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ABSTRACT OF THE THESIS

Fabrication and Performance Evaluation of an Evaporative Hollow Micropillar Module for Data

Center Cooling Application

by

Quan Harry Chau

Master of Science in Aerospace Engineering
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Professor Damena Agonafer, Chair

With the exponential growth of the Internet in the coming decade, data centers will be one of the

largest consumers of electricity in many countries. In many data centers, thermal management

systems could be just as power-consuming as IT equipment. Chillers in these thermal

management systems are one of the highest power components. Microscale evaporation is a

promising approach to dissipating high heat fluxes by minimizing thermal resistance between the

junction temperature and ambient temperature, hence eliminating the need for chillers. Previous

research has shown that droplets elevated by micropillars can limit the vapor diffusion

confinement effect, which improves the evaporative heat transfer performance.

For this thesis, an evaporative cooling module consisting of an array of hollow triangular

micropillars was developed. This module allows microdroplets to be confined on top of the

pillars' upper surface in optimal evaporative size. The thesis describes the device's fabrication

process in a cleanroom environment, performance testing, and numerical simulations using

COMSOL Multiphysics to illustrate the transport mechanisms behind our experiments.

vi





find the heat flux is the solid-liquid area of each pillar. The active area heat flux on t is calculated

based on the flow rate measurement from the flow meter as

(5.1)

Figure 19. Experimental measured and numerical analysis predicted dissipated heat flux for the

triangular micropillar array with a staggered arrangement using the active area formula and

individual pillar area. The temperature range is 30 to 90 for the simulation and 40-85 for the

experiment
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Table 1. Heat transfer coefficient and heat flux from experimental and simulation data for

150 μm staggered arrangement pillars

Temperature h [W/m2-K] Q [W/cm2]

Simulation Experimental Simulation Experimental

40 2.09E+01 4.19E-02
50 2.41E+01 7.23E-02
60 3.02E+01 1.21E-01
65 1.34E+03 5.50E+00
70 3.76E+01 3.68E+03 1.88E-01 1.70E+01
75 3.39E+03 1.73E+01
80 5.08E+01 4.03E+03 3.05E-01 2.26E+01
85 4.54E+03 2.77E+01
90 2.03E+03 1.42E+01
98 3.26E+03 2.54E+01

where the flow rate V̇ is measured by the flowmeter, hfg and ⍴water vary as water temperature

changes based on the temperature of the experiment, and A is the selected area. At water

temperatures between 40 and 60, the variation in evaporation rate is relatively low, leading to a

relatively small dissipated heat flow density. However, starting at 60 degrees C, the dissipated

heat flux begins to rapidly increase non-linearly. This phenomenon happened due to the

nonlinear relationship between the equilibrium pressure and the solid-liquid vapor interfacial

temperature, which can be described by the following equation:

(5.2)
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In this equation, as Tlv grows, so does the saturated vapor concentration, allowing for a greater

concentration gradient in the vapor domain near the liquid-vapor interface. Furthermore, the

vapor concentration in the far-field (ambient) is stable, and the vapor diffusion coefficient is not

temperature dependent. As a result, the evaporation rate from the droplet surface increases with

increasing vapor concentration (Jevap = Ddiff Cv).
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Chapter 6: Conclusion and Future Works

In this thesis, we successfully presented a complete fabrication of the hollow micropillar

structure that has the ability to dispense water and sustain the asymmetric droplets on top. We

also created a testing apparatus and successfully collected preliminary evaporation performance

data of these micropillar structures. These preliminary results created a foundation to optimize

micropillar array patterns by maximizing micropillar packing density to achieve higher

dissipating heat flux.

Figure 20. From left to right: a. Schematic of the liquid cooling mechanism, b. A 3D model
concept for integrating the cooling device into a real PCB.

We’re looking forward to embedding directly into high-power processors for an optimized

thermal management solution in the future. Figure 20a shows how our device can work with

dielectric liquid by combining direct liquid cooling and evaporative cooling for maximum heat

dissipation capacity. This device’s main component is the center block which has the evaporative

cooling surface. Dielectric will come in through the liquid inlet, go through the fluid delivery

layer, take away the heat, and either evaporate or recirculate back for cooling in case there is a

mismatch between the pumping rate and the evaporation rate. Figure 20b shows the 3D PCB
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model of how the device can be integrated directly at the chipset level to minimize the thermal

resistance caused by traditional chip packaging. Despite our current design, we also working

with a different industry expert to transfer this idea to more manufacturable designs. The

potential of this idea is proven and ready to be explored in future work.
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