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1. Overview

This working paper presents the results of a comparative study between two texture
classification methods: co-occurrence matrix (COM), as define by Haralick, Shanmugam, and
Dinstein!!! and extended by many others!® 3"1’5], and texture energy measures (TEM), as defined
by Laws/®l. The co-occurrence matrix approach has not been very effective on the specific

images with which we are working. However, the Laws’ approach is giving us quite good results.

The comparison analysis in this report is performed using 2 single image, shown in Figure
1. A training set paradigm is used; three training/test sets were developed and used as a
commen basis for the comparative analysis. All three training sets contain 84 points, 12 points
in each of 7 categories. Two of these training/test sets are composed of points residing in the
center or middle of texture fields; they are designated as centrel training sefs. The third

training/test set is composed of points residing near the edge (2 or 3 pixels from the edge) of

Figure 1: Original Image
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texture fields; it will be designated as an edge training set.

Here we summarize the results obtained using the two central training sets applied using
different context window sizes, ranging from 5x5 to 15X15. Four metrics were used in the COM
method. The percentage of correct classification ranges obtained using these metrics were: 254
order statistics — 17-40% correct classification; L1 norm — 32-70% correct classification; L2
norm — 35-70% correct classification; vote (between the 3 previous metrics) — 33-69% correct
classification. The results for Laws’ texture energy measures were analyzed in two different
spaces: the original texture space, and discriminant space. The percentage of correct
classification ranges obtained were: texture space — 58-86% correct classification; discriminant

space — 67-98% correct classification.

Our conclusion from this comparative analysis is that Laws’ texture energy measures are
significantly more effective than COM methods for texture analysis of the kind of image we are

interested in analyzing, which are aerial photographs containing mostly adirectional textures.

1.1. Approach

Our general approach to texture analysis is somewhat different than that applied by
others/®3 48] We are attempting to determine texture on a pixel-by-pixel basis. (Of course,
this requires knowledge of the surrounding pixels.) This is in contrast to other methodologies in
which determining the texture of larger regions (either predefined or undefined) is the objective.
We feel that our approach has the advantage that the underlying texture analysis can be
applied in more flexible ways. For instance, a variety of segmentation or region growing
algorithms can be developed if a pixel-by-pixel texture classification analysis is used underneath.
There are also various efficiency advantages that occur because the texture at a specific pixel
can be caleulated immediately without having to analyze an entire region to find the texture at

just one specific point.
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The general approach is to consider context windows of size nxn {where n ranges from 5
to 15 in increments of 2). For each point in a training set certain information is extracted
about the pixels present in this window; this information is assumed to represent a summary of
the texture at the original point. This information is collected for each peoint in the training set
along with the category into which each point has been placed {a priori}. Then when an
arbitrary point in an image is to be classified into a category, the same information about that
point is collected and compared with that extracted for the points in the training set. The
point is classified as being in whichever category the summary data is "closest” to. There are
many metrics that might measure this concept of "closest”, and these can be applied on {a) a
point-by-point basis for each point in the training set or (b) a category basis, in which the

information has been summarized (usually by a simple average) for all points in each category.

1.2. Training Set Paradigm
Our approach to texture classification is the classical training set paradigm.

(a) Identify certain predefined categories of texture within the image (this is done ad hoc by

eye, depending on the specific textures present in the original image).

For the image shown in Figure 1, we have selected 7 categories of interest: tree, grass,

water, roof, earth, road, and shadow.
(b) Develop a specific training set based on these predefined categories. .

Based on these categories, we have developed 3 training sets (which will also be used as
test sets): tr, te, and ed. Each of these training sets contain 84 points, 12 points in
each of the 7 categories. Figures 2 and 3 display the tr and te training sets, for
which points have been selected in the centers of texture fields. Figure 4 displays the

ed training set, in which points have been selected near the edge of texture fields.
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Figure 3: Training/Test Set te
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Figure 4: Training/Test Set ed
Multiple training sets were developed for several reasons. First, we wanted to determine
how sensitive these methods are to different training sets, e.g., training sets whose points
reside in the centers of or at the edges of texture fields. Second, we wanted multiple
test sets to be able to evaluate the accuracy of the classification on test sets other than
the original training set. Specifically, we were interested in how accuracy dropped off

near the edges of texture fields.
(¢) Extract certain information about the points in the training set.

Different information is extracted for the twé methods analyzed. In the case of co-
oceurrence matrices, the major information extracted is the COM itself. However, three
different metrics will be used to measure the concept of "closest”. First, seven 22 order
statistics will be extracted for this matrix; this will be considered to be a vector in 7-
dimensional space. Second, an L1 norm will be applied to the matrix {when viewed as a

vector}). Third, an L2 norm will be applied to the matrix (when viewed as a vector).
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Our implementation of Laws’ TEM produces a vector in 15-dimensional space. This is

the information extracted in this case.

(d) Perform any transformation analysis (such as a discriminant analysis(’l) that may help to

"separate” the points in the different categories.

In the case of co-occurrence matrices, no transformation analysis is performed. In the
case of Laws’ TEM, a discriminant analysis is performed to attempt to separate the

categories,

It is possible to attempt to apply a discriminant analysis to the data extracted form the
co-occurrence matrices; however, this has not been done because it is relatively
expensive to apply for the L1 and L2 norms. However, in order to show the affect of the
discriminant analysis, all results shown for Laws’ TEM will be presented in both the
original space (called texture space) before any transformation is performed and the

final transformed space (called discriminant space).

(e) Calculate the "centers" of the categories in the transformed space (this is usually done by

simple averaging).

In the case of the co-occurrence matrices, all centers are determined by simple

averaging over all the points in a specific category. Specifically, for the 2°¢ order
statistics, the vectors in 7-dimensional space are simply averaged, component by
component. For the L1 and L2 norms, the matrices are averaged, component by

component.

In the case of Laws’ TEM, centers are calculated in a similar manner. The vectors in

15-dimensional space are simply averaged, component by component.
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(f) Extract certain information about the points in the test set (to be classified) and transform

it into the transformed space (assuming that the transform analysis of (d) is not vacuous).

In the case of co-occurrence matrices, no transformation is performed, since there was

no transformation analysis done.

In the case of Laws’ TEM, the discriminant analysis produces a linear transformation, a
15X15 matrix. The transformation into discriminant space is achieved by a simple

matrix multiplication.

(g) For each point of the test set (after transformation), determine which center it is closest to

and classify it as being in the corresponding category.

In the case of co-oceurrence matrices, four classifications are actually performed: simple
Euclidean distance is used on the 2°¢ order statistics vectors in 7-dimensional space; an
L1 norm is applied to the COM; an L2 norm is applied to the COM; a vote is taken

between the previous 3 methods.

In the case of Laws’ TEM, simple Euclidean distance is used in 15-dimensional space.

2. Co-Occurrence Matrices

Co-occurrence matrices and certain metrics applied to them have been found to be very
useful in texture analysis. In this section we define co-occurrence matrices and some of these

metrics. We also describe our implementation and present our results,

2.1. Definition and Metrics

A COM is basically a probability distribution specifying the probability of transiting from

one intensity level 1 to another intensity level j along a specific displacement vector, D (having
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a given direction and length), as the displacement vector is allowed to range over a given region
of interest, R. The basic idea is that if R is allowed to range over different portions of a field of
uniform texture, these probabilities will not change very much. Within our context, the region

of interest, R, will be an nXxn window.

DEFINITION

Let R be a region of interest; D be a displacement vector; i and j be the iniensity at
the tail and head of D, respectively:

8;; = Prob(tail{D) = i A head(D) = j for D € R)

T

Note that the size of the COM is a function of the intensity levels present in the image,
eg., if the intensity levels range over 0-255, then the COM is a 256x256 matrix. Also note that

S may be very sparse.

EXAMPLE

If R is given by the following image

and D is a unit vector in the positive x direction, then the COM is given by:
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20020
00001
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1100
01100

Given that the assumption that S will not change very much as R ranges over a field of
uniform texture is true, the pertinent question is how do we determine when two different co-
occurrence matrices are "close” to one another? Many metrics have been proposed. Haralick,
Shanmugam, and Dinsteinl!! have defined a large number of 2™ order statistics that might be
used as components of such a metric, and Conners, Trivedi and Harlow(?l and Conners and
Harlowl® have found the following 7 to be of particular interest. Here, S is an LxL COM whose

indices range from 0 to L-1.

Inertia
L=1L—1

I= 3300

) josl)

Cluster Shade

L=1L-1

A= 3 3 (i+i—n,—n,)S;
joml) jasl}

Cluster Prominence

Loil=1
B= E 2(1+3"ﬂx_#y)4si,j
j) jam)
Correlation
Lol ' Sij
C= 3 Y(i—ri—ny)
jem junl) Oxdy

Local Homogeneity
P e

L=3»3 5 Sij

=0 j=0 14+(1—])
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Energy
L—1L-1

E= 335

) Jm)

Entropy
L—1L—1

H= E Esi,jIOg(Si.})

) jumll
where

L=1 L=1

o= 231358y

im0 )

L—=1 L~1

Hy = 25 Esi,j
) )
L1 L—i
ol = 3 (i—#,)23.S;;
=0 jmd)

L1 . 2L—]
o'y2 = E(J““#y) ESLJ’
i=0

Jol}

We will use these, concatenated together as a vector in 7-dimensional space (along with

Euclidean distance), as one metric for "closeness”.
A second metric is the L1 norm, when S is considered to be a linear vector:

L—IL=1

L1(;S — ¢8)=33 > 1155 ~ oSyt

jusl) jeul)

A third metric is the L2 norm, when 3 1s considered to be a linear vector:

Lel1L=—1

L2(S ~ 2S)=‘\/ 3 BN

=) ju=0)
2.2. Implementation

Co-occurrence matrices have been found to be very useful in textures that have.a specific
"grain" to them, i.e., there is a specific directionality to the texture and a regular interval over
which the texture repeats itsell. The COM is very sensitive to the displacement vector, D,

which should be in the direction of the "grain" and have the appropriate length. In our case, all
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the textures in the image we are analyzing are adirectional. Thus, it is appropriate to average
co-occurrence matrices over many diflerent vectors to reduce or eliminate this sensitivity to D.
We have chosen to average co-occurrence matrices over Ds with four primary directions (north,

northeast, east and southeast) and all lengths that remain within the nxn window.

Our images are composed of grey scales that range from 0-255. Thus, a conceptual 8
matrix is 256X256, i.e., it contain 2!% entries. If such matrices are not compressed in some
manner, memory constraints become a significant consideration (1 MEG = 16 points). There are
several ways of compressing these matrices. We have chosen to compress co-occurrence matrices
into matrices of size 10X10 by linearly mapping intensity levels between the minimum and
maximum intensity levels within a window onto a scale ranging from 0-9, as done by Chen and

PavlidisPl. This also tends to suppress intensity level variation over a uniform texture fleld.

2.3. Results and Analysis

We have determined the percentage of correct classification (using the four metrics
discussed prior) over a variety of window sizes and utilizing (in all combinations) each
training/test set as a training set and a test set. The results of the analysis, using centers of
categories to determine the closest category, are presented in Table 1. First, note that when the
edge training set is compared to the central test sets (or visa versa), accuracy drops off
markedly, as might be expected. Only when the edge training set is compared to itself as a test

set does the accuracy remain relatively high, although even in this case, results drop off slightly.

Second, note that the 2°¢ order statistics give relatively poor resuits. In the central
training/test sets over all window sizes, the range percentage is 17-40% correct classification;
not very impressive. This is somewhat surprising, since other researchers have found these to be
very powerful in texture analysis, at least in textures that have a specific "grain”. We suspect

that the reason we are not obtaining better resulés may be a combination of the following
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Table 1
COM Percentage of Correct Classification - Center Distances

"Training Set

(2™ order statistics, L1, L2, Vote)

Test | Window

Set | Size r te ed
5 25,56,55,56 32,32,35,33  21,30,31,30
7 32,66,52,54 2445 ,490,45 19,33,29,32

r g 31,59,58,59 35,56,50,54 23,38,37,38
11 36,68,65,67 36,87,60,67 18,50,52,49
13 32,63,58,63 29,61,56,63  20,60,58,58
15 39,68,64,68 38,64.,60,64 20,52.56,52
5 17,36,35,37  25,57,54,56  14,29,26.26
7 19,50,50,49  26,57,58,58  23,40,43 42

ce g 39,56,58,56 44,61,61,61 20,48 4648
11 40,64,65,64 39,6863,68 17,51,57,51
13 39,64,64,64 37,6567,65 19,56,55,58
15 36,69,70,69 40,70,67,69 20,63,60,63
5 21,3542,38  20,21,20,21  27,44,50,45
7 94,36,36,36  18,35,33,33 31,4851 49

o 9 19,40,39,40  21,4544,45  926,68,62,65
11 90,44,44,44 21,49,49,50  26,69,63,68
13 91,48,46,48 19,4946,49  25,07,64,67
15 24455046 19455245  923,69,65,68

properties.

¢ small window sizes

Section 2.3.

The extent of many of the texture fields present in the image we are analyzing is already

less that our maximum window size of 1515, It did not seem reasonable to attempt larger

window sizes. Also, note that as window size increase, the accuracy fends to increase, but

this is not uniformly true. It is probable that the accuracy here has reached a plateau at

about the 15X15 window size.

¢ compressed intensity ranges

This seemed appropriate for efficiency in both time and space and tends to suppress

intensity level changes over uniform texture fields.
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s averaging over multiple displacement vectors
This was done to reduce the sensitivity of the COM to the direction and magnitude of the

displacement vector, since our textures are adirectional.

s unscaled vectors

A typical vector in 7-dimensional space looks something like
[0.0286, 3.8327, 0.0304, 5.5000, 0.3150, -14.3791, 308.6492)

where the magnitudes of the values shown here are representative of the values normally
present in these components. We did not scale (or weight) the separate components of the
vector so that a relative change in one component was comparable to a corresponding
relative change in another component. One mechanism for achieving this goal would be to
perform a mean/standard deviation analysis on the vectors in the training set and
transform vectors in the test set assuming that they will have approximately the same

distribution.

The first three reasons above may have to be discounted somewhat since we obtain much better

results for the L1 and L2 norms, to which the same negative arguments could be applied.

The results for the L1 and L2 norms are much better, ranging (for the central
training/test sets) from 32-70% correct classification; this is significantly better than the 2
order statistics. Note that the increased accuracy as a function of window size is much more
uniform than that for the 2°¢ order statistics. It may be that these types of norms are much
better for analysing adirectional textures than the 2° order statistics, which have given good

results in textures having a specific "grain".

The statistics for the vote metric are driven by the L1 and L2 norms and are essentially a

reflection of their increased accuracy over the 2™ order statistics.
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We were interested in determining how the classification accuracy would change if instead
of using the centers of categories, we compared each test point to each training point. The
results of this analysis is shown in Table 2. Looking down the main diagonal of the table, we
note accuracies of 100%. This is expected, but not significant, since the test set was the
training set. Looking at the off diagonal entries for the central training/test sets, we obtain a
range of 17-46% correct classification for the 27 order statistics and 31-829% correct
classification for the L1 and L2 norms. In general, this seems to represent an increase of about

5-10% on the average. However, note that this increase in accuracy is not uniform over the

entire table.

This is not a significant increase given the increased computational complexity of having
to compare all points in the training set of a category instead of just 1 summary point, the

Table 2
COM Percentage of Correct Classification - Individual Distances

Training Set
(2™ order statisties, L1, L2, Vote)
Test | Window
Set Size tr te ed
5 100,100,100,100 20,36,35,32 30,23,27,26
7 100,100,100,100  29,50,45,49 23,35,27,30
r 9 100,100,100,100  37,58,51,58 23,40,39,39
11 100,100,100,100 36,75,67,75 21,51,50,49
13 100,100,100,100  43,73,71,73 25,52,51,52
15 100,100,100,100 39,77,75,76 26,54,56,52
5 17,33,31,33 100,100,100,100 23,27,20,26
7 32,49 45 49 100,100,100,100 25 38,33,39
e 9 4463,61,64  100,100,100,100  20,40,35 40
11 38,75,77,75 100,100,100,100 20,57,52,55
13 39,77,76,80 100,100,100,100 37 56,5556
15 46,82,81.82 100,100,100,100 31,58,62,57
5 17,36,38,33 15,26,25,26 100,100,100,100
7 35,32,31,32 33,43,38,43 100,100,100,100
9 24,43 38,39 93,50,46,48 100,100,100,100
ed 11 29,52 51,52 926,51,48,51 100,100,100,100
13 24,51,51,51 23.51,51,50 100,100,100,100
15 25,52.50,52 29,57,51,67 100,160,100,100
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center of the category. Comparison with Laws’ TEM, in which only centers of categories were
used, will be performed only for Table 1. It was assumed that 2 similar increase in aceuracy

would result if individual comparisens were used for Laws’ TEM.

The results obtained here are surprisingly poor for the 2™ order statistics and surprisingly
good for the L1 and L2 norms. We have not seen these norms used as metrics for co-occurrence
matrices in the literature. More work should probably be done to verify these results on more
extensive data and determine if this degree of accuracy is retained or increased when applied to

textures with "grain”,

3. Laws’ Texture Energy Measures

In this section, we discuss Laws’ general approach, our specific implementation of it, and
and our results using the same image and training/test sets as those used for the co-occurrence

matrices.

3.1. Laws’ General Approach

Laws found, after analyzing many texture analysis methods, that certain I-dimensional
convolution masks identified or extracted certain important properties of an image that are

useful in texture analysis. Specifically, the four most important that he found were:

Ls=1[1 4 6 4 1)
Es=[-1 -2 0 2 1]
S5=[-102 0 1

R5=[1 -4 6 —4 1]

These convolution masks enhance intensity level, edges, spots, and ripples, respectively, in any
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specific direction that the mask is applied. The cross product of these four masks in the
horizontal and vertical directions produce 16 2-dimensional convolution masks, which he found
extracted information useful in texture analysis. As an example, the ES5E5 2-dimensional

convolution mask is given by:

1 2 0 -2 -1

2 4 0 —4 -2
0 0 0 0 0
-2 40 4 2
-1 -2 0 2 1

The L5L.5 mask does not produce useful information for direct texture analysis, but was found
useful for normalizing the other 15 convolutions as a function of intensity level. Laws found the
other 15 masks to be useful in texture analysis, and these are the ones we have used in our

implementation.

The images produced by applying the 15 convolutions masks to the original image are not
directly useful in texture analysis because the information at each pixel is very local to that
pixel {no more than two pixels away). However, it does extract local artifacts of the original
image (eg., edges, spots, and ripples). In essence, a blurring affect is needed to collect
information from more distant pixels. He found that taking a standard deviation over a
macrowindow of size nXn was appropriate for producing this blurring affect by pulling in
information from adjacent pixels. Taking the standard deviation is a computationally intensive
process, and he found that a very close approximation could be obtained by instead taking an
average (over the same nXn macrowindow) of the absolute value of the convoluted image. This

is much less computationally intensive, and is the method that we have chosen.

Using these 15 images (i.e., the averages over the absolute value of the convolution for the
15 different convolution masks), each pixel can be considered to be a vector in 15-dimensionzal
space. Using these vectors as his definition of texture space, he performed a texture analysis by

specifying predefined categories, selecting a training set, performing a discriminant analysis, and
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classifying an entire image based on closeness to centers in discriminant space, as previously

discussed.

3.2. Implementation

In this subsection, we describe our implementation of Laws’ TEM, and present a pictorial
representation of convolution images and averaged images. The important components of the
implementation will be presented by giving a scenario of the computational activities, in the

sequence in which they occur,

Step 1: Convolution Masks
Fifteen different 2-dimensional convolution masks are applied to the original image. Each
convolution is performed by a standalone preprogrammed convolution process. We have
convolution software that runs directly on the VAX /750 and separate software that runs on
the DVP of the DeAnza. We have created the convolution images using the VAX/750
software. Each of these convolutions extracts or enhances certain artifacts of the original
image. As an example of what these convolution masks extract, the results of applying
convolution mask ESE5 to the image in Figure 1 is shown in Figure 5; the E5E5 mask

extracts edges in both the horizontal and vertical directions.

Step 2: Averaging over an nxn Window
The absolute value of each of the 15 convoluted images is then averaged over an nxn
macrowindow (where n ranges from 5 to 15 in increments of 2). Again, this is performed by
a standalone preprogrammed averaging software; in this case we have used a version that
runs on the DVP of the DeAnza. This averaging has the aflect of blurring the image and
pulling in information from distant pixels (a maximum of 7 pixels away). The averaging
over a 15X15 pixel macrowindow for the convoluted image shown is Figure 5 is presented in

Figure 6. Note the blurring aflect.
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Figure 6: Average Over 15x15 Macrowindow

The results of Step 2 supply the preprocessed information needed by the remaining processing,

including category and training set selection, discriminant analysis, and classification. As
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subsequent processing changes (eg., using different training/test sets), these two steps need not

be repeated.

Step 3: Category and Training Set Selection

The seven categories and 3 training sets (tr, te, and ed) are used.

Step 4: Discriminant Analysis
A discriminant analysis based on the texture space of a specific training set is performed.
We are currently using an interactive statistical package called sl ¢o perform this analysis;
however, we suspect that the discriminant analysis of any given statistical package would
be sufficient for this computational component. S has been very useful to us in
understanding the nature of our training sets because it is very easy to interactively
compute and display (in both tabular and graphical form) the results of our analyses. The
insights that can be obtained from such an interactive statistical tool have been invaluable.
The discriminant analysis in S produces a transformation (in the form of a 15X15 matrix) of

texture space into discriminant space.

Step 5: Classification
A classification analysis is performed both in the original texture space and in the
discriminant space. Centers of the categories are calculated in the original texture space.
Then each point of the given training set is transformed into discriminant space and the

centers of the categories are calculated there.

Each point in a given test set is compared against the centers of the categories in the
original texture space, and classified into the corresponding category there. Then each
point is transformed into discriminant space and compared against the centers of the

categories in discriminant space.

Calculations of the centers, transformation into discriminant space, and comparisons to
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categories are all done in S.

3.3. Results and Analysis

Analyses similar to those done for co-occurrence matrices were performed for Laws’ TEM
using all combination of training/test sets. The results are shown in Table 3. Entries for the
central training/test sets over all window sizes range from 58-86% correct classification in
texture space and 67-98% correct classification in discriminant space. Even the results in

texture space are a significant improvement over any of the metrics used for the COM method.

Note that, in general, accuracy tends to increase (in both texture space and discriminant

space) as window size increases. However, this increase is not uniform. We suspect that the

Table 3
Laws’ TEM Percentage of Correct Classification - Center Distances

Training Set
(texture, discriminant)
Test | Window

Set, Size tr te ed
5 69,87 63,69 4564
7 76,88 67,77 48,65
o g 77,90 68,81 49,73
11 79,92 69,87 48,74
13 80,93 74,89 54,77
15 77,92 75,87 56,75
5 58,67 7481 4250
7 68,79 75,82 46,62
e 9 70,85 80,88 48,76
‘ 11 79,81 77,98 48,77
13 83,83 86,96 55,82
15 83,86 85,96 58,80
5 43,38 35,38 64,82
7 4448 4244 6581
9 45,50 44,50 63,86
ed 11 4952 4349 62,85
13 4855 4548 63,86
15 46,52 49,52 63,86
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accuracy in both spaces has reached a plateau at window sizes around 15%15.

Note that again when the edge training/test set is used in conjunction with the central
training/test sets, accuracy is degraded, as expected. Texture space accuracy seems to be
enhanced slightly when ed is used as 2 training set as opposed %o a test set. Also, when ed is
used as a test set, the discriminant analysis is not very eflective in improving classification
accuracy; however, when it is used as a training set, a more significant increase is observed. We

have no explanation for these artifacts.

4. Comparison and Conclusions

The most meaningful comparison of these data is between the L1 and L2 norms of Table 1
and the texture space entries of Table 3. These data have the common assumptions of {a) no

discriminant analysis, and (b) “closeness” is determined on the basis of centers of categories.

Restricting our attention to the central training/test sets, Laws’ texture space percentages
range from 58-86% correct classification and COM percentages range from 32-70% correct
classification. Clearly Laws’ TEM perform much better here. However, notice that when the
edge training/test set is used in conjunction with the central training/test sets it is no longer
clear that Laws’ TEM are superior, Laws’ TEM percentages ranging from 35-58% correct

classification and COM percentages ranging from 21-63% correct classification.

Turning our attention to the discriminant space of Laws® TEM, percentages range from
67-98% correct classification. These are very good results and clearly superior to any of the
COM metrics. However, of course, a powerful statistical back end (the discriminant analysis)

has been put in place.

Such a statistical back end might also be applied to the L1 and L2 norms of the COM

method. However, both the discriminant analysis and subsequent linear transformation would
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be very expensive here (for large images). Our implementation of co-occurrence matrices
produces matrices of size 10X10 (i.e., 100 entries). When viewed as a linear vector, this requires
a discriminant analysis in 100-dimensional space, and a subsequent matrix multiplication
{transformation) by a 100100 array. Of course, these complexities might be reduced by a
principle component analysis or a similar data compression method. However, since Laws’ TEM
are clearly superior to the COM method prior to discriminant analysis, there is no reason to

believe that there would be an inversion after discriminant analysis.

We conclude from this comparative analysis that Laws’ TEM is significantly superior to
the COM method when applied to images composed of adirectional texture fields. However,

COM methods may be comparable or superior when applied to textures with a specific "grain”.
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