is
homogeneous; the basic operations performed by each cell is to first determine a sine-cosine pair
and then rotate. We need the last % columns of the pXp triangular BBK array. These
columns, when transposed with respect to the main antidiagonal, form a kX k upper trapezoidal
array as depicted in Figure 4.1 with £ =3 and p = 5. The matrix C enters the array from the
top in the usual skewed order, and the ith row of the array annihilates the first (p—¢) elements

of the é¢throwof C,fori=1,2, -+, L

€35
Cg4 Cop
Cag Cgq €15
€3z Co3 Cp4
€31 €2z €13
Ca1 €12

C11

X

X X X +
KX X+
XX X+~

Figure 4.1

The elements of L leave the array in a skewed order as depicted in Figure 4.2. The last
column of L leaves, one element at a time, through the output channel of the rightmost cell in
the first row of the array. The element I}, appears first, followed by /5, and so on. The second-
to-last column of I leaves the array through the output channel of the rightmost cell of the
second row of the array. However, the appearance of {3, takes place two units of time later,

because the element {; ,_, is known to be zero and hence is not computed explicitly.

X X X = - o gy gy g
X X X = - * 134 !24
X >< >< - 133

Figure 4.2

The transformation P, in factored form, is stored in the individual cells of the array with the
parameters of Gf,,; stored in cell (7,7). Now by feeding the row vector z(n)7 to the array, we
obtain as output the row vector b(n)¥ = [A(n)? , ¢(n)7], with A(n)T appearing at the lower
side of the array and g(n)T at the right side of the array as shown in Figure 4.3. The

trapezoidal array thus realize Steps 3 and 5 of Algorithm Beamforming.

X X X X X
X X X X — - g4
X
!

-+ {3

h’l

Figure 4.3

To determine the vector v (Step 2) we have to solve the “triangular” system of linear

equations

10

Lv=4d.

This can be easily accomplished on a linear wertical array as illustrated in Figure 4.4. The
matrix L is input to the array in exactly the same time—space order as it is output from the
upper trapezoidal array in Step 1. We have eliminated any delays between the
triangularization and the substitution stages, a feat made possible by the special form of L and
by the fact that we operate on the transformed variables ¥(n) instead of the original variables
w{n}). The algorithm that we use here is somewhat different from the well known one of Kung
and Leiserson, the main difference being that while L moves in the left-to-right direction and 4
moves top-down, the solution vector v stays in the array. The last component %, is stored in
the first (top) cell, the second-to-last component ¥p_; is stored in the second cell, and finally the

first component », is stored in the last (bottom) cell of the array.

lag los 115 — X
lgg lyy - - —+ X

lg + + - X

Figure 4.4

Once the linear triangular-like system is solved and the solution vector v stored in the
vertical array, the vertical array is switched to execute Step 7 of the algorithm, at which point
a different program is executed in the Jinear vertical array. Now each cell computes a partial
sum of the inner product «, = g{n)% v, the quantity being aceumulated while it moves from top
to bottom. Note that by "gluing” the upper trapezoidal array with the vertical array we can

execute Steps 1 to 6 simultaneously in a pipelined fashion.

11

e —+ X

€y * - X
€g * - = X
1
Tn

Figure 4.5

What remains to be implemented are Steps 7 to 9. They can be done on the triangular
array of Gentlerman and Kung as modified by McWhirter. Note that the data leaving the upper
trapezoidal array and the linear vertical array are arranged exactly as required by G-K-M

array.

By putting all arrays together - the upper trapezoidal array on the top, the linear vertical
array to the right of it and G-K-M array at the bottom - we obtain a single upper triangular
array capable of executing the algorithm in a fully pipelined fashion with no delays. Figure 4.6
illustrates the different regions responsible for different steps of the algorithm. Cells marked
with B belong to the upper trapezoidal array and implement Steps 1 and 5. Cells marked L
belong to the linear vertical array and implement Steps 2, 4 and 6. Cells marked @ belong to
Gentleman-Kung array and implement Steps 3, 7 and 9. Finally, cells marked M correspond to
MeWhirter’s modification of G-K array and implement Step 8. Note that the array retains
some flexibility in the sense that we can change the row dimension of the constraint matrix ¢

dynamically without affecting the array’s efficiency.

Wty

W

O W

DO W
= =

SRR

=

Figure 4.6

12

5. Final Remarks

A unified triangular systolic array has been presented for solving an important
beamforming problem. We are hopeful that the theoretical array will be realized in practice,
possibly as a part of the Systolic Linear Algebra Parallel Processor project at the Naval Ocean

Systems Center.

References

[A] S.T. Alexander, Adaptive Signal Pracessing, Springer-Verlag, New York, NY, 1986.

[BBK] A.W. Bojanczyk, R.P. Brent and H.T. Kung, Numerically Stable Solution of Linear
Eguations Using Mesh-Connected Processors, SIAM J. Sci. Statist. Comput., 5 (1984), pp.

95-104.

[GV] GH. Golub and C.F. Van Loan, Matriz Computations, The Johns Hopkins University

Press, Baltimore, MD, 1983.

[LH|] CL. Lawson and R.J. Hanson, Solving Least Squares Problems, Prentice-Hall, Englewood

Cliffs, NJ, 1974.

M] J.G. McWhirter, Recursive Least Squares Minimization Using ¢ Systolic Array, Real-Time

Signal PProcesssing VI, Proceedings SPIE, vol 431, 1983.

[MS] J.G. McWhirter and T.J. Shepherd, A Systolic Array for Constrained Least Squares
Problems, Advanced Algorithms and Architectures for Signal Processing I, J.M. Speiser, ed.,

Proceedings SPIE, vol. 696, 1986.

13

	A Unified Systolic Array for Adaptive Beamforming
	Recommended Citation

	tmp.1462913377.pdf.whJJy

