Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-87-23

1987-08-07

Software for the Standard Linear Format for Digital Cartographic
Feature Data

Stephen E. Reichenbach

This paper describes application software and programming tools designed for use with the
Defense Mapping Agency's (DMA) Standard Linear Format (SLF) for Digital Cartographic
Feature Data. The Standard Linear Format (SLF) is briefly described in this report. It was
designed as a standard for the exchange of digital cartographic features on magnetic tape. The
format specifies descriptive fields about feature data, as well as specifying the representation of
the features. The application software described in this report can transfer files or tapes in this
format to relational database maintained under Ingres, graph features in the database, alter the
database,... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Reichenbach, Stephen E., "Software for the Standard Linear Format for Digital Cartographic Feature Data"
Report Number: WUCS-87-23 (1987). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/809

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F809&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F809&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F809&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F809&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F809&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/809?utm_source=openscholarship.wustl.edu%2Fcse_research%2F809&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/809

Software for the Standard Linear Format for Digital Cartographic Feature Data

Stephen E. Reichenbach

Complete Abstract:

This paper describes application software and programming tools designed for use with the Defense
Mapping Agency's (DMA) Standard Linear Format (SLF) for Digital Cartographic Feature Data. The
Standard Linear Format (SLF) is briefly described in this report. It was designed as a standard for the
exchange of digital cartographic features on magnetic tape. The format specifies descriptive fields about
feature data, as well as specifying the representation of the features. The application software described
in this report can transfer files or tapes in this format to relational database maintained under Ingres,
graph features in the database, alter the database, and convert the database back to the SLF. The
subroutine library utilized by these application programs is also described. These subroutine should make
the task of writing additional application software for the SLF much easier.

https://openscholarship.wustl.edu/cse_research/809?utm_source=openscholarship.wustl.edu%2Fcse_research%2F809&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/809?utm_source=openscholarship.wustl.edu%2Fcse_research%2F809&utm_medium=PDF&utm_campaign=PDFCoverPages

SOFTWARE FOR THE STANDARD LINEAR
FORMAT FOR DIGITAL CARTOGRAPHIC
FEATURE DATA

Stephen E. Reichenbach

WUCS-87-23

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4399

Software for the Standard Linear Format for Digital
Cartographic Feature Data

Stephen E. Reichenbach

Washington University
St. Louis, MO 63130

ABSTRACT

This paper describes application software and programming tools designed for
use with the Defense Mapping Agency’s {(DMA) Standard Linear Format (SLF)
for Digital Cartographic Feature Data. The Standard Linear Format (SLF) is
briefly described in this report. It was designed as a2 standard for the exchange
of digital cartographic features on magnetic tape. The format specifies
descriptive fields about feature data, as well as specifying the representation of
the features. The application software described in this report can transfer files
or tapes in this format to a relational database maintained under Ingres, graph
features in the database, alter the database, and convert the database back to
the SLF. The subroutine library utilized by these application programs is also
described. These subroutines should make the task of writing additional
application software {or the SLF much easier.

Acknowledgments: This work was supported in part by the Defense Mapping
Agency under contract DMAS0D-85-C-0010.

Angust 7, 1986

Software for the Standard Linear Format for Digital
Cartographic Feature Data

Stephen E. Reichenbach

Washington University
St. Louis, MO 63130

1. INTRODUCTION

The Standerd Linear Format for Digital Cartographic Feature Date (Draft 2nd ed., 18 March
1985) has been developed by the Defense Mapping Agency as a standard for the exchange of
digital cartographic feature data on magnetic tape. The DMA is increasingly involved in the
production of digital data. They recognize that a standard exchange and offline storage format
for digital data could increase the efficiency of DMA by facilitating sharing between all DMA
subsystems regardless of computer system or mission.

Institutions working with the DMA can also benefit from this standard. We at Washington
University believe that increasing our ability to exchange data with the DMA should benefit
both organizations. The DMA can help us to better understand the problems they are
interested in solving and we can provide our results in an accessible format. By improving our
communication, this software should help draw our two communities closer together.

The SLF software described in this paper includes the essential application programs to receive,
display, edit, and generate SLF data. The library of support routines we have developed
provides a resource for future application programs. The SLF software has been incorporated
into the Washington University /Defense Mapping Agency (WUDMA) Image Processing Software
System. This large software system was initially designed for a training program at
Washington University for technical personnel of the DMA. It is currently used for research and
other educational programs. It is fiexible and easily built upon. It now contains about 200
image processing, analysis, and display programs. One of the primary goals of this system was
{0 incorporate the flexibility to handle many image formats. (See "The WUDMA Image
Processing System,” by Steve Reichenbach and Andrew Laine, submitted for publication.) The
SLF software opens this powerful image processing system for use with SLF data.

Section 2 summarizes the SLF as deseribed by the DMA. This section gives some of the
motivations and design considerations of the SLF. The format itself is given in brief. Section 3
outlines the structure of the relational database designed to store the SLF data online. Section
4 describes the SLF soitware developed at Washington University. Four programs have been
written. FEach program is described-what it does, how it works, and what options are
available. The design of each is also outlined. Section 5 gives the data structures used in the
programs and subroutines. Section 6 examines the library of subroutines written for programs
using the SLF. The final section makes some brief observations about the SLF, the database,
the programs, and the library.

2. THE STANDARD LINEAR FORMAT

Portability, flexibility, and efficiency were major considerations in the design of the SLF. The
prime motivation was to provide a standard for many users, so increases in efficiency could not
be made at the expense of portability or flexibility. In order to be useful, the SLF had to be
efficient, so these demands had to be balanced.

Portability is assured by using the Federal Information and Processing Standards (FIPS) and

American National Standards Institute (AINSI) standard tape and tape labels and the American
Standard Code for Information Interchange (ASCH) character set. The physical block size

allows whole word transfers on computers with all common word lengths.

The consistent use of SLF is necessary to insure portability. The SLF document provides several
appendices detailing the implementation of specific products (e.g. DFAD). These appendices
insure that the SLF maintains the integrity of these products and their portability in the new
{ormat.

The SLF is a flexible format. It specifies the structure of a Data Set Record consisting of many
fields for descriptive information about the data set. It also allows an optional free-format Text
Record. In the Data Set Record, SLF allows specification of difierent coordinate systems,
numbers of dimensions, units and precision of measure, and many other descriptions of the data
set. Most applications would not use many of these fields, but they provide the flexibility to
handle a variety of applications, products, and data. The Data Set Record also contains a
number of additional fields that are unused or reserved. These fileds are provided for special
uses or later versions. These fields mean that the SLF has room to grow without making older
versions incompatible.

The SLF also defines flexible records for feature data. The descriptive feature headers defined
by SLF have no fixed length or format. Therefore, each application can specify the header size
and format. The features are stored using chain-node encoding. This method stores line
"segments” that define a point or linear feature or delineate an areal feature. Segments are
held in separate records and can be shared by multiple features.

Chain-node encoding can be more efficient than simply storing the boundary of an areal feature
as a polygon. A segment that separates two features and that consists of many points can be
stored more efficiently using chain-node encoding. Polygonal storage would require these
boundary points to be stored with each feature. The SLF allows each segment to be stored
scparately and allows each feature to refer to the segments. The chain-node method also avoids
the overlaps and gaps that can occur when the boundary of a feature is specified without regard
to its neighbors’ boundaries. Appendix VI in the SLF document compares chain-node and
polygonal structures.

It is not the purpose of this report to fully describe the SLF. A brief description should be
encugh for an understanding of the SLF software. More information about the SLF can be
found in the DMA's publication.

The magnetic tape is FIPS and ANSI standard recorded at 6250 fpi GCR (preferred), 1600 fpi
PE, or 800 fpi NRZI (not preferred). The tape file structure and tape label records conform to
the FIPS and ANSI level one labels. The first label is a volume label. Each data set is enclosed
by header and end-of-file labels. All data are stored as 7-bit ASCII characters in 8-bit bytes.
Only single-reel volumes are defined.

The data set is divided into five logical records that are on the tape in the following order: the
Data Set Identifier Record (DSI), the Segment Record (SEG), the Feature Record (FEA), and the
Text Record {TXT) which is optional. Each logical record consists of one or more physical
blocks of 1980 bytes, each byte an ASCII character. Each physical block begins with an eight-
byte header consisting of the left-justified, block type (DSI, SEG, FEA, or TXT) and 2 right-
justified, five-digit block sequence number (with blank fill). Each logical record’s physical blocks
are sequenced separately beginning with one (1) for the first block of each logical record. The
remaining 1972 bytes of each physical block is aliocated to the storage of the fields of the logical
record. Data fields within a logical record may span more than one physical block, but a
physical block may not contain data from different logical records. Any unfilled bytes at the
end of physical record following the end of a logical record are filled with the ASCII delete
character (octal 177). Figure 1 illustrates the organization of the blocks and records.

The Data Set Identifier record (DSI) consists of eight groups of fields. These groups, their fields,
and the fleld lengths are given in brief below. Two of these eight groups are optional--the Data
Set Registration Points Group {DSRG) and the Data Set Accuracy Group (DSAG). The fields of
the Data Set Variable Field Address Group (DSVG) are used to indicate the the address of the
first characters of the DSRG and DSAG if they are present. Subgroups of fields {such as the

1 89 1 89 1 89 1 89 1 89
SI 1 LG] SEG 9 EA 1] Xl 1
DSI SEG SEG FEA TXT
RECORD RECORD RECORD RECORD RECORD
PAD PAD PAD PAD
1980 1980 1980 1980 1980

FIGURE 1. EXAMPLE OF PHYSICAL BLOCKS AND LOGICAL RECORDS
information about each of the registration points in the Registration Points Group) may be
repeated any number of times. In these cases, the field immediately before the repeating fields

indicates the number of occurrences of the subgroup.

A. Data Set Identification Group (DSIG}

1. DSIG Header 4
2. Product Type 5
3. Data Set ID 20
4. Edition 3
5. Compilation Date 4
6. Maintenance Date 4
7. SLF Version Date 6
8. FACUS Version Date 6
9. DSIG Reserve 28
B. Data Set Security Group (DSSG)
1. DSSG Header 4
2. Security Classification 1
3. Security Release 2
4. Downgrading/Reclassification Date 6
5. Security Handling 21
6 DSSG Reserve 40
C. Data Set Parameter Group {DSPG)
1. DSPG Header 4
2. Data Type 3
3. Horizontal Units of Measure 3
4. Horizontal Resolution Units 5
5. Geodetic Datum 3
6. Ellipsoid 3
7. Vertical Units of Measure 3
8. Vertical Resolution Units 5
9. Vertical Reference System 4
10. Sounding Datum 4
11. Latitude of Origin 9
12. Loagitude of Origin 10
13. X Coordinate of Origin 10
14. Y Coordinate of Origin 10
15. Z Coordinate of Origin 10

16. Latitude of SW Corner 9
17. Longitude of SW Corner 10
18. Latitude of NE Corner 9
19. Longitude of NE Corner 10
20. Total Number of Features 6
21. Number of Point Features 6
22. Number of Linear Features 6
23. Number of Areal] Features 6
24. Total Number of Segments 6
25. DSPG Reserve 40
Data Set Map Group (DSMP)

1. DSMP Header 4
2. Projection 2
3. Projection Parameter 1 10
4. Projection Parameter 2 10
5. Projection Parameter 3 10
6. Projection Parameter 4 10
7. Scale 9
8 DSMP Reserve 40

ata Set History Group (DSHG)
DSHG Header
Edition Code
Product Specification
Specifieation Date
Specification Amendment Number
Producer -
Digitizing System
Processing System
Absolute Horizontal Accuracy
10. Absolute Vertical Accuracy
11. Relative Horizontal Accuracy
12. Relative Vertical Accuracy
13. Height Accuracy
14. Data Generalization
15. North Match/Merge Number
16. East Match/Merge Number
17. South Match/Merge Number
18. West Match/Merge Number
19. North Match/Merge Date
20. East Match/Merge Date
21. South Match/Merge Date
22. West Match/Merge Date
23. Date of Earliest Source
24. Date of Latest Source
25. Data Collection Code
26. Data Collection Criteria
27. DSHG Reserve

o

© 00 N O o oo b
(]

LD 0 b i B B R b b b b i B b B B RO 00 00 . = Ga s

o0

Data Set Variable Field Address Group (DSVG)
1. DSVG Header 4
2. Registration Points Address 5
3. Accuracy Subset Address 5

4.

DSVG Reserve

40

G. Data Set Registration Points Group (DSRG) (optional)

1.
2,

H. Data

DSRG Header

Number of Registration Points
(Number of repetitions of the
following seven fields)

Point ID

Latitude

Longitude

Elevation

X-Coordinate
Y-Coordinate
Z-Coordinate

mee e o

Set. Accuracy Group (DSAG) (optional)

DSAG Header

Multiple Accuracy Outline Count

(Number of repetitions of the
following fields)

Absolute Vertical Accuracy

Relative Vertical Accuracy
Number of Coordinates

epoTE

(Number of repetitions of the

following two fields)
i. Latitude
ii. Longitude

Absolute Horizontal Aceuracy

Relative Horizontal Accuracy

4

O‘)O)O)OOS@@CO

4

[A

9
10

The chain-node encoding of features is implemented in two records. The Segment Record {(SEG)
specifies the line segments that separate features. Each boundary segment is encoded only once
and the feature(s) refer to the segments. The Feature Count field of the Segment Record tells
how many features the segment defines (in the case of point and linear features) or delineates
(in the case of areal features). The Point Count specifies how many points make up the

segment.

The Feature record (FEA) specifies the features. Each feature is described by a header and
names the segments that delineate it. The Feature Header Block Count tells how many forty-
character blocks there are. The format of these blocks is application dependent. The Segment
Count specifies how many Direction of Segment and Segment ID pairs follow,

Segment Record

1.
2.

Segment ID
Feature Count (Number of

repetitions of the following two fields)

a. Feature ID
b. Feature Orientation

Point Count (Number of repetitions

of the following fields)
a. X-Value
b, Y-Value
¢. Z-Value {optional)

Feature Record

(oI = I o 3 o A |

=

Feature ID 6
Feature Type 1
3. Feature Header Block Count

(Number of repetitions of the

following field) 2

a. Feature Header Block 40
4. Segment Count {Number of
repetitions of the following two fields) 3
a. Direction of Segment 1
b. Segment ID 6

B

Figure 2 illustrates how these records store the chain-node encoding for 2 simple example, For a
fuller discussion of chain-coding of segments refer to Appendix VI of the DMA specification.

(16,16)

(0,8 Feature 1 Feature 2

0

2,8)

(16,0)

SEGMENTS (ID, Feature Count, (ID, Orientation), Point Count, (X, Y))
1 1 1 R 3 16 186 0 8 16 0O
2 2 1 L 2 R 10 16 0 16 1 ... 16 15 16 16
3 1 1 L 3 18 0 32 8 16 18

FEATURES (ID, Type, Header Count, {Header), Segment Count, (Direction, D)}
1 A 1 »x...xxx 2 F 1 F 2
2 A 1 xx...xxx 2 R 2 F 3

FIGURE 2. EXAMPLE OF CHAIN-NODE ENCODING

The Text record {TXT) is an optional free-format block of up to 1968 characters.

Text Record (TXT) (optional)
1. Character Count 4
2. Text 1968

It is not within the scope of this report to detail the possible values for all of the fields of the
SLF. The DMA report contains general information about each of the fields and detailed
appendices about some of them. Appendix I defines codes and parameters for the Projection
Group flelds of the DSI Record. Appendix II lists the codes for Geodetic Datum, Sounding
Datum, and Vertical Reference System. Appendix I lists the abbreviations for units of
measure. Appendix IV gives the codes for the Grid System. Appendix V contains a short
glossary.

3. THE DATABASE DESIGN

The SLF is an exchange and storage structure not well-suited to processing. The Ingres
relational database system is designed to maintain databases online and provides many tools for
manipulating the database and for processing the data in it. Ingres can enforce security, ensure
the integrity of the data, synchronize access, and protect the data against machine crashes. It
supports a2 data manipulation language named QUEL (QUEry Language). A form of this
language called EQUEL (Embedded QUEry Language) can be embedded in programs written in
the high-level programming language C.

Our first task was to specify the structure or scheme of the Ingres database to hold the SLF
data. We decided that this structure should closely parallel the structure of the SLF since it
must hold the same data. Therefore, all of attributes of the relations in the Ingres database
consist of ASCII character strings, just as the fields in the SLF are all character strings. Most
of the attributes in the database correspond directly to a SLF field, have the same Iength, and
are named with abbreviated forms of the SLT field name.

The SLF DSI Record is divided into eleven (11) relations. Eight of the relations correspond to
the Data Set Groups defined in SLF. These relations have the same names as the SLE
abbreviations: dsig, dssg, dspg, dsmp, dshg, dsvg, dsrg, and dsag. In addition to these, three
relations have been added to store the repeating subgroups: the registration points {dsrg_pts),
the multiple accuracy outlines (maos), and the coordinates of the multiple accuracy outlines
{meo_coord). The data set group headers have been omitted because they are redundant. Some
attributes have been added to facilitate access. All of the relations have an attribute to
identify the data set (ds_dssg, ds_dspg, ds_dsmp, ds_dshg, and so on). The dsrg_pts relation has
a dsrg_order attribute to distinguish each registration point. The maos relation has a mao_id
attribute for the same purpose. The mao_coord relation has a mao_coord_id attribute to
identify the multiple accuracy outline to which the coordinate belongs and a coord_id attribute
to order the coordinate in the outline.

The database relations for the DSI Record of the SLF are defined as foliows.

create dsig (
prod_type = ¢5,
ds_id == ¢20,
ds_ed = ¢3,
comp_date = c4,
maint_date = c4,
slf_ver = c§,
facs. ver = cB,
dsig_rsv = ¢28

)

create dssg {
ds_dssg = ¢20,
sec_class = cl,
sec_rel = ¢2,
down_date = ¢8,
handling = ¢21,
dssg_rsv = c40

)

create dspg (
ds_dspg = ¢20,
data_type = c3,
hor_units = ¢3,
hor_res = ¢35,

)

geod_data = ¢3,
ellipsoid = ¢3,
ver_units = ¢3,
ver_res = ¢§,

ver_ref = ¢4,
sounding = c4,
lat_orig = ¢§,
leng_orig = ¢10,
x_orig = ¢10,
y_orig = ¢10,
r.orig = cl0,
lat_sw = ¢§,

fong_sw = cl10,
lat_ne = ¢9,
long_ne = ¢10,
n.fea = ¢6,
n_pt._fea = ¢8,
n_ln_fea = ¢§,
n.ar_fea = ¢8,
n_seg = cf,
dspg_rsv = c40

create dsmp (

)

create dshg (

~ds_dsmp = ¢20,
prictn = c2,
parml = ¢l0,
parm2 = ¢140,
parm3 = ¢10,
parmd = cl10,
scale = c9,

dsmp_rsv = ¢40

ds_dshg = ¢20,
dshg_ed = ¢3,
prod_spec = ¢15,
spec_date = c4,

amend_no = c¢3,
producer = <8,
dig_sys = ¢l10,
proc.sys = cl0,
grid_sys = ¢2,

abs_h_ace = c4,
abs_v_acc = cd,

rel_h_ace = ¢4,
rel_v_acc = c4,
hi_ace = 4,

data_gen = cl,
n_mm_no = ¢l,
e_mm_no = cl,
s_mm_no = ¢cl,
w_mm_no = ¢l,

n_mm_date = ¢4,
e_mm_date = c4,
s_mm_date = ¢4,
w.mm_date = c4,
early_sre = c4,
late_sre = c4,
coll_code = ¢l,
coll_crit = ¢3,
dshg_rsv = ¢28

)

create dsvg (
ds_dsvg = ¢20,
reg_pt_add = ¢5,
acc_addr = ¢5,
dsvg_rsv = c40

)

create dsrg (
ds_dsrg = ¢20,
no_reg_pt == ¢3

)

create dsrg_pts (
ds_dsrg_pts = ¢20,
dsrg_ord = ¢3,
pt_id = ¢8,
lat = ¢9,
Ing == c10,
elev = ¢8,
x_coord = c§,
y..coord = ¢B,
z_coord = ¢6

)

create dsag (

Il

ds_dsag = ¢20,
no_mao = ¢2

)

create maos (
ds_maos = ¢20,
mao_id == c2,
mao_abs h = ¢4,
mao_abs_v = c4,
mao_rel_h = c4,
mao.rel_v = c4,
no_coord = ¢2

)

create mao_coord (

ds_mao_coord = ¢20,
mao_coord_id = ¢2,
coord id = ¢2,

- 10 -

mao_lat = ¢9,
mao_long = ¢10

Three feature and three segment relations are used to store the data from the SLF Segment and
Feature Records. In addition to a segment (seg) relation and a feature (fea) relation, relations
are defined for the repeating groups of fields in the Segment and Feature Records. Each
Segment Record contains a reference to each of the features it defines or delineates. These
fields, the Feature ID and the Feature Orientation, are repeated for each feature of the
segment. In the database, they are stored in the features of the segment (fos) relation.
Likewise, the coordinates of points in the segment are listed in the Segment Record. They are
recorded in the points of the segment (pts) relation. Both these relations also contain an
attribute for the segment ID. The Feature Header blocks are stored in a separate relation (fid).
The Feature Record names all of its segments in repeated fields specifying the Segment
Direction and the Segment ID. These fields are recorded in the segments of the feature (sof)
relation. Both of these feature relations contain an attribute for the Feature ID. All of these
segment and feature relations contain an attribute to order the tuples.

These records tend to be very long, with perhaps hundreds of thousands of segments or features
and their constituent points. The Ingres system is not lightening fast so this would definitely
present a problem if the segment and feature relations were to contain more than one data set.
The solution to this problem was to define separate segment and feature relations for each data
set. Kach data set has six segment and feature relations whose names are formed by
concatenating the three-letter relation type with the data set ID. For example, a data set with
the ID WUTEST? would have relations named SEGWUTEST1, FOSWUTEST1, PTSWUTESTY,
FEAWUTESTI, FHDWUTESTI, and SOFWUTEST1.

The six relations given below would be defined to hold the SLF Segment and Feature Records
for each data set.

create segrel (
seg_id = ¢6,
fea_cnt = ¢2,
pt.cnt = ¢b

)

create fosrel (

seg.no = cb,
ord_fos = ¢2,
fos_id = ¢6,

fea_orient = ¢l

)

create ptsrel (
s0p.no = cb,
ord_pt = ¢5,
x_val = ¢8,
y.val = c§,
z_val = ¢6

)

create fearel {
fea_id = ¢B6,
fea_type = cl,
fea_hdr_ent = c2,
seg_ent = ¢3

- 11 -

)

create Thdrel (
hdr_fea_id = c8,
ord_hdr = c2,
block = c40

)

create sofrel (

fea._no = 86,
ord_sof = ¢3,
direction = cl,
sof_id = ¢6

The limit on the size of a field in Ingres is 255 characters, so the SLF Text Record has to be
broken up into blocks. The character count is stored in an attribute of all of the tuples. This is
a small redundancy. Other attributes are used to order the blocks of the text and to identify
the data set. The relation is created with the following Ingres command.

create txt (
ds_txt = ¢20,
txt_cnt = c4,
ord_txt = cl,
text = ¢255

In order to speed processing, these relations are modified for indexed-sequential access. This is
only done for the relations for the segment and feature data, because they are the only relations
whose size presents a problem. The segment relation is indexed on the segment ID. The
features of the segment relation is indexed on the segment ID and the order of the tuple. The
points of the segment relation is indexed on the segment ID and the order of the tuple. The
feature relation is indexed on the feature ID. The feature header relation is indexed on the
feature ID and the order of the tuple. The segments of the feature relation is indexed on the
{eature I} and the order of the tuple.

4. THE APPLICATION PROGRAMS

We wanted software that would allow us to input, process, and output SLF data. We wanted
software that would enable us to receive SLF tapes and add the data to our database. We
wanted to be able to display the data in the database. We wanted to be able to alter the data
in the database and to be able to create new data. Finally, we wanted to be able to generate
SLF tapes. Our need was not for a production system, but for a smaller-scale research tool.
Therefore the software does not contain as many error checks as would be desirable in a
production environment. We do not anticipate handling a large number of data sets and our
results are usually well-scrutinized. A production system would show a greater concern for
speed than our needs dictate. Little emphasis has been placed on the need for optimizing the
algorithms. The Ingres relational database system has been used because it is available and
familiar. A hierarchical or network database system might be better suited for the SLF.

The application programs described in the section are all written in the high-level programming
language C. All of them contain embedded queries in EQUEL. Manual pages are available for
all four commands. These pages are written in the sétandard UNIX} manual page form. They

{ UNIX is & trademark of Beli Leboratories.

12 -

provide the user with the syntax of the command and a general description of the program and
its use. These manual pages are included in section one of the Washington University /Defense
Mapping Agency (WUDMA) Image Processing Manual.

Our first program was written to receive a tape in the SLF and add the data to our database.
This program, named siftoingres, relies on several sets of subroutines to carry out its primary
tasks. The user must specify the SLF file name and the Ingres database name. The database
must already exist. The design hierarchy of siftoingres is pictured in figure 3.

slftoingres

readsl{ appendslf create_sif

slftape

FIGURE 3. DESIGN OF SLFTOINGRES

The tape should first be read into a file (using dd(1)} for example). Slftoingres reads the file and
puts the information into the database. The slftape(8) subroutines are used for the low-level
input {rom the SLF file. These functions are called directly by siftoingres as well as indirectly
using the readsif(8) subroutines. The readsif{8) subroutines read specific groups of fields
corresponding to the DSI groups of the subgroups of the Segment or Feature Records. These
subroutines verify the group header, but also rely on the slftape(8) functions to perform low-level
input.

Slftoingres alternates between calls to the readsif{8) subroutines and the appendslf(8)
subroutines. The eppendslf{] subroutines add a group of SLF fields to the database by by
appending a new tuple to the relation. Slftoingres makes a call to a readslf{3) subroutine and a
call to a appendsiff8) subroutine for each group of SLF fields {and database attributes). As
explained in the section describing the database, each data set has six of its own segment and
feature relations. Slftoingres calis on create_rel{3) to create these relations.

The command that performs the inverse task, creating a SLF file from data in the database, is
named ingrestoslf. The user must specify the Ingres database name and the ID of the data set.
The data set ID should be specified in capital letters since the SLF data is in capital letters.
The output is directed to the standard output. The design hierarchy of ingrestosif is illustrated
in figure 4. This program must retrieve data from the database and write it in the SLF to a
file. Ingrestoslf uses two sets of subroutines to accomplish these tasks. The retricveslf(8)
subroutines retrieve groups of fields from the database, keying on the data set ID. Because of
the structure of the SLF, the segment and feature data is retrieved directly by the program.
The reasons for this are explained in detail in the retrieves/f{3) manual page.

The data is written to a file in SLF using the printslf(8) subroutines. This group of subroutines
builds the block structures, complete with block headers and delete character {ASCII 177) fill,
defined in the SL¥. A parameter to these routines is available to override construction of the

- 18-

ingrestoslf

retrieveslf printslf

FIGURE 4. DESIGN OF INGRESTOSLF

SLF blocks. This option allows the user to dump the data in a format suitable for display (on
the terminal or printer) complete with brief descriptions of the fields.

The command grephfea displays features from the database. The user must specify the Ingres
database name and the ID of the data set. Cutput can be generated for several display devices
as well as in a generic form. Command options exist to display all of the features of the data
set {default is to prompt the user for feature ID’s), to erase the screen before displaying the
features (default is to display the features over what is there), and to set the logical feature
space (default is (0,0} to (511,511)).

Graphfea relies on two sets of subroutine to do its work—get the feature data and display it. Its
design hierarchy is given in figure 5. The retrieves{f{3) subroutines have already been described.
Graphfea, like ingrestoslf and for the same reasons, retrieves the segment and feature data
directly. The subroutines of the UNIX plo#(8)] library are called to actually plot the data. This
means that grephfea can be immediately used with any device that has a set of plot subroutines
written for it. Several new ploi{3) "flavors” have been written at Washington University. We
can display features on the DeAnza IP8500, Vectrix 385 graphics devices, and the Ergo and
Graphon graphics terminals. Of course, files of the ploif5) format can also be created. Refer to
the UNIX documentation for more information about plot.

graphfea

retrieveslf plot

FIGURE 5. DESIGN OF GRAPHFEA

The fourth command, access_slf, allows a user to update selected flelds of the database. The
user must specify the Ingres database name and the data set ID. If a data set of that name
does not already exist in the database, then a default data set is created. The existing data set
or the default data set, if one is created, can then be altered by the user. The program is
menu-driven and provides prompts that inciude the current data.

- 14 -

Using the program, the user can change data in the Data Set Identification Group (except the
data set ID), Security Group, Parameter Group, Map Projection Group, and History Group, as
well as in the Text Record. In the current version, changes can not be made in the Variable
Field Address Group, the Registration Points Group, or the Accuracy Group. The user may
also append features to the data set (but not alter existing segments or features). At this time,
only additional point features are allowed and the user may specify only the point’s coordinates
and not its feature ID, segment ID, or header. The segment and feature ID's are assigned
unused numbers ID’s and a default header is used.

Access_slf uses many subroutines. Its design hierarchy is pictured in figure 6. If the data set ID
specified by the user identifies one of the data sets, then the retrieveslf(3] subroutines are used
to get the data from the existing database. If no such data set is found, then the defaulislf{8),
appendslf(8), and create_rel(8) subroutines are used to create a default data set. The
appendslf{8) and create_rel(8) subroutines have already been described. The default(s)
subroutines are used to give default values to groups of the SLF fields before they are appended
to the relations. These values are given in the defaultslf{3) manual page in section 3 of the
manual.

access_slf

data set
exists

keyinslf replaceslf findmax appendslf

retrieveslf defaultslf appendsll create_slf

FIGURE 6. DESIGN OF ACCESS_SLF

The Data Set Identifier record {DSI) consists of eight groups

The keyinsif(8) subroutines are called upon to allow the user to specify changes. The keyin(8)
subroutines print a field description and the current contents of the field and ask the user to
specify a new value or indicate that the current data is to be left unchanged. Once a group of
fields has been "keyed in," the replacesif(8) subroutines are used to replace the old tuple in the
database with the new. These subroutines use the data set ID to key the tuples to be replaced.

Point features can be added to a data set. Access_sif uses the findmaz(8) subroutines to select
segment and feature ID’s greater than any existing ID’s and the appendslf{8) subroutines to add
these features (with all their data) to the database. The user specifies the features coordinates
and the defaultslff8) subroutines are used to assign all of the other attributes.

These commands have been incorporated into the WUDMA Image Processing Software System.
The source code, manual pages, and executable modules have been integrated into this UNIX
subsystem. The programs are maintained under the UNIX make facility so that the versions
can be easily kept up to date and regenerating the executable modules is simple.

- 15 -

5. THE SLF DATA STRUCTURES

Data structures in the high-level programming language C are used in the application programs
and subroutines. These structures closely correspond to the SLF described by DMA. These
structures have fields of the DMA standard that are not included in the database (the data set
group headers) and attributes of the database relations that are not defined in SLF (the
identifying and ordering attributes). The field names are the same as the database attribute
names. This means that the Equel programs must use the non-referencing operator (#) for all
database attribute references, but having the names the same makes them easier to remember.
The length of the structure fields is one character longer than the fields of the SLF and the
attributes of the database because the strings used with Equel require an extra character for
the null-terminator.

Eighteen structures are defined-one for each of the relations in the database. The data set and
text structures have the same names, but in capital letters, as the corresponding relations:
DSIG, DSSG, DSPG, DSMP, DSHG, DSVG, DSRG, DSRG_PTS, DSAG, MAOS, MAO_COORD,
and TXT. The segment and feature structures are named with the three-letter type in capitals:
SEG, FOS, PTS, FEA, FHD, and SOF. These structure definitions are contained in the header
files sif.q.h and slf.c.h and can be found in the INCLUDE subdirectory. Sif.c.k is generated by
the Equel preprocessor from sif.q.h. These structures are described more fully in slfstruct(5).
Section 5 of the manual describes special formats and files.

8. THE SLF LIBRARY

A library of subroutines facilitates access to SLF files and the database. There are seven main
sets of subroutines and several miscellaneous routines. The main sets provide the ability to
append tuples containing SLF fields to the database, create default groups of SLF fields, keyin
groups of SLF fields, print groups of SLF fields, read sets of fields from a SLF file, replace tuples
in 2 database, and retrieve tuples from a SLF database. The other functions provide additional
capabilities to the application programmer. Manual pages are provided for all of the functions
are included in section 3 of the manual. A summary of the SLF library is given in slff3).

The appendslf routines add the data in a SLF structure to a relation in the database by
appending a tuple. Their is a subroutine for each type of relation. The subroutine is named by
concatenating aeppend with the relationtype. For example, appendizt is used to append data to
the ¢z¢ relation. The database must already be opened under Equel. Because these routines
contain embedded queries in Equel, they must be linked to the Equel library using -lq with the
compiler.

Most of the appendslf functions require only the address of the SLF structure as a parameter.
The functions eppendseg(S), appendfos(8), aeppendpis(8), aeppendfea(8), appendfhd(8), and
appendsof(8), require an additional parameter to identify the relation. (Recall that ecach data
set bas its own segment and feature relations.)

The defaultslf routines set default values in SLTF structures. The default values follow the
guidelines for DIFAD given in Appendix XII of the Defense Mapping Agency’s Standard Linear
Format for Digital Curtogrephic Feature Data (Draft 2nd ed., 18 March 1985) and the Defense
Mapping Agency’s Product Specifications for Digital Landmess System (DLMS} Data Base (2nd
ed., April 1983).

Most of the fields are blank or zero. The data set ID must be passed as well as the structure
address. The group headers are given the specified values. (For example, dssgrec->>ds_dssg is set
to "DSSG".) The map group and variable field group contain only null fields. No functions
exist for the the registration points group, and accuracy subset group because they are optional.
The default text record has a length of zero. The non-null fields of the remaining fields of the
Data Set Identification Record are:

dsigrec->prod_type: "DFAD2"
dsigrec->>ds_ed: "

dsigrec->maint_date:
dsigrec->sll_ver:
dsigrec->facs_ver:

dssgree->sec_class:
dssgrec->handling:

dspgrec->data_type:
dspgrec->hor_units;
dspgrec->hor_res:
dspgrec->geod_data:
dspgrec->ellipsoid:
dspgrec->lat_orig:
dspgrec->>long_orig:
dspgrec->lat_sw:
dspgrec->long_sw:
dspgrec->lat_ne:
dspgrec->>long_ne:
dspgrec->n_fea:
dspgrec->n_pt_fea:
dspgrec->n_In_fea:
dspgrec->>n_ar_fea:
dspgrec->n_seg:

dshgrec->prod_spec:
dshgrec->>spec_date:
dshgrec->amend_no:
dshgreec->>producer:

- 16 -

"0000"
"850315"
000000

HU"
"DISTRIBUTION LIMITED"

"GEQ"

"SEC"

"0.100"
"WGC"
"WGC
"000000005"
"000000000W"
"00000000S"
"000000000W"
"00000000N"
"000000000E"
“Oll

g

IIO"

ngn

lIO!l

"SPEXDLMS2"
Il8304|l

"000"
"USWASHU"

Default features can be created using defauliseg, defaultfos, defaultpts, defauitfea, defaultfhd, and
defauitsof. The feature ID and segment ID, as well as the relation name and structure address,
must be parameters to these functions. The default feature is a point with coordinates {0,0,0}.
The default field values are:

segrec->fea_cnt: "1
segrec->pt_ent: "1
fosrec->ord_fos: "1t
fosrec->>fea_orient: "o
ptsrec->ord_pt: "1
ptsrec->x_val: "g"
pisrec->vy_val: Q"
ptsrec->z_val: "o
fearec->fea_type: P
fearee->fea_hdr_cnt: "
fearec->seg_cnt: "
fhdrec->>ord_hdr: "1

All but the first character of the feature ID followed by
"010 00 0 09013603 0 O "

fhdrec->block:

sofrec->ord_sof: "

17 -

sofrec->direction: O

The keyin subroutines allow the user to specify data to be placed in the fields of SLF structures.
The function keyin prompts the user with a field description and the field’s current value. The
user can change the value or leave it unchanged. Keyin checks the length of the new value, and
if necessary justifies the value and blank fills. Usually, the function keyin is used indirectly to
perform these tasks. The user typically calls one of the subroutines that handles an entire
structure such as appenddssg and that routine would call keyin for each of the fields of the
DSSG structure. The only parameter necessary for the routines to key in a structure is the
structures address. Keyin requires the prompt, string address, length of the field, and
Justification. The justification may be "F" meaning the field must be filled, "L" for left
Justification, or "R" for right justification. The justifications are not specified for all fields in the
Defense Mapping Agency’s Siandard Linear Format for Digital Cartographic Feature Data {Draft
2nd ed., 18 March 1985}, so in some cases the choices are speculative. There are no subroutines
to key in the segment and feature structures.

The printslf routines are used to print SLF structures to the standard output file. Cprint(8) is
used to create the blocks (size 1980 characters) defined in the SLF. This subroutine requires the
address of the string to be printed, the number of characters printed in the current block, the
block type, and the block sequence number. There is an additional prarameter that can be used
to override the block formatting. If this parameter is set, then the string is printed followed by
an end-of-line,

There are individual subroutines to print each of the SLF Data Set and Text structures. For
example, printdssg would be used to print the DSSG structure and would call cprint to print
each of its fields. These routines have the same parameters as cprint. If the option for
overriding the block formatting is set, then a field description is given with each field value.

The functions printseg(8), printfos(8), printpts(8), printfea(8), printfhd(8), and printsof(3) are
somewhat different. Because the slf specification mandates that the segment and field records
are not contiguous, generation of slf output requires that portions of the segment and field
records be delayed. This and the fact that there are usually many tuples in these relations
(indicating the need for speed) and the fact that there are few fields in the records (which means
printing the flelds individually is relatively easy) led to the decision in implementing
ingrestosif(1) to print these records directly rather than via calls to these functioms. The
functions remain as a debugging aid, but are not used by any of the existing application
programs. If they were to be used similarly to the other routines, it would be desirable to add
the p parameter and use cprini{3).

The readsif routines read groups of fields from a SLF file. They verify the group header (if
appropriate), but rely on the siftape functions to do the low-level input and verify the record
type. The only parameter is the address of the structure. There are functions for all of the
eighteen field groups corresponding to database relations.

Due to the structure of the SLF, the field for number of points in a segment is not contiguous
with the rest of the data for the segment record and the field for the number of segments in a
feature is not contiguous with the rest of the feature record. For this reason, the read for these
two fields is not accomplished during the readseg and readfea calls and must be done after
reading the intervening data.

The replacesif functions replace tuples in a database. The address of the structure containing
the new data and the data set ID to be used as the replacement key are required parameters. If
there are multiple records with the same data set ID, then all such records are replaced. If no
record with the proper key is found, then no change is made to the relation. Only subroutines
to replace tuples in the dsig, dssg, dspy, dsmp, dshg, and tzt are provided. The functions return
an integer equal io the number of records replaced. The database must already be opened
Equel and because these routines contain embedded queries they must be linked to the Eguel
library (-1q).

- 18-

The retrieveslf functions key on the data set ID requested to retrieve a data from the database.
The data set ID and the address of the structure to return the data are parameters. Most of
the functions use only the data set ID to key the relation, but retrievedsrg_pts also uses the
order of the registration point, refrievemaos also uses the order of the multiple accuracy outline,
and reirievemao_coord also uses the order of the multiple accuracy outline and the order of the
coordinate. The functions set the value of the structure to that of the last tuple found in the
relation. If no record with the key(s) is found, the record parameter is unchanged. The
functions return an integer equal to the number of records with the key(s} in the relation. The
database must already be opened under Equel and because these routines contain embedded
queries they must be linked to the Equel library (-lq).

The functions to retrieve feature and segment data are not currently used by any of the
application programs. These relations tend to be very large, but easy to access because they
have few fields. Nested queries are the most natural way to access this data, but one limitation
of our version of Equel is that it does not allow nested queries. Therefore these calls can not be
nested since they contain queries.

Several subroutines provide the low-level interface to read the block structure of the SLF.
There are several variables (hereafter referred to as the static tape variables) that are global to
these four routines. They maintain information about the SLF file being read. Initializetape
opens 2 file, initializes the static tape variables about the file, and reads the first block. This
function should always be called first in order to set-up things for the other functioms. It
requires only the file name as a parameter. Readblock is an internal routine used to fetch new
blocks and maintain the static tape variables. It needs no readtape compares the type of record
requested with the type of the block which is being read. If they are different an error occurs.
Otherwise, it copies a number of bytes from the current block into a buffer. This string is
terminated with the null character. If during the process of reading, a block is exhausted,
another is read (using readblock) and the readtape process continues. Readtape requires
parameters specifying the type of record desired, the number of bytes to be read, and the buffer
address. Unread(8)is a kludge to "unread” what may have been mistakenly read from a block.
There are better ways to look ahead.

Findmazfea(8) examines a feature relation and returns the largest feature ID. F indmazseg(8)
examines a segment relation and returns the larges segment ID. The relation name is the only
parameter. These subroutines assume ID’s must be greater than zero. The database must
already be opened under Equel. Because these routines contain embedded queries in Equel, they
must be linked to the Equel library (-lq).

Create_rel{3) creates the seg, fos, pis, fea, fhd, and sof relations for a given data set (whose ID is
given as a parameter). These relations are maintained separately for each data set because
they can be quite large. The relations are named by the string created by appending the data
set ID to the relation type. These relations would be modified to indexed sequential access mode
using the keys described above. The database must already be opened under Equel. Because
these routines contain embedded queries in Equel, they must be linked to the Equel library (-lq).

These functions should provide useful tools for future application programmers. The sources
and manual pages are located in the WUDMA Image Processing Software. The archive is
located in the /#b subdirectory and can be linked using ~IsIf with the compiler.

7. CONCLUSIONS

The SLF should provide useful standard for transmitting feature data. The SLF is designed to
meet DMA’s needs. It is bulkier than we would need, it is limited to two or three dimensional
data, and features must be specified using chain-node encoding. We can discard unneeded data
and we usually work with two and three dimensional data. We have not solved the problems
involved with automated generation of the chain-node encoding. This is an area that we hope
to work on soon.

- 19 -

The database might work better for some applications if some of the attributes were stored as
integers rather than strings. This would involve more processing when creating or dumping the
data, but would save time in some computations. Our experience at this time is insufficient to
gauge our use of the database and the balance of the tradeoffs. The modular design of the SLF
software should make modifications to the programs relatively simple. Such changes would
involve minor changes in some of the subroutines.

Currently only point features can be added under program control. Also, these features can
only be given a default header. Because this is not a production site and because the data that
feature headers can contain are so diverse, tools to create feature headers will probably be
written as needed. The ability to create linear and areal feature data should be a high priority
in improving this package.

Our research goal is to develop a semi-automated photograph interpretation system. We hope
that our system will automate much of what must now be done by hand. If we are to be
successful, it is important that we understand the DMA’s needs. Communication is an
important condition for success. Using the SLF has already helped us better understand the
task of the photo-interpreter and the kind of products that are generated. Using the SLF, our
results should be immediately accessible to the DMA., We believe that the ability to easily
exchange data will benefit us in automating photo-interpretation.

- 20 -

APPENDIX A
MANUAL PAGES

ACCESS_SLF(1) Image Processing Software ACCESS_SLF(1)

NAME

access_sif — updates a slf database under ingres
SYNOPSIS

access_sli <database>> <DATASET>
DESCRIPTION

Access_slf allows a user to update selected fields of an slf database maintained under the Ingres
relational database system. This database is meodeled on the Defense Mapping Agency’s
Stendard Linear Format for Digitel Cartographic Feature Data (Draft 2nd ed., 18 March 1985).
The user specifies the Ingres database name as database and the data set ID as DATASET (in
capital letters). If a data set of that nmame does not already exist in the database, then 2
default data set is created (see defsultf8)). This defanlt data set can then be altered by the
user. I the data set already exists, any subsequent changes are made on the existing database.

The program is menu-driven and provides prompts for the user. The fields in the data set
identification group (except the data set ID), security group, parameter group, map projection
group, and history group may be specified by the user. For example, a user can change the
maintenance date, The user may also append features to the data set. At this time, oniy
additional point features are allowed and the user may specify only the point’s coordinates (and
not its feature ID, segment ID, or header).

SEE ALSO
graphfea(l), ingrestoslf(1), sliftoingres(1), sli(3), slf(5)

AUUTHOR
Steve Reichenbach 2/86

7th Edition DMAR SLF 1

GRAPHFEA(1) Image Processing Software GRAPHFEA (1)}

NAME

graphfea — graphs features from an ingres database

SYNOPSIS

graphfes <-Ttermiype> [options] <datebase> <DATASET>

DESCRIPTION

Graphfea graphs features in the Ingres database named detebase and the relation fea DATASET.
This database is based on the Defense Mapping Agency’s Standard Linear Format for Digital
Cartographic Feature Data (Draft 2nd ed., 18 March 1985). The user must specify the database
name and the data set ID in the command line. The data set ID should be in capital letters.

The user must also specify the terminal type for display. Current choices are:
~Tde DeAnza.

-Twvx Vectrix.

-Tgr Graphon.

~Tplot Plot(5) output.

If any type but the DeAnza is specified, then the output from graphfee is produced on standard
output.

Options:
-a Display all features. Default is to prompt for individual features where the user must
give the feature ID.

-e Erase previous graphics before display.

-8 ZMin Yymin ImMor ymaz
Defines the space for the features.

SEE ALSO

access_sM{1), ingrestoslf{1), slftoingres(1), slf(3), s{5)

AUTHOR

Steve Reichenbach 8/85

7th Edition DMAR SLF

INGRESTOSLF{1) Image Processing Software INGRESTOSLF (1)

NAME

ingrestoslf — writes a slf file from an ingres database
SYNOPSIS

ingrestos!f [-p] <database> <DATASET>
DESCRIPTION

Ingrestoslf writes the data for a particular data set from a database maintained under the
Ingres relational database system to the standard output file. Deatabase specifies the Ingres
database name. DATASET, the data set ID, is used as the key and should be specified in
capital letters. The default is to create output formated according to the Defense Mapping
Agency’s Standerd Linear Format for Digital Cartographic Feature Data (Draft 2nd ed., 18 March
1985). I the -p option is specified, output suitable for viewing (and accompanied with
explanatory notes for each field} is generated.

SEE ALSO
access_slf(1), graphfea(1), slftoingres(1), slf(3), slf(5)

AUTHOR
Steve Reichenbach 12/85

7th Edition DMAR SLF 1

SLFTOINGRES(1) Image Processing Software SLFTOINGRES(1)

NAME

slitoingres — reads a slf file into 2n ingres database
SYNOPSIS

siftoingres <filename> <database>
DESCRIPTION

Slftoingres reads the data from a file of the form of the Defense Mapping Agency’s Standard
Linear Format for Digital Cartographic Feature Data (Draft 2nd ed., 18 March 1985) and puts it
into a database maintzined under the Ingres relational database system. Fileneme specifies the
location of the slf file. Database specifies the Ingres database name.

SEE ALSO
access_sli{1), graphfea(1), ingrestoslf(1}), slf{3), slf(5)

AUTHOR
Steve Reichenbach 8/85

7th Edition DMAR SLF

SLF(3) Image Processing Software SLF(3)

NAME
sif — introduction to the slf library functions

DESCRIPTION

This section of the manual describes the slf library functions. These functions are provided to
facilitate access to slf format files and slf databases maintained under the Ingres relational
database system. In addition to several miscellaneous routines, there are seven groups of files
that manipulate slf files, slf databases, and the slf records described in slf(5). These groups
provide the ability to append records to a slf database, create default slf records, keyin slif
records, print sl records, read records from a sif file, replace records in a slf database, and
retrieve Tecords from a sif database. The other functions provide additional capabilities to the
application programmer. Manual pages are provided for all of the functions.

SEE ALSO

access_slf(1), graphfea(1), slitoingres(1), stf(3), slf(5)

Just/lib/libsl.a

SEE ALSO

access_slf(1), graphfea(1), ingrestosl(1), slftoingres(1)

LIST OF FUNCTIONS

Name Appears on Page Deseription

appenddsag appendslf.3 append a dsag record to a sif relation
appenddshg appendslf.3 append a dshg record to 2 sif relation
appenddsig appendsl{.3 append a dsig record to a slf relation
appenddsmp appendsl{.3 append a dsmp record to 2 sif relation
appenddspg appendsli.3 append a dspg record to a slf relation
appenddsrg appendslf.3 append a dsrg record to a sif relation
appenddsrg. pts appendsH.3 append a dsrg_pts record to a slf relation
appenddssg appendsl{.3 append a dssg record to a sif relation
appenddsvg appendsl{.3 append a dsvg record to a slif relation
appendfea appendslf.3 append a {ea record to a sif relation
appendfhd appendslf.3 append a fhd record to a slf relation
appendfos appendsli.3 append a fos record to a sif relation
appendmaoc_coord appendslf.3 append 2 mao_coord record to a slf relation
appendmaos appendslf.3 append a maos record to a sl relation
appendpts appendsl{.3 append a pts record to a slf relation
appendseg appendsl{.3 append a seg record to = slf relation
appendsof appendsl.3 append a sol record to a slf relation
appendtxt appendsli.3 append a txt record to a slf relation
cprint printslf.3 print a sl record field

create_rel create_rel.3 create slf feature and segment relations
defaulidshg defaultslf.3 return a default dshg record
defaulrdsig defauitsll.d return a default dsig record
defaultdsmp defaults]{.3 return a default dsmp record
defaultdspg defaultsl.3 return a default dspg record
defaultdssg defauluslf.3 return a default dssg record
defaunltdsvg defanltslf.3 return a default dsvg record
defanltfea defaultsl{.3 return a default fea record

defauitfhd defaulislf.3 return a default fhd record

defaultfos defaultsl{.3 return a default fos record

defaultpts defaultslf.3 return a defanlt pts record

defaultseg defaultslf.3 return & default seg record

4th Berkeley Distribution

DMAR

SLF(3)

defaultsof
defaulttxt
findmaxfea
findmaxseg
initializetape
keyin
keyindsag
keyindshg
keyindsig
keyindsmp
keyindspg
keyindsrg
keyindsrg_pts
keyindssg
keyindsvg
keyinmao_coord
keyinmaos
keyinixt
n_itoa
printdsag
printdshg
printdsig
printdsmp
printdspg
printdsrg
printdsrg_pts
printdssg
printdsvg
printfea
printfhd
printios
printmao..ccord
printmaos
printpts
printseg
printsof
printixt
readblock
readdsag
readdshg
readdsig
readdsmp
readdspg
readdsrg
readdsrg_pts
readdssg
readdsvg
readfea
readfhd
readfos ‘
readmaoc_coord
readmaos

4th Berkeley Distribution

Image Processing Software

defaultslf.3
defaultslf.3
findmax.3
findmax.3
siftape.3
keyinsl{.3
keyinslf.3
keyinslf{.3
keyinslf.3
keyinsl{.3
keyinslf.3
keyinslf.3
keyinslif.3
keyinsl{.3
keyinsi{.3
keyinslf.3
keyinslf.3
keyinslf.3
n_itoz.3
printsl{.3
printslf.3
printsi{.3
printsi{.3
printsl.3
printslf.3
printslf.3
printslf.3
printsif.3
printsif.3
prints}{.3
printslf.3
printslf.3
printslf.3
printslf.3
printslf{.3
printsli.3
prints}f.3
slftape.3
readsl{.3
readsi.3
readslf.3
readslf.3
readslf.3
readslf.3
readslf.3
readsl{.3
readsif.3
readsif.3
readslf.3
readsl{.3
readsl.3
readslf.3

return a default sof record
return a default txt record

find maximum feature id

find maximum segment id
initialize slf file for reading

key in a slf record field

key in a dsag record

key in a dshg record

key in a dsig record

key in a dsmp record

key in a dspg record

key in a dsrg record

key in a dsrg_pts record

key in a dssg record

key in a dsvg record

key in a mao_coord record

key in a maos record

key in a txt record

convert an integer to a fixed-length string
print & dsag record

print a dshg record

print a dsig record

print a dsmp record

print a dspg record

print a dsrg record

print a dsrg._pts record

print a dssg record

print a dsvg record

print a fea record

print & fhd record

print 2 fos record

print & mao_coord record

print & maos record

print & pts record

print 2 seg record

print a sof record

print a2 txt record

read a block from a sif file

read a dsag record from a sif file
read a dshg record from a sif file
read a dsig record from a sif file
read a dsmp record from a slf file
read a dspg record from a sli file
read a dsrg record from a slf file
read a dsrg_pts record from 2 slf file
read a dssg record from a slf file
read a dsvg record from a slf file
read a fea record irom 2 slf file
read a fhd record from a sif file
read a fos record from =2 slf file
read a mao.coord record from a slf file
read a maos record from a slf file

DMAR.

SLF(3)

13

SLF(3)

4th Berkeley Distribution

readpts
readseg
readsof
readtape
readtxt
replacedshg
replacedsig
replacedsmp
replacedspg
replacedssg
replacetxt
retrievedsag
retrievedshg
retrievedsig
retrievedsmp
retrievedspg
retrievedsrg

retrievedsrg_pts

retrievedssg
retrievedsvg
retrievefea
retrievefhd
retrieveios

retrievemao_cocrd

retrievemaos
retrievepts
retrieveseg
retrievesof
retrievetxt
unread

Image Processing Software

readslf.3

readsli.3

readslf.3

slftape.3

readsl{.3

replacesif.3
replaceslf.3
replacesl.3
replaceslf.3
replaceslf.3
replacesl.3
retrievesl{.3
retrievesl{.3
retrievesl{.3
retrieveslf.3
retrieveslf.3
retrievesli.3
retrieveslf.3
retrieveslf.3
retrievesl{.3
retrievesl[.3
retrieves){.3
retrievesl.3
retrieveslf.3
retrieveslf.3
retrieveslf.3
retrievesli.3
Tetrieveslf.3
retrievesif.3
slftape.3

read a pts record from a sif file

read a seg record from a slf file

read a sof record from a slf file

read from a slf file

read a txt record from a slf file

replace a dshg record in a sif relation
replace a dsig record in a slf relation
replace a dsmp record in 2 slf relation
replace a dspg record in a sl relation
replace a dssg record in a sIf relation
replace 2 txt record in a slf relation
retrieve a dsag record from a sif relation
retrieve a dshg record from a slf relation
retrieve & dsig record from a slf relation
retrieve a dsmp record Irom a sif relation
retrieve a dspg record from a slf relation
retrieve a dsrg record from a slf relation
retrieve a dsrg_pts record from a slf relztion
retrieve a dssg record from a slf relation
retrieve a dsvg record from a sif relation
retrieve a {ea record from a sl relation
retrieve a fhd record from a slf relation
retrieve a jos record from a slf relation
retrieve 2 mao_coord record from a slf relation
retrieve & maos record from a sif relation
retrieve a pts record from a sif relation
retrieve a seg record from a slf relation
retrieve a sof record from a slf relation
retrieve a txt record from = slf relation
unread a characters in a slf block

DMAR

SLF(3)

APPENDSLF(3) Image Processing Software APPENDSLF(3)

NAME
appenddsig, appenddssg, appenddspg, appenddsmp, appenddshg, appenddsvg, appenddsrg,
appenddsrg_pts, appenddsag, appendmaos, appendmao_coord, appendseg, appendfos, appendpts,
appendfea, appendfhd, appendsof, appendtxt — append a slf record to a slf relation

SYNOPSIS
#inclode "slf.q.h" /* Needed for all appendslf functions x/

appenddsig(dsigrec)
struct DSIG xdsigrec;

appenddssg(dssgrec)
struct DSSG *dssgrec;

appenddspg(dspgrec)
struct DSP G +dspgrec;

appenddsmp(dsmprec)
struct DSMG *dsmprec;

appenddshg(dshgrec)
struct DSHG +dshgrec;

appenddsvg(dsvgrec)
struct DSV @G xdsvgrec;

appenddsrg(dsrgrec)
struct DSRG *dsrgrec;

appenddsrg pts(dsrg_ptsrec)
struct DSRG_PTS xdsrg_ptsrec;

appenddsag(dsagrec)
struct DSAG sdsagrec;

appendmaos{maosrec)
struet MAOS smaosrec;

appendmao_coord(mao_coordrec)
struct MAO_COORD smac_coordrec;

appendseg(relname, segrec)
char *relname;
struct SEG xsegrec;

appendfos(reiname, fosrec)
char srelname;
struet FOS sfosrec;

appendpts(relname, ptsrec)

char srelname;
struct PTS sptsrec;

7tk Edition DMAR SLF 1

APPENDSLF(3) Image Processing Software APPENDSLF(3)

appendfea(relname, fearec)
char srelname;
struct FEA «fearec;

appendfhd(relname, fhdrec)
char #relname;
struct FHD #fhdrec;

appendsof(relname, sofrec)
char srelname;
struct SOF ssofrec;

appendtxt(txtrec)
struct TXT stxtrec;

DESCRIPTION

These routines append a slf record to a relation in a sif database maintained under Ingres. The
database must already be opened under Equel. Because these routines contain embedded
queries in Equel, they must be linked to the Equel library (-lg). These routines are used
whenever a new record is added to 2 slf relation. If a tuple is to be replaced then the functions
of replaceslf{8) should be used. These functions are used in application programs access_sif{1)
and slftoingres(1).

The functions appendseg(8), appendjos(8), appendpts(8), appendfeafs), appendfhd(8), and
appendsof{8), require an additional parameter to identify the relation. These relations tend to
be very large and therefore each data set is given its own relation. See slf(5) for a further
explanation.

SEE ALSO
access_slf(1), ingrestoslf(1), sH{3), replacesli(3), slf(5)

AUTHOR
Steve Reichenbach 8/85

o

7th Edition DMAR SLF

CREATE_REL(3) Image Processing Software CREATE_REL (3)

NAME
create_rel — create slf feature and segment relations

SYNOPSIS
create_rel(dataset_id)
char xdataset_id;

DESCRIPTION
Create_rel(8) creates the seg, fos, pis, fea, fhd, and sof relations for a given data set (whose ID is

given by datasef_id). These relations are maintained separately for each data set because they
can be quite large. (See slff5) for a further explanation.) The relations are named by the string
created by appending the data set ID to the relation type. For example, 2 call to creat_rel with
2 data set ID of "DTEST1" would generate relations named "SEGDTEST1", “"FOSDTEST1",
and so on. These relations would be modified to indexed sequential access mode keyed on the
fields as described in slf5). The database must already be opened under Equel. Because these
routines contain embedded queries in Equel, they must be linked to the Equel library (-ig}.

AUTHOR
Steve Reichenbach 1/86

7th Edition DMAR SLF

DEFAULTSLF(3) Image Processing Software DEFAULTSLF(3)

NAME
defaultdsig, defaultdssg, defaultdspg, defaultdsmp, defaultdshg, defaultdsvg, defaultseg,
defaultios, defaultpts, defaultfea, defaultthd, defaultsof, defaulttxt — return a default sif record

SYNOPSIS
#include "slf.q.h" /* Needed for all defaultslf functions =/
#include <sys/time.h> /+ Needed for defaultdsig only */

defaultdsig(dsigrec, ds)
struct DSIG sdsigrec;
char +ds;

defaultdssg(dssgrec, ds)
struct DSS5G #dssgrec;
char *ds;

defaultdspg(dspgrec, ds)
struct DSPG +dspgrec;
char xds;

defaultdsmp(dsmprec, ds)
struct DEMG xdsmprec;
char #ds;

defaultdshg(dshgrec, ds)
struct DSHG xdshgrec;
char *xds;

defaultdsvg(dsvgrec, ds)
struct DSVG *dsvgrec;
char #ds;
defaultseg(segrec, sid)
struct SEG xsegrec;
char =sid;

defaultfos(fosrec, sid, id)
struct FOS sfosrec;
char xsid, »fid;

defaultpts(ptsrec, sid)
struct PT'S xptsrec;
char =sid;

defaultfea(fearec, fid)
struct FEA *fearec;
cher *fid;

defaultfhd(fhdrec, fid)
struct FHD *#fhdrec;
char +fid;

defaultsof(sofrec, fid, sid)
struct SOF xsofrec;

7th Edition DMAR SLF 1

DEFAULTSLF(3)

char #fid, #sid;

defaulttxt(txtrec, ds)
struct TXT stxtrec;
char xds;

DESCRIPTION
These routines set default values in sif records. The default values follow the guidelines given in
Appendix XII of the Defense Mapping Agency’s Standard Linear Format for Digital Cartographic
Feature Date (Draft 2nd ed., 18 March 1985} and the Defense Mapping Agency’s Product
Specifications for Digital Landmess System (DLMS) Data Base {2nd ed., April 1983).

Most of the ficlds are blank or zero. The data set ID must be passed as the parameter ds. The

group headers are the specified values. (For example, dssgrec->ds_dssg is set to "DSSG™.) The

map group and variable field group contain only null fields. No functions exist for the the

accuracy subset group because they are optional. The default
The non-null fields of the remaining groups are:

registration points group, and
text record has a length of zero.

dsigrec->prod_type:
dsigrec->ds_ed:
dsigrec->maint_date:
dsigrec->slf_ver:
dsigrec->facs_ver:

dssgrec->sec_class:
dssgrec->handhng:

dspgrec->data_type:
dspgrec->hor_units:
dspgrec->>hor_res:
dspgrec->geod_data:
dspgrec->ellipsoid:
dspgrec->lat_orig:
dspgrec->long_orig:
dspgree->lat_sw:
dspgrec->>long_sw:
dspgrec->lat_xne:
dspgrec->long_ne:
dspgrec->n_fea:
dspgrec->>n_pt_fea:
dspgrec->n_ln _fea:
dspgrec->n_ar_fea:
dspgrec->n_seg:

dshgrec->prod_spec:
dshgrec->spec_date:
dshgrec->>z2mend _no:
dshgrec->producer;

Default features can also
defaulifea(3), defoulifhd(8), and defaulisoff3). The feature (fid) and segment {sid) ID’s must be
parameters to these functions. The default feature is a point with coordinates (0,0,0). The
default field values are:

7th Edition

Image Processing Software

"DFADZ"
nyn
*0000"
"850315"
"000000"

nUn

"DISTRIBUTION LIMITED"

"GEO"
"SEC"
"0.100"
"WGC"
"WGC
"00000000S"
"000000000W™
"000000008"
"000000000W"
"00000000N"
"000000000E"
||0ll

“0"

"0“

et

"0"

"SPEXDLMS2"
"8304"

IIOOOII
"USWASHU"

DMAR SLF

DEFAULTSLF(3)

be created using defoultseg(8), defoultfos(s), {Idefaultpts(3),

[3e)

DEFAULTSLF (3} Image Processing Software DEFAULTSLF(3)

segrec->{ea_cnt:

segrec->pt_cnt: "1
fosree->ord_fos: "1
fosrec->>{ea_orient: oy
ptsrec->ord_pt: "1t
ptsrec->x_val: Q"
ptsrec->y_val: "o
ptsrec->z_val: "o"
fearec->fea_type: P
{earec->fea_hdr_cnt: 1"
fearec->>seg_cnt: 1"
fthdrec->>ord_hdr: "
fhdree->block: All but the first character of the feature ID followed by
"010 00 0 09013603 0 O "
sofrec->ord_sof: "
sofrec->>direction: “F

These functions are used by access_slff1} to create a default data set and the default structure
of new features.

SEE ALSO
access_slf(1), slf{3), slf{5)

AUTHOR
Steve Reichenbach 1/86

7th Edition IDMAR SLF 3

FINDMAX(3) Image Processing Software FINDMAX(3)

NAME
findmaxfea, findmaxseg — find maximum feature or segment id

SYNOPSIS
#include "slf.q.h" /* Needed for both findmaxfea and findmaxseg x/

findmaxfea(relname)
char srelname;

findmaxseg(relname)
char srelnarme;

DESCRIPTION
Findmazfea(S) examines a feature relation and returns the largest feature ID. Findmazseg(9)
examines 2 segment relation and returns the larges segment ID. The relation name is passed by
relname. Both functions search only for ID’s greater than zero. The database must already be
opened under Equel. Because these routines contain embedded queries in Equel, they must be
linked to the Equel library (-lq).

SEE ALSO
access. slf(1), slf(3}, sli(5)

AUTHOR
Steve Reichenbach 1/86

7th Edition DMAR SLF

KEYINSLF(3) Image Processing Software KEYINSLF(3)

NAME
keyin, keyindsig, keyindssg, keyindspg, keyindsmp, keyindshg, keyindsvg, keyindsrg,
keyindsrg_pts, keyindsag, keyinmaos, keyinmao_coord, keyintxt — keyin a s!f record
SYNOPSIS
keyin(prompt, s, n, fill)
char sprompt, #s, *fill;
int nj

#include "slf.c.h” /% Needed for all keyinslf functions +/

keyindsig(dsigrec)
struct DSIG =dsigrec;

keyindssg{dssgrec)
struct DSSG xdssgrec;

keyindspg(dspgrec)
struct DSPG xdspgrec;

keyindsmp{dsmprec)
struct DSMG *dsmprec;

keyindshg(dshgrec)
struct DSHG =dshgrec;

keyindsvg(dsvgrec)
struct DSV G xdsvgrec;

keyindsrg(dsrgrec)
struct DSRG xdsrgrec;

keyindsrg pts(dsrg_ptsrec)
struct DSRG.PTS sdsrg_ptsrec;

keyindsag(dsagrec)
struct DSAG xdsagrec;

keyinmaos{maosrec)
struct MAOS smaosrec;

keyinmao_coord(mao_coordrec)
struct MAO_COORD smao_coordrec;

keyintxt{txtrec)
struct TXT stxtrec;

DESCRIPTION
These routines allow values to be placed in the fields of slf records by prompting the user,

reading the new value, checking the length of the value, and if necessary justifving the value
and blank filling. The function keyin{$) is used to perform these tasks. The other routines
provide the necessary parameters to keyin(8).

7th Editien DMAR SLF 1

KEYINSLF(3) Image Processing Software KEYINSLF(3)

Keyin(8) expects four parameters: the user prompt (prompt), the string location to be filled (s},
the size of the field (n), and the justification (filf). The justication may be "F" meamning the field
must be filled, "L" for left justification, or "R" for right justification. The justifications are not
specified for all fields in the Defense Mapping Agency’s Standard Linear Format Jor Digital
Cartographic Feature Data (Draft 2nd ed., 18 March 1985), so in some cases I just chose what
made sense to me.

The primary use of these functions is in access_sif{1) where users may specify new values for
data set fields. These routines are used when the fields’ values are to be specified without
regard to length or justification and separated by end-of-line markers. When the values are
specified without end-of-line markers and with proper length and justification, the readslff8)
functions should be used.

SEE ALSO
access_slf(1}, slf(3), sli(5)

AUTHOR
Steve Reichenbach 1/85

o

7th Edition DMAR SLF

N_ITOA(3) Image Processing Software N_ITOA(3)

NAME
n_itoa — convert an integer to a fixed-length character string

SYNOPSIS
n_itoa(s, x, n)
char =g;
int x, n;

DESCRIPTION
N_itoa converts an integer (specified by the parameter z) to a character string (beginning at the
location pointed to by &) of a fixed length (of n characters). If the length of the string is less
than =, then the string is blank-filled and right justified. If the length of the string is greater
than n, then the string is truncated at the left (most significant).

AUTHOR
Steve Reichenbach 8/85

7th Edition DMAR SLF

PRINTSLF(3) Image Processing Software PRINTSLF(3)

NAME
cprint, printdsig, printdssg, printdspg, printdsmp, printdshg, printdsvg, printdsrg, printdsrg_pts,
printdsag, printmaos, printmao_coord, printseg, printfos, printpts, printfea, printfhd, printsof,
printtxf - print a sif record

SYNOPSIS
cprint(p, str, len, pgtype, pgnuro)
int p, *len, *pgoum;
char =str, *pgtype;

#include "slf.c.h" /* Needed for all following printslf functions %/

printdsig(p, dsigree, len, pgtype, pgnum)
int p, *len, *pgnum;

char xpgtype;

struct DSIG *dsigrec;

printdssg(p, dssgrec, len, pgtype, pgoum)
int p, #len, *pgnum;

char *pgtype;

struct DSSG xdssgrec;

printdspg(p, dspgrec, len, pgtype, pgnum)
int p, *len, *pgnum;

char spgtype;
struet DSPG *dspgrec;

printdsmp(p, dsmprec, len, pgtype, pgonum)
int p, zlen, *pgnum;

char *pgtype;

struct DSMG =dsmprec;

printdshg(p, dshgrec, len, pgtype, pgoum)
int p, xlen, *pgnum;

char *pgtype;
struct DSHG *dshgrec;

printdsvg(p, dsvgrec, len, pgtype, pgnurn)
int, p, #len, *pgnum;

char *pgtype;

struct DSV G xdsvgrec;

printdsrg(p, dsrgrec, len, pgtype, pgnum)
int p, *len, *pgnum;

char *pgtype;

struct DSRG *dsrgrec;

printdsrg_pts(p, dsrg_pisrec, len, pgtype, pgnum)
int p, xlen, *pgnum;

char spgtype;

struct DSRG_PTS xdsrg_ptsrec;

printdsag(p, dsagrec, len, pgtype, pgnum)

7th Edition DMAR SLF 1

PRINTSLF(3) Image Processing Software PRINTSLF(3)

int p, *len, *pgnum;

char *pgtype;
struct DSAG xdsagrec;

printmaos(p, maosrec, len, pgtype, pgnum)
int p, klen, spgnum;

char *pgtype;

struct MAOS smaosrec;

printmao_coord(p, mao_coordree, len, pgtype, pgoum)
int p, xlen, *pgnum;

char *pgtype;

struct MAO_COORD smao_coordrec;

printseg(relname, segrec)
char xrelname;
struct SEG xsegrec;

printfos(relname, fosrec)
char srelname;
struct FOS #fosrec;

printpts(relname, ptsrec)
char *relname;
struet PTS sptsrec;

printfea(relname, fearec)
char srelname;
struct FEA «fearec;

printfhd(relname, fhdrec)
char *relname;
struct FHD sfhdrec;

printsof(relname, sofrec)
char srelname;
struct SOF ssofrec;

printtxt(p, txtrec, len, pgtype, pgoum)
int p, xlen, *pgnum;

char xpgtype;

struct TXT stxtrec;

DESCRIPTION

These routines are used to print slf records to the standard output file. Cprint(3) is used to
create the blocks (size 1980 characters) defined in the Defense Mapping Agency’s Standard
Lineer Format for Digitel Cartographic Festure Data (Draft 2nd ed., 18 March 1985). If the
parameter p is nonzero {TRUE) then string pointed to by sir is prinied with an end-of-line
appended. If the parameter is zero (FALSE) then cprint($) prints only as many characters from
the string as can fit in the block. If the block cannot hold the string, then a new block is begun
with the proper page type (pgtype} and page number (pgnum). If 2 new block is begun, the
value of pgnum is incremented. In any case, the length of the block thus far (len) is adjusted
accordingly.

12

7th Edition DMAR SLF

PRINTSLF(3) Image Processing Software PRINTSLF (3}

The functions printseg($), printfos(3), printpts(8), printfea(8), printfhd(3), and printsof(8) are
different than the remaining functions and are described in more detail in the BUGS section
below.

For the other functions, if the value of the parameter p is nonzero (TRUE) then a brief
description of each field is attached to the beginning of each field’s value. Otherwise, (p is zero
or FALSE) the data is written in block form according to the DMA’s specification using
cprint(8). The primary use of these functions is to display the contents of a record or to create
an slf tape (see ingrestoslff1)).

SEE ALSO
ingrestoslf(1), slf(3), slf(5)

AUTHOR
Steve Reichenbach 8/85

BUGS

The functions priniseg(8), printfos(8), prinipis(8), printfea(8), printfhd(8), and printsof(8) are
somewhat different. Because the sif specification mandates that the segment and field records
are not contiguous, generation of slf output requires that portions of the segment and field
records be delayed. This and the fact that there are usually many tuples in these relations
{indicating the need for speed) and the fact that there are few fields in the records {which means
printing the fields individually is relatively easy) led to the decision in implementing
tngrestoslf{1) to print these records directly rather than via calls to these functions. The
functions remain as a debugging aid, but are not used by any of the existing application
programs. If they were to be used similarly to the other routines, it would be desirable to add
the p parameter and use cprint(3).

7th Edition DMAR SLF 3

READSLF(3) Image Processing Software READSLF({3)

NAME
readdsig, readdssg, readdspg, readdsmp, readdshg, readdsvg, readdsrg, readdsrg_pts, readdsag,
readmaos, readmao_coord, readseg, readfos, readpts, readfea, readfhd, readsof, readtx] — read a
record from a slf file

SYNOPSIS
#include "slf.c.h" /* Needed for all readslf functions */

readdsig(dsigrec)
struct DSIG *dsigrec;

readdssg(dssgrec)
struct DSSG xdssgrec;

readdspg(dspgrec)
struct DSPG *dspgrec;

readdsmp(dsmprec)
struct DSMG sdsmprec;

readdshg(dshgrec)
struct DSHG *dshgrec;

readdsvg(dsvgrec)
struct DSV G =dsvgrec;

readdsrg(dsrgrec)
struct DSRG sdsrgrec;

readdsrg._pts(dsrg pisrec)
struct DSRG_PTS xdsrg_ptsrec;

readdsag(dsagrec)
struct DSAG sdsagrec;

readmaos(maosrec)
struet MAOS sxmaocsrec;

readmac_coord(mao_coordrec)
struct MAO_COORD smaoc_coordrec;

readseg(segrec)
struct SEG *segrec;

readfos(fosrec)
struct FOS «fosrec;

readpts(ptsrec)
struct PTS sptsrec;

readfea(fearec)
struct FEA sfearec;

7tk Edition DMAR SLF 1

READSLF(3) Image Processing Software READSLF(3)

readfhd({fhdrec)
struct FHD xfhdrec;

readsof{sofrec)
struct SOF xsofrec;

readtxt(txtrec)
struct TXT #txtrec;

DESCRIPTION
These routines read groups of fields from 2 file formated according to the Defense Mapping
Agency’s Standard Linear Format for Digital Cartographic Feature Data (Draft 2nd ed., 18 March
1985). They verify the group header (if appropriate), but rely on the tape functions (see
slftape(8)} to do the low-level I/O and verify the record type. The primary use of these routines
is in slftoingres(1}, which reads a slf tape into an relational database under Ingres.

SEE ALSO
slftoingres(1), slf{3), slftape(3), slf(5)

AUTHOR
Steve Reichenbach 8/85

BUGS
Due to the structure of the slf tape, the field for number of points in a segment is not contiguous
with the rest of the data for the segment record and the field for the number of segments in a
feature is not contiguous with the rest of the {eature record. For this reason, the read for these
two fields is not accomplished during the readseg(8) and readfea(8) calls and must be done afier
reading the intervening data.

(3]

7th Edition DMAR SLF

REPLACESLF (3) Image Processing Software REPLACESLF(3)

NAME
replacedsig, replacedssg, replacedspg, replacedsmp, replacedshg, replacetxt — replace a slf record

in a relation

SYNOPSIS
#inciude "slf.q.h" /* Needed for all replaceslf functions /

replacedsig(dsigrec, ds)
struct DSIG sdsigrec;
char *ds;

replacedssg(dssgrec, ds)
struct DSSG xdssgrec;
char xds;

replacedspg(dspgrec, ds)
struct DSPG #dspgrec;
char *ds;

replacedsmp(dsmprec, ds)
struct DEMG sdsmprec;
char xds;

replacedshg(dshgrec, ds)
struct DSHG =dshgrec;
char *ds;

replacetxt(txtrec, ds)
struct TXT xtxtrec;
char sds;

DESCRIPTION
These functions replace slf records in a slf database. The data set specified by the character
string ds is used to key the record to be replaced. If there are multiple records with the same
data set ID, then all such records are replaced. If no record with the proper key is found, then
ne change is made to the relation. The functions revurn an integer equal to the number of
records replaced. The database must already be opened Equel and because these routines
contain embedded queries they must be linked to the Equel library (-lq). These functions are
used by eccess_sif{1) to alter the values of fields in the data set.

SEE ALSO
access_slf{1)}, sli{3), slf(3)

AUTHOR
Steve Reichenbach 1/86

7th Edition DMAR SLF 1

RETRIEVESLF(3) Image Processing Software RETRIEVESLF(3)

NAME
retrievedsig, retrievedssg, retrievedspg, retrievedsmp, retrievedshg, retrievedsvg, retrievedsrg,
retrievedsrg_pts, retrievedsag, retrievemaos, retrievemao_coord, retrieveseg, retrievefos,
retrievepts, retrievefea, retrievefhd, retrievesof, retrievetxt — retrieve a slf record from a
relation

SYNOPSIS
#include "slf.q.h" /* Needed for all retrieveslf functions */

retrievedsig(dsigrec, idreq)
struct DSIG xdsigrec;
char *idreq;

retrievedssg(dssgrec, idreq)
struct DSSG «dssgrec;
char xidregq;

retrievedspg(dspgrec, idreq)
struct DSPG xdspgrec;
char «idreq;

retrievedsmp(dsmprec, idreq)
struct DSM G xdsmprec;
char *idregq;

retrievedshg(dshgrec, idreq)
struct DSHG *dshgrec;
char xidreg;

retrievedsvg(dsvgrec, idreq)
struct DSV G xdsvgrec;
char xidreg;

retrievedsrg(dsrgrec, idreq)
struct DSRG =dsrgrec;
char xidreq;

retrievedsrg_pts(dsrg.ptsrec, idreq, nolreq)
struct DSRG_PTS =dsrg_ptsrec;
char xidreq, *noireq;

retrievedsag(dsagrec, idreq)
struct DSAG xdsagrec;
char *idregq;

retrievemaos{maosrec, idreq, nolreq)
struet MAOS smaosrec;
char =xidreq, *nolreq;

retrievemao_coord{mao_coordrec, idreq, nolreq, no2req)

struet MAO_COORD *ms=ao_coordrec;
char xidreq, *nolreq, *no2req;

7th Edition DMAR SLF 1

RETRIEVESLF(3) Image Processing Software RETRIEVESLF(3)

retrieveseg(relname, segrec)
char *relname;
struct SEG *segrec;

retrievefos(relname, fosrec)
char xrelname;
struct FOS xfosrec;

retrievepts(relname, ptsrec)
char srelname;
struct PTS sptsrec;

retrievefea(relname, fearec)
char srelname;
struct FEA sfearec;

retrievefhd(relname, fhdrec)
char srelname;

struct FHD »fhdrec;

retrievesof{relname, sofrec)
char srelname;
struct SOF ssofrec;

retrievetxt(txtrec, idreq)
struct TXT #txtrec;
char xidreqg;

DESCRIFTION

These functions key on the data set ID requested to retrieve a record from 2 slf database. The
data set ID is specified by ifdreq. Most of the functions use only this one key, but
retrievedsrg_pts also uses the order of the registration point, retricvemaos also uses the order of
the multiple accuracy outline, and retrievemeo_coord also uses the order of the multiple
accuracy outline and the order of the coordinate.

The functions set the value of the record parameter to that of the last record found in the
relation. If no record with the key(s) is found, the record parameter is unchanged. The
functions return an integer equal to the number of records with the key(s) in the relation.

The database must already be opened under Equel and because these routines contain
embedded queries they must be linked to the Equel library (-ig).

SEE ALSO

access_slf(1), ingrestoslf(1), slf(3), slf{5)

AUTHOR

BUGS

7th Edition DMAR SLF

Steve Reichenbach 8/85

The functions to retrieve feature and segment data are not currently used by any of the
application programs. These relations tend to be very large, but easy to access because they
have few fields. Nested queries are the most natural way 1o access this data, but one limitation
of our version of Equel is that it does not allow nested queries. Therefore these calls can not be

nested since they contain queries.

w

SLFTAPE(3) Image Processing Software SLFTAPE(3)

NAME
initializetape, readblock, readtape, unread — low-level access to sl file

SYNOPSIS
initializetape(name)
char xname;

readblock()

readtape(recordtype, buf, n)
char srecordtype, xbuf;
int n;

unread(n)
int m

DESCRIPTION
These functions provide the low-level interface to the block structure of the Defense Mapping
Agency’s Standard Lincer Format for Digital Cartographic Feature Data (Draft 2nd ed., 18 March
1985). There are several data structures (hereafter referred to as the static tape variables) that
are global to these four routines. They maintain information about the slf file being read.

Initializetape(8) opens the named file (name), initializes the static tape variables about the file,
and reads the first block. This function should always be called first in order to set-up things
for the other funciions.

Readblock(8) is an internal routine used to fetch new blocks and maintain the static tape
variables. It needs no parameters. It checks block types and sequence numbers.

Readtape{8) compares the type of record requested (recordtype) with the type of the block which
is being read. If they are different an error occurs. Otherwise, n bytes are copied from the
current block into the buffer specified by the pointer buf. This string is terminated with the
null character. If during the process of reading, a block is exbausted, another is read (using
readblock(8)} and the readiape(8) process continues.

Unread(8) is a kluge to discard what may have been mistakenly read from a block. For
example, if the biock is read for the presence of an optional group and it turned out that the
optional group did not exist, then the characters could be "unread." There are better ways to
do this, but that’s often true.

SEE ALSO
sltoingres(1), slf(3), st(5)

AUTHOR
Steve Reichenbach 8/85

7tk Edition DMAR SLF 1

SLF(5) Image Processing Software SLF(5)

NAME
slf — introduction to the sif tape format, database organization, and structures

DESCRIPTION

These manual pages describe three separate organizational formats: 1) the Defense Mapping
Agency’s Standard Linear Format Jor Digital Cartographic Feature Data (Draft 2nd ed., 18 March
1985), 2) the structure of the relational database under Ingres that has been implemented to
hold this data, and 3) the C language record structures that are used in the programs dezling
with the slf files and databases. Although these pages are extensive, they are by no means a
complete description. Because the standard is new (and in draft form), it can be expected that
there may be changes or revisions.

Some files that are usefu) for manipulating the sif database can be found in the INGRES
subdirectory. The C structures are defined in the header files sif.¢.h 2nd slf.c.h in the INCLUDE
subdirectory.

SEE ALSO
access_slf(1), graphfea(1), ingrestoslf(1), siftoingres(1), slf(3)

LIST OF FORMATS

Name Appears on Page Deseription

slf database sifdb Ingres relational database for sif data
slf structures slistruct C structures for slf data

slf tape stitape standard linear format definition

7th Edition DMAR SLF 1

SLFDB(5) Image Processing Software SLFDB(5)

NAME
slfdb — ingres relational database for sif data

DESCRIPTION

The fields of the relations of the database closely follow DMA’s specification of the format. AJ)
of the fields are ascii character strings. Most correspond directly to a SLF field, having an
abbreviated name and the same character length.

The DS record has been broken into eleven (11) relations. Eight of the relations correspond to
the Data Set Groups defined in SLE. These relations have the same names as the SLF
abreviations: dstg, dssg, dspg, dsmp, dshg, dsvy, dsrg, and dseg. In addition to these, three
relations have been added to store the repeating subgroups: the registration points { dsrg_pts),
the multiple accuracy outlines (maos), and the coordinates of the multiple accuracy outlines
(meo_coord). The data set group headers have been omitted because they are redundant. Some

set (ds_dssg, ds_dspg, ds_dsmp, ds_dshg, and so on). The dsrg_pts relation has a dsrg_order field
to distinguish each registration point. The maos relation has a mao_td field for the same
purpese. The mao_coord relation has a mao_coord_id field to identily the multiple accuracy
outline to which the coordinate belongs and a coord_id field to order the coordinate in the
outline,

These fields are fully described by the Ingres commands used to create them.

create dsig (
prod._type = c5,
ds_id = ¢20,
ds_ed = ¢3,
comp. date = c4,
maint_date = c4,
sif_ver = ¢6,
facs_ver = ¢B,
dsig_rsv = 28

)

create dssg (
ds_dssg = ¢20,
sec_class = cl,
sec_rel = ¢2,
down_date = cB,
handling = c21,
dssg_rsv = ¢40

)

create dspg (
ds_dspg = ¢20,
data_type = ¢3,
hor_units = ¢3,
hor_res = ¢85,
geod_data = ¢3,
ellipsoid = ¢3,
Ver_units = ¢3,
ver_res = ¢3,
ver_ref = c4,

7th Edition DMAR SLF 1

SLFDB(5)

7th Edition

)

Image Processing Software

sounding = ¢4,
lat_orig = ¢9,
long_orig = c10,

X_orig = c10,
y_orig = ¢10,
Z_orig = c10,
lat_sw = c9,
long_sw = c10,
lat_ne = ¢g,
long_ne = ¢10,
n_fea = c6,
n_pt_fea = c§,
n_ln_fea = c§,
n_ar_fea = ¢6,
n_seg = ¢b,

dspg_rsv = c4Q

create dsmp (

)

ds_dsmp = ¢20,
prictn = ¢2,
parml = ¢l10,
parm?2 = ¢10,
parm3 = ¢l0,
parmd = c10,
scale = c@,
dsmp_rsv = ¢40

create dshg (

ds_dshg = c20,
dshg_ed = ¢3,
prod_spec = ¢15,
spec_date = c4,
amend_no = c3,
producer = c8,

dig_sys = ¢10,
proc._sys = ¢10,
grid_sys = ¢2,

abs h_acc = ¢4,
abs v_acc = c4,
rel h_ace = ¢4,
rel_v_acc = c4,
ht_ace = c4,
data_gen = c1,
n.mm_no = ci,
€_mm. no = cl,
s_mm_no = c],
W.mm_no = c],
nmm_date = c4,
e_mm_date = c4,
s_mm_date = c4,

DMAR SLF

SLFDB(5)

(8]

SLFDB(5)

7th Edition

Image Processing Software

w_nm_date = ¢4,
early_src = ¢4,
late_src = ¢4,
coll_code = c1,
coll_erit = ¢3,
dshg. rsv = ¢28

)

create dsvg (
ds_dsvg = ¢20,
reg_pt_add = c5,
acc_addr = c5,
dsvg_rsy = ¢4

)

create dsrg (
ds_dsrg = ¢20,
no.reg_pt = ¢3

)

create dsrg_pts (
ds_dsrg_pts = ¢20,
dsrg_ord = c3,
pi.id = cB,
lat = c9,
Ing = c10,
elev = cg,
x_coord = ¢6,
¥_coord = c6,
Z_coord = ¢b

)

create dsag (
ds_dsag = ¢20,
Do_mao = ¢2

)

create Imaos (
ds_maos = ¢20,
mao_id = ¢2,
mac_abs h = c4,
mao_abs v = c4,
mao.rel b = ¢4,
mao_rel_v = c4,
no_coord = ¢2

)

create mao_coord (
ds_rnao_coord = ¢20,
mao,_coord_id = ¢2,
coord_id = ¢2,
mao_lat = ¢§,

DMAR SLF

SLFDB(5)

SLFDB(5) Image Processing Software SLFDB(5)

mao_long = ¢10

The Segment and Feature records tend to be very long, with perhaps hundreds of thousands
segments or features and their constituent points. The Ingres system 1s not lightening fast so

The solution to this problem was to define six separate relations {or each data set’s segments
and features. The names of these relations are formed by concatenating a three-letter relation
type with the data set ID. The relations and their three-letter identifiers are: the segments
relation (seg), the features of the segments relation (fos), the points of the segments relation
(pis), the features relation (fea), the headers of the {eatures relation (fhd), and the segments of
the features relation (sof). The feature ID’s and Segment ID’s are used to tie these relations
together. Also, some fields were added to maintain the order of the repeated fields. The fos
relation uses the order of the feature of the segment (ord_fos). The pts relation uses the order
of the point {ord_pt). The fhd relation uses the order of the header block {(ord_hdr). The sof
relation uses the order of the segment of the feature (ord_sof). As with the Data Set record,
these relations can be described by the Ingres commands to create them, but the relation names
would not be known until the data set ID of the data set is known.

create segrel {

seg_id = ¢6,
fea_cnt = ¢2,
pt_cnt = ¢f

)

ereate fosrel (

seg. _no = ¢f,
ord_fos = ¢2,
fos_id = ¢B,

iea_orient = ¢

)

create ptsrel (
50p._no = ¢,
ord_pt = ¢5,
x_val = ¢6B,
y_val = ¢6,
z_val = ¢6

)

create fearel (
fea_id = ¢8,
fea_type = cl,
fea_hdr_cnt = ¢2,
seg_cnt = ¢3

)

create fhdrel {
hdr_fea_id = ¢8,
ord_hdr = ¢2,
block = ¢40

7th Edition DMAR SLF 4

SLFDB(5) Image Processing Software SLFDB(5)

create sofrel (
fea_no = c6,

ord_sof = ¢3,
direction = e,
sof_id = ¢B

)

The limit on the size of a field in Ingres is 255 characters, so the text record had to be broken
up into blocks. The character count is stored In the txt_cnt field of all of the tuples. This is a
small redundancy. Another field is used to order the blocks of the text {ord_tzt). The relation is
created with the following Ingres command.

create txt (

ds_txt = ¢20,
txt_cnt = ¢4,
ord_txt = eI,

text = c255
)

In order to speed processing, these relations are modified for indexed-sequential access. This js
only done for the Segment and Feature relations, because they are the only relations whose size
presents a problem. The following Ingres commands are vsed to modify these relations.

modify segrel to isam on seg_id

modify fosrel to isam on seg_no, ord_fos
modify ptsrel to isam on 50p.no, ord_pt
modify fearel to isam on fea_id

modify fhdrel to isam on bdr_fea id, ord_hdr
modify sofrel to isam on fea_no, ord_sof

FILES
Some files useful for manipulating the slf database (delete, modify, create, ete.) can be found in
the INGRES subdirectory.

SEE ALSO
access.slf(1), graphfea(1), ingrestosli(1), slftoingres(1), sif(3), slf(5)

AUTHOR
Steve Reichenbach 8/85

7th Edition DMAR SLF 5

SLFSTRUCT(5)

NAME

SLFSTRUCT (5)

Image Processing Software

slfstruet — C structures for sif data

DESCRIPTION

The C data structures used to read, write, and process slf data also closely correspond to the
SLF described by DMA. These structures have fields of the DMA standard that are not
included in the database (the data set group records) and fields of the database relations that
are not defined in SLF (the identifying and ordering fields). The field names are the same ag the
database field names. This means that the Equel programs must use the non-referencing
operator (#) for all database field references, but having the names the same makes them easier
to remember. The length of the fields is one character longer than the fields of the SLF and the
database because the strings used with Equel require an extra character for the null-terminator.

7th Edition

struct DSIG {

char dsig_hdr[5};
char prod_type[6];
char ds_id[21];
char ds_ed[4];
char comp_date[5];
char maint_date[5];
char sl_ver|[7);
char faes_ver|7};
char dsig_rsv[29];

};

struct DSSG {
char ds_dssg{21};
char dssg_hdr{5];
char sec_class(2);
char sec_rel[3];
char down_date[7};
char handling[22];
char dssg_rsv[41];

b

struct DSPG {
char ds_dspg|21];
char dspg_hdr[5];
char data._typel4];
char hor_units[4];
char hor_res|6};
char geod_data[4];
char ellipsoid[4];
char ver_units|4];
char ver_res[6);
char ver_ref[5];
char sounding[5);
char lat_orig[10};
char long_orig[11};
char x_orig|11];
char yorig|11];
char z_orig{11];
char lat._sw(10];

DMAR SLF 1

SLFSTRUCT(5) Image Processing Software SLFSTRUCT(5)

char long_sw(11];
char lat_ne(10};
char long_ne[11j;
char n_fea[7);
char n_pt_fea(7);
char n_In_feal7];
char n_ar_fea|7);
char n.seg|7];
char dspg_rsv[41];

}s

struct DSMP {
char ds_dsmp|21];
char dsmp_hdr[5];
char prictn[3);
char parml[11];
char parm2[11};
char parm3[11];
char parm4(11];
char scale[10];
char dsmp_rsv[41};

s

struct DSHG {
char ds_dshg|21];
char dshg_hdr[5);
char dshg_ed|4];
char prod_spec|16];
char spec_date[5];
char amend_no[4];
char producer[9];
char dig_sys[11};
char proc_sys{11];
char grid_sys(3};
char abs_h_acc[5};
char abs_v_ace[5];
char rel_h_accl5);
char rel_v_acc[5};
char ht_aec[5]);
char data_gen2];
char n_mm_nol|2);
char e_mm_nof2};
char s_mm_nol2];
char w_mm_no|2];
char n_mm_date[5);
char e_mm_datel5);
char s_mm_date[5];
char w_mm_date[5];
char early_sre[5};
char late_src[5);
char coll_code[2};
char coll_crit[4];

o

7th Edition DMAR SLF

SLFSTRUCT(5)

7th Edition

char

b

struct DSVG {
char
char
char
char
char

};

struct DSRG {
char
char
char

}s

struct DSRG_PTS {

char
char
char
char
char
char
char
char
char

s
struct DSAG {

char
char
char

}s

struct MAOS {
char
char
char
char
char
char
char

}s

struct MAO_COORD {

char
char
char
char
char

Image Processing Software

dshg_rsv(29};

ds_dsvg[21];
dsvg_hdr[5];
reg_pt_add[6];
acc_addr[6];
dsvg_rsv([41];

ds_dsrg[21};
dsrg_hdr{5];
no._reg.ptl4);

ds_dsrg_ptsf21];
dsrg_ordi4];
pt_id(7];

lat[10];

Ing[11];

elev{s};
x_coord[7];
y—coord{7);
z_coord|7];

ds_dsag[21];
dsag_hdr|5};

no_mao{3);

ds_maos[21];
mao_id|[3];
mac_abs_h[3];
mao_abs_v[5];
mao_rel_h{3];
mao._rel_v[5];
no._coord3);

ds_mao_coord[21];

mao_coord_id[3];
coord_id|[3};
mao_lat]10];
mao_long|11];

DMAR SLF

SLESTRUGT (5)

SLFSTRUCT(5) Image Processing Software SLFSTRUCT(5)

struct SEG {

char seg.id|7];
char fea_cnt[3];
char pt_cnt[6];
b
struct FOS {
char seg_no{7};
char ord_fos[3];
char fos_id[7);
char fea_orient[2];
s
struct PTS {
char sop_no|7};
char ord_pt|[6};
char xvall7];
char y_val|7];
char z.val[7};
b
struct FEA {
char fea_id[7);
char fea_typel2);
char fea_hdr_cnt[3};
char seg.cntf4];
b
struct FHD {
char hdr_fea_id[7};
char ord_hdr[3];
char block[41];
b
struct SOF {
char fea_nol7];
char ord_sof[4];
char direction|2];
char sof_id|[7];
}s
struct TXT {
char ds._txt[21];
char txt_cnt[5];
char text{1969];
}i

These structure definitions are contained in the header files slif.g.h and slfc.h. Slfch is
generated by the Equel preprocessor from sif. g.h. In addition to these structure definitions, the
header file also contains the constant definitions for the sizes of the SLF block and its
components (see siftape(5)) and an error macro.

Fdefine error{msg) {printf(msg); exit(-1);}

7th Edition DMAR SLF 4

SLFSTRUCT(5) Image Processing Software SLFSTRUCT(5)

FILES
“INCLUDE/slf.q.h
“INCLUDE/slf.c.h

SEE ALSO
access_sli{1), graphfea(1), ingrestoslf{1), slftoingres(1), slf{3), sli(5)

AUTHOR
Steve Reichenbach 8/85

7th Edition DMAR SLF

SLFTAPE(5} Image Processing Software SLFTAPE({s)

NAME

slftape — standard linear format definition

DESCRIPTION
The Standard Linear Format (SLF) was designed by the Defense Mapping Agency as a standard
for the exchange of digital cartographic features on magnetic tape. The format specifies
descriptive fields about feature data, as well as specifying the representation of the features. It
represents {eatures as chain-node data structures, by specifying common boundaries between
areal features (as well as specifying point and linear features).

The SLF tape is divided into five logical records with the order: the Data Set Identifier record
(DSI), the Segment record (SEG), the Feature record (FEA), and the Text Record (TXT) which
is optional. The order of the logical records must be that given above. Each logical record
consists of one or more physical blocks of 1980 bytes, each byte an ascii character. Each
physical block begins with an eight-byte header consisting of the left-justified, block type (DS,
SEG, FEA, or TXT) and 2 right-justified, five-digit block sequence number (with blank fll).
Each logical record’s physical blocks are sequenced separately beginning with one (1) for the
first block of each logical record. The remaining 1972 bytes of each physical block is allocated
to the storage of the fields of the logical record. Data fields within a logical record may span
more than one physical block, but a physical block may not contain data from different logical
records. Any unfilled bytes at the end of physical record following the end of a logical record
are filled with the ascii delete character {octal 177).

The Data Set Identifier record (DSI) consists of eight groups of fields. These groups, their fields,
and the field lengths are given in brief below. Subgroups of fields (such as the information
about each of the registration points in the Registration Points Group} may be repeated any
number of times. In these cases, the field immediately before the repeating fields indicates the
number of occurrences of the subgroup. For a more details, consult Standerd Linear Format for
Digital Cartographic Feature Daia (Draft 2nd ed., 18 March 1985).

A. Data Set Identification Group (DSIG)
DESIG Header

Product Type

Data Set ID

Edition

Compilation Date

Maintenance Date

SLF Version Date

FACS Version Date

DSIG Reserve

L0 N Do o
Ha b G0 LS on b,
o

L2 O
[s¢]

Data Set Security Group (DSS@G)
1. DSSG Header

2. Security Classification

3. Security Release
4
5
6

s

Downgrading/Reclassification Date
Security Handling
DSSG Reserve

[S 3= T S T

b
O

C. Data Set Parameter Group {(DSPG
1 DSPG Header
2 Data Type
3. Horizontal Units of Measure
4. Horizontal Resolution Units

[S U\ LI N

7th Edition DMAR SLF 1

SLFTAPE(5)

7th Edition

=B

0o =~

9

10.
11.
12.
13.
14.
15,
16.
17.
18.
19.
20,
21.
22,
28.
24,
25.

Image Processing Software

Geodetic Datum

Ellipscid

Vertical Units of Measure
Vertical Resolution Units
Vertical Reference System
Sounding Datum

Latitude of Origin
Longitude of Origin

X Coordinate of Origin

Y Coordinzate of Origin

Z Coordinate of Origin
Latitude of SW Corner
Longitude of SW Corner
Latitude of NE Corper
Longitude of NE Corner
Total Number of Features
Number of Point Features
Number of Linear Features
Number of Areal Features
Total Number of Segments
DSPG Reserve

Data Set Map Group (DSMP)

OO 1 O O s G0 B b
P A

)

b
[Ny

e ped e
© 0N

=D 00 S O b G W
L = LA A

—
[&]

DSMP Header
Projection

Projection Parameter 1
Projection Parameter 2
Projection Parameter 3
Projection Parameter 4
Scale

DSMP Reserve

ata Set History Group (DSHG)

DSHG Header
Edition Code
Product Specification
Specification Date

Specification Amendment Number

Producer
Digitizing System
Processing System

Absolute Horizontal Accuracy

Absolute Vertical Accuracy

Relative Horizontal Accuracy

Relative Vertical Accuracy
Height Accuracy

Data Generalization

North Match/Merge Number
East Match/Merge Number
South Match/Merge Number
West Mateh/Merge Number
North Match/Merge Date

DMAR SLF

SLFTAPE(5)

2 e
o

Q w

Ll e S T N N Y SR AP

| S]

SLFTAPE(5) Image Processing Software SLFTAPE(5)

20. East Match/Merge Date 4
21. South Match/Merge Date 4
22. West Match/Merge Date 4
23. Date of Earliest Source 4
24. Date of Latest Source 4
25. Data Collection Code 1
26. Data Collection Criteria 3
27, DSHG Reserve 28

F. Data Set Variable Field Address Group (DSVG)

1. DSVG Header 40
2. Registration Points Address 5
3. Accuracy Subset Address 5
4. DSVG Reserve 40
G. Data Set Registration Points Group (DSRG) (optional)
1. DSRG Header 40
2. Number of Registration Points 3
a. Point ID 6
b. Latitude 9
¢. Longitude 10
d. Elevation 8
e. X-Coordinate]
f. Y-Coordinate 6
g. Z-Coordinate 6

H. Data Set Accuracy Group (DSAG) (optional)
1. DS5SAG Header
2. Mukiple Accuracy Qutline Count
Absolute Horizontal Accuracy
Absolute Vertical Accuracy
Relative Horizontal Accuracy
Relative Vertical Accuracy
Number of Coordinates
i. Latitude
ii. Longitude 0
The Segment record (SEG) specifies the line segments that separate features. Fach boundary

segment is encoded only once and the feature(s} it delineates refer to that segment. For a fuller
discussion of chain-coding of segments refer to Appendix VI of the DMA specification.

o ap o
Hcot-brb-hbk)-b-rb-t\‘)g

Segment Record

1. Segment ID 6
2. Feature Count 2
a. Feature ID 6

b. Feature Orientation 1

3. Point Count 5
a. X-Value 6

b. Y-Value 6

&

¢. Z-Value {optional)

The Feature record (FEA) specifies the features. Each feature is described by = header and
names the segments that delineate it. The Feature Header Block Count specifies how many
forty (40) character blocks follow it. The Segment Count specifies how many Direction of

7th Edition DMAR SLF 3

	Software for the Standard Linear Format for Digital Cartographic Feature Data
	Recommended Citation
	Software for the Standard Linear Format for Digital Cartographic Feature Data

	tmp.1462913377.pdf.EfREl

