Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-87-27

1987-10-02

Load and Communications Balancing on Multiprocessor Logic
Simulation Engines

Ken Wong and Mark A. Franklin

The problem considered in this paper is to find an assignment of logic components to
processors which will achieve logic simulation speed-ups approaching the ideal for large
processor populations. This problem becomes particularly important when a significant portion
of the speed-up expected from logic simulation engines is attributed to load sharing (as
opposed to obtaining speed-up by employing specialized hardware to carry out specific tasks
associated with the simulation process such as event queue manipulation or function
evaluation). Our research considers this problem for a particular multiprocessor simulation
architecture for which a performance model has bene developed. The model... Read complete
abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Cf Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Wong, Ken and Franklin, Mark A., "Load and Communications Balancing on Multiprocessor Logic
Simulation Engines" Report Number: WUCS-87-27 (1987). All Computer Science and Engineering
Research.

https://openscholarship.wustl.edu/cse_research/813

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F813&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F813&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F813&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F813&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F813&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F813&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F813&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/813?utm_source=openscholarship.wustl.edu%2Fcse_research%2F813&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/813

Load and Communications Balancing on Multiprocessor Logic Simulation
Engines

Ken Wong and Mark A. Franklin

Complete Abstract:

The problem considered in this paper is to find an assignment of logic components to processors which
will achieve logic simulation speed-ups approaching the ideal for large processor populations. This
problem becomes particularly important when a significant portion of the speed-up expected from logic
simulation engines is attributed to load sharing (as opposed to obtaining speed-up by employing
specialized hardware to carry out specific tasks associated with the simulation process such as event
gueue manipulation or function evaluation). Our research considers this problem for a particular
multiprocessor simulation architecture for which a performance model has bene developed. The model is
parameterized on the basis of workload characteristics, architecture design parameters, and load
(processing and communication) distribution. Workload characteristics were derived from actual VLSI
circuit simulations. An approach to the component assignment problem is presented and evaluated using
this data. The circuits that we are considering have component populations in the tens and hundreds of
thousands. Since the optimal component assignment problem is NP-complete, a heuristic assignment is
considered and its performance compared against a simple random assignment algorithm (i.e.
components are assigned to processors such that each processor is chosen with equal probability). The
random assignment method, though simple, is shown analytically to have large communication
requirements even for the small number of processors (e.g. five). This approach therefore limits the
number of processors which can be effectively applied towards speeding up the simulation process
through exploitation of computational parallelism. The heuristic examined in this paper attempts to
improve on the random assignment method by reducing the communication volume while maintaining
the degree of parallelism in the random method. Results show that for tens of processors and circuit
sizes in the tens of thousands, the heuristic can reduce the message volume in the benchmark circuits by
a factor of between 2 and 4.

https://openscholarship.wustl.edu/cse_research/813?utm_source=openscholarship.wustl.edu%2Fcse_research%2F813&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/813?utm_source=openscholarship.wustl.edu%2Fcse_research%2F813&utm_medium=PDF&utm_campaign=PDFCoverPages

LOAD AND COMMUNICATIONS BALANCING ON
MULTIPROCESSOR LOGIC SIMULATION ENGINES

Kenneth F. Wong and Mark A. Franklin

WUCS-87-27

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

Presented at the International Workshop on Hardware Accelorators, September 30 - October 2,
1987, University of Oxford, Oxford, England.

This research was sponsored in part by funding from NSF Grant DCR-8417709.

Load and Communications Balancing on
Multiprocessor Logic Simulation Engines

Ken Wong and Mark A. Franklin
Computer and Communications Research Center
Washington University
St. Louis, Missouri 63130
USA
(314) 889-6106

The problem considered in this paper is to find an assignment of logic components to
processors which will achieve logic simulation speed-ups approaching the ideal for large
processor populations., This problem becomes particularly important when a significant portion
of the speed-up expected from logic simulation engines is atiributed to load sharing (as opposed
to obtaining speed-up by employing specialized hardware to carry out specific tasks associated
with the simulation process such as event queue manipulation or function evaluation). Our
research considers this problem for a particular multiprocessor simulation architecture for which
a performance model has been developed. The model is parameterized on the basis of workload
characteristics, architecture design parameters, and load (processing and comtnunication)
distribution. Workload characteristics were derived from actual VLSI circuit simulations. An
approach to the component assignment problem is presented and evaluated using this data.

The circuits that we are considering have component populations in the tens and hundreds
of thousands. Since the optimal component assignment problem is NP-complete, a heuristic
assignment is considered and its performance compared against a simple random assignment
algorithm (i.e., components are assigned to processors such that each processor is chosen with
equal probability). The random assignment method, though simple, is shown analytically to have
large communication requirements even for a small number of processors (e.g., five). This
approach therefore limits the number of processors which can be effectively applied towards
speeding up the simulation process through explotiation of computational parallelism. The
heuristic examined in this paper attempts to improve on the random assignment method by
reducing the communication volume while maintaining the degree of parallelism in the random
method. Results show that for tens of processors and circuit sizes in the tens of thousands, the
heuristic can reduce the message volume in the benchmark circuits by a factor of between 2 and
4.

* This research was sponsored in part by funding from NSF Grant DCR-8417709.

LOAD AND COMMUNICATIONS BALANCING
ON MULTIPROCESSOR LOGIC SIMULATION ENGINES*

KEN WONG and MARK A. FRANKLIN

INTRODUCTION

Simulation plays a prominent role in both validating new VLSI system designs, and in obtaining
test vectors for validating the operation of resulting fabricated chips. The high costs associated
with such simulations has led to proposals for (Franklin ez al 1984, Ashok et al 1985, Hahn and
Fischer 1985) and the development of (Denneau 1982, Howard et al 1983, Zycad 1983, Valid
1984, Hefferan et al 1985, Silicon 1985, Xcelerated 1986) computers tailored to the logic
simulation process. These simulation engines perform simulations at speeds ranging from 10 to
1000 times the speed of standard, general-purpose computers and employ techniques ranging
from microcoding of the simulation algorithms to the development of special-purpose
multiprocessors.

Our concemt in this paper is with a specific type of multiprocessor simulation engine and with the
problem of allocating the circuit components to be simulated to the individual processors in the
system. An improper allocation can lead to two types of performance degradation. On the one
hand an imbalance of computational loads across the processors may lead to processor
bottlenecks where one or more processors remain busy for Iong periods of time while the
remainder of the processors are idle. On the other hand an imbalance of communications loads
may lead to either inadvertent saturation of the interprocessor communications network, or
excessive communications loads for a small subset of the processors. In either case the result will
be the creation of a communications bottleneck. Note that the two problems are interrelated in
that a circuit component allocation has both an associated computational and communications
impact.

This paper considers the component allocation problem for a particular multiprocessor simulation
architecture. A performance model of the architecture is given. The model is parameterized on
the basis of workload characteristics which were derived from actual VLSI circuit simulations
(Chamberlain 1985, Chamberlain and Franklin 1986a, Wong et al 1986) and architecture design
parameters such as number of processors. Parameters reflecting load and communications
balancing are included in the overall performance measure and the impact of improper load and
communications balancing is determined. Two approaches to allocating components to
processors are presented and evaluated using data collected from simulations of the circuit
workload.

The next section presents the architecture considered in this paper. Section 3 develops a run-time
performance model for this class of simulators. Section 4 defines elements of the run-time model
in terms of a graph model of the circuit to be simulated. A random and a graph-based heuristic
component allocation scheme are presented. Section 5 presents the results of an experiment

* This research was sponsored in part by funding from NSF Grant DCR-8417709.

.1.

involving several circuits which were simulated. Data collected from these simulations allows us
to parameterize the run-time model and compare altemative component allocation schemes. In
Section 6 the model and experimental results are applied to the analysis of a particular logic
simulation architecture. The final section presents a summary and conclusions.

LOGIC SIMULATION ARCHITECTURES

This paper considers the architecture shown in Figure 1 . A master processor maintains the
global time T and signals slave processors through a START signal to begin processing events
for the current time point T. When the master receives DONE signals from all slaves, it
increments the global time (k « k+1), and starts the next simulation cycle by sending another
START signal to the slaves. Simulation cycles are repeated until the clock reaches the
termination time. Note that even when there are no events scheduled for a time point, the
simulation cycle is still executed but consists of only the sending of START and DONE signals.

Eval 1

e

Master Processor
+1
- : Comm.
Ciock o Network
EvalP
START -
[T
DONE

Figure 1. A Multiprocessor Logic Simulator.

Each slave processor evaluates events scheduled for time T, communicates state information to
other slave processors over a communication network, and sends a DONE signal to the master
processor when it has processed all of its events scheduled for T. Communication buffers
between the slave processors and the communication network allow message transmission to
proceed in parallel with event/function evaluation.

This general architecture was also analyzed by Levendel er af (1983). Our model resembles
theirs but considers a broader range of parameters and uses a workload model based on real data.
Furthermore, in this paper we specifically explore circuit partitioning strategies which were not
considered in their analysis.

THE MODEL

This section describes a simple performance model for the simulation engine in Figure 1. The
model can be used to compute upper bounds on architecture performance. The model parameters
are first introduced and then the overall model is developed. The partitioning problem will be
considered in the context of this performance model.

Model Parameters

The output (dependent) variables, input (independent) variables, and design parameters of the
model are shown in Table 1 below. The output variables are our performance measures of
interest and are functions of the input variables. Values for the input variables can be obtained
from measurements of a conventional, sequential simulator. The design parameters included in
this model are the number of processors (P), the effective width of the communication network
(degree of communication concurrency) (W), and the times for event/function evaluation (tg),
communication of one event message (tyy), and clock synchronization (ts, tp).

Table 1. Variable Definitions.

Type Definition
Output | Simulation run-time using P processors
Input Number of busy ticks
Input Number of idle ticks
Input Number of event/function evaluations
Input Number of messages when P — «
Input Work distribution across processors (B=1: even distribution; B>1:
uneven distribution)
Design | Number of processors (event/func. evaluators)
Design | Average communication width (number of concurrent messages)
Design | Component-to-processor allocation
Design ; Average single-event/func. evaluation time
Design | Single message transmission time
Design | Time to send a START signal
Design | Time to send a DONE signal

g & > mFmeyé

In a machine with a unit increment clock, the simulation clock runs for B+I simulation ticks or
cycles during which at least one event evaluation is performed in each of B (Busy) ticks and none
during I (Idle) ticks. There are a total of E event evaluations which are distributed over the B
busy ticks and P processors. When there are multiple processors, the number of event evaluations
may be distributed unevenly across the P processors resulting in one processor having to perform
more event evaluations than the other processors. The most heavily loaded processor has P times
more evaluations to perform than the average number of evaluations.

The average event/function evaluation time is ;. Although some evaluations may take more time
than others, we assume that all event/function evaluations take the average event/function
evaluation time and that this time is invariant with the number of processors. During the I idle
ticks, the system must still spend some time skipping over the idle ticks. This involves the
transmission of the START signal by the master processor (tg) and the processing of the
subsequent DONE reply from the slave processors (tp). The sum of these two times is referred to
as the synchronization time, tgyne = tgttp.

A change at the output of a component is an event (representing a signal change) which needs to
be propagated to the inputs of each fanout component (those receiving the new signal value).

During the course of the simulation, there are M,, such propagations. M., is the maximum number
of messages which would be transmitted over the communication network. The propagation of
the event will take, on average, t, time units for each message transmission. Note that for
simplicity, we have ignored approaches which transmit multiple events in a single message
transmission. The component-to-processor allocation scheme and the circuit characteristics will
determine how many of the M,, signal propagations will be transmitted over the communication
network.

The communications network enters the model in two main ways. First, when there is more than
one processor trying to communicate across the network at the same time, only W messages are
accepted by the network. Thus, W is the effective width of the network, All other messages are
queued until the network can accept more messages. Second, the speed of the network is
captured in the parameter t,, which is the mean time required to transmit one message from
source to destination processor.

Model Expressions

A simple mean-value model of the run-time of a P-processor system can be derived under the
assumption that the ratio of the event/function evaluation time to the communication time is
fairly constant over all busy ticks and is given by:

M,

—-_W—[M) + (B+tgync, PS% [1]

The term (B+Dtsync accounts for those START and DONE signal transmission times which are
not overlapped by either event/function evaluation or event-message communication. The term
(Etg)/P represents the total event/function evaluation time when the events are evenly spread over
the P processors. The § factor accounts for the degree of load imbalance and will be one when
perfectly balanced and P when all events are on one processor. The term (Mpty)/W represents the
total communication time during the entire simulation. M, is the number of messages in a P-
processor system, ty is the time required to transmit a single message, and W is the maximum
number of parallel message transmissions permitted by the communication network. The max
function accounts for the overlap of communication and cvent/function evaluation assuming that
there can be complete overlap and the larger time component in each busy tick is always
evaluation or communication,

E
Rp=max (Bt

The model shows that when event/function evaluation is the dominant time component, the run-
time decreases as the number of processors P increases (i.e., linear speed-up) assuming B remains
constant. When communication is the dominant component, the run-time will depend on the
number of message transmissions Mp, the communication concurrency W, and the message

transmission fime ty.

Though not pursued here, our model can be extended to account for pipelining both within the
slave processors (Wong and Franklin 1987) and the communication network. That is, the
simulation algorithm can be divided into stages which must be executed in sequence for each
event. Similarly, the communication network may contain stages which a message must traverse
to reach its destination. For this study we assume that both the event evaluation pipeline length
and the network depth are 1.

THE PARTITIONING PROBLEM

In this section, two partitioning strategies are evaluated with respect to the effects on the
simulation run-time. First we discuss the general circuit partitioning problem. Next, a
partitioning scheme where components are randomly assigned 1o processors is analyzed. The

-4-

message volume associated with random partitioning can be taken as an upper bound for
acceptable partitioning strategies. Finally, a more intelligent partitioning scheme based on the
idea of aggregating closely connected components on the same processor while maintaining
computational balance is examined.

A circuit with C components can be represented as an undirected graph G =< V,E, > with vertex
set V having elements {1,2, ... ,C} and edge set E, which is a subset of the set of vertex pairs
VX V. Verticies correspond to circuit components and edges to connections between
components.

A particular allocation of the C circuit components to the set of P processors is represented by a
C-by-P allocation matrix A with entries a; which is 1 if vertex i is assigned to processor j and 0
otherwise. The optimization problem of interest is to determine the component allocation (i.e.,
the elements of A) which minimizes Rp subject to the constraint that each component (or vertex)
is assigned to only one processor. While this problem can be solved exactly using branch and
bound techniques, problems of this kind have been shown to be NP-hard (Lo 1983) and thus for
circuit sizes of interest (i.e., several hundred thousand components) heuristic allocation
approaches must be utilized.

In the random partitioning scheme, C/P components are chosen randomly without replacement for
each processor. A message arises when the output of a component located on proeessor i must be
propagated to a fanout component located on a different processor j (i#j) . Since there are C/P
components on each processor, the fanout component could be any of the other (C/P)-1
components on processor i or the C—(C/P) components on the other processors, all with equal
probability. Since there are a total of M, signal propagations, the number of transmitted
messages is given by:
C-p)

Mp=M.,, c-1 - M..(1-1/P) [2]
Note that the number of messages transmitted across the communication network is 0 when there
is one processor and increases with increasing P until it is equal to M,, when each component is
placed on a separate processor. The above expression can be rewritten as

M, = EFf(P) = EF(1 — 1/P) [3]

where {(P) = (1 - 1/P) is the fraction of messages which must be transmitted over the network, and
M.~EFE.

The partitioning heuristic presented below is based on attempting to allocate components to
processors so that two conditions are met. First, the number of components on each processor
should be roughly equal to ensure that the computational load on each processor is about equal
when events are randomly distributed over the processors. Second, components which are
closely connected to each other should be placed on the same processor to reduce the
communication volume since closely connected components tend to communicate heavily with
each other.

Define the distance Dy; between two verticies i and j as the minimum number of edges required to
establish a path in G between the two nodes. The heuristic for P processors and the graph
G=<V.E_> is as follows:

1. Initial Component Allocation: Choose P vertices such that:
a) Each vertex is chosen randomly without replacement from V.

b) The distance between all selected vertex pairs is greater than some D*
(i.e., Dy >D", for all i, i#j). The selected vertices form the starting or seed nodes

for the P sets V,, 1<p<P.

2. Subsequent Component Allocation: Add one vertex to each set of vertices V,,, 1<p<P, such
that:

a) Each vertex is chosen without replacement from the set of unassigned vertices.
b) The vertex is distance 1 from at least one vertex in Ve

¢) If there is at least one vertex satisfying conditions a and b, choose one vertex
according to the veriex selection procedure discussed below. Otherwise, randomly
choose an unassigned vertex.

3. Procedure Iteration: Repeat step 2 until there are no vertices left to assign.

Denote the set of vertices defined by conditions a and b in step 2 by U(V,), the set of unassigned
vertices with distance 1 from some vertex in V,. The approach studied in this paper in selecting a
vertex 1o assign to processor p is to randomly select a vertex from U(V}p) in a breadth-first manner
(i.e., whose distance from the seed node is minimum). The value of M, will depend on the
topology of the circuit being simulated, the number of processors present, the partitioning
algorithm and the set of test vectors employed. The next section presents experimentally
determined curves for f(P) and thus Mp.

EXPERIMENTAL RESULTS

Data for our model was collected using the Isim gate/switch-level logic simulator running on a
VAX 11/750%. Lsim is a UNIX*/C-based simulator which was designed with data collection on
the simulation process in mind (Chamberlain 1985, Chamberlain and Franklin 1986a). It can
simulate systems containing both traditional unidirectional logic gates, and bidirectional MOS
switches. Although Isim supports three types of delay models, the data presented in this paper
were from the fixed delay model in which component delays are modeled by fixed low-to-high
and high-to-low propagation times.

Our benchmark consisted of the four circuits shown in Table 2 (stop watch, associative memory,
priority queue, and a radiation treatment planning chip). These circuits reflect a mix of
characteristics (Table 3) and are the product of four graduate student design teams. The test
circuits were kept small enough to insure that simulation run lengths were reasonable and disk
storage availability was adequate. The Switches and Gates columns in Table 3 indicate the
number of isim bidirectional switches and unidirectional gates used in defining the circuit. The
right column reflects the total number of transistors in each circuit,

t VAX is a trademark of Digital Equipment Corporation.
* UNIXis a trademark of AT&T Bell Laboratories.

Table 3: Circuit Characteristics.

Circuit Tech.* | Type* | Switches | Gates | Total | Approx. Trans.*
Stop Watch nmos sync 216 131 347 650
Assoc Mem nmos async 296 454 750 1,700
Priority Q Cmos sync 2,960 720 | 3,680 5,100
RTP Chip nmos sync 1,422 1,746 | 3,169 6,100
Average 1,224 763 | 1,987 3,388

* Technology, synchronous, asynchronous, Approximate number of transistors

The partitioning heuristic described earlier was applied to the circuits for processor populations
ranging from P=2 to P=128. Then, random test vectors were applied to the circuits using Isim,
and the message volumes My and M, were recorded. Next, the ratio M(P)/M.,, for different values
of P were calculated to obtain data points for estimating a theoretical expression for f(P). Finally,
the coefficients of f{P) were obtained using the Jeast-squares method and normalized with respect
to the problem size.

Unlike random partitioning, f(P) for heuristic partitioning does depend on the circuit

characteristics and the problem size (number of components C). In all four circuits, the following
function with circuit dependent constants ay, a,, and a, fit the heuristic partitioning data well:

f(P)=a0--—2—:—+a2P [4]

Figure 2 shows f(P) for the heuristic (solid curves) and random (dashed curve) partitioning.

1.0 F random
assocm
stopw

0.8

0 6 pqueue

(P) P

04

0.2 |

0-0 e 1 | | f f ! |

0 20 40 60 80 100 120 140 160
P

Figure 2, Unnormalized Message Function f(P).

However, the heuristic partitioning curves are for the circuit sizes shown in Table 3 and will be
different for different circuit sizes. In order to express f() so that it is independent of circuit size,
we rewrite Equation [4] by replacing P by C/C; where C is the number of components shown in

.7-

Table 3 and Cp is the number of components assigned to each processor (=C/P):

b
fCr)=bo—biCp+ o [5)
P

where bg=ay, b=2,/C, and b=a,C. Table 4 lists the coefficients b, which were obtained using a
least-squares fit and the root-mean-squared (RMS) error for the four circuits.

Table 4. Leasi-Squares Coefficients.

Circuit by b, b, RMS error
Stop Watch | .631 | .00254 | 0.90 0056
AssocMem | .661 | .00150 | 1.19 0089
Priority Q S11 | .00020 | 3.44 0033
RTP Chip 408 | .00016 | 3.12 .0029
Average 553 | 0011 2.16 0052

To convert back to the form in [4] where f() is a function of P, the constants a; are computed from
ag=bg, 2,=b,C, and a=b,/C. to illustrate the calculation of f(P) from f(Cp), consider a 40,000
component circuit equivalent to the priority queue. Since C=40,000, b=.511, b;=.00020, and
by=3.44, we compute ag=bg=.511, a;=b,C=8, and a,=b,/C=8.6x107, So,

£(P) = 511 — % +8.6x10°P [6]

One note of caution is that the theoretical equations for f(P) can only be applied to processor
populations which yield Cp-values which fall in the range of measured values. Furthermore Cp-
values at the extreme parts of the range may be suspect. For example, the priority queue has
C=3,680 components. Since our measurements were for the range of P=2 to 128, the data is at
best valid for the range Cp=C/P=29 10 1840 components. This means that for a circuit which is 10
times as large (36,800 components), the data may be applied to processor populations in the
range from 20 to 1,280 at best.

EFFECT OF PARTITIONING ON SPEED-UP

This section illustrates the impact of the heuristic partitioning algorithm on the performance of
the simulation engine shown in Figure 1. The effects of the heuristic partitioning algorithm for
other architectures can be examined in a similar manner. We consider the priority queue circuit
scaled to 40,000 components as an example. An idealized speed-up equation is used to compare
the effects of the two partitioning algorithms.

An idealized speed-up $* can be derived by dividing the single-processor run-time Et; by the P-
processor run-time given in [1]. Since we are focusing on the effect of the partitioning strategy,
we omit the synchronization term (which is independent of the partitioning) from the run-time
equation [1]. After substituting the expression EFf(P) for M, omitting the synchronization time
component, and expressing by, as ty=Kytz, the speed-up equation becomes:

« . {P W
S = min | —, 7

[B Ff(P)KM} 7]
K, is the ratio of the single-message transmission time and the single-event/function evaluation
time. The speed-up is idealized in the sense that we have ignored the clock synchronization time
and used uniformity assumptions.

We consider the parameter values W=1, B=1.1, Ky=.05, and the f(P) derived in the preceding
section. W=1 corresponds to a time-shared bus. Ky=.05 might correspond to a message time of
ty=400 ns and a single-event evaluation time of tz=8 ps. The average fanout for the priority queue
was F=1.5. Curves for idealized speed-up versus number of processors are shown in Figure 3 for
the random and heuristic partitioning schemes. The speed-up curve for random partitioning
indicates that the bus is already saturated and has limited the speed-up to about 14, Although not
shown in the graph, the bus saturates when the number of processors reaches around 13 for
random partitioning. However, heuristic partitioning has reduced the message volume so that the
bus does not saturate until around 40 processors. The performance of the heuristic partitioning
scheme on the RTP chip is very similar to the priority queue since its f(P) function is almost the
same.

40 F
35 +
30 |
S . N
p Heuristic Partitioning
[3]
S5 L
U
Y
20 |
15 Random Partitioning
10 H 1 1 [|
20 40 60 80 100 120 140
Number of Processors P

Figure 3. Effect of Partitioning on Speed-Up.

Thus, random partitioning may be appropriate for small processor populations. But the use of
hundreds of processors may need better partitioning strategies.

SUMMARY AND CONCLUSIONS

This paper presented a model which could be used to estimate the effect of circuit partitioning on
simulation machine performance and presented some preliminary results from some partitioning
experiments. A simple heuristic partitioning scheme based on allocating circuit components
based on seed vertices separated by a distance D* was compared to random partitioning. Results
indicate that for processor populations in the tens and perhaps hundreds, a heuristic partitioning
scheme can offer improvements of 2 to 4 over random partitioning if system performance is
lirnited by the communication network.

The heuristic presented here is a simple heuristic which employs very little knowledge of the
circuit, We are currently gathering data on other heuristics which are based on knowledge of

9.

either the location of registers or user-supplied data. These methods seem to offer yet further
reduction in the message volume. We are also developing performance models of logic
simulation on hypercube machines and redesigning the Isim simulator to handle mixed-mode
simulation on a hypercube.

References

Ashok V, Costello R and Sadayappan P 1985 “‘Distributed Discrete Event Simulation Using
Dataflow,”” Proc. Int. Conf. on Parallel Processing, IEEE Comp. Soc. Press, pp. 503-510.

Chamberlain R D 1985 “‘Lsim: A Gate-Switch Level Logic Simulator,”” M.S. Thesis, Dept. of
Comp. Sci., Washington University, St. Louis, Missouri.

Chamberlain R D and Franklin M A 1986a *‘Collecting Data About Logic Simulation,”” IEEE
Trans. on Computer-Aided Design CAD-5:3, pp. 405412,

Chamberlain R D and Franklin M A 1986 ““A Unified Approach to Mixed-Mode Simulation,’’
Technical Report WUCS-86-20, Dept. Comp. Sci., Washington University, St. Louis, Missouri.

Denneau M M 1982 ““The Yorktown Simulation Engine’’ Proc. 19th Design Automation Conf.,
pp. 55-59.

Franklin M A, Wann D F and Wong K F 1984 *‘Parallel Machines and Algorithms for Discrete-
Event Simulation,’” Proc. 1984 Int. Conf. on Parallel Processing, pp. 449-458.

Hahn W and Fischer K 1985 ““MuSiC: An Event-Flow Computer for Fast Simulation of Digital
Systems,’” Proc. 22nd Design Automation Conf., pp. 338-344.

Hefferan P M 1985 et al, ‘“The STE-264 Accelerated Electronic CAD System,” Proc. 22nd
Design Automation Conf., pp. 352-358.

Howard J K, Malm R L and Warren L M 1983 ‘“Introduction to the IBM Los Gatos Logic
Simulation Machine,’” Proc. IEEE Int. Conf. Comp. Design (ICCD’83), pp. 580-583.

Levendel Y H, Menon P R and Patel S H, *‘Special-Purpose Computer for Logic Simulation
Using Distributed Processing,’’ The Bell System Technical Journal, Dec. 1983, pp. 2873-2909.

Lo V M 1983 Task Assignment in Distributed Systems, Dept. of Computer Science, University of
HMinois, Ph.D. Thesis.

Misra J 1986 *‘Distributed Discrete-Event Simulation,’” ACM Computing Surveys 18:1, pp. 39-
65.

Plister G F 1982 *'The Yorktown Simulation Engine: Introduction,’”” Proc. 19th Design
Automation Conf., pp. 51-54.

Silicon Solutions Corp. 1985, ‘“The Mach 1000 Simulation Engine,”’ Product Description.

Smith Robert J, I 1986 ‘‘Fundamentals of Parallel Logic Simulation,”’ Proc. 23rd Design
Automation Conf., pp. 2-12.

Valid Corp. 1984 ‘‘Realfast Simulation Accelerator,’” Product Description.

Wong K F et al 1986 ‘““Statistics on Logic Simulation,”” Proc. 23rd Design Automation
Conference, pp. 13-19.

Wong K and Franklin M A 1987 *‘The Performance Analysis and Design of a Logic Simulation
Machine,”” Proc. 14th Annual Int'l Symp. on Computer Architecture, pp. 46-55,

Xcelerated Computer Aided Technology Inc. 1986 “MX and MXT Series,’” Product Description.
Zycad Corp. 1983 ““The Zycad Logic Evaluator,” Product Description.

-10-

	Load and Communications Balancing on Multiprocessor Logic Simulation Engines
	Recommended Citation
	Load and Communications Balancing on Multiprocessor Logic Simulation Engines

	tmp.1462913377.pdf.SS8n0

