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Abstract

This report introduces a new parallel computation model that is suitable for pursuit of
large scale concurrency. Our goal is to develop a semantically clean paradigm for distributed
computation with fine-grained parallelism. Our approach is to demote the notion of process
as the key concept in organizing large scale parallel computation. We promote, instead, the
notion of transaction, an anonymous atomic action void of internal state, as the basic element
of computation. We propose to organize a computation as a network, called a fransaction
net, of databases connected by transactions. A transaction, when it is fired, consumes data
objects from source databases and produces data objects in target databases as an atomic
action. A transaction net is akin to a Petri net, where the token, the place, and the transition
corresponds to the data, the database and the transaction, respectively. The state of
computation is represented by the data state without the control state.

An informal definition of the model is given, and solutions for well known programming
problems such as sorting, transitive closure, Hamiltonean circuit, shortest path, and the eight
queen's problem.



1. Introduction

In the past, a parallel computation was usually modelled by a society of processes
communicating with each other, either through shared memory protected by a monitor as in
Concurrent Pascal, through message passing as in the Actor model and CSP, or through
remote procedure calls as in Ada. We call the underlying paradigm for these models the
send/receive (SR) paradigm, because the primary communication primitives are the
send/receive operations. We will propose a parallel computation model based on a different
set of communication primitives; the consume/produce operations. Thus, we call the
underlying paradigm for our model the consume/produce (CP) paradigm.

A process can be arbitrarily complex in terms of local data structures and control
sequencing. A process's internal state consists of its control state and its data state, The state
of computation is represented by the cartesian product of the individual process states. The
systolic model and the dataflow model also share the same characteristic of process

dominance over data.

There are at least two difficulties in scaling up such process-oriented models. The most
significant one is the complexity of algorithm analysis due to the coupling between the
control state and the data state. For example, the deadlock detection in a CSP program
requires information about which process is in what state waiting for what data. Similarly, in
systolic algorithm design, data synchronization requires the knowledge about which cell in
what state carries what data and is ready to transfer them to which neighbor. Keeping track
of both control state transition and data state transformation simultaneously becomes a
formidable task when the number of processes increases. Our proposed solution to this
problem is to make a process void of internal state and to reduce algorithm analysis to data

state analysis.

The second difficulty comes from the management of process identifiers. Since the
process name is required for communication through a send/receive protocol even when
process names do not contribute to the computation, the programmer must manage a large
name space for a large scale concurrent system. This is similar to the label management
problem in assembly language programming. With structured programming constructs,
programmers seldom need to use a label, while in assembly programming he is forced to use
labels. Our proposed solution is to make a transaction anonymous and to replace direct



send/receive communication with indirect consume/produce interaction which requires no

process identification.

The history of consume/produce paradigm of computation goes back to Post and
Markov, even though parallel computation was not an issue for them. It was inherited by
Production Systems [10] in Al applications and is adopted by Al programming systems such
as OPS83 [3] and KEE [2] as a mechanism for forward chaining. The bridge between the
consume/produce paradigm and parallel computation was proposed by the closure statements
of associons [7] and generative communication in the Linda project [4]. However, in all
previous known efforts, processes are not necessarily atomic and the database, called the
tuple-space or working memory, is the global buffer shared by all processes. In contrast,
our transaction is atomic and the database is modularized and distributed to facilitate larger
degree of concurrency.

The Petri Net was originally proposed by Petri as a communication behavior model [9]
and later was reintroduced as a concurrent system model by Holt and Commoner [5]. Since
then, several attempts have been made to use Petri nets for modelling parallel program
behavior. For example, the Colored Petri Net of Zervos [12] defines a colored token to
represent an activation of reentrant code (e.g., recursion). However, no known efforts have
been made to use a Petri net as a directly executable program statement. There are two major
incentives for us to define a programming paradigm based on the Petri Net: a simple and
clean formal semantics and a two- dimensional syntax suitable for visualization.

Visual programming is a new concept in software engineering that takes advantage of
high resolution graphics capabilities for better software environments. While we have
demonstrated with the Show and Tell visual programming language design [6] that no textual
expressions are needed for programming, our experience suggests that a combination of
textual and iconic representations of language constructs would yield better visual languages.
A transaction net is a combination of a two dimensional graphic structure and textual

expressions.

In the next section we will define the transaction net informally with simple examples. In
Section 3 we will construct transaction nets for various programming problems, including
sorting, the problems of finding the transitive closure, directed Hamiltonean circuit, shortest
paths in a finite digraph, and the eight queen's problem. In the concluding section we will
discuss research problems associated with the transaction net.



2. Transaction Net

We will define the transaction net here informally by using simple examples to present the
basic concepts. A formal definition will be given elsewhere. Though a transaction net can be
defined on any data type, in this paper we will use the integer data type as the basic data
objects,

A transaction net is a bipartite directed graph of databases (circles) and transactions
(boxes) connected by a set of arcs as schematically shown in Figure 1.

Source Target
Database Transaction Database
@ Query Update @
Y
. 8(3,7) n(T,8')
3 T 5

Figure 1: Scheme of Transaction Net

The marking [1(8) of databases 6 is a set of data expressions each of which consists of
constants and parentheses in the form of well balanced parenthesis expression representing a
structured data object (a list of integers, for example). Every arc from database 8 to a
transaction T is labelled by a query expression 6(5,t) consisting of variables and parentheses
in the form of well balanced parenthesis expression. The query expression © specifies the
patterns (forms) of data objects to be consumed by T from & when < fires. Similarly every
arc from a transaction 7T to a database &' is labelled by an update expression w(t,d") in the
same form as query expressions with variables and parentheses. The update expression &
specifies the data objects to be produced by T in §' when < fires. The transaction box T may
be empty or may contain a constraint expression y(T) which is a predicate consisting of
variables, constants, data operations, and logical operations {A, v, — }. The constraint
expression ¥ specifies a condition to be satisfied by all the data objects consumed and
produced by a firing of the transaction. The transaction t is enabled to fire when the

following condition is satisfied:



There exists an assignment ©: Variables — Constants, which is a mapping from

the set of variables to the set of data expressions, such that for any database &
connected to T,

(1)  o(8(3,7) < Wd),

2) () - o(8(8,7)) ) N o(n(t,8)) = ¢ (the empty set), and

(3)  o(y(m) is true,

where o( ¢ ) denotes the result of substitution for every occurrence of variables in o by
the corresponding constant under 6. For example if 6(5,7) = { x)(¥), GX{¥)E)) },
o(x) =2 and o(x) = 3, then 6(8(5,7)) = { (2)(3), D)((3)(2)) }. Thus, o(B(8,t)) and
o(n(t,0") represents in general a set of data objects.

The condition (1) states that the transaction, when it fires with a chosen assignment,
should be able to consume all the data objects specified by the query expression under the
assignment. The condition (2) states that the data objects to be produced by the transaction
should not exist in the database after the data objects to be consumed by the transaction are
removed from the database. It follows that the firing condition for a transaction depends
upon the markings of both target databases and source databases. This contrasts with the
firing rule of the Petri net which states that a transition may fire if all the input places has at
least one token, regardless of the contents of the output places. The condition (3) states that
the choice of assignment, namely the choice of data objects for productions and
consumptions to and from different databases connected to the transaction, must satisfy the
condition associated with the transaction.

Among the set of enabled transactions, one transaction, a nondeterministically chosen
one, may fire at a time. When the transaction 1 fires, there exists at least one assignment
satisfying the above three conditions, and, with a nondeterministically chosen assignment o,
the marking [t of databases changes to Ju' as follows:

For any database 8, u'(8) =u(d) - o(6(8,7)) + o(n(t,d)),
where + denotes the set union operation and - denotes the set difference
operation.
If there is no arc from & to T, then 6(6(3,t)) = ¢ by definition, and similarly if
there is no arc from < to 9, then ¢(n(t,d)) = ¢.

It is important to note that the above definition of transaction net does not provide a net
with the capability of detecting the absence of a particular data object at a particular database.
By the same token, there is no direct way of testing whether a particular database is empty.
In other words, it is impossible to construct a transaction net in which a particular transaction



fires when and only when the database becomes empty. This is parallel with the Peiri net's
incapability of counting without an introduction of the inhibitor arc.

It is also important to note that, as in the Petri net, the restriction to one firing at a time
does not limit the model's capability of specifying concurrent activities in any way. We will
discuss this issue further in the next section.

In order to illustrate the syntax and other notations we will use in the next section, we
present in Figure 2 a sequence of transaction nets all computing the factorial function. The
purpose of this example is not to demonstrate the model's capability for concurrency
specification, but to explain different notations and the firing rule defined above.

X
( : !l x>0, y=x-1, v=u*x
y

5 &

(a)
X
‘ : [I x>0, y=x-1, v=u*x
y
(b)
X u
< ): —
x>0, y=x-1, v=u#*x @
y v
(c)

Figure 2: Factorial Functions (a) - (¢)

The net (a), which has one transaction and two databases, computes the factorial of 5. The
transaction is enabled by the following assignment G: o(x) = 5, o(y) =4, o(u) = 1, 6(v) = 5.
The firing with this 6 will change the marking of (a) to that of net (b). By firing the
transaction five times, the net reaches the quiescent marking of net (c).

X u
‘ : ,l x>0 ‘ : )
x-1 u®x

Figure 2: (d)




x(y)
@ > x>0
(x-1)(x*y)
Figure 2: (e)

The net (d) is an abbreviation of net (a). In this abbreviated syntax we allow data
operations in update expressions so that constraint expressions can be simplified by reducing
the number of variables. The net (d) can be transformed into an equivalent net (€) using the
structured data objects. Note that by a similar method any transaction net with n>0 databases
can be transformed into an equivalent net with one database containing a set of n-tuples.

x>0

Figure 2: (f)

The net (f) contains a subnet that represents the factorial function. In this syntax we
allow a constant to appear in query expressions and a straight line to represent a transaction
as a transition in the Petri net. The transaction Out can fire only when the computation of 5!
is completed. Note that firings of the main transaction preserves the following invariant on
the markings: p(X)! * W(F) =nl.



3. Concurrent Computations

In this section we will present some examples of concurrent transaction nets, The factorial
examples given in the previous section represent sequential computations in the sense that at all
times there exists only one transaction enabled in a net and that at all times there exists at most
one data object in each database. We define two enabled transactions to be concurrent if they are
not in conflict and the order of firings of the two is insignificant. A transaction net is concurrent
if there exists a reachable marking under which two enabled transactions are concurrent. For

example, consider the nets in Figure 3 below.

A A
X .I *+1 X x+1
\ X .| x+1 \ X x+1

B B

(a) (b)

1,2 ;I
X I x+1
(c)

(d)

Figure 3: Concurrent Transactions



The net (a) is not concurrent because while A and B are enabled they are in conflict, i.e.,
the firing of one would block the firing of the other. On the other hand (b) is concurrent
because the two transactions are enabled and no conflict exists. The net (¢) is an interesting
case. According to the above definition, this net is not concurrent because there is only one
transaction. However, this net is isomorphic to (b) in the sense that any reachable marking of
(b) is also a reachable marking of (c), and vice versa. As a matter of fact, it is easy to show
that (c) is isomorphic to any net which has an unbounded number of the identical transactions
between the same pair of databases as in (d). Therefore, by considering (c) as an abbreviation
of (d), we claim that (c) is a concurrent net. Furthermore we will hereafter consider that every
transaction box represents an unbounded, arbitrary number of identical transactions sharing
the same source and target databases. With this understanding any net that contains more than
one data object in some database is a concurrent net and the degree of concurrency can be
measured in general by the number of objects in a database. In the following we will
construct transaction net solutions for well known programming problems.

Concurrent Factorial (Figure 4): The nets presented in Figure 2 compute the factorial
function sequentially. The net Figure 4(a) below generates n! into F in O(log(n)) time at best,
but there is no guarantee for such performance due to the nondeterminism about pairing.
(Note that we are assuming every transaction is duplicated in unbounded number of times.)
In this net and the remaining examples, we will use the abbreviation ',' for )(' in specifying
queries and updates. For example, (X,y) = x)(y) and (u(x),v(y)w) = (u(x))(v(y)w).

However, there should not be any confusion about ', used for separating two queries.

D={(@ii)!1<i<n}

@3:%), G+Lk,y) _l
D -

X (1,n,x)

3,k x*y) I

Figure 4 (a): Concurrent Factorial by Pairing

For example, one possible transformation sequence of D for computing 5! is as follows:
{ (LL1), 2,2,2), (3,3,3), (4,4,4), (5,55 }
{ (1,2,2), (3,3,3), (4,5,20) }
{ (1,2,2), (3,5,60) }
{ (1,5,120) }.



The net (b) also generates { (k,k!) | 1 <k <n } into F in O(log(n)) time using the prefix
method [11]. It is assumed that n is a power of 2. A double-headed arrow abbreviates two
arrows in each direction, i.e., the same objects consumed by the query will be produced back

to the same database.
(i+2%%], x*y, j+1)

l (4, %, j)

O SO m— T
k » %, 1 T TE— j<logn
Qx| x, logm G2y, L%

i, x, J) d, %, j-1)

i< 2%% D={(@i0)!1<i<n}
j<logn

Figure 4 (b): Concurrent Factorial with Prefixing

The following condition holds at any time for the database D:
(,x,))e D=(x*({i-2%)! =i!) where nl=1 for anyintegern< 1.

We now show that the condition holds for the initial state of D, and a firing of any
transaction in the network preserves the condition; i.e., the condition is an invariant of the
network. For the initial state: (i,1,0) € D=(i* (i -2**0)! =i! ). Suppose that D satisfies
the condition and the transaction on the right fires, producing (i+2*¥j, x*y, j+1) in D. We
want to show that (x*y) ¥ ((i+2%4)) - 2%(G+1))! = (1+2%%))}, ie.,

(x*y) * (i - 2% = @241
In order for the transaction to fire, there must be data objects, (i, x, j) and (i+**2,y, i), in D
such that 2%#¥j i A j<logn A x*({-2%*)I =i A y* ([{+2%4)) - 2% = [(+2%¥j)1.
Therefore, y * (x* (i-2%#))1) = ((+2*+)!, L.e., (x¥y) * (i - 2%%))! = ((+2¥¥))L,
Suppose that the transaction on the bottom fires, producing (i, x, j+1) in D. We want to show
that x * (i - 2**(j+1))! = i!. In order for the transaction to fire, there must be a data object,
(i,x,j)in D such that i <2*¥% A j<logn A x *(i-2**)! =il. Since i<2%¥] <2¥*(j+1),
(- 24P = (1 - 2%*(G+1)), therefore x * (i - 2%%(j+1))! =il. The transaction on the left does
not produce any new data on D, hence no effects on the condition.

As a corollary of the above property the following condition holds for F:
kx)e F=(x=k!).
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A computation of 8! (i.e., n = 8§ and log n = 3) will generates the following set of data
objects (i, x, j) into D:

i= 1 2 3 4 5 6 7 8
j=0 1 2 3 4 5 6 7 8
i=1 1 2 6 12 20 30 42 56
j=2 1 2 6 24 120 360 840 1680
ji=3 1 2 6 24 120 720 5040 40320

Sorting (Figure 5): For a given array {a;} of n > 0 numbers represented by a set of
ordered pairs A= { (i, a;) | 1 £i<n }, to construct the sorted array {bj} represented by
another set of ordered pairs B = { (k, by) | 1 <k <n } such that if (i,x), (j,y) € B andi <],
then x<y,and { ajl(i,aj)e A} ={brl(k,by) e B }.

In the sorting net of Figure 5, the database D initially contains a set of ordered pairs A
and will contain B when the net terminates. A firing of the transaction reduces the number
of inversions in D and the net terminates when no more inversion exists in D. Note that
the box in the network represents unbounded arbitrary number of identical transactions.

(a,b),(c.d)

»la<c

@ b>d
(a.d),(c,b)

Figure 5: Sorting

Transitive Closure (Figure 6): Find the transitive closure R+ of a binary relation R.
Assuming that the initial database contains the set of ordered pairs representing R, the net in
Figure 6 generates the transitive closure in the database. The net reaches the quiescent state
because R* is finite when R is finite, and when the transaction tries to produce a pair (x, z)
into R where it already exists, the transaction will be disabled according to the definition of
the firing rule for a transaction.

(x,y),(v.2)

Figure 6: Transitive Closure
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The Shortest Path (Figure 7): Find a shortest (minimum cost) path between a pair of
vertices in a given directed graph R with the set of vertices A = (az, a, ... , ag ), n>2, and
the cost function c¢: A2 — N such that for any x,y € A,

c(xy) =0 if x=y
=M if x,y)e R
>0 if (x,y)e RA xzy

where M =n * max{ c(x,y) | (x,y) € R } is an upper-bound of the cost between a pair of
vertices.

The net of Figure 7 computes the shortest paths for all pairs of vertices by updating the
cost between the vertices x and z whenever a new path through y is found to be less costly.
The invariant of the computation is that if (x,y.c) € DB, then ¢ is the shortest path length
(the minimum cost) between x and y, known so far. When the net halts the following
condition holds: For any vertices x, y, and z; the sum of the shortest path length between x
and y, and the shortest length between y and z, is always larger than the shortest length
between x and z.

(x,2,¢)
x,y,a l
¥,a) >
atb<c
(y.z,b)
(x,z,a+b)

Figure 7: The Shortest Path Problem

Directed Hamilton Circuit (Figure 8): Given a directed graph R with the set of vertices
A, to find a cycle containing every element of A.

In the net of Figure 8, it is assumed that A is represented by a single object
(a1, a2, ... an)=(a1)(@2) ... (an), n>2, stored in the database A, and R is represented

by a set of ordered pairs (a,b) € R, stored in the database R.

Note that the transaction Compute generates a permutation of A = (a1)(a2) ... (ay) as
follows: If (x,y) € C, then xyis a permutation of A.



C & (e vyIwW)
C Comput
x(y)z (@), x2) ) ‘(u(x)(y) vw) o
y
l ((x)y(2),0)) (x,y)

h 4
Out

(z.x)

(x)y(z)(x)

Figure 8: Directed Hamilton Circuit

To see how the algorithm works, consider: R={(1,2),(2,4),(2,3),(3,4),(4,1)} with
A=(1)(2)(3)(4). The transaction IN nondeterministically produces into C the set of all possible

starting and remaining vertices as { ((1), (2,3,4)), ((2), (1,3,4)), ((3),(1,2,4)), (4, (1,2,3)) }.

The database G guarantees that the transition IN would not produce redundant lists. The
transaction Compute selects a next vertex from the right list and moves to the left, producing
lists such as ((1,2), (3.4)) and ((3.4,1), (2)). The final output will be { (1,2,3,4,1),
(2,3,4,1,2), (3,4,1,2,3), and (4,1,2,3,4) } in H.

The Eight Queen's Problem (Figure 9): Find all configurations of placing eight queens
on the chessboard in such a way that no two queens attack each other,

We will represent a solution by a permutation of (1,2,3,4,5,6,7,8) satisfying the
condition that | a; - ajls [1i-j!for 1<i<j<8. One such solution is (1,5,8,6,3,7,2,4). The net
given in Figure 9 generates all possible permutations by sequentially testing the solution
condition for each addition of new element into the candidate permutation. The initial
database is (0, (1,2,3,4,5,6,7,8)).

12



D = ((),(1,2,3,4,5,6,7.8))
In

@ X0z ’I ©)x2) l

(Y)v(2),w)

Last | ly-zl#i

T((y,i,z)v,w)

Start

t

(x(y)u(v)w)

(x((y,1,v)),uw)

Ou
(x,0) J X
I

Next

(u(x,(y.1,2))v,w) >

ly-zl#i

(u((x,i+1,2z),y)v,w)

(u(x,(y,L,z)v,w) | ((y.1,z)v,w)

ly-zl=1

Figure 9: The Eight Queen's Problem

Of a list (x, y) in the database R, x represents a partially successful candidate permutation,
and y represents a list of available remaining elements. For example, ((3,6,4),(1,2,5,7,8)) in
the database shows that (3,6,4) is possibly a part of a solution for the eight queens problem.
The transactions Start, Next, and Last select one element from the available pool non-
deterministically and try to move it to the candidate list while testing the conflict with already
selected candidates. For example, ((3,6,4),(1,2,5,7,8)) in R will be transformed into

((3,6,4,2),(1,5,7.8)) in R as follows:
( (3,6,(4,1,2)), (1,5,7,8) )
( (3,(6,2,2),4), (1,5,7.8) )
( ((3,3,2),6,4), (1,5,7.8) )
( (3,6,4,2), (1,5,7,8) )

The above association will be completed into ( (3,6,4,2,8,5,7,1), O ) in R, and then by
Out one solution (3,6,4,2,8,5,7,1) will be generated. The purpose of the transaction Catch

Catch

by Start
by Next
by Next
by Last.

is to delete superfluous objects which failed the test.

13



4, Conclusions

As the examples in the previous section show the transaction net is a semantically simple,
expressively powerful, visual, and concurrent programming language. Two major issues
must be addressed before the concept becomes a significant alternative to the existing process
oriented paradigm. One is the ease of programming. The other is the implementability.

The ease of programming in a particular language requires four major supports: software
environment, simple semantics, friendly syntax, and a formal method of verification and
derivation. Our next step in this area is to develop a proof theory for the transaction net. One
possible approach is to construct a similar theory developed for the associon closure
statements by Rem [7]. Another possibility is to translate a transaction net into a set of
equations on the database states and to devise a method for finding their fixed-points as
suggested by Chandy for the Unity project [1].

The implementability of a transaction net, in essence, can be reduced to that of large scale
associative memory, i.e., content addressable memory, and to that of sharing such a resource
by a large number of processors. There are two approaches for implementing the required
mechanisms. One is to map those capabilities on the existing multiprocessor architecture
such as the N-Cube, the Connection Machine, the Transputer, and the bus-oriented network
of computers. The other is to design special purpose VLSI chips for large scale associative
memory and for inter-processor communication networks. The Linda project, addressing the
same implementation issue, is taking both approaches. Our next step will be to study the first
approach with careful performance analysis.
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