Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-87-30

1987-12-01

The SMGJ Segmentation System: Users' Manual

Will D. Gillett

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Gillett, Will D., "The SMGJ Segmentation System: Users' Manual" Report Number: WUCS-87-30 (1987). All
Computer Science and Engineering Research.

https://openscholarship.wustl.edu/cse_research/816

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.


https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F816&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F816&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F816&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F816&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F816&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/816?utm_source=openscholarship.wustl.edu%2Fcse_research%2F816&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

THE SMGJ SEGMENTATION SYSTEM:
USERS’ MANUAL

Will D. Gillett

WUCS-87-30

December 1987

Department of Computer Science
‘Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

This research was supported by the Defense Mapping Agency under contract number DMAS00-85-
C-0010.






TABLE OF CONTENTS

1. Introduection

2. Report NOotabtion .....oovveeeeeieeereeeciecveeseeeessessseenes

2.1. Fonts Used

4. The User Interface Language .....ccocoevevmererevereennnnns
4.1. Help Facilities ....coccocoviiiriciecreeeeeee e

4.2.3. Defining Roots and Regions ..................
4.24. Reading an Image from a File .............
4.2.5. Writing and Reading Group Sets .........
4.3. Printing Things ....cococcoviiicceecreererereveseeeeeeaenaenns
4.4. Displaying Things ....cccccocoviiiviiieveereeeneeeeinanne
4.5. Clearing ThiRES .eovovereveeecieeereiviaiie e
4.6, UGHELES oot ses s
4.7. Verb Commands ....cccoeereviiviecee e

4.7.6. RREIOW .oiiieiiicrcererre e sees e sesses v nsrasees
A.7.7. SED cveereivee ettt v e e enees
4.8. Reserved Words and Synonyms .....ccoveeeveuen...

5. Segmentation Paradigm ....ccoocovvrvvrerioieeieeceines
B.1. SErategles .ovvvircrrneereisseeienie e ssnsserenens
5.2, Methodologies ....ccuiviceviencrenninnsnninesicsseieanens
5.3. Algorithms ..o
5.4. Approaches ...

6. Current Properties, Predicates and Sorts Installed

L ]

0w~~~

11

12
13
14
15
17
18
18
19
19
20
22
23
24
26
27
27
28
28
29
29
29

31
31
32
33
34

37



B.1. PTOPETLIES ..veiveoeiieciieers sttt ees e e s s e et eee e,
B.2. PrediCates .oieeiieurrecrerineiiieeeeeesee e eresse s ettt eeeeees e e e
6.3. Sorts

LIST OF TABLES

Table 1: Reserved Words and Their Synonyms
Table 2: Current Properties Installed
Table 3: Current Predicates Installed
Table 4: Currently Installed Sorts

......................................................................................

LIST OF FIGURES

Figure 1: A Sample Abstracted Fmage
Figure 2: A Split Quad Tree

Figure 6: A Group Set from the Quad Tree in FiGUre 4 ..oovvveeeeeeeeeveeeeeeieoeeoseooeoee.
Figure 7: Small Group Elimination on FIgUIe 6 .....ccocceeeeeoieeeoereeeeeeeeeeeoeeeee e
Figure 8: PDS Header FOTIMAL .....o.eeviceceeeecesiecteeeeeseessessesessssss s e se e e
Figure 9: Execution Directory COnfIEUTALION ....iiueceoreeemeeesreeeeseeerem oo oo
Figure 10: A Simple Grey-Scale Segmentation AIZOTIthIN w.oveee.eeeeeeeeeeeeeseeeeeeoooooeeen
Figure 11: A More Sophisticated AIGOTItRIN ..v.euveeeeeeeeeeeeeeeeeeeoeee oo
Figure 12: Use of a Compound Predicate

38
39
41

30
38
39
41

00 1 W Wn i W W DO

L e e
Lo~ w2 B LR ]



1. Introduction

The SMGJ System is intended to be a testbed for the discovery and investigation of
algorithm for segmenting images using a Split-Merge-Group-Join approach {to be discussed
subsequently) based on arbitrary but specific properties {such as the size of a region, the
difference in grey-level in a region, or the texture in a region) of the image. Predicates based on
these properties can be defined and used to "drive" the segmentation algorithms intrinsically
present in the system (split, merge, group, and join). These predicates may have variable
parameters which can be changed to selectively alter the sensitivity of the predicates, thus
affecting the specific sesgmentation of an image. The system can be used to implement and
evaluate algorithms based on different strategies and methodologies which use these

properties/predicates (and their parameters) applied in different ways.

Given a specific strategy, the user can refine the strategy into a specific methodology. As
an example, two different strategies might be: (a) apply different properties/predicates
sequentially, and (b) apply different properties/predicates simultaneously. Of course, these two
strategies can be merged by combining sequential and simultaneous applications of
properties/predicates. Two specific methodologies might be: (a) to oversegment the image and
subsequently combine regions that have been oversegmented, and (b) undersegment the image

and continue to separate regions that have not been segmented enough.

Given a specific methodology, the user can instanciate it by developing specific
properties/predicates (with parameters), implement them in C code, and install them into the
system. Sequencing and parameter adjustments can then be used to determine empirically what
specific actions produce appropriate segmentations. In this manner the methodology can be
refined into a specific algorithm potentially capable of performing the segmentation desired. An
example of a specific algorithm might be: (a) split the original rectangular image into

systematically placed regions of 4X4 pixels, (b) merge these regions into other rectangular



SMGJ Segmentation System -2- Section 1.

regions (composed entirely of the original 4x4 pixel regions) so that within any newly merged
region the grey-scale levels differ by no more than 60, (¢) group the new rectangular regions into
(potentially non-rectangular) groups whose grey-scale levels differ by no more than 80, and (d)
Join these groups together by combining small groups of say 25 pixels or less with adjacent
groups. Splitting and merging is done on a quad tree representation of the image in which the
original rectangular image is recursively subdivided into 4 successively smaller rectangular
subregions, a north-west region, a north-east region, a south-west region, and a south-east
region. Grouping and joining produce groups of arbitrary shape, composed of components

defined by the quad tree produced during the splitting and merging operations.

As an example, consider the abstracted 4X4 image shown in Figure 1. The grey-scale
intensity is indicated by the number inside the (dashed box) pixel; the grey-scale intensities vary
from 1 to 4. If we were to split this image into its quad tree representation to a level of size
1X1, the result would look like that shown in Figure 2. This is a "flattened out” pictorial
representation of the quad tree; there are actually 21 nodes in the quad tree: the top level
containing one node representing all 16 pixels, the intermediate level containing 4 nodes (4
pixels each), and the bottom level containing 16 nodes (1 pixel each). The corresponding tree

structure is shown in Figure 3. If we were to now merge regions of the quad tree so that within

i \ i
4 ¢+ 1 + 2 3 3
1 1 1
e o e ___+........_+..........._.
1 1 2 1 3 1 2
H ] f
O T U SR T
3 1 8 1 3 1 3
| H |
S E A R
3 1 3 1 2 1 4
] 1 ]
] L 1

Figure 1: A Sample Abstracted Image



SMGJ Segmentation System -3- Section 1.

4 1 2 3
1 2 3 2
3 3 3 3
3 3 2 4

Figure 2: A Split Quad Tree

/N /\ /\ /

Figure 3: Quad Tree Structure of Figure 2
any merged region the grey-scale levels differs by no more than 1, the resulting quad tree would
be as shown in Figure 4. This quad tree has 13 nodes; its structure is shown in Figure 5.
(Splitting and merging is done on quad trees because the nature of the recursive decomposition
of the rectangular image allows the processing to be done very efficiently.} If we were to now
take the quad free from Figure 4 and group the regions so that the grey-scale levels in grouped
regions differs by no more than 2, we might obtain the result shown in Figure 6. This
segmentation has 4 groups in its group set. Note that the result is somewhat non-deterministic;
the sequence in which the regions are chosen for potential combination does affect the final
result. If we were to now join the groups in Figure 6 to eliminate groups of size 1 or less, we

might obtain the result shown in Figure 7. This segmentation has 2 groups in its group set.



SMGJ Segmentation System -4 - Section 1.

1
i
4 1 2 1 3
|
S T
|
1 2 3 0 2
]
1
3 1 3 3 3
)
TR
)
3 1 3 2 4
1
]

Figure 4: A Merged Quad Tree

all

(3,3,3,3) 3,2,4)

Figure 5: Quad Tree Structure of Figure 4

|3
4 1 2 , 3
H
......_+_........._.
i 1
1+ 2 3 1 2
1 1
_......_+__....~...__+____
3 1 3 3 | 3
} |
__....,_.l____ —_— —
3 ) 3 1 2 4
: l

Figure 6: A Group Set from the Quad Tree in Figure 4



SMGJ Segmentation System -5~ Section 1.

T 1
4 1 7 2 1 3
| |
e — — - ____+_....__
1 1
1) 2 3 1 2
] 1
___..+ ________ +_....__
3, 3 3 1 3
] i
____..I...___ — ]
1
3 1 3 4 2 4
1 i
1 i

Figure 7: Small Group Elimination on Figure 6

Again, this process is somewhat non-deterministic.

Given these conceptual operations of split, merge, group, and join, it is possible to develop
strategies, methodologies, and algorithms for segmenting large classes of images. The SMGJ
Segmentation System is a skeletal software system which physically implements these operations
and makes them available to the user through an interface language. The system allows the
user to define and implement user defined properties/predicates and install them within the
system. The user’s task then becomes one of (a) deciding which properties/predicates may be of
use for segmenting images, (b} implementing them in C, (¢) installing them in the system, and
(d) developing algorithms based on these properties/predicates (along with appropriate
parameter selection) sequencing their use within the framework of the split-merge-group-join

paradigm.

The interface language allows for arbitrary sequencing of applications of these operations
using the user defined properties/predicates. It has facilities for (a) reading in images, (b)
displaying images, {¢) displaying the results of operations using a multi-color overlay facility, (d)
printing the results of operations on the terminal, (e) setting parameters for the predicates, (f)
manipulating multiple internal data structures (quad trees, group sets, and regions of interest),
(g) obtaining statistics about the state of the system, (h) directing the low-level selection

activities of the system, and (i) obtaining on-line help about the syntactic structure of the



SMGJ Segmentation System -6 Section 1.

interface language. In some cases, information can be input either through the interface
language or through use of a track ball (or mouse) and buttons. There are also certain utilities
available to help the user achieve his/her goal: zoom and roam facilities are available; timing
information can be obtained; a UNIX system command escape facility is available; the system
can be put to sleep for reactivation later; a pause facility is available; and group sets can be

written to files to be read back into the system later.

2. Report Notation

2.1. Fonts Used

Different fonts will be used to indicate concepts in different realms. The bold font will be
used to indicate user interface concepts. For example, everything that the user might enter
using the interface language will be in this font. The listing font will be used to indicate
programming, language, and UNIX system concepts. For example, internal data structures,
language concepts, and file names will be in this font. The italics font will be used to indicate

the first occurrence of important words and to emphasise words.

2.2. The Meta-language

A meta-language will be used to describe the syntax of the user interface language.
Meta-characters in this language are: *<’, ">, °(, ), °[, 7', °{%, 'V, *’, "=, and . The symbols
<’ and ">” are used to delimit the names of nonterminals. The symbols ’(* and )’ are used to
indicate groupings for possible alternatives. The symbols ’" and ’|” are used to indicate optional
occurrences. The symbols '{’ and ’}’ are used to indicate that a user supplied name is to be
inserted. it preceeds. The symbol ' is the rewriting symbol, and indicates what a

nonterminal can be replaced with. The symbol ¥’ is the disjunection symbol which indicates



SMGJ Segmentation System -7 Section 2.2.

alternative choices. Whenever a character appears by itself (usually in conjunction with
others), it in general mean itsef. When a meta-character is to be used as an object character,

it will be embedded between apostrophes (™).

3. System Overview

3.1. Image Format - PDS

All images to be read into the system are held in files in PDS format. This PDS format
has a 512-byte header preceding the image pixel data. There is standard software for creating,
manipulating, and displaying PDS format images. For completeness the structure of the PDS

header is shown in Figure 8.

3.2. Display Devices

The SMGJ Segmentation System is currently running in two different hardware

configurations: a VAX11/750 with a Gould DeAnza IP8500, and 2 GPX with color monitor.

The DeAnza implementation uses two 8-bit memory planes for display. One memory plane
is used for the grey-scale image; the other is used as a color overlay channel. These two
memory planes are independent and can be displayed simultaneously. Thus, when displaying
boundaries of quad tree and group sets in the overlay channel, such boundaries can be displayed
and cleared independent, of the grey-scale image. The overlay channel is configured so that each
bit corresponds to a different color. If multiple bits are on, the colors are combined, i.e., red and

green produce yellow.

The GPX color monitor has only one 8-bit memory plane. Thus, the grey-scale image and

the overlay color display are held in the same memory. Displaying the boundary of a quad tree



SMGJ Segmentation System -8-. Section 3.2.

*
/* pds.h -- pds picture header description.

Y

#define twobyte short /* for VAX and 11/70 */

#define PDSMAGIC 052525 /* pds file indentification code */
#define P_TSIZE 40 /* size of title */
#define P_DSIZE 128 /* size of additional information */

/* these will not be easy te change */

struct pds_hdr {

twobyte hdr: /* magie number to indicate pds file */
twobyte fmt; /* format descriptor of this file */
twobyte xsize:; /* number pixels/line */

twobyte ysize:; /* number of lines */

twobyte zsize: /* number of bits/pixel */

twobyte nchan; /* number multi-spectral channels in file */
twobyte uchan; /* number multi-spectral channels in use */
twobyte crdatef[2]: /* creation date */

twobyte uid; /* owner/creater's UID */

twobyte modified; /* flag -~ file has a physical header */
char title[P_TSIZE]: /* 40 character title for identif. */

char descrip[P_DSIZE]: /* 128 chars of picture description info */

twobyte extdesc:; /* flag for extended description */
twobyte _filler_[32]: /* extra for header expansion */
twobyte extra{l28]: /* extra for "format specific" data */

Figure 8: PDS Header Format
or group set will destroy the grey-scale information present in the pixels on the boundary.

Thus, clearing the overlay may require redisplaying the grey-scale image.

3.3. Coordinate System

The coordinate system used both by the user to input boundaries and by the system to
report information back to the user is a rectangular coordinate system. The origin (i.e., (0,0)) is
the upper lefthand pixel of the display on the graphics device. The x coordinate grows to the
right. The y coordinate grows down. In general, when specifying the boundaries of regions, the

x coordinate is given first. For example, when specilying the boundary of the root of a quad



SMGJ Segmentation System -9- Section 3.3.

tree, the specification (0,0,128,256) means that the boundary starts at position (0,0) (i.e., the

upper lefthand corner of the display) and extends 128 pixels to the right and 256 pixels down.

3.4. Current Objects and States

Within the system, there are multiple instanciations of certain objects and multiple
discrete states that certain variables can take on. In order to releave the user from continually
specifying the data structure and/or state, the system incorporates the concepts of "current

chject” and "current state”.

The user has three major system-defined data structures {or objects) that can be
referenced directly: quad trees, group sets, and regions of interest. Quad trees are referenced by
the reserved word: qt, quadtree, tree, or root. All of these terms or synonymous o the
system. Group sets are referenced by the reserved word: group_set, groupset, g8, groups,
grpset, or grps. Regions are referenced by the reserved word: region or reg. Each of these
objects has 11 instanciations referencable by the user. Internally, these are organized as an
array from 0 to 10, and the notation for referencing them is similar (eg., qt[3]). By default,
referencing the reserved word without appending a subscript selects the 11th element (eg., qt
references gt [10]). If a subscript is appended, the corresponding element is selected (eg., qt[0}
references qt[0]). In this way, if the use of multiple objects is not required, the user need not
address the fact that there are multiple instanciations available by supplying the subscript of

the one desired.

When manipulating quad trees and group sets, the system treats them as objects and not
as values. For example, if we want to move gt[1] to gt[3], we might enter
qt[3] = qt[1]
However, after execution of this statement, there is no quad tree in gqt[1]. {Actually, there is

one -- the null tree.) The object that was in gt [1] has been moved to gt [3]. (If there was a



SMGJ Segmentation System -10- Section 8.4,

quad tree in qt[3], it is removed and deallocated.) In other words, the object itself has been
moved - not a copy of the object. (The reason for this approach is that these data structures
are very large and complicated; they may have specific properties attached to them. The

copying of these data structures could be very waistful of time and space.)

However, when manipulating regions of interest, the system treats them as values and not
as objects. Thus, a statement such as
region[5] = region[2]
does copy the value of region{2] into region({5], but the value of region[2] remains
unchanged. This is done because these data structures are very simple -- they are just a 4-tuple

specifying the upper left corner and the extent of the region of interest.

Quad trees and group sets can be disearded (and deallocated) by assigning them the value

nil or null, as in

qt[3] = nil
Quad trees and group sets can be displayed (on the graphics device), printed (on the terminal),
and used implicitly or explicitly as input and output operands of appropriate operations. There
is the concept of a "current object" for quad trees, group sets and regions of interest. If a
specific instanciation is explicitly reference in a command, that object is made the current
object (for subsequent implicit processing). For instance, if the command sequence

qt{3] = qt !

merge on grey{80)
is given, the first command moves qt[10] to qt[3] (making at[3] the current quad tree),

and the second command does a merge on qt[3], the new current quad tree.

There is a concept of a current image (curr_img). This is set by a read or display
command. Once the current image has been established, all processing is done on that image

until 2 new different current image is established by another read or display command.



SMGJ Segmentation System -11- Section 3.4.

There is the concept of a current overlay channel, which is used to indicate what color
should be used when displaying the boundary of user manipulatable data structures. This is set
by the display command, the clear command, and the explicit assignment of a value to the
overlay channel variable. Once the current overlay channel is established, it remains in tact

until explicitly changed. For instance, the command
clear(red) overlay

clears the red overlay channel (channel 0); a side affect is to set the current overlay channel to

0. This is equivalent to the two following commands.

overlay = 0
clear overlay

This current overlay channel will remain set until changed by some other command. For

instance, a subsequent command, such as
display gs

would display the boundaries of gs[10] in red. However the command
display(green) gs

would display the boundary of gs[10] in the green overlay channel (channel 1); a side affect is

to set the overlay channel to 1 for all subsequent displays (until changed).

3.5. Execution Directory Configuration

This subsection describes the directory configuration in which the SMGJ Segmentation
System must reside at execution. Two directories must be present in the context of the
execution directory: IMAGES and LOG. IMAGES must be a "brother" directory of the
execution directory. This directory contains all the images that can be accessed by the system.
LOG must be a "son" directory of the execution directory. This directory is used as a repository

for a log of all commands entered by the user during each session. The directory configuration



SMGJ Segmentation System -12 - Section 3.5.

is pictorially represented in Figure 9.

4. The User Interface Language

Internally the language is divided into a number of different categories of statements;

these categories include:

o Help Facilities

* Setting system parameters, user referencable data structures, defining user referencable data

structures, reading images, and reading and writing groups sets from and to files

s Printing data structures and system information on the terminal

s Displaying results on the graphics device

Parent
Directory

Execution
Directory

Figure 9: Execution Directory Configuration



SMGJ Segmentation System -13- Section 4.

e Clearing information from the graphics device

e Verb commands

s Utility commands

The description of the language here will be presented using this same organization. The
exact syntax will not always be specified here completely. To obtain the exact syntax, the user
can read the LEX and YACC programs that drive the system. The purpose here is to show the
overall structure and capabilities of the language, and to give the user an overview of how to
use the system through the use of the language. The following subsections describe the

capabilities of language in each of the categories above.

4.1. Help Facilities

There is an on-line syntax help facility in the language. To access this facility, type help
(this will give information on how to use help) or help followed by one of the following reserved

words: help, set, print, display, clear, command, or utility.

e help

Gives information about how to use the help facility.

* set
Gives information about how to set system parameters, manipulate user referencable data
structures, define user referencable data structures, read in images, and read and write group

sets from and to files.

e print
Gives information about how to print user referencable data structures, information about

user defined processes (sorts, properties, and predicates), and information about system



SMGJ Segmentation System - 14 - Section 4.1,

parameters.

» display
Gives information about how to display images and the boundaries of user referencable data

structures.

¢ clear
Give information about how to clear images and color overlay channels from the graphics

device.

e command

Gives information about how to execute verb commands (split, merge, etc.).

s utility

Gives information about the utility functions.

4.2. Setting Things

The general syntax for setting things is:

(display|show|time|bell |verbose)=(true|false)
(debug|overlay|alloc_chunk' ('{int}') ')={int}
<root>=(<recot>|null |[<glue>)
<grpset>= (<grpset>|null)
<region>=<region>
define <root>
define <root>'<'{int},{int},{int}., {int}'>"'
define <region>
define <region>'{'{int}, {int},{int}, {int}')"'
read {file name root}
write <grpset> {file name}
read <grpset> {file name}
<defs>
where:
<root> — root['['0-9']']
<grpset> — groupset['['0-9']"]
<region> -+ region['['0-9']"']
<glue> — glue' ('<root>, <root>, <root>, <root>')"
<defs> — ' ('{int}, {int}, {int}, {int}"}"'
| '<'{int},{int}, {int}, {int}'>"'



SMGJ Segmentation System - 15 - Section 4.2.

4.2.1. System Parameters

There are a number of system parameters that the user can set. The user can indicate
whether display activities should actually occur or not; this is usually a reflection of whether
there is a graphics device currently available or not. This is done by one of the two commands
below. The first causes display commands to be active; the second caunses display commands to

be inactive.

display = true
display = falge

The user can request to have certain activity {caused by verb commands) displayed on the
graphics device during the processing of the command. This is currently available only for the
split verb and the grow verb. The activity is displayed in the overlay channel of the graphics
device. This is requested by one of the two commands below. The first command turns on the

show activity; the second turns it off.

show = true
show = false

The user can request timing information to be printed or not to be printed after certain

activities. This is requested by one of the two commands below.

time = true
time = false

The user can request a bell to be sounded or not to be sounded after the completion of
certain commands. This is useful for directing the user’s attention back to the terminal after

the lengthy execution of a command. This is requested by one of the two commands below.

bell = true
. bell = false



SMGJ Segmentation System -16 - Section 4.2.1.

The user can request that certain activities be reported or not reported at the terminal.

This is requested by one of the two commands below.

verbose = true
verbose = falze

The user may request debugging information about certain activities of the system. Such
debugging can be incorporated into user installed code, such as property caleulation code,
predicated code, and sorting code. Debugging can be performed at several different levels,

specified by an integer. The level of debugging is specified by the command
debug = {int}

where {int} specifies the level of debugging.

The user can specify the overlay channel (color) into which graphics information should be
written. The overlay channel is used for displaying the boundaries of quad trees, group sets and

regions of interest. The overlay channel is set by the command
overlay = {int}

where {int} is an integer between 0 and 7 indicating which overlay channel to use.

The system does dynamic allocation of all the major data structures. For efficiency
purposes, a large block of memory is allocated whenever new memory is needed for a specific
type of data structure. The user may want to control the size of how much memory is allocated
in these large blocks. Each data structure is represented internally by an integer, unique to
each data structure. (The integer associated with any specific data structure can be determined
by doing a print all command.) The user can specify how much memory will be allocated for a

specific data structure in subsequent allocations by the command
alloc_chunk({int1}) = {int2}

where {int1} indicates the data structure and {int2} indicates how much memory should be



SMGJ Segmentation Systém -17 - Section 4.2.1.

allocated as a function of the size of the data structure itself,

4.2.2. Manipulating User Referencable Data Structures

The user can manipulate three different system maintained data structures: quad trees,
group sets, and regions of interest. There are 11 instanciations of each of these data structures,
and the user can transfer them by use of an assignment-like statement. The 11 quad trees are
referenced by qt[0] through qt[9] (quad trees gt [0] through qt[9] ) and qt (quad tree
qt [10]}. A similar notation is used for group sets (gsi] and gs) and regions of interest

{regionli] and region). Thus, the command
gs(3] = gs[8]

transfers the group set that was in gs[8] into gs[3]. If there was a non-null group set in
gs [3], it is removed and deallocated. After completion of this command, group set gs[8] is
the null group set. Quad trees are handled in a similar manner. However, the assignment of
regions of interest causes the values (not the objects) of the regions to be copied. Thus the

command

region[1] = region[2]

causes region[l] to have the boundary that region[2] used to have, but the old content

of region[2] is not modified.

Besides moving quad trees around, quad trees can also be "glued together" if their

boundaries are compatible. This is accomplished by a command such as
qt = glue(qt[l],qt[2},qt[3],qt[4])

The glue routine will combine the constituent quad trees into a compound quad tree if they
have the appropriate boundaries. The arguments to glue are assumed to be the north-west,

north-east, south-west, south-east, respectively by order, components of the larger quad tree. If



SMGJ Segmentation System -18 - Section 4.2.2.

they "fit" together, the operation is performed; if the do not "fit" together, an error message is

given, and not action takes place.

4.2.3. Defining Roots and Regions

The boundary of regions of interest and roots of quad trees is specified by the define
command. This can be done by specifying the coordinate informstion through the terminal, or

by use of the track ball (or mouse) associated with the graphics device. The command
define qt[1](5,6,128,256)

defined the root of qt[1] to have its upper lefthand corner at position (5,6) (i.e., x=5, y=6)
and to be of size 128258 (i.e., it extends 128 pixels in the x direction and 256 pixels in the y
direction). A similar command defines a region, replacing the reserved word qt with region,

The command
define qt[1]

indicates that the boundary of gt [1] should be taken from the track ball (or mouse}. The
boundary is specified by track ball (or mouse) movement and button pushes. Follow the

terminal screen and/or graphics device instructions given.

There is no way to define the boundary of a group or group set; this is always extracted

from a quad tree or another group set.

4.2.4. Reading an Image from s File

All images read from external files must be in PDS format, and their names must have the
extension ".pds". Thus the file celll.pds might contain the image for celll held in PDS
format. When specifying the name of a file, only the root of the name (e.g., celll) is given.

Thus the command



SMGJ Segmentation System -19 - Section 4.2.4,

read celll

reads an image from the file celll.pds and place that image in the current internal image

(curr_img) to be processed.

4.2.5. Writing and Reading Group Sets

A group set can be written to a file or read from a file. This is done by commands such as

write gs([1] gsfile
read gs[2] gsfile

The first command writes gs[1] to the file gsfile; a side affect is to set the current group
set to gs[1]. The second command reads the file gsfile and places the corresponding group

set in gs[2]; a side affect is to set the current group set to gs[2].

4.3. Printing Things

The general syntax for printing things is:

print (<r00t>[<grpset>|a11]sortslpropsfpreds)
where:

<root> — root['['0-9']"']

<grpset> — groupset{'['0-9']"']

There are a number of things that can be printed on the terminal, For instance, the

command
print qt[3]
prints the structure of qt[3]. The recursive decomposition of the quad tree is represented by

indentation. If any properties are attached to quad tree nodes, they are also printed.

The command



SMGJ Segmentation System -20- Section 4.3.

print gs[9]
prints the structure of gs[9]. This is presented in a linear manner, listing the components of
each group of the group set. Again, if any properties are attached to the groups, they will also
be printed.
Information about user installed routines can also be printed. For instance, the command
print sorts

prints all sorting routines that have been installed by the user and indicate the verbs with

which they can be used. The command
print properties
prints all the user installed properties. The command
print predicates
prints all the user installed predicates and indicates, (a) which properties they are associated
with, (b) what verbs they can be used with, and (c) the current values of any parameters.
The command
print all

prints all the system parameters (time, verbose, bell, etc.), the sort, properties, and predicates
information, a table of statistics about system maintained data structures, information about
the current user manipulatable data structures, and the total amount of memory that has been

dynamically allocated.

4.4. Displaying Things

The general syntax for displaying things is:



SMGJ Segmentation System -21. Section 4.4,

display [’ ('<color>'}'] <root>

display ['('<color>')'] <region>

display ['('<color>'}'] <grpset>

display image [{file_name_root}]

display {file_name_root}
where:

<root> — root['['0-9']"']

<grpset> -+ groupset['['0-9']"']

<region> — region{'['0-9']"']

<color> - red|green|blue|turqueoise|purple|[white|yellow|magenta|0-7

The user can display images and user manipulatable data structures on the graphics

device. For instance, the ¢command
display image

will display (or redisplay) an image which has been previously displayed or read in (by the read

command). Either of the commands

display image {file_name}
display {file_name}

reads in a new current image from the file file_name.pds and displays it. This is equivalent

to the following two commands.

read {fle_name}
display image

User manipulatable data structures are displayed by commands like the following.

display(red) qt[3]
display(2) gs(2]
display region

The first displays the boundary of qt[3] in the red channel (channel 0); two side affects are to
change the current overlay channel to 0 and the current quad tree to qt[3]. The second
displays the boundaries of the groups in gs[2] in overlay channel 2 (blue); two side affects are
to change the current overlay channel to 2 and the current group set to gs[2]. The third

displays region[10] in whatever the current overlay channel happens to be. This may have



SMGJ Segmentation System - 22 - Section 4.4.

been set by other display commands, clear commands, or an assignment to the overlay variable.

A side affect is to change the current region of interest to region{10].

4.5. Clearing Things

The general syntax for clearing things is:

clear image
clear ['{'{(all[<color>)')"'] overlay
where:
<color> — red]green}blue[turquoise|purp1e[white]yellowlmagenta[0—7

Images and overlay channels can be cleared from the graphics device. The command
clear image

clears the image from the screen but leaves the overlay channels in tact. The internal memory

copy of the image is retained, so that a subsequent
display image

will redisplay the image on the graphics device. This ability to clear the image is useful for
trying to visualize the original image given only the overlay channel information describing
boundaries in the segmentation. The content of the overlay channels can be cleared by

commands such as

clear(red) overlay
clear(2) overlay
clear(all) overlay
clear overlay

The first command clears only the red overlay channel (channel 0); a side affect is to set the
current overlay channel to 0. The second command clears only overlay channel 2 (blue); 2 side
affect is to set the current overlay channel to 2. The third command clears all eight of the
overlay channels; there is no internal side affect. The fourth command clears the current

overlay channel and does not change the current overlay channel.



SMGJ Segmentation System - 238 - Section 4.5.

4.8, Utilities

The general syntax for the utilities is:

time

input {file_name}
'1'{system command}
pause

zoom

sleep

The command
time
prints out at the terminal the user, system, and total cpu time since the process began and since
the last invocation of time.
User interface language input can be redirected to come from a file. This is accomplished
by the command
input {file_name}

When the content of the file file_name is exhaust, control returns to the terminal. Control

can be explicitly returned to the terminal by the command

input terminal

The user can request that the system pause so that output on the screen can be viewed or

photographs of the graphics device can be taken. This is accomplished by the command
pause

The system pauses until a nonblank character and a cariage return are entered at the terminal.

This command is useful when executing commands redirected by the input command.



SMGJT Segmentation System -24 - Section 4.8.

The user can zo0om and roam through the display on the graphics device. This is

accomplished by the command
zoom

Zooming and roaming is done through use of the track ball and buttons. Follow instructions
presented on the graphics device. Different exits from this utility will allow subsequent displays

to be performed while the graphics device is in a zoomed state.
The user can request that the system "go to sleep” until it receives a signal. This is
accomplished by the command
sleep

This is useful for running jobs over night and putting the job into background mode at the end
of a script (by use of the input command} so that the process can be brought back to forground

mode later.

The user has the ability to perform UNIX system commands from within the system. This

is accomplished by the usual "bang" notation of

!{system command}

4,7. Verb Commands

The general syntax for these verb commands is:



SMGJ Segmentation System - 25 - Section 4.7.

split [<root>] [[using]<region>] [on]{predicated name} [<arg_list>]
[redefine <defs>*]

merge [<root>] [[using]<regicn>] [on]{predicated name} [<arg_list>]
[redefine <defs>#*]

group [<root>][[using]l<region>] [en]{predicated name}[<arg list>]
[[wvith]{sort name}] [redefine <defs>*)]

grow [<root>][[using]<region>] [on]{predicated name} [<arg_list>]
[ [with]{sort name}] [redefine <defs>*]

join [<grpset>] [[with]{sort name}] [ [using] <region>]
[on]{predicated name} [<arg_list>]
[[with]{sort name}] [redefine <defs>*]

regrow [<grpset>] [[using]}<region>] [on]{predicated name} [<arg_list>]
[[with] {sort name}] [redefine <defs>*]

strip [<root>] [of]{property name}

where:

<root> -+ root['['0-9']"']

<region> — region['['0-9']']

<grpset> — groupset['['0-9']"]

<arg_list> — ' (' {{real}|{int}) (. {{real}|{int}))*")"

<defs> — ' ('{int},{int}, {int}, {int}')"

[ '<'{int}, {int}, {int}., {int}'>"

There are four basic verb commands: split, merge, group, and join. These are the
operations for which the system is named. Besides these, there are two auxiliary commands:

grow and regrow. There is also a property manipulation verb: strip.

For a general description of the four basic verbs, see Section 1. The grow verb is a
variation of the group verb which produces one and only one group given a seed quad tree node
from which to start. The grow verb is associated with the graphics device specifically; the
input quad tree seed node is input by use of the track ball {or mouse) and the resulting group is
displayed in the overlay channel of the graphics device. The regrow verb is similar, but is a
variation of the join verb. It takes a seed group and applies the join algorithm producing one
and only one group as output; input and output are again via the graphics device. The strip
verb allows the user to remove property information from quad trees. The purpose for this is to

reclaim (deallocate) memory for subsequent allocation and use in processing.

In general, the optional [<root>] and [<grpset>] clauses allow the user to specify a

specific quad tree or group set to be used; if the clause is not present the current quad tree or



SMGJ Segmentation System - 26 - Section 4.7.

current group set is used. The [[using]<region>] clause allows the user to specify a
specific region of interest; if the clause is not present the current region of interest is used. The
fon] {pred} [<arg_list>] clause specifies the predicate {along with parameters) to be used
in performing the action of the verb. If the [<arg_list>] portion is not present, then the
current values of the parameters are used; otherwise, the actual parameters are changed and
used. It is not possible to omit a parameter; if one is given, they must all be given. The
[redefine <def>*] clause allows the user the redefine the boundary of the root of the quad
tree node or the boundary of the region of interest (as an after thought). The

[[with] {sort}] clauses allow the user to control, to some degree, the order in which groups
will be considered during the execution of the group verb and the Join verb. A sort in front of
the predicate specifies the order in which seed groups should be selected around which candidate
groups will be considered for combination. A sort after the predicate specifies the order in
which candidate nodes should be selected for potential combination with the (modified) seed

node.

Note that the only non-optional clauses are the command verb name itself and the
specification of the predicate; all other clauses help the user to refine the specific meaning or

intent.

4.7.1. Split

The split verb performs the split operation as a function of the predicate specified.
The conceptual input is a quad tree; the conceptual output is the same quad tree modified by
the split operation (i.e., this is a descructive operation). Most of the time, the split verb is
used to initially decompose a quad tree root down to a specific size level, using the size

predicate. For instance, the command

split on size(1,1)



SMGJ Segmentation System - 27 - Section 4.7.1.

splits the current quad tree down to a 1X1 leaf size. This can be done when the quad tree is in

any state whatsoever (e.g., after a merge operation has been performed). The command
split qt[3] using region[2] on grey(80) redefine (0,0,8,8)<0,0,18,16>

(a) makes qt[3] the current quad tree, (b) makes region[2] the current region, (c) redefines
region[2] to have boundary specified by (0,0,8,8), (d) redefines qt[3] to have boundary
specified by (0,0,16,16), and (e) splits the region of qt[3] which is inside region[2] so that

each leaf of the resulting quad tree has pixels whose grey-scale levels differ by no more that 60.

4.7.2. Merge

The merge verb performs the merge operation as a function of the predicate specified.
The conceptual input is a quad tree; the conceptual output is the same quad tree modified by
the merge operation (i.e., this is a descructive operation). The merge verb is used to combine

nodes whose parents meet the requirements of the predicate. For example the command
merge on grey(80)

would modify the current quad tree so that no non-leaf node of the modified quad tree has

pixels all of which differ by less than 80 grey-scale levels.

4.7.3. Group

The group verb performs the group operation as a function of the predicate specified.
The conceptual input is a quad tree; the conceptual output is a group set. The physical group
set produced is placed in gs[10]. The group verb is used to combine leaf quad tree nodes
into {potentially) non-rectangular groups (regions) which meet the requirements of the predicate.

For instance, the command

group on grey(100) with smallest_first



SMGJ Segmentation System - 28 - Section 4.7.3.

takes the leaves of the current quad tree and combines them into groups all whose pixels differ
by no more than 100 grey-scale levels. The with clause causes the leaf nodes of the neighbors of
the current seed to be sorted in ascending order of size, so that the smallest leaf nodes will be
considered for combination first. A candidate leaf node will be combined if its inclusion does not

violate the predicate; it will not be combined if its inclusion does violate the predicate.

4,7.4. Grow

The grow verb is a variation of the group verb. However the grow verb applies the
group operation to one and only one leaf of the quad tree, thus producing one and only one
group. The conceptual input is & quad tree and a leaf of that quad tree; the conceptual output
is a group. The purpose of this verb is to supply the user with a visual sense of how the group
operation performs, given a specific predicate and quad tree. The seed quad tree leaf is specified

by use of the track ball (or mouse) and the resulting group is displayed on the graphics device.

4.7.5. Join

The join verb performs the join operation as a function of the predicate specified. The
conceptual input is a group set; the conceptual output is a group set. The physical group set
produced is placed in gs[10]. The join verb is used to combine groups of the input group set
into groups whose members satisfy the requirements of the predicate. The intent of the join
verb is identical to that of the group verb except that the join verb takes a group set as input

instead of a quad tree. For example, the command
Jjoin with biggest_first gs[0] on grey(120) with closest_grey

combines groups from the group set gs[0] so that all groups in the resulting group set have
pixels whose grey-scale levels differ by no more than 120. In the process of selecting seeds for

group combination, the largest unused group from the input group set is used first. Candidate



SMGJ Segmentation System -2¢ .- Section 4.7.5.

groups are selected on the basis of which are closest to the current seed group, as a function of

the average grey-scale levels in the two groups. The resulting group set is placed in gs [10].

4.7.6. Regrow

The regrow verb is a variation of the join verb. However the regrow verb applies the
join operation to one and only one group of a group set, thus producing one and only one
group. The conceptual input is a group set and a group in that group set; the conceptual
output is a group. The purpose of this verb is to supply the user with a visual sense of how the
join operation performs, given a specific predicate and group set. The seed group is specified

by the track ball (or mouse) and the resulting group is displayed on the graphics device.

4.7.7. Strip

The strip verb allows the user to remove properties from a quad tree so that the memory
associated with those properties can be deallocated for use in subsequent processing. Thus, the

command
strip qt[3] of grey_prop

leaves the quad tree structure of gt [3] alone, but removes all grey-scale property nodes from

the tree and deallocates the memory for subsequent use.

4.8. Reserved Words and Synonyms

There are a large number of reserved words in the interface language. Those that have
synonyms are presented in Table 1. Other reserved words which have no synonyms are: join,
grow, regrow, strip, write, using, on, with, of, all, sorts, time input, image, glue, pause,
sleep, bell, verbose, alloc_chunk, red, green, blue, turquoise, purple, white, yellow, and

magenta. None of the reserved words can be used in any other context. For instance, they



SMGJ Segmentation System - 30 -
Table 1
Reserved Words and Their Synonyms
Word Synonyms
quit a, .
debug db, dbg
define df, dfn, def
redefine redefining, redef
region Teg
qt quadtree, tree, root
gs groupset, group_set, groups,
grpset, grps
split splt
merge mrg
group _grp
print prot
display disp
clear clr
read rd
properties || props
predicates || preds
terminal term
true t, T
false f, false
nul] nil, nill, NULL, NI, NILL
help h,?
set sets
command || commands
utility util, utilities
zoom zr

Section 4.8.

cannot be used as predicate names, property name, sort names, or file names. However, they

can be used as components of a UNIX system command escape.



SMGJ Segmentation System - 31- Section 4.8.

5. Begmentation Paradigm

A strategy specifies a general approach to solving a problem. It indicates at the topmost
level what kind of activities can occur during the solution of a problem. A methodology specifies
2 more concrete refinement of a strategy. It specifies a generalized flow of the activities that
can oceur, given a specific strategy as a guideline. An algorithm specifies an exact sequence of
specific algorithmic components that can be applied during the solution of a problem, given a
specific methodology. These three concepts constitute a heirarchy for making design decisions

during the process of attempting to discover appropriate solutions to a given problem.

In the following subsections, different strategies, methodologies and algorithms will be
discussed. We will attempt to show how the SMQJ Segmentation System can be used in

different situation, and indicate how we have chosen to use it.

5.1. Strategies

One strategy for segmenting images is to attempt to produce the complete correct final
segmentation by making one and only one "pass" over the image. The segmentation criteria
might be a very simple one, such as grey-scale alone, or an extremely complex one, possibly
combining grey-scale, texture and other special criteria. In general, it has been found that such
an approach is not very successful, because, (a) if the criteria is simple, it is not sophisicated
enough to do a good segmentation on all regions of the image, and (b} if the criteria is complex,
it is dufficult to find an appropriate coordination of the component criteria that does a good

segmentation job. Thus, the single pass strategy seems to be relatively unproductive.

The SMGJ Segmentation System is caple of addressing strategies like this one. Extremely
complicated properties and predicates can be implemented and installed. However the
complexity of producing, debugging and analyzing them is high compared to a more linearly

distributed approach.



SMGJ Segmentation System -32- Section 5.1,

A second strategy is to make multiple passes over the image, refining the previous
segmentation to produce a subsequent segmentation. In this strategy, each pass combines
and/or separates regions present in the previous segmentation, based on a specific (simple)
segmentation criteria applicable during the current pass. This strategy allows a layered
approach in which intermediate results can be viewed and analyzed, thus allowing the selection
of appropriate processing passes. This tends to reduce the conceptual complexity of searching

for appropriate sequences of segmentation criteria.

The SMGJ Segmentation System is well suited for this kind of strategy and by design
encourages its use. This is the strategy which we have used in the development of the

properties and predicates which we have currently installed in the system.

5.2, Methodologies

Given a strategy in which different segmentation eriteria will be applied over multiple
passes, there are at least two major methodologies that might be employed. One is to
undersegment the image originally, and continually separate regions during subsequent passes.
Another is to oversegment the image originally and continually combine regions in subsequent
passes. (Of course, there are other variations in the spectrum between these two approaches

which might be employed.)

We have chosen to adopt the oversegmentation methodology in the development of the
properties/predicates that we currently have installed. However, the system is capable of
employing the undersegmentation methodology in the relm of quad trees (using only the split
and merge verbs), and it would be possible to extend this into the group set relm with only
minor modifications to the system. Specifically, the region of interest controls what portion of
the image will be affected by verb commands, Currently the region of interest can only be

rectangular and is defined by the user externally, independent of any other data structure (i.e.,



SMGJ Segmentation System -33. Section 5.2,

quad trees and group sets) available. However, if the region of interest were to be redefined to
be any arbitrary set of groups in a group set {instead of the current rectangular region}, then it
would be possible to selectively process undersegmented portions of a segmentation. We have

plans to incorporate this facility, but have refrained for performance reasons.

5.3. Algorithms

Given the oversegmentation methodology discussed above, the process of discovering
appropriate segmentation algorithms becomes one of selecting specific separating/combining
actions using properties/predicates (with appropriate parameters) which originally oversegment
the image and then successively combine portions of the image without producing
undersegmentation. Originally, the search is done on one specific image selected from s class of
images. Once an appropriate sequence of actions and set of parameters has been found that
works well for the selected image, the computational scenario (algorithm) can be applied to
other images in the class. Small adjustments can be made to the parameters to enhance the

overall segmentation quality over the entire class of images.

For instance, consider the simple algorithm presented in Figure 10. In this computational
scenario, the display device is turned on and a 512x512 image (read from the file wash.pds)is

read in and displayed. The root node for the quad tree is defined to cover the upper left hand

display = t
read wash
display image
define root(0,0,256,258)
split on size(2,2)
merge on grey(50)
group on grey(70)
join on grey(90)
join on small(50)
display{red) gs
Figure 10: A Simple Grey-Scale Segmentation Algorithm



SMGJ Segmentation System -34- Section 5.3.

quarter (256X256) of the image; this portion of the image is separated (split) into 2x2 squares in
the quad tree. The nodes of the (split) quad tree are combined (merged) as much as possible
under the constraint that no leaf quad tree node contains pixels differing in grey-scale by more
that 50. Nodes from this (merged) quad tree are then grouped together as much as possible
under the constraint that no group contains pixels differing in grey-scale by more that 70. This
produces a set of groups whose union covers the entire 256256 portion of the image. Groups
from this group set are then combined (joined) as much as possible under the constraint that no
group contains pixels differing in grey-scale by more that 90. Groups from this {(new) group set

are then combined (joined) so that no group containing 50 or less pixels is left uncombined.

5.4. Approaches

There are 2 number of approaches that might be used in searching for appropriate
algorithms that are effective over a large class of images. For instance, assumming that the
computa.tiopal scenario (eg., that of Figure 10) performs well on a particular image in a class of
images, it may be considered an algorithm for segmenting that class of images. However, it is
possible that such a scenario works well on one image of a class, but does not work well on all
members of the ¢lass. One way to enhance the effectiveness on the entire class of images is to
adjust the parameters slightly to increase the average performance over the entire class of
images. Another way may be to produce slightly more sophisticated scenarios using other
(possibly combined) properties/predicates or using heuristics for selecting how groups in group

sets are combined.

As an example of changing parameters, the algorithm in Figure 10 might be changed in
several ways. For instance, splitting to a size of 1X1 can significantly affect the quality of the
resulting segmentation. This is especially true for images which have narrow features, such as
shadows and walkways. Another important parameter to consider adjusting is the grey-scale

range associated with the grey predicate in the merge, group, and join verbs. Raising or



SMGJ Segmentation System -35- Section 5.4.

lowering the value of this parameter may not significantly affect the segmentation of the

original image, but may significantly enhance the segmentation of the other images in the class.

A variation of the parameter adjustment approach can also be accomplished by applying
a staged approach, in which multiple operations are sequencially performed varying the
sensitivity parameter slowly (instead of "jumping" to the final value). For example, the three

scenarios

split on size(2,2)
group on grey(90)

and

split on size(2,2)
merge on grey(50)
join on grey(70)
join on grey(90)

and

split on size(2,2)
merge on grey{40)
group on grey{50)
join on grey(60)
join on grey(70)
join on grey(80)
join on grey(90)

might be perceived to produce equivalent segmentations. They, in fact, do not. The difference
has to do with "bleeding" of regions given "raw data". The first scenario tends to produce bad
segmentations having odd shapes that do not correspond very well to features present in the
image. The problem lies in the fact that there is no initial discrimination of basic components
to be used for building blocks; all elementary regions (2x2 regions) have a very similar status.
If, on the other hand, the processing is staged (as in the second and third scenarios), "bleeding”
is reduced by giving operations more appropriate, well-developed building blocks. The higher
the degree of staging, the better the final segmentation. The penalty, of course, is one of

performance, since more operations must be performed.



SMGJ Segmentation System - 36 - Section 5.4.

split on size(1,1)

merge on grey(50)

group on grey(70)

join with biggest._first on grey(90) with closest_grey

join with biggest_first on mmagrey(110,55) with closest_grey

join with smallest_first on small(50) with closest_grey

display(blue) gs

Figure 11: A More Sophisticated Algorithm
As examples of using more sophisticated properties/predicates and heuristics, two

scenarios will be presented. The first, shown in Figure 11, uses the sort option to select more
appropriate seed and candidate groups. The biggest_first sort selects as initial seeds groups
that are largest; the smallest_first sort has the reverse affect. The closest_grey sort selects as
initial candidates groups that are closest in average grey-scale to the current seed group. A
new compound predicate, mmagrey (min-max-average grey), is introduced in this scenario. In
this case, groups are combined only if (a) the combination produces a group whose range of
grey-scale levels differ by no more than 110, and (b) the average grey-scale of the individual
groups differs by no more than 55. This tends to relax the constraint of 90 on the grey

predicate while still requiring that the separate groups being combined have similar average

grey-scale properties.

The scenario in Figure 12 introduces texture (instead of average grey-scale) as a secondary
criteria for combining groups. Here, the predicate greyltem combines grey-scale information
and the texture information associated with Laws’ Texture Energy Measure. In this case,

groups are combined only if (a) the combination produces a group whose range of grey-scale

split on size(1,1)
merge on grey{50)
group on grey(70)
join with biggest_first on grey(90) with closest_grey
Jjoin with biggest_first on greyltem(150,100) with closest_grey
join with smallest_first on small(50) with closest_grey
display{green) gs
Figure 12: Use of a Compound Predicate



SMGJ Segmentation System - 37- Section 5.4.

levels differ by no more than 150, and (b) the length of the vector (in texture space) separating

the two individual groups does not exceed 100.

6. Current Properties, Predicates and Sorts Installed

There are a number of properties, predicates and sorts currently installed in the SMGJ
Segmentation System. This will, of course, increase as the system expands. In order to
determine the installation status of a particular instanciation of the SMGJT Segmentation

System, the following three commands can be used:

print properties
print predicates
print sorts

Properties and predicates are closely linked in the internal C code. There is a one to
many mapping between the properties and predicates, i.e., a property may be associated with
many predicates, but a predicate is associated with only one property. When a predicate is
invoked to determine if a given region (quad tree node or group) satisfies the predicate, the data
structure associated with that region is checked to determine whether or not the associated
property has been calculated and attached to the data structure. If is is present, no calculation
is performed; the property (which is already present and available) is accessed and used to
determine the outcome of the predicate for that region. If the property is not present, the
property is calculated, attached to the corresponding data structure and then used to determine
the outcome of the predicate. Using this paradigm, properties of a region need be calculated no
more than once, even though the region may be addressed multiple times by the processing of

split, merge, group, and join verbs. This is a standard time/space tradeoff.

Property names are referenced only in the strip verb. Predicate names are reference only

in the split, merge, group, and join verbs. Sorts are based on properties. They are reference



SMGJ Segmentation System -38- Section 6.

only in the with clauses of the split, merge, group, and join verbs.

8.1. Properties

The current properties installed are presented in Table 2. The names presented here are

the formal names to be typed by the user through the interface language.

The grey_prop property contains four conceptual values: the minimum grey-scale value
for all pixels found in the region, the maximum grey-scale value for all pixels found in the
region, the number of pixels found in the region, and the sum of the grey-scale values for all
pixels in the region. Thus, predicates based on min-max grey-scale (grey) and average grey-
scale (agrey) can be efficiently evaluated. A fifth actual {Boolean) values is actually present; it

is used with the agrey predicate.

The size_prop property contains two values: the x extent of the rectangular region (quad
tree node), and the y extent of the rectangular region (quad tree node). This property is only

used for the size predicate which is only available for the split and merge verbs.

The ltem_prop property contains 30 values. This property is based on a 15-dimensional
texture space of the image. 15 of the values are the minimums in the separate dimensions; the

other 15 values are the maximums in the separate dimensions.

Property Name
grey_prop
size_prop
ltem,_prop
COOCCUr_prop
small_prop
ETeyCcoOCccUr_prop
greyltem_prop

Table 2
Current Properties Installed




SMGJ Segmentation System -39 - Section 6.1.

The ecooccur_prop property contains the cooccurrence matrix for the particular region.

The small_prop property contains one Boolean value indicating whether or not the size of

a region (group) is smaller than a given (parametric) value.

The greycooccur_prop property and greyltem_prop properties are actually pseudo-
properties. They cause elementary properties (grey_prop, cooccur_prop, and Item_prop) to

be calculated and attached to the appropriate data structure.

8.2. Predicates

The current predicates installed are presented in Table 8. It is difficult to describe the
exact semantics of these predicates in a few English statements. The descriptions presented
here are intended to supply the major intent of the predicate. In order to understand the

intricacies of the details, the G code must be read.

Predicate Name || Associated Property | Parameters
grey grey_prop delta_grey
agrey grey_prop delta_agrey
mmagrey grey_prop delta_grey
: delta_sagrey
. . delta_xsize
size size_prop delta_ysize
ltem_all item_prop delta_ltem
ltem_some ltem_prop delta_ltem
lem_vect ltern_prop delta_ltem
small small_prop small_group
co_occur_pc greycooccur_prop co_occur threshold
co_occur_dbn greycooccur_prop co_occur threshold
greyltem greyltem_prop g:i:::ﬁ;z
delta_grey
greycooccur greycooccur_prop co_oocur threshold

Table 3

Current Predicates Installed




SMGJ Segmentation System - 40 - Section 8.2.

The grey predicate determines whether or not the difference between the minimum and
maximum grey-scale values are within delta_grey of one another. The agrey predicate is
available only for the join verb. It determines whether or not the two component groups
(potentially being joined) have average grey-scales which differ by no more than delta_agrey.
The mmagrey predicates is a compound predicate available only for the join verb. It
determine whether or not the aggregate of the two component groups would have minimum and
maximum grey-scale values within delta_grey of one another, and simultaneously whether or
not the separate component groups have average grey-scales which differ by no more than

delta_agrey.

The size predicate determines whether or not the x extend of the quad tree node exceeds
delta_xsize and the y extent of the quad tree node exceeds delta_ysize. This predicate is

available only for the split and merge verbs.

The Item_all predicate determines whether or not all of the min-max differences in the
15-dimensional space differ by less than delta_ltem. The ltem_most predicate determines
whether or not most (8 or more) of the min-max differences in the 15-dimensional space differ by
less than delta_ltem. The ltem_vect predicate determines whether or not the min-max
differences in the 15-dimensional space (when considered as a vector) has length less than

delta_ltem.

The small predicate determines whether or not the number of pixels in the group exceeds

small_group.

The co_oceur_pe and co_occur_dbn predicates determine whether or not certain second
order statistics of the cooccurrence matrix exceed co_oceur threshold. These predicates

address different second order statistics.



SMGJ Segmentation System - 41 - Section 6.2.

The greyltem predicate is a compound predicate which combines (ands) the grey
predicated and the Item_most predicates. the greycooceur predicate is a compound predicate

which combines {ands) the grey predicate and the co_oceur_pc predicates.

6.3. Sorts

The currently installed sorts are presented in Table 4. The default sort is the

biggest_first sort; if no with clause is present, this is the sort that is used.

The biggest_first sort sorts regions in descending order by number of pixels present in the
region. The smallest_first sort sorts regions in ascending order by number of pixels present in

the region.

The closest_grey sort sorts groups in ascending order by the absclute value of the

difference in average grey-scale between the seed group and the candidate group.

Sort, Name

biggest_first
smallest_first
closest_grey

Table 4
Currently Installed Sorts




	The SMGJ Segmentation System: Users' Manual
	Recommended Citation

	tmp.1462913377.pdf.pO6vM

