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ABSTRACT OF THE DISSERTATION

Essays on Theories of Social Influence

by

Jiemai Wu

Doctor of Philosophy in Economics

Washington University in St. Louis, 2016

Professor John Nachbar, Chair

This dissertation studies strategic social influence from a theoretical perspective.

The first chapter extends Bikhchandani, Hirshleifer and Welch’s informational cascade

model by introducing two types of players: experts with high signal accuracy and laymen

with low signal accuracy. If a small enough fraction of laymen are present in the population,

the probability of having a correct cascade is strictly higher than if no laymen are present.

This is because the presence of laymen makes experts less eager to follow suit, which increases

the amount of private information revealed.

The second chapter asks the following question: when a decision maker’s (DM) choice

depends on the information provided by persuaders, does the DM benefit from that infor-

mation? I address this question in the context of a Bayesian persuasion game in which

independent persuaders with no private information try to persuade a DM by gathering

information using verifiable tests. All persuaders want the DM to switch her action from a

default action to a new action, but whether it is optimal for the DM to switch depends on

the state of the world. The persuaders strategically design tests that may be biased towards

the new action and that best respond to the test designs of the other persuaders. I show

that although the DM never gains from the information when there is only one persuader,

there always exist equilibria in which the DM strictly gains when there are more than one

persuader, even if these persuaders share identical preferences towards the new action. More-

over, these beneficial equilibria always feature noisy tests that never perfectly reveal the true
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state. This paper shows that neither competition nor disagreement among the persuaders is

necessary to facilitate a high level of information revelation in a persuasion game.

The third chapter discusses a situation in which one’s consumption of a harmful tempt-

ing good (e.g., cigarettes, heroin) is affected by one’s friend. Using Gul and Pesendorfer’s

temptation framework, I assume that having an addict as a friend makes the good more

tempting. In this setting, I discuss the strategic interaction between players when they can

endogenously choose friends. I show that there exist equilibria in which a player chooses

a low consumption level in order to win the friendship of another. However, none of these

equilibria are subgame perfect.
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Chapter 1

Helpful Laymen in Informational

Cascades

1.1 Introduction

It is conventional wisdom that smarter, more experienced people make better decisions.

However, even a group of experts can cluster on the wrong choice. As shown by Bikhchan-

dani, Hirshleifer, Welch (1992), and Banerjee (1992), when an agent observes both a private

signal and the sequence of actions by previous agents, he can decide it is optimal to fol-

low the choice of previous agents, even if his private signal indicates the opposite. This

phenomenon, in which agents ignore their private information, is called an "informational

cascade." In particular, if agents early in the sequence picked the wrong choice because of

faulty private signals, the entire sequence of agents will follow the wrong choice, making

it a "wrong informational cascade." Wrong informational cascades have been successfully

replicated in experiments (Anderson and Holt 1997, Celen and Kariv 2004).

If even a group of experts aren’t exempt from wrong cascades, how much worse will

people do if the population also includes laymen, who have poorer signals than the experts?

The answer is: they may end up doing better, with a lower frequency of wrong cascades.
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Specifically, this paper analyzes games in a Bikhchandani-Hirshleifer-Welch setting with

two types of players that differ in private signal accuracy. Suppose a group of consumers

face the same choice, for example, whether to buy an iPhone or an Android phone. Assume

one platform works better than the other, but it’s hard to tell which is better with absolute

certainty. Some consumers, whom I call experts, receive accurate private signals that indicate

the correct choice most of the time. Others, whom I call laymen, are less familiar with the

smartphone industry, and have poorer private signals that are incorrect more often. This

paper shows that one can always find a small enough fraction of laymen, such that the

probability of wrong cascades strictly decreases if those laymen are present among a group

of experts. The reason comes from the discreteness of individuals: a player rationally follows

suit and starts a cascade only after observing a fixed number of people making identical

choices in a row. Let’s call this number the “cascade triggering number”. While adding a

small fraction of laymen only decreases the overall information quality by a little, the cascade

triggering number can discretely jump up by 1. That is, a player requires one more count of

evidence before rationally ignoring his private signal in decision-making, and this increased

hesitation delays the start of a cascade. As a result, the delay allows more information to

be revealed to the public, which enables later players to make better choices.

This paper is closely related to Bikhchandani, Hirshleifer and Welch’s paper on informa-

tional cascades (1992). Their paper includes a scenario in which each player’s (potentially

different) signal accuracy is public information, and discusses how sensitive cascades are with

respect to the order of players, e.g. whether an expert decides first. My paper instead as-

sumes anonymity of heterogeneous players, and shows how cascades are sensitive to a change

in the entire player distribution, e.g. how many experts there are in the population. Other

papers that address the topic of signal accuracy in cascades includes Sasaki’s experimental

study (Sasaki 2005), which shows that if the order of the players is linked with their ranking

of signal accuracy, then there is a higher frequency of cascades when experts choose first.

A paper by Pastine I. and Pastine T. (2006) provides examples to show that when homo-
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geneous players’ conditional signal probabilities are asymmetric for good and bad states,

it is possible that the probability of correct cascades is not monotonic in players’ common

signal accuracy. My paper, on the other hand, studies heterogeneous players with symmetric

conditional signal probabilities, and I show that the non-monotonicity of Pr(correct cascade)

with respect to the fraction of experts not only exists, but also persists for any parameter

specification.

Other studies have extended the cascade literature in different dimensions of heterogene-

ity. Smith and Sorensen (2000) discussed the possibility of confounded learning when players

have opposite preferences with respect to the true state of the world. Goeree, Palfrey, and

Rogers (2006) assume that a player’s payoff is partly determined by a private preference

shock that is independent of the true state. They conclude that as long as the support of

such shock is rich enough, players will always learn and converge to the true state asymptot-

ically. Other papers explored the possibility of players being exposed only to a (potentially

different) subset of past action history (Banerjee and Fudenberg 2004, Acemoglu, Daleh,

Lobel, and Ozdaglar 2011). All these papers assume a homogeneous signal distribution.

My paper is organized as follows: Section 2 lays out the the model. Section 3 summarizes

the learning dynamics of the game. Section 4 derives the necessary and sufficient conditions

of a cascade. Section 5 introduces the main theorem which states that it’s always possible

to have a higher probability of correct cascades by having some laymen among experts. A

discussion of the robustness of the results is included at the end.

1.2 Model set up

There are two states of nature, V ∈ {vH , vL}, with equal prior probabilities P (vH) = P (vL) =

1

2
. An infinite sequence of i.i.d. players, i = 1, 2, 3, ..., enter with an exogenous order. Players

differ in types t ∈ {expert, layman}, and π ∈ [0, 1] is the probability that player i is an expert

∀i.
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Each player i receives a private signal Si ∈ {H,L} conditional on the true state V ,

and player i’s type ti. The conditional probabilities are summarized in Table 1. An expert

receives a more accurate private signal than a layman. Type ti and signal Si are both private

information.

“Experts” (fraction π) have high signal precision:

Expert P (Si = H|V ) P (Si = L|V )

V = vH pE 1− pE
V = vL 1− pE pE

“Laymen” (fraction 1− π) have low signal precision:

Layman P (Si = H|V ) P (Si = L|V )

V = vH pL 1− pL
V = vL 1− pL pL

1
2
6 pL < pE < 1

Table 1.1: Conditional private signal distribution

A player faces two choices: adopt or reject. The payoff of rejection is 0. The payoff of

adoption is 1 when V = vH , and −1 when V = vL. In other words, a player wishes to adopt

when V = vH , and reject when V = vL.

Once a choice is made, it becomes public information for later players. Therefore, each

rational player i observes the past action history {A1, A2, A3...Ai−1}, his private type ti, a

private signal Si, the fraction of experts π, and then chooses to adopt or reject.

Finally, player i’s strategy when he’s indifferent requires extra specification. Here I focus

on the cases in which the player randomly chooses adoption with a fixed probability when

indifferent. Under this tie-breaking rule, there is a unique perfect Bayesian equilibrium in

which player i will

Adopt if P (vH |A1, ..., Ai−1, Si, ti) > P (vL|A1, ..., Ai−1, Si, ti);

Reject if P (vH |A1, ..., Ai−1, Si, ti) < P (vL|A1, ..., Ai−1, Si, ti);

4



Adopt with probability z ∈ [0, 1] if P (vH |A1, ..., Ai−1, Si, ti) = P (vL|A1, ..., Ai−1, Si, ti).

For example, if z = 0.5, the player flips a coin when indifferent. The main result of

this paper is robust to almost every arbitrary tie-breaking rule. Section 5 and 6 include the

detailed discussion.

As in the previous literature, an informational cascade for type t is said to occur when

it is optimal for a type-t player to follow the choice of the preceding player regardless of his

private signal. A full informational cascade occurs when it is optimal for a player to follow

the choice of the preceding player regardless of his private signal and type.

It’s intuitive that a cascade for experts occurs later than a cascade for laymen. Compared

with laymen, experts are more confident in their private signals, so stronger evidence is

needed to convince an expert to ignore his own signal and follow suit. Hence, a full cascade

begins exactly when an expert enters a cascade.

1.3 Learning dynamics

To describe the dynamics of the game, let {ln}∞n=0 be a sequence of the public likelihood ratio

where l0 ≡ 1 and

ln ≡
P (A1, A2, ..., An|vH)

P (A1, A2, ..., An|vL)
for n = 1, 2, 3, ...

Hence the decision rule for player i can be rewritten as:

Adopt if li−1 ·
P (Si|vH , ti)
P (Si|vL, ti)

> 1;

Reject if li−1 ·
P (Si|vH , ti)
P (Si|vL, ti)

< 1;

Adopt with probability z ∈ [0, 1] if li−1 ·
P (Si|vH , ti)
P (Si|vL, ti)

= 1.
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Conditional on the true state being 1, {ln} is a Markov chain:

Let

L1 =
1− pE
pE

, L2 =
1− pL
pL

, L3 =
pL

1− pL
, L4 =

pE
1− pE

.

Since 1
2
6 pL < pE < 1, L1 < L2 < 1 < L3 < L4. I use these four numbers as cutoff

values to describe the evolution of ln.

When ln < L1: No private signal can outweigh the strong public belief in favor of vL. In

this case a wrong full cascade of rejection occurs, and ln+1 = ln with probability 1.

When ln = L1: The current player is indifferent (and thus chooses adoption with

probability z) only if he is an expert with signal H. Otherwise, he chooses rejection

regardless of his signal. Therefore,

a. the current player adopts with probability zπpE, and ln+1 = ln ·
pE

1− pE
;

b. the current player rejects with probability 1− zπpE, and ln+1 = ln ·
1− zπpE

1− zπ(1− pE)
.

When ln ∈ (L1, L2): The current player adopts only if he is an expert with signal H.

Otherwise, he chooses rejection regardless of his signal. Therefore,

a. the current player adopts with probability πpE, and ln+1 = ln ·
pE

1− pE
;

b. the current player rejects with probability 1− πpE, and ln+1 = ln ·
1− πpE

1− π(1− pE)
.

The transition of ln when it falls in {L2}, (L2, L3), {L3}, or (L3, L4) can be deduced in a

similar fashion. For each interval, pin down the type-signal combinations that lead to an

adoption (respectively, rejection). Conditional on the action of the current player

Ai ∈ {adopt, reject}, derive

ln+1 = ln ·
P (type-signal combo that choose Ai | vH)

P (type-signal combo that choose Ai | vL)
,

6



and the transitional probabilities accordingly. Finally, finish with the last possible scenario:

When ln > L4: No private signal can outweigh the strong public belief in favor of vH . In

this case a correct full cascade of adoption occurs, and ln+1 = ln with probability 1.

1.4 Conditions for a full cascade

The transition of the public likelihood ratio ln describes how the game evolves; however, it

requires much calculation to tell if a cascade has started in an arbitrary game. There’s a

quicker way to spot the rise of a cascade. Let’s start with the following Lemma.

Lemma 1. ∀π ∈ (0, 1), if a sequence of consecutive identical actions are observed from the

beginning of the game, a cascade for laymen starts after exactly 1 player, and a cascade for

experts (hence, a full cascade) starts after exactly N players, where N is the smallest integer

larger than
ln
[

pE
1−pE

· π(1−pE)+(1−π)(1−pL)
πpE+(1−π)pL

]
ln 1−π(1−pE)

1−πpE

+ 1.

Note that N is a decreasing function of π: the more experts there are in the population,

the less evidence is needed to convince an expert to follow suit. For π = 1, N = 2. As

π → 0, N → ∞ ∀pL, pE. Figure 1 in Section 5 also shows a plot of N for pL = 0.55 and

pE = 0.95.

Proof. I here prove the lemma for cascades of adoption. The proof for cascades of rejection

is symmetric. Let M be the smallest integer such that if player M + 1 is a layman, and if

all players 1, ...,M choose adoption, player M + 1 also chooses adoption regardless of his

private signal (i.e. he is in a cascade). Similarly, let N be the smallest integer such that if

player N + 1 is an expert, and if all players 1, ..., N choose adoption, player N + 1 also

chooses adoption regardless of his private signal. Then, M is simply the smallest integer

7



s.t. lM > L3, and N is the smallest integer s.t. lN > L4, where L3 = pL
1−pL

, L4 = pE
1−pE

, as

defined in Section 3. Since

lM =

[
πpE + (1− π)pL

π(1− pE) + (1− π)(1− pL)

]M
,

lM > L3 implies

M >
ln pL

1−pL

ln πpE+(1−π)pL
π(1−pE)+(1−π)(1−pL)

≡M∗.

Note that M∗ < 1 ∀pE, pL s.t. 1
2
6 pL < pE < 1. Therefore M = 1.

Similarly, since

lN =

[
πpE + (1− π)pL

π(1− pE) + (1− π)(1− pL)

] [
1− π(1− pE)

1− πpE

]N−1
,

lN > L4 implies

N >
ln[ pE

1−pE
· π(1−pE)+(1−π)(1−pL)

πpE+(1−π)pL
]

ln 1−π(1−pE)
1−πpE

+ 1.

This completes the proof of the lemma.

The above lemma identifies the start of a cascade when there is a sequence of identical

actions from the very beginning of the game. The next proposition identifies the start of a

cascade in a general case.

Proposition 1. (Necessary and sufficient conditions for a full cascade) Following any his-

tory, if no cascade has yet started,

1. at least 1, and at most 2 consecutive identical actions are needed to trigger a cascade

for laymen;

2. at least N , and at most N + 1 consecutive identical actions are needed to trigger a

cascade for experts (and therefore, a full cascade).

Hence, a full cascade occurs with probability 1 as the number of players goes to ∞.

8



For example, let “A” denote “adopt” and let “R” denote “reject”. If N = 4, then the

proposition implies that no full cascade has started after action history “RRAARAAA”. On

the other hand, if the action history is “RRRAAAAA”, a full cascade of adoption must be

in action. In other words, “N consecutive identical actions” is the necessary condition for a

full cascade; “N + 1 consecutive identical actions” is the sufficient condition.

Proof. I here prove the proposition for cascades of adoption. The proof for cascades of

rejection is symmetric.

If a sequence of adoption starts from the beginning of the game, see Lemma. Otherwise,

suppose a sequence of adoption starts after some history that ends with a rejection:

... (some history)..., R, A, A, A, A, A...

Denote the player associated with the rejection in the above example as player k.

Lemma implies that when l = l0 = 1 (as at the beginning of the game), exactly N

adoptions are needed to trigger a cascade for experts (and therefore, a full cascade).

The fact that player k chooses to reject implies that after receiving his private signal, player

k’s private posterior probability for vL is at least 0.5. The public learning process captures

this information by having lk+1 6 1 ∀lk whenever player k rejects. Therefore, since exactly

N adoptions are needed to start a cascade when l = 1, in this less favorable scenario with

lk+1 6 1, at least N adoptions are needed to trigger a cascade for experts after player k .

Next let’s focus on player k + 1, the first player who chooses adoption in the sequence.

Similarly, lk+2 > 1 ∀lk+1 whenever player k + 1 adopts, so we need at most N more

adoptions (which means N + 1 adoptions in total) to trigger a cascade for experts.

The proof of cascades for laymen is obtained by simply replacing N with 1 in the argument

above.
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Finally, since N is finite, the probability of having a sequence of identical actions with the

required length converges to 1, so a full cascade occurs with probability 1 in the limit. To

formally show this, let M denote the number of players. Note that if starting from

somewhere in the sequence, there are N + 1 consecutive experts all receiving signal H, they

will all choose adoption and this starts a cascade. Therefore,

P (cascade) > P (there exists N + 1 consecutive experts with signal H)

> 1−
[
1− (πpE)N+1

] M
N+1

→ 1 as M →∞.

1.5 Probability of correct cascades

1.5.1 Example

If a few consecutive players happen to receive wrong signals, a cascade starts where everyone

later in the sequence chooses the wrong option even when they receive correct signals. Such

unfortunate events always occur with a positive probability. From a welfare point of view,

therefore, it is meaningful to study the probability of landing on a correct cascade, and in

particular, how this probability changes with the demographics of the population.

Suppose pE = 0.95, pL = 0.55. That is, experts receive correct signals 95% of the time,

and laymen only receive correct signals 55% of the time. Also assume z = 0.5, which means

players flip a coin when indifferent. Plot A in Figure 1 describes how N , the length of the

sequence of identical actions needed to trigger a cascade, changes with π. Plot B, which is

the result of 100,000 Monte Carlo simulation trials, shows the frequency of correct cascades

for each π.

Observe that in plot A, N decreases with π. The more experts there are, the less it
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Figure 1.1: Probability of correct cascades exhibits discontinuous drop when integer N de-
creases

takes to trigger a full cascade. Let f(π) ≡ N evaluated at π. Since N only takes integer

values, f is a discontinuous function of π, and so I define a set of “turning points” {πN}∞N=2

s.t. f(πN) = N and lim
ε→0

f(πN − ε) = N + 1. In the example, π2 = 1, π3 ≈ 0.75, π4 ≈ 0.6,

π5 ≈ 0.5.

In plot B, observe that the probability of correct cascades pcorrect(π) (blue dots in the

picture) increases in π until it drops when π reaches πN for some N . A particularly interest-

ing fact is that, for a range of π ∈ (0.59, 0.6)∪ (0.69, 0.75)∪ (0.83, 1), pcorrect(π) > pcorrect(1)

(blue dots above the green line). When about 40% of the players are laymen, the probability

of landing on the correct cascade is even higher than the case in which all players are experts.

What explains the drops in pcorrect? And why is pcorrect higher when laymen are present?

To answer the first, note that the likelihood function of each sequence of type-signal
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realization (i.e. player 1 is an expert with H, player 2 is a layman with L, etc.) is continuous

at each πN , and therefore its left-sided limit at πN is equal to its value at πN . However,

f(πN) = lim
ε→0

f(πN − ε)− 1, which implies that although the overall population composition

and signal quality at πN and πN − ε are almost the same, players wait one less period to

start a cascade at πN . With an earlier start of the cascade, all later players’ decisions are

based on a smaller set of information, which, inevitably, lead to more mistakes and a lower

pcorrect.

The reason for a higher pcorrect when laymen are present follows the same logic. When

there are laymen around, experts wait longer before following suit, and everyone benefits

from this little hesitation. To be more specific, when all players are experts, suppose the

first player adopts. Then even if the second player receives signal L, he’s indifferent between

adoption and rejection, and will therefore choose randomly. In contrast, when there is a

small group of laymen, the expert second player with signal L no longer trusts the first

player as much as himself, and instead strictly follows his own signal to reject. This added

bit of conservativeness sends out a clearer message to later players; they know the second

player adopts if and only if the signal is H. Because later players now have better information

to work with, they end up making the correct choice more often. The theorem in the next

section generalizes this idea.

1.5.2 Theorem on probability of correct cascades

In the example, when 40% of the players are laymen, the probability of correct cascades

is higher than the case in which no players are laymen. The following theorem generalizes

this result by showing that for any values of pE and pL, there always exists a small enough

fraction, such that if this fraction of laymen are present, the probability of correct cascades

is higher than if no laymen are present.

Theorem 1. Let pcorrect(π) be the probability of correct cascades when fraction π of the
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population are experts. Then ∀pE, pL with 1
2
6 pL < pE < 1, ∃ π ∈ (0, 1) s.t. ∀π ∈ (π, 1),

pcorrect(π) > pcorrect(1).

Proof. It suffices to prove that lim
π→1

pcorrect(π) > pcorrect(1).

Let lπ(A1, A2) denote the public likelihood ratio after two actions A1, A2∈{A, R} when

fraction π are experts. Similarly define lexpert(A1, A2) when π = 1: all players are experts.

lim
π→1

lπ(A, A) =

(
pE

1− pE

)2

> lexpert(A, A) =
pE [pE + z (1− pE)]

(1− pE) (1− pE + zpE)
> L4 ⇒ cascade of

adoption

lim
π→1

lπ(R, R) =

(
1− pE
pE

)2

< lexpert(R, R) =
(1− pE) [1− pE + (1− z) pE]

pE [pE + (1− z)(1− pE)]
< L1 ⇒ cascade

of rejection

lim
π→1

lπ(A, R) = lim
π→1

lπ(R, A) = lexpert(A, R) = lexpert(R, A) = 1 ⇒ back to the origin

For both scenarios, the only possible action history that can trigger a correct cascade is a

pair of correct actions following several pairs of opposite actions (A, R) or (R, A).

Therefore,

pcorrect(1) =
1

2

∞∑
k=0

[P(opposite action pair | vH)]k·P(A, A | vH)

+
1

2

∞∑
k=0

[P(opposite action pair | vL)]k·P(R, R | vL)

=
1

2

∞∑
k=0

[pE(1− pE)]k · pE · [pE + z · (1− pE)]

+
1

2

∞∑
k=0

[pE(1− pE)]k·pE · [pE + (1− z) · (1− pE)]

=
1

2

∞∑
k=0

[pE(1− pE)]k · pE · (pE + 1)

=
pE(pE + 1)

2(1− pE + p2E)
.
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On the other hand,

lim
π→1

pcorrect(π) =
1

2

∞∑
k=0

lim
π→1

[P(opposite pair | vH)]k·P(A, A | vH)

+
1

2

∞∑
k=0

lim
π→1

[P(opposite pair | vL)]k·P(R, R | vL)

=
1

2

∞∑
k=0

lim
π→1

[P("H, L" or "L, H" | vH)]k·P(H, H | vH)

+
1

2

∞∑
k=0

lim
π→1

[P("H, L" or "L, H" | vL)]k·P(L, L | vL)

=
∞∑
k=0

[2pE(1− pE)]k · p2E

=
p2E

1− 2pE + 2p2E
.

When pE ∈ (1
2
, 1),

pE(pE + 1)

2(1− pE + p2E)
<

p2E
1− 2pE + 2p2E

,

therefore lim
π→1

pcorrect(π) > pcorrect(1).

From a slightly different point of view, as ε→ 0, at each π = πN − ε the game resembles

one in which all players choose according to their private signals when they are indifferent,

i.e. choosing adoption if and only if the private signal is H when the posterior probabilities

are equal. Let’s call such player a “non-conformist” for future reference. This tie-breaking

rule helps to reveal more signals, and leads to a higher pcorrect. At each π = πN + ε, the

game resembles one where all players copy the previous player when indifferent, i.e. when

the posterior probabilities are equal, a player chooses adoption if and only if the previous

player chooses adoption. Fewer signals are revealed in this case, resulting in a lower pcorrect.

When π = πN , players randomize when indifferent, resulting in a middle case with a medium

pcorrect.
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In particular, note that the derivation oflim
π→1

pcorrect(π) is independent of the player’s

strategy when indifferent. Moreover, lim
π→1

pcorrect(π) = pnon−conformistcorrect (1), the probability of

correct cascades when all players are experts and non-conformists, and this is true for all

tie-breaking strategies. Therefore, lim
π→1

pcorrect(π) > pcorrect(1) because pnon−conformistcorrect (1) >

pcorrect(1), i.e. games with non-conforming experts are more likely to have correct cascades

than games with experts who randomize when indifferent. In this sense, the randomization

tie-breaking rule is “inferior” to the non-conformist tie-breaking rule. The following corollary

shows that the result of the last theorem holds for all ties-breaking rules that are different

from the non-conformist rule.

Corollary 1. For any tie-breaking strategy τ 6= τnon−conformist, let pτcorrect(π) be the proba-

bility of correct cascades when fraction π of the population are experts, then

∀pE, pL with 1
2
6 pL < pE < 1, ∃ π ∈ (0, 1) s.t. ∀π ∈ (π, 1),

pτcorrect(π) > pτcorrect(1).

Proof. ∀τ 6= τnon−conformist, lim
π→1

pτcorrect(π) = pnon−conformistcorrect (1) > pτcorrect(1), and the result

follows.

See Appendix for the proof of pnon−conformistcorrect (1) > pτcorrect(1).

1.6 Conclusion

This paper extends the Bikhchandani-Hirshleifer-Welch informational cascades model by

incorporating heterogeneity in private signal accuracy. I conclude that in the unique perfect

Bayesian equilibrium associated with a tie-breaking rule under which players randomize when

indifferent, the probability of correct cascades is higher when a small enough group of laymen

are present among a population of experts. The corollary in Section 5 shows that this result
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is robust to all tie-breaking rules except what I have called the “non-conformist” rule (i.e.

choose according to own signal when indifferent). But even in cases where the non-conformist

tie-breaking rule is adopted, as long as players are discrete, the intuition in section 5.1

carries on, and the probability of correct cascades is still non-monotonic with discontinuous

jumps resembling those in Figure 1. Therefore, for all tie-breaking rules including the non-

conformist rule, there exist cutoff expert fractions from which adding a small fraction of

laymen makes correct cascades more frequent.

Although much of the discussion involves cases in which players are indifferent, quanti-

tatively they make a big difference. As seen in the example in section 5.1, a population with

40% laymen and 60% experts land on the correct cascade more frequently than a population

of 100% experts, even though the signal accuracy differs dramatically for the two player types

(0.55 vs. 0.95). From this perspective, it confirms how easily an informational advantage

can be outweighed by insufficient learning when people follow suit.

1.7 Appendix

Nonconformist tie-breaking rule yields the highest probability of cor-

rect cascade

Consider homogeneous players with signal accuracy p = P (H | vH) = P (L | vL) who adopt

an arbitrary tie-breaking rule. I here prove that the probability of having a correct cascade

is the highest if all players adopt a nonconformist tie-breaking rule.

Definition. A tie-breaking rule is defined by τ ≡ {lh}h∈H, where H is the set of all possible

history such that the next player following such history can be indifferent. lh denotes the

probability that if the player is indeed indifferent after history h, he picks an action in

accordance to his private signal.

For example, if the first player chose A, the second player will be indifferent if he receives
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signal L. In this case lA denotes the probability that the second player chooses R. Similarly,

lARR denotes the probability that the 4th player with signal H chooses A when the action

history h = ARR. For a counter example, AA /∈ H because a cascade of adoption starts

after AA, and the next player will not be indifferent regardless of his signal.

{lh} fully characterizes a tie-breaking rule because a player’s strategy only depends on

the previous action history and his private signal. Moreover, if h ∈ H, only one of the two

signals induces indifference, so it’s sufficient to define the probabilities as functions of action

history only.

Definition 1. Let τnonconf denote the nonconformist tie-breaking rule: always follow own

signal when indifferent. I.e., lh = 1 for all h.

Proposition. Let P correct(τ) denote the unconditional probability of correct cascades when

the tie-breaking rule is τ . Then for all τ 6= τnonconf ,

P correct(τ) < P correct(τnonconf ).

Proof. It suffices to only consider tie-breaking rules with lh > 0 ∀h. If after history h the

next player is indifferent and he always copies the last player’s action (lh = 0), then his

action conveys no information to the later players, and his presence has no effect on P correct.

Therefore, simply delete such player from the sequence, and only focus on the games played

by players who follow own signal with positive probability when indifferent.

I prove the proposition in 3 steps. First, I show that P correct strictly increases in lA and

lR. I then show that P correct strictly increases in lh for all h ∈ H. Finally, conclude that

P correct is maximized only when lh = 1 for all h, which corresponds to the nonconformist

tie-breaking rule.

Claim 1:
∂P correct(τ)

∂lA
> 0 and

∂P correct(τ)

∂lR
> 0.

Proof of Claim 1:
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P correct(τ) =
1

2
P (AA or ARAA or RAAA or ARARAA...|vH)

+
1

2
P (RR or ARRR or RARR or ARARRR...|vH)

=
1

2
{p [p+ (1− p)lA] + p(1− p)lAp [p+ (1− p)lARA] + ...}

+
1

2
{p [p+ (1− p)lR] + (1− p)plAp [p+ (1− p)lARR] + ...}

where p = P (H|V = 1) = P (L|V = 0). Therefore,

∂P correct(τ)

∂lA
=

1

2

{
p [p+ (1− p)] + (1− p)p2 [p+ (1− p)lARA] + ...

}
+

1

2

{
(1− p)p2 [p+ (1− p)lARR] + ...

}
=

1

2
(2p− 1){p(1− p) + [p(1− p)]2 (lARA + lARR)

+ [p(1− p)]3 [lARA(lARARA + lARARR) + lARR(lARRAA + lARRAR)]

+...}

> 0

since p >
1

2
.

A similar argument proves
∂P correct(τ)

∂lR
> 0. //

Claim 2:
∂P correct(τ)

∂lh
> 0 for all h ∈ H.

Proof of Claim 2: Proof by induction. First,
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sgn

(
∂P correct

∂lARA

)
= sgn

[
P (AR) · ∂P

correct

∂lA

]
= 1

sgn

(
∂P correct

∂lRAA

)
= sgn

[
P (RA) · ∂P

correct

∂lA

]
= 1

sgn

(
∂P correct

∂lARR

)
= sgn

[
P (AR) · ∂P

correct

∂lR

]
= 1

sgn

(
∂P correct

∂lRAR

)
= sgn

[
P (RA) · ∂P

correct

∂lR

]
= 1

where sgn(·) = 1 means a positive value.

Note that any history h ∈ H can be written as h = ARh′ or h = RAh′ for some history

h′ ∈ H. So if sgn
(
∂P correct

∂lh′

)
= 1, then sgn

(
∂P correct

∂lh

)
= sgn

[
P (AR) · ∂P

correct

∂lh′

]
or

sgn

(
∂P correct

∂lh

)
= sgn

[
P (RA) · ∂P

correct

∂lh′

]
. In both cases the sign is positive.

Therefore, by induction, conclude that
∂P correct

∂lh
> 0 for all h ∈ H. //

Finally, Claim 2 implies that P correct(τ) is maximized when lh = 1 or all h ∈ H, which is

only true for τ = τnonconf .
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Chapter 2

Beneficially Imperfect Persuaders

2.1 Introduction

When a decision maker receives selective information from biased persuaders, does she ben-

efit from that information? I consider this question within the framework of a Bayesian

persuasion game - persuaders with no private information influence a decision maker by

collecting information endogenously. Suppose these persuaders want the decision maker to

switch from her default action to a new action regardless of the true state of the world. Then,

the decision maker gains nothing if she receives information from only one such persuader

(Kamenica and Gentzkow, 2011). If one persuader is useless, can the decision maker gain

from consulting more persuaders? If so, what requirements need to be satisfied? This paper

shows that, in fact, very little is needed for the decision maker to gain from a persuasion

game with more than one persuader. As long as the persuaders collect information inde-

pendently, then, even if all persuaders are identically biased towards the same action, there

always exist strict equilibria with high payoffs for the decision maker. Moreover, all of these

equilibria feature persuaders that collect only noisy information.

Consider the following example.

Ann is the leader of an investment group. Her group members, Bob, Charles,
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and Dan, want her to hire their friend, Evan. Ann is willing to hire Evan only

if he has sufficient quantitative skills, but her group members are happy to work

with Evan even if he does not possess those skills. Although Bob, Charles, and

Dan know Evan’s personality very well, they do not know how quantitatively

skilled he is. Because Ann is too busy to meet Evan herself, she asks some or all

members to independently give Evan a test and then to truthfully report back.

Based on the original test questions and Evan’s test results, Ann hires if she

thinks there is a high enough chance that Evan is skilled.

In a perfect Bayesian equilibrium, if Ann never strictly prefers to hire Evan, then

she does not gain from the tests. This is always the case when the members

design tests that always pass a skilled person. Call these “quasi-revealing” tests.

In equilibria with quasi-revealing tests, Ann hires only when Evan passes all tests,

as a single failure perfectly identifies Evan as unskilled. The members pick easy

tests with high enough passing rates for an unskilled person, so that straight

passes leave Ann exactly indifferent (in which case, she hires). In expectation,

Ann never gains from these tests.

When Ann asks only Bob to test Evan, Bob’s optimal test design is quasi-

revealing. Consequently, Ann does not gain from Bob’s report.

Suppose Ann asks all three members to test Evan independently, and the mem-

bers can conduct only twenty-minute oral tests. Given the constrained time and

format, Evan can get stuck on an easy question even if he is skilled. Therefore,

Evan’s performance, at most, suggests rather than reveals his true skills. In other

words, quasi-revealing tests are not feasible. In this case, because a failure does

not perfectly identifies Evan as unskilled, there exist perfect Bayesian equilib-

ria in which Ann hires after only two passes. In these equilibria, the tests are

designed so that each pass is very informative. Note that when Evan, in fact,

passes all three tests, Ann strictly prefers to hire him. Therefore, in expectation,
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Ann strictly gains.

The existence of equilibria with a high payoff for Ann does not rely on exogenous

constraints on the information environment such as the one described above.

In fact, there always exist strict equilibria in which the members endogenously

design tests that sometimes fail a skilled person. Ann’s low standards (e.g. two

passes instead of three) give members the incentive to choose those tests. In

these equilibria with endogenously noisy tests, Ann always strictly gains.

The results of this paper also apply to other scenarios. For example, consider salesmen that

promote a product by offering free trials of its selected features or doctors that use selected

medical tests to suggest a surgery as opposed to a conservative treatment. This paper

also offers new insights on the effects of competition versus collusion among endogenous

information providers. It emphasizes that even when information providers are identical in

every dimension and externalities are absent, there always exist robust equilibrium outcomes

with more information revealed than the collusive outcome.

The remainder of the paper is organized as follows. Section 2 discusses related papers.

Section 3 provides a numerical example. Section 4 contains a formal development, and

Section 5 concludes with a discussion.

2.2 Related papers

This paper is closely related to two papers on Bayesian persuasion games: Kamenica and

Gentzkow (2011) and Gentzkow and Kamenica (2016). I extend Kamenica and Gentzkow

(2011) by introducing multiple independent persuaders. This extension gives rise to a wide

range of equilibrium outcomes. In particular, if there is only one persuader, as in Kamenica

and Gentzkow (2011), the decision maker never benefits from the collected information. This

is because in any single-persuader equilibrium, the persuader can and, indeed, will design

his test in such a way that a pass leaves the decision maker precisely indifferent. Since the
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decision maker never strictly prefers to switch her action, the test never strictly increases

her expected utility. In contrast, in games with multiple independent persuaders, there

always exist equilibria in which the decision maker strictly prefers to switch her action. The

numerical example in Section 3 further elaborates on this comparison. Moreover, in the

single-persuader equilibria studied in Kamenica and Gentzkow (2011), if the decision maker

chooses the default action, she is always certain of her choice. This is no longer the case in

equilibria with multiple independent persuaders.

Gentzkow and Kamenica (2016) study a model of multiple persuaders under an infor-

mation environment that is Blackwell-connected, i.e., an environment in which each per-

suader can unilaterally deviate to induce any feasible distribution of belief that is more

informative. Note that, the information environment studied in this paper is not Blackwell-

connected because of the independence of the persuaders1. For comparison, an environment

is Blackwell-connected if the tests chosen by the persuaders can be arbitrarily correlated.

In this case, misaligned incentives among persuaders are necessary for persuaders to reveal

sufficient information that benefits the decision maker. If persuaders share identical prefer-

ences, then, regardless of the total number of persuaders, all strict equilibria2 of the game

are outcome-equivalent to the single-persuader game, and the decision maker never gains.

This is why heterogeneous preferences among persuaders are necessary to induce more infor-

mation revelation in their paper: a persuader will reveal additional information as a means
1For example, let the true state be H or L with equal probabilities. Suppose the first persuader chooses a

test with Pr(pass|H) = 0.8 and Pr(pass|L) = 0.2; the second persuader chooses an uninformative test with
Pr(pass|H) = Pr(pass|L) = 1. The induced posterior belief for the state H is 0.8 with probability 0.5 and
0.2 with probability 0.5. Blackwell-connectedness requires that, given the strategy of the first persuader, the
second persuader can unilaterally deviate to a different test, so that the two tests induce a posterior belief
of 0.9 with probability 0.5 and 0.1 with probability 0.5. However, since the two persuaders choose tests
independently, such belief distribution is unattainable by a unilateral deviation. If the second persuader
deviates to a more informative test so that he can sometimes induce a posterior belief of 0.9 or 0.1, then it
is always possible that his test fails when the test from the first persuader passes, or vice versa. Either case
induces a posterior belief between 0.8 and 0.2 with positive probability.

2While there do exist equilibria that generate a higher payoff for the decision maker, they all require
that persuaders choose excessively informative tests when indifferent. For example, full revelation is always
an equilibrium, assuming that persuaders reveal the true state when indifferent. However, it is a rather
unnatural prediction, since all persuaders prefer a less informative outcome. See Section 6 of Gentzkow and
Kamenica (2016) for more details.
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to induce his preferred action only when persuaders differ in their preferences. In contrast,

when persuaders are independent, I show that even if persuaders have identical preferences,

there always exist strict equilibria in which the persuaders choose relatively informative tests

that strictly benefit the decision maker. The persuaders act in this way not because they

are competing for different actions, but because when they choose those tests, the Bayesian

decision maker switches her action upon seeing relatively few counts of passes.

There are papers on cheap talk persuasion games with multiple persuaders (e.g., Battaglini,

2002; Ambrus and Takahashi, 2008; Ambrus and Lu, 2010). However, note that for any game

in which the persuaders’ preferences are state-independent, if the decision maker observes

only the outcome of the test and, not the design, the only equilibrium is a trivial one in

which the persuaders always conduct completely uninformative tests that never fail, and the

decision maker is never persuaded (Sobel, 2011). Therefore, in this paper, it is crucial that

the decision maker observes both the design and the outcome of the test.

Alternatively, in persuasion games with state-independent persuaders, if the persuaders

can conduct only truthful and unbiased tests, but a test can be hidden from the decision

maker if the outcome is unfavorable, then there also exist non-trivial equilibria in which the

decision maker is sometimes persuaded (e.g. Bhattacharya and Mukherjee, 2013; Felgenhauer

and Schulte, 2014; Hart, Kremer, and Perry, 2015). A key distinction is that the persuaders

in those papers have private information (persuaders report after they see the test outcomes),

whereas the persuaders in this paper do not (persuaders unconditionally commit to their test

choices, and they always report the test outcomes). Due to this difference, noise does not

benefit the decision maker in their settings. If persuaders report only after they collect

evidence about the true state, they have an incentive to collect as much evidence as possible

and report only good evidence. Therefore, limiting the accuracy of the collected information

only weakens the reported good evidence and discourages the persuaders from collecting

evidence overall. Both of these effects harm the decision maker. On the contrary, in this

paper, the decision maker observes both good and bad evidence. Noise in the tests encourages
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the persuaders to collect more evidence in general because when they do so, the decision

maker puts a smaller weight on the reported negative evidence in equilibrium. This results

in a higher level of information revelation and an increased expected utility for the decision

maker.

Many assumptions in this paper are similar to those in the standard voting literature,

such as Feddersen and Pesendorfer (1998). But there is one crucial difference that leads to

very different results. The decision maker in this paper does not commit to any decision

rule that is based only on test outcomes. In the voting literature, the decision maker takes a

certain action if the number of votes passes an exogenous threshold, regardless of the voting

strategy (e.g., the unanimity rule or the majority rule). In contrast, the decision maker in this

paper chooses the action that best responds to both the test outcomes and the test design.

In particular, if the decision maker were to commit to a fixed outcome-based standard (e.g.,

two passes out of three tests), the persuaders would simply choose uninformative tests that

never fail. If that were the case, the decision maker would rather ignore the persuaders and

always choose the default action. This outcome is undesirable for both the decision maker

and the persuaders.

2.3 A numerical example

For a better understanding of this paper’s main results, I revisit the motivating example from

the Introduction in a numerical context. The job candidate, Evan, is either quantitatively

skilled or unskilled with Pr(skilled) = Pr(unskilled) = 0.5. Each group member gets payoff

1 if Evan is hired, and 0 otherwise. Ann’s payoff is summarized by the table below.

skilled unskilled

hire 1 0.2

not hire 0.8 1

In other words, Ann is willing to hire Evan if and only if the probability that he is
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quantitatively skilled is at least 0.8.

2.3.1 A single persuader

Suppose that Ann asks only Bob to test Evan. The test reports either pass or failure.

For any test design, only two numbers matter for the decision-making: Pr(pass | skilled)

and Pr(pass |unskilled). To maximize the unconditional probability of hiring, the uniquely

optimal test design for Bob has

Pr(pass | skilled) = 1 and Pr(pass |unskilled) = 0.25.

Ann hires if and only if Evan passes the test. However, since Pr(skilled | pass) = 0.8, Ann

is merely indifferent between hiring and not hiring when Evan passes the test. Therefore,

in expectation, Ann does not strictly benefit from this test. Indeed, Ann’s expected utility

is 0.9, which is the same level that she gets if she completely ignores the test and never

hires Evan (this is her default choice under her prior belief). When Ann’s decision depends

on Bob’s test, although she never misses a skilled person, she hires an unskilled person too

often.

2.3.2 Multiple persuaders with quasi-revealing tests

Now, suppose that Ann asks Bob, Charles, and Dan to independently test Evan, and the

three members can choose any test design. Just as in the previous case with Bob only,

there are equilibria in which all members choose tests that always pass a skilled person.

Here is a symmetric example: each member chooses a test with the same pair of conditional

probabilities

Pr(pass | skilled) = 1 and Pr(pass |unskilled) = 0.63.

Ann hires if and only if Evan passes all tests because a single failure perfectly reveals

that Evan is unskilled. To maximize the unconditional probability of hiring, members choose
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tests with a high pass rate for an unskilled person, so that Ann is indifferent when Evan

passes all the tests. Again, since Ann never strictly prefers to hire Evan, she never strictly

gains from the tests. Indeed, her expected utility in this equilibrium is still 0.9 - the lowest

possible amount.

In fact, Ann’s expected utility never exceeds 0.9 as long as the equilibrium tests never

fail a skilled person. In these cases, Ann hires only when Evan passes all the tests, and

the persuaders always choose tests with high enough Pr(pass |unskilled), so that Ann is

indifferent when all tests are passed. Therefore, for Ann to have a higher expected utility,

the equilibrium tests must sometimes fail a skilled person.

2.3.3 Multiple persuaders with noisy tests

One way to make the members sometimes fail a skilled person is by introducing exogenous

noise. As described in the Introduction, suppose there is a restriction on the duration and

the format of the tests, so that the members can, at most, learn Evan’s noisy conditions

during the tests, as opposed to his true skills. For example, even if Evan is skilled, he

might happen to be very sleepy during Bob’s test, thus creating a bad condition for his

performance on that particular test. Let gc and bc denote good conditions and bad con-

ditions, respectively. Assume that Evan’s conditions during the three tests are i.i.d. with

Pr(gc | skilled) = Pr(bc |unskilled) = 0.85. The members’ strategy is to choose Pr(pass | gc)

and Pr(pass | bc) instead. With the exogenous noise, the members can never design infor-

mative tests that have Pr(pass | skilled) = 1.3

There are equilibria in which Bob, Charles, and Dan each designs a test such that Evan

always passes when conditions are good. Here, I describe the two symmetric equilibria of

this type.
3The only test design that has Pr(pass | skilled) = 1 is Pr(pass | gc) = Pr(pass | bc) = 1, but in this case

the test is completely uninformative because it is passed unconditionally.
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Equilibrium 1: each member chooses a test with the same pair of conditional probabilities

Pr(pass | gc) = 1 and Pr(pass | bc) = 0.51.

Ann hires if and only if Evan passes all three tests, in which case she is indifferent. Ann’s

expected utility is 0.9, and the unconditional probability of hiring is 0.497.

Equilibrium 2: each member chooses a test with the same pair of conditional probabilities

Pr(pass | gc) = 1 and Pr(pass | bc) = 0.03.

Ann hires if and only if Evan passes at least two tests, and she is indifferent when he

passes exactly two tests. Ann’s expected utility is 0.96, and the unconditional probability of

hiring is 0.514.

While Ann’s expected utility remains at 0.9 in the first equilibrium, her expected utility is

strictly higher in the second. The crucial difference is that in the second equilibrium, Ann no

longer requires three passes to hire. She adopts a lower standard of two passes because in this

equilibrium, a failure reveals only that the conditions were bad during one test, which does

not necessary imply that Evan is unskilled. Meanwhile, the test designs in this equilibrium

feature a very low Pr(pass | bc); each pass is relatively positive, and two passes outweigh a

failure. The members in this equilibrium do not deviate to a higher Pr(pass | bc) because

that would raise Ann’s standard from two passes to three, making the deviation a costly

move.

Interestingly, the members also prefer the second equilibrium since the probability of

hiring is higher. The benefit of Ann’s low standard outweighs the cost of a low Pr(pass | bc).

This, in fact, is generally true when Ann requires a high posterior belief to hire or when the

conditions are very noisy. I illustrate this with the generalized comparative statics below.

Generalized comparative statics

Replace Ann’s payoff table with
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skilled unskilled

hire 1 1− pd

not hire pd 1

where pd ∈
(
1
2
, 1
)
. Let Pr(gc | skilled) = Pr(bc |unskilled) = p, where p ∈ (pd, 1).

To better visualize the outcomes of the two symmetric equilibria with Pr(pass | gc) = 1,

consider the following figures. Figure 1 assumes that pd = 0.8 and p ∈ (0.8, 1). Figure 2

assumes that pd ∈ (0.5, 0.8) and p = 0.8. Label the equilibria by Ann’s standard for hiring.

The equilibrium labeled “standard = 2” is the one in which Ann hires after two passes. The

equilibrium labeled “standard = 3” is the one in which Ann hires after three passes.

Figure 2.1: pd = 0.8 and p ∈ (0.8, 1)

Figure 2.2: pd ∈ (0.5, 0.8) and p = 0.8
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The figures illustrate the comparison between the equilibrium outcomes. First, as dis-

cussed earlier, Ann always prefers the equilibrium with a low standard (in the plots on the

left, the red line is always above the blue). More surprisingly, the interviewers also prefer

this equilibrium when p is low or when pd is high (in the plots on the right, the red line is

above the blue when pd = 0.8 and p < 0.87 or when p = 0.8 and pd > 0.72). On the one

hand, when Pr(pass | bc) is low, Evan is less likely to pass. On the other hand, Ann requires

one fewer pass to hire. In general, the latter benefit outweighs the former cost when p is low

or when pd is high because, in these cases, Evan is more likely to fail in equilibrium, so the

benefit of a low standard dominates.

2.3.4 Discussion

This numerical example illustrates the main ideas of the paper well, but it has its limitation.

For example, the three-persuader case fails to characterize the wide range of equilibria asso-

ciated with a larger number of persuaders.4 The example does not discuss the asymmetric

equilibria, either.

More importantly, the example covers only equilibria with exogenous noise. Theorems 7

and 8 below endogenize these results by showing that, in fact, there always exist equilibria

in which persuaders endogenously choose noisy tests that sometimes fail in the good state.

Moreover, those equilibria are always associated with a relatively low standard from the

decision maker, and, consequently, the decision maker always gains from the tests in those

cases.

The next section addresses all of these issues.
4When there are 50 persuaders, for example, there exist 24 symmetric equilibria with Pr(pass | gc) = 1,

and the decision maker’s payoff in these 24 cases is monotonically decreasing with the standard that she
adopts in each of them.
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2.4 A general approach

In this section, I study a general case with n persuaders. To develop the main results, Section

4.2 first shows that the decision maker never benefits if equilibrium tests can perfectly reveal

the true state. Therefore, when the decision maker does benefit, the equilibrium tests must

be noisy. Section 4.3 shows that having exogenous noise embedded in the testing technology

indeed gives rise to a wide range of equilibria with high payoffs for the decision maker.

Finally, Section 4.4 endogenizes the results in Section 4.3 by showing that persuaders can

endogenously design noisy tests in a noise-free environment, and the decision maker always

benefits whenever this is the case.

2.4.1 Model setup

There are two states of the world: L and H. 5 There are n persuaders and a decision maker.

The decision maker can choose one of two actions, aL or aH . (Think of aL as “not hire” and

aH as “hire” in the motivating example.) Her preference is described by a utility function u

that depends on her action and the true state: u(aL, L) = u(aH , H) = 1, u(aH , L) = 1− pd,

and u(aL, H) = pd, for some pd ∈ (1
2
, 1). With these preferences, the decision maker prefers

aH iff. the posterior probability for state H is above pd. Thus pd can be viewed as the

decision maker’s “threshold of doubt.” I assume here that the decision maker chooses aH

when she is indifferent.

The persuaders, on the other hand, all prefer that the decision maker chooses aH , re-

gardless of the true state. Their preference can be represented by a common utility function

v with v(aH) = 1, and v(aL) = 0.

The persuaders and the decision maker share a common prior: Pr(H) = Pr(L) = 1
2
.

Each persuader i can perform an endogenous test on an i.i.d. condition ci ∈ {cH , cL} that

is correlated with the true state. Pr(cH |H) = Pr(cL|L) = p. Assume that p ∈ [pd, 1]; the
5The main result of the paper is robust when the state space is a continuum; see discussion in section

5.E.
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decision maker prefers aH if she directly observes cH . A test is a garbling of the condition that

generates a message mi ∈ {pass, fail} with some probabilities conditional on the condition

ci. The strategy of each persuader is to choose a test - i.e., a pair of conditional probabilities

(xi, yi), where xi ≡ Pr(pass|cL) and yi ≡ Pr(pass|cH). Each persuader chooses his test as

a best response to the tests of the other persuaders. The decision maker observes both the

tests ((x1, y1), ..., (xn, yn)) and their outcome messages (m1, ...,mn).

The timeline of the game is summarized below.

1. N persuaders simultaneously choose tests (x1, y1), ..., (xn, yn).

2. Nature chooses the state of the world.

3. Conditional on the state of the world, nature also chooses a condition ci for each

persuader.

4. Each test generates an outcome mi conditional on ci.

5. After observing all persuaders’ choices of test, as well as the test outcomes, the decision

maker Bayesian updates her belief about the true state and chooses an action a.

Let t ≡ ((x1, y1) , (x2, y2) , ..., (xn, yn)) denote the persuaders’ tests. Let U (t) denote the

expected utility of the decision maker and V (t) the expected utility of each persuader before

they see the test outcomes. Let U ≡ 1
2
(1 + pd) be the decision maker’s expected utility when

she receives no information from any persuader. (In this case, she always chooses aL.) Then,

U (t) ≥ U for all t because she can always ignore the persuaders’ information to guarantee

U . On the other hand, let U ≡ 1 be the decision maker’s expected payoff when she learns

the true state. Then, U (t) ≤ U for all t.

2.4.2 Equilibria with quasi-revealing tests

Suppose p = 1, i.e. exogenous noise does not exist and the tested condition is the true state.

In equilibrium, the persuaders never design tests that can perfectly reveal state H because it
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is always profitable to sometimes pool state L as state H. There indeed exist equilibria with

tests that can perfectly reveal state L if yi = 1 and xi < 1. I call them quasi-revealing tests.

The goal of this section is to show that when an equilibrium features quasi-revealing tests,

the decision maker expects to gain nothing. It does not take long too see that this is uniquely

the case when there is only one persuader (Kamenica and Gentzkow, 2011). However, the

same statement does not automatically extend to the case of multiple persuaders because,

despite it being an unlikely outcome, having all persuaders reveal the true state is always an

equilibrium. To see why, note that each persuader i is indifferent regarding his test choice

when at least one other persuader reveals the true state. A fully-revealing equilibrium exists

if, in this case of indifference, persuader i always reveals the true state, too. However, this

equilibrium is always Pareto dominated by some less revealing equilibrium. Moreover, if there

is a tiny chance that persuaders 1, 2, ..., n−1 do not reveal the true state, persuader n strictly

prefers not to. The fully-revealing equilibrium also vanishes easily when, for example, an

infinitesimal cost occurs if an persuader conducts a fully-revealing test. Therefore, I impose

an assumption to avoid this unnatural outcome.

Assumption 1. When (xj, yj) = (0, 1) for some j 6= i, persuader i chooses some (xi, yi) 6=

(0, 1).

Under assumption 1, when persuaders choose quasi-revealing tests, the decision maker never

gains. To see why, first note that in these equilibria, a single failure perfectly reveals state L

and the decision maker chooses aH only when all tests are passed. Therefore, to maximize

the probability of aH , the persuaders design tests with sufficiently high probability of passes,

so that the decision maker is exactly indifferent when all tests are passed. As a result, the

decision maker never strictly prefers to choose aH , and her expected utility is simply U -

what she would get if she were to always choose aL. Only the persuaders benefit from the

tests.

Proposition 2. Assume that Assumption 1 holds. When p = 1, in equilibria with yi = 1
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for all i,
1

x1 · ... · xn
=

pd
1− pd

,

and the decision maker chooses aH iff. all tests are passed.

The expected utility of persuaders is

V (t) =
1

2

(
1 +

1− pd
pd

)
.

The expected utility of the decision maker is

U(t) = U.

All proofs not included in this section are in the Appendix.

Proposition 1 suggests that the decision maker’s expected utility is higher than U only

in equilibria with tests that never reveal the true state. Section 4.3 and 4.4 show that those

equilibria indeed exist when n > 2.

2.4.3 Equilibria with exogenous noise

In this section, tests that perfectly reveal the true state are not feasible due to exogenous

noise (p < 1). When there is only one persuader, the presence of exogenous noise does

not improve the equilibrium outcome for the decision maker.6 However, when there are

more persuaders, exogenous noise gives rise to a range of equilibria with high payoffs for the

decision maker. For simplicity, throughout this section I focus only on equilibria with yi = 1

for all i - i.e., equilibria with tests that never fail given condition cH . Theorem 8 in Section

4.4 shows that relaxing this restriction only strengthens the main result.
6Simply treat the tested noisy condition c as the true state and apply Proposition 1. The optimal test for

the unique persuader leaves the decision maker just indifferent when the test is passed, inducing an expected
utility of U for her.
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2.4.3.1 Symmetric equilibria

Suppose p < 1. As illustrated in the numerical example in Section 3, there are multiple

symmetric equilibria with yi = 1 for all i. The number of those equilibria increases linearly

with the number of persuaders. For each integer k strictly larger than n
2
and weakly smaller

than n, there exists a symmetric equilibrium in which persuaders choose tests in such a

way that the decision maker chooses aH if and only if at least k tests are passed. Theorem

1 formalizes this and explains why a persuader strictly prefers to choose the same test as

everyone else.

Theorem 2. Let p < 1. Given any n, and any integer k ∈ (n
2
, n], there exists a strict

symmetric equilibrium in which (xi, yi) = (x, 1) for all i, where

x =
p− (1− p)

(
pd

1−pd

) 1
k
(

p
1−p

)n−k
k

p
(

pd
1−pd

) 1
k
(

p
1−p

)n−k
k − (1− p)

,

and the decision-maker chooses aH if and only if the number of passes is at least k. Moreover,

x is increasing in k.

Proof. Given n, k, suppose that all persuaders choose the test x, as specified above; then

Pr(H|exactly k passes)
Pr(L|exactly k passes)

=

[
p+ (1− p)x
(1− p) + px

]k (
1− p
p

)n−k
=

pd
1− pd

. (2.1)

The decision maker is indifferent (and, hence, chooses aH) when exactly k out of n test

outcomes are passes. Since more passes suggest a higher probability of state H, the decision

maker chooses aH if and only if the number of passes is at least k. Moreover, x is an

increasing function of k. When persuaders choose less informative tests (higher x), more

passes are needed to persuade the decision maker (higher k).

The same logic in the proof of Proposition 1 explains why, in this equilibrium, each

persuader i strictly prefers to choose y = 1: a deviation to
(
x
′
, y
′) for some y′ < 1 is profitable
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only when it induces the decision maker to choose aH , even if n−k+1 tests, including the test

from persuader i, have failed. However, this is never the case for any x′ ≤ y′ < 1. Therefore,

a downward deviation in y
′ always strictly decreases the unconditional probability of aH

because it lowers the passing rate and makes each pass less positive.

Next, I show that a persuader strictly prefers to choose x when everyone else chooses x.

Suppose that persuader i deviates to a test with x′ > x. The game outcome is affected

only when the test outcome of i is a pass. Given the higher passing rate when the condition

is low, a pass from i’s test is less informative. This implies that the decision maker now

strictly prefers aL when exactly k persuaders (including i) report passes. In other words,

when i reports a pass, the decision maker needs to see at least k more passes from the other

persuaders in order to choose aH . To find out the decision maker’s exact response to the

deviation, consider the extreme case in which x′ = 1. That is, persuader i deviates to the

least informative test that is never failed. Under this extreme case, persuader i is completely

uninformative, and the decision maker chooses an action based only on information delivered

by the other persuaders. Moreover, among the rest of the n − 1 persuaders, k passes and

n − k − 1 failures are sufficient to induce action aH . Therefore, when i reports a pass, the

decision maker requires exactly k more passes from the other persuaders to choose aH , and

this is true for all x′ ∈ (x, 1]. Knowing how the decision maker responds to an upward

deviation in x, it is most profitable for the persuader to choose x′ = 1. Then, the new

expected utility for the persuaders is equal to the probability of having at least k passes

among the rest of the n− 1 persuaders. Since those n− 1 persuaders are still choosing test

x, Pr(at least k passes|n−1 tests with x) < Pr(at least k passes|n tests with x). Therefore,

any deviation to some x′ > x strictly decreases i’s expected utility.

Suppose that persuader i deviates to a test with x′ < x. Again, the game outcome is

affected only when the test outcome of i is a pass. A deviation to a more informative test

with lower Pr(pass|sL) can be profitable only if it induces the decision maker to choose aH

upon seeing fewer passes - i.e., she chooses aH when there are only k− 1 passes. I show that
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this never happens. Suppose that i deviates to the most informative test, x′ = 0, and his

test outcome is a pass. Suppose, further, that among the rest of the n− 1 persuaders, k− 2

report passes, and n− k + 1 report failures. Then, the posterior likelihood in this case is

Pr(H)

Pr(L)
=

(
p

p− 1

)[
p+ (1− p)x
(1− p) + px

]k−2(
1− p
p

)n−k+1

=

[
p+ (1− p)x
(1− p) + px

]k−2(
1− p
p

)n−k
<

pd
1− pd

by equation (1). Even if i deviates to the most informative test, the decision maker

still chooses aH only when at least k tests are passed, which implies that a downward

deviation in x always strictly decreases the persuader’s utility. Therefore, given that all the

other persuaders choose the (x, 1), it is uniquely optimal for persuader i to choose (x, 1), as

well.

Given n, Theorem 1 implies that a symmetric equilibrium can always be identified by

the minimum fraction of passes, α ≡ k
n
, that induces the action aH . Henceforth, I will call

α the “standard” of a symmetric equilibrium.

Definition 2. A symmetric equilibrium has standard α if the decision maker chooses aH if

and only if the fraction of passes is at least α.

How does the decision maker rank her payoff among the many symmetric equilibria?

The answer: her equilibrium payoff decreases with the equilibrium standard, and her payoff

is strictly higher than U in all symmetric equilibria except the one with standard α = 1.

Moreover, fixing standard α < 1, as the number of persuaders converges to infinity, the

decision maker eventually learns the true state. However, if α = 1, she never learns the true

state, and her expected utility is always U .

Theorem 3. Let p < 1, and fix n. Let tα represent the tests chosen in the symmetric

equilibrium with yi = 1 ∀i and standard α. Then, α′ > α implies U(tα′) < U(tα). Moreover,
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U(t1) = U .

Proof. Let α′ and α be the standards of two symmetric equilibria. All else equal, α′ > α

must imply that the persuaders choose a less informative test in the former equilibrium - i.e.,

x′ > x. This is why the decision maker requires a higher fraction of passes to be persuaded.

Theorem 1 also shows thatα is an increasing function of x. As a result, less information

is revealed to the decision maker in the equilibrium with standard α′, and this harms her.

Therefore, U(tα′) < U(tα).

When α = 1, the decision maker chooses aH only when all tests are passed. Moreover, it

is optimal for the persuaders to choose tests in such a way that the decision maker is exactly

indifferent when all tests are passed. In other words, the decision maker is indifferent between

aH and aL whenever aH is chosen. This implies that her expected utility is equivalent to

the amount when she chooses aL unconditionally - that is, U . Therefore, I conclude that

U(t1) = U .

What happens when the number of persuaders converges to infinity? On the one hand,

as n increases, the decision maker aggregates information from more persuaders, but, on the

other hand each persuader chooses a less informative test (a higher x). Theorem 3 shows that

if the equilibrium standard α is less than 1, the former effect dominates, and the decision

maker eventually learns the true state. In contrast, recall that if the equilibrium standard

is 1, the decision maker’s payoff remains at U for all n. In this case, the equilibrium test

converges to the uninformative one (x = 1) as the number of persuaders expands.

Theorem 4. Let p < 1. As n → ∞, in all symmetric equilibria with yi = 1 ∀i and some

standard α < 1, the decision maker “learns the true state” - i.e., her expected utility U(tα)

converges to U .

Proof. As n → ∞, the actual fraction of passes converges to the expected fraction, which

is equal to Pr(pass|H) when the state is H and Pr(pass|L) when the state is L. Moreover,

x < 1 in any equilibrium with standard α < 1; hence, Pr(pass|H) > Pr(pass|L). Therefore,
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in the limit, the decision maker can always distinguish the two states and choose the action

that exactly matches the true state. As a result, U(tα)→ U when α < 1.

How do the persuaders rank their payoff among the many symmetric equilibria? As

illustrated by the numerical example in Section 3, among all symmetric equilibria, the per-

suaders can also strictly prefer the one with the most informative test. Theorem 4 shows

that asymptotically, for a range of parameters, the persuaders indeed have the same ranking

over equilibria as the decision maker: they prefer the state-revealing symmetric equilibria

over the non-revealing one.

Theorem 5. Given pd ∈
(
1
2
, 1
)
and p ∈ (pd, 1), in all symmetric equilibria with yi = 1 ∀i

and standard α < 1, persuaders’ expected utility V (tα) converges to 1
2
as n → ∞. In the

symmetric equilibrium with yi = 1 ∀i and standard α = 1, V (t1) converges to

f (pd, p) ≡
1

2

[(
pd

1− pd

) p−1
2p−1

+

(
pd

1− pd

) −p
2p−1

]
.

Moreover, there exist B ∈ [0, 1]2 s.t. when (pd, p) ∈ B, f(pd, p) <
1
2
, i.e., the persuaders

strictly prefer the state-revealing symmetric equilibria.

The proof of Theorem 4 (in Appendix) shows that f is decreasing in pd and increasing

in p, and it monotonically converges to a value less than 1
2
when pd → p or when p→ pd.

Figure 3 illustrates that (pd, p) ∈ B when they are sufficiently close, i.e. the persuaders

strictly prefer the state-revealing equilibria when the decision maker is relatively picky (rel-

atively high pd) or when the testing environment is relatively noisy (relatively low p). In

these cases, for the persuaders, the benefit of a lower standard α dominates the cost of a

lower x. This is because when pd and p are close, x is generally low across all equilibria in

order for passes to be persuasive. As a result, failures are frequent across equilibria with all

levels of standards, and this makes the benefit of a lower standard dominating.

While this paper does not have an analytical analogy for the cases with finite n, nu-

merically, the same result holds for small n. Cases of n ≤ 20 exhibit a universal pattern
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Figure 2.3: Persuaders prefer the state-revealing symmetric equilibria over the non-revealing
symmetric equilibrium asymptotically iff. (pd, p) ∈ B.

numerically: for a fixed p, there exists p̄d such that when pd > p̄d, the persuaders have the

highest expected utility in the symmetric equilibrium with the lowest standard α; for a fixed

pd, there exists p such that when p < p, the persuaders also strictly prefer the equilibrium

with the lowest α.

2.4.3.2 Asymmetric equilibria

To show that the results in Section 4.3.1 are robust, I relax the restriction of symmetric equi-

libria and discuss general results when persuaders can choose different tests. Similar to the

results for symmetric equilibria, there exist asymmetric equilibria with different persuader-

specific standards. Just as before, the decision maker strictly benefits from the tests if and

only if her standard for aH permits some failures.

I start by defining the analogy of an equilibrium standard in the asymmetric setting.

When persuaders can choose different tests, the standard is no longer a number like α, but

a persuader-specific set. Given the test choices, the decision maker chooses aH if and only if

the set of persuaders with passed tests belongs to the set.
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Definition 3. Given test choices t, let a ⊆ {1, 2, ..., n} denote the set of persuaders whose

tests are passed. Then, s ∈ P ({1, 2, ..., n}) is called the standard set for a given equilibrium

when the decision maker chooses aH if and only if a ∈ s.

Remark 1. Since the decision maker is Bayesian, given the model setup, a standard set

must satisfy this: if a1 ∈ s and a1 ⊂ a2, then a2 ∈ s. That is, more passes cannot be less

persuasive. The analogy of a higher standard for symmetric equilibria is a smaller standard

set in the asymmetric setting.

Here are two equilibria in which three persuaders choose different tests.

Example Let p = 0.8, pd = 2
3
, n = 3.

Equilibrium 1: persuaders choose t1 =
((

2
7
, 1
)
, (1, 1) , (1, 1)

)
. The decision maker’s

standard set is s = {{1, 2, 3}}. V (t1) = 0.643, U (t1) = 0.833 = U .

Equilibrium 2: persuaders choose t2 =
(
(0, 1) , (0, 1) ,

(
2
7
, 1
))
. The decision maker’s

standard set is s = {{1, 2} , {1, 3} , {2, 3} , {1, 2, 3}}. V (t2) = 0.569, U (t2) = 0.927 >

U .

In the first equilibrium, only the first persuader chooses an informative test, and the decision

maker chooses aH if and only if the first test is passed. I verify that this is, indeed, an equilib-

rium. For the first persuader, given that the other persuaders are completely uninformative,

the game resembles one in which he is the unique persuader, and, in this case, his optimal

test is x1 = 2
7
. For the second (or the third) persuader, deviating to a lower x2 is profitable

only if doing so expands the standard set from {{1, 2, 3}} to {{2, 3} , {1, 2, 3}}. However

{2, 3} will never be in a standard set because a pass from the second persuader will never

offset a failure from the first persuader, given that the third persuader is uninformative.

Therefore, there is no profitable deviation for any persuader.

In the second equilibrium, all persuaders choose informative tests. both the first and the

second persuaders choose truthful tests that perfectly reveal their conditions, while the third

persuader does not. I verify that this is also an equilibrium. For the first (or the second)
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persuader, the utility-maximizing test that induces s′ = {{2, 3} , {1, 2, 3}} is
(
2
7
, 1
)
, which

yields

V

((
2

7
, 1

)
, (0, 1) ,

(
2

7
, 1

))
= 0.518 < V (t2) .

The utility-maximizing test that induces s” = {{1, 2, 3}} is
(
(1, 1) , (0, 1) ,

(
2
7
, 1
))
, which

yields

V

(
(1, 1) , (0, 1) ,

(
2

7
, 1

))
= 0.386 < V (t2) .

Therefore, there is no profitable deviation for the first (or the second) persuader. For

the third persuader, the most profitable deviation is (1, 1), and the standard set becomes

{{1, 2, 3}}. This yields

V ((0, 1) , (0, 1) , (1, 1)) = 0.34 < V (t2) .

Hence, there is no profitable deviation for any persuader.

Note that in the example above, the expected utility of the decision maker is equal to

U in equilibrium 1 and higher than U in equilibrium 2. This is, in fact, a general feature

of asymmetric equilibria: the decision maker’s expected utility is strictly higher than U if

and only if the standard set is strictly larger than {{1, 2, ..., n}}. The same intuition from

Theorem 2 applies here: in the case of s = {{1, 2, ..., n}}, the decision maker never strictly

prefers to choose aH , and, therefore, she is as well off as always choosing aL unconditionally.

Theorem 6. Given an equilibrium with tests t, if st = {{1, 2, ..., n}}, then U(t) = U . If

st ) {{1, 2, ..., n}}, then U(t) > U .

The numerical example also shows that the persuaders have a higher expected utility in

equilibrium 1 (only one informative test) than in equilibrium 2 (more than one informative

test). Theorem 6 shows that, in general, among all equilibria that feature the smallest

standard set {{1, 2, ..., n}}, persuaders have the highest expected utility in the equilibrium

with only one informative test: xi < 1 and yi = 1 for some i, and xj = yj = 1 for all
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j 6= i. When two or more persuaders independently choose informative tests (x < 1), the

probability that the decision maker chooses aH in an equilibrium is lower. This is due

to the independence of test choices. Note that in an equilibrium, the probability of aH

is negatively associated with the average posterior belief when the test outcomes do not

fall under the standard set. The lower the latter average posterior belief is, the higher

the former probability for persuasion can be. This is because the decision maker is more

willing to choose aH upon seeing weakly informative passes when those passes can assure

her that the very worst cases did not happen. However, when persuaders independently

choose informative tests, the average posterior belief when the test outcomes do not meet

the standard is bounded from below. Among the many outcome combinations not included

in the standard set, the ones that are a balanced mixture of passes and failures are more

frequent than the ones with mostly failures. Therefore, the high average posterior in these

cases prevents persuaders from choosing relatively high x, which leads to a low probability

for persuasion.

Definition 4. When n = 1 (benchmark), let (xB, 1) denote the persuader’s equilibrium test

choice7, and let VB denote his expected utility.

Theorem 7. Assume that p < 1. Fix n ≥ 2. In equilibria with yi = 1 ∀i, if the standard

set induced by equilibrium tests t is {{1, 2, ..., n}}, then V (t) ≤ VB. Moreover, the equality

holds if and only if there exists i s.t. xi = xB and xj = 1 for all j 6= i.

Due to the complexity of asymmetric equilibria, whether Theorem 6 extends to equilibria

with larger standard sets remains an open question. Numerical analysis shows that for small

n, symmetric equilibria always yield a lower expected utility than VB for the persuaders,

regardless of the equilibrium standard. An analysis of asymmetric equilibria with n = 3 also

shows that the persuaders have the highest expected payoff when the equilibrium features a

7Specifically, xB =
p−

(
pd

1−pd

)
+
(

pd

1−pd

)
p(

pd

1−pd

)
p− 1 + p

.
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unique informative test. These evidence suggests that Theorem 6 can indeed extend beyond

equilibria with the smallest standard set.

2.4.4 Equilibria with endogenous noise

Section 4.3 shows that when exogenous noise is present, there are equilibria in which the

decision maker strictly gains. I now endogenize this result. This section mostly focuses on

the case of p = 1 (no exogenous noise). I show that there always exist strict equilibria

with high payoffs for the decision maker. In these equilibria, the persuaders endogenously

choose noisy tests with Pr(pass|H) < 1 even when tests with Pr(pass|H) = 1 are feasible.

Moreover, whenever an equilibrium features some tests with Pr(pass|H) < 1, the decision

maker’s expected utility must be strictly higher than U . The following examples illustrate

the main intuition.

Example 1. Let p = 1, n = 2, and pd = 0.64. There exists an equilibrium in which both

persuaders choose t1 = t2 = (0.1, 0.8) and the decision maker chooses aH if any only if at

least one test is passed.

Example 2. Let p = 1, n = 3, and pd = 81
113

. There exists an equilibrium in which all

persuaders choose t1 = t2 = t3 = (0.2, 0.9) and the decision maker chooses aH if and only if

at least two tests are passed.

I verify that both examples are strict equilibria in the Appendix. To see why it is strictly

profitable for a persuader to choose a test that sometimes fail state H, note that a deviation

to Pr(pass|H) = 1 has three effects. First, the probability of a pass is higher. Second, a

pass induces a higher posterior belief. Third, a failure induces a lower posterior belief. In

both equilibria, a deviation to Pr(pass|H) = 1 is not profitable because the penalty from

the third effect outweighs the benefits from the first two effects: following this deviation, a

failure perfectly reveals state L and the decision maker never chooses aH when she sees a

failure from the persuader that deviated. This decreases the overall probability of aH .

44



Now focus on the fact that, in both examples, the decision maker can choose aH even

when some test is failed. (Indeed, the decision maker’s relatively low standard is precisely

the reason why the persuaders are willing to choose noisy tests.) As discussed in earlier

sections, this implies that the decision maker strictly prefers aH when all tests are passed

and, therefore, her expected utility must be strictly higher than U .

The following theorems generalize the examples. Theorem 7 shows that equilibria with

endogenous noise exist universally. Theorem 8 shows that the decision maker always gains

in equilibria with endogenous noise.

Theorem 8. Let p = 1 and n > 1. For all pd ∈
(
1
2
, 1
)
, there exists a strict equilibrium in

which the persuaders choose tests that never perfectly reveal the true state.

The proof of Theorem 7 is done in two steps. First, I show that for n = 2 and for all

pd, there exist strict equilibria in which both persuaders choose endogenously noisy tests.

Then, I extend the result and argue that some of these equilibria can be extended into an

n-persuader equilibrium in which the first two persuaders play the same strategy as in the

two-persuader equilibrium, while the rest persuaders choose uninformative tests that are

always passed independent of the true state.8 See the formal proof in the Appendix.

Next, I show tests that sometimes fail given state H (or condition cH , if p < 1) appear

only if the decision maker can choose aH even in the presence of some failures, and, therefore,

the decision maker always gains in those equilibria. If, in equilibrium, the decision maker

chooses aH only when all tests are passed, the persuaders always find it optimal to choose

yi = 1 for all i, inducing an expected utility of U for the decision maker.

Theorem 9. For all pd ∈
(
1
2
, 1
)
, and p ∈ [pd, 1], if in an equilibrium yi < 1 for some i, then

the standard set s ) {{1, ..., n}}, and the decision maker’s expected utility is strictly higher

than U .
8Whether symmetric equilibria with endogenously noisy tests exist for arbitrary n remains an open

question.
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Proof. I first show that if the standard set in a given equilibrium is s = {{1, ..., n}}, then

the equilibrium tests must satisfy y1 = 1 for all i.

If in an equilibrium, the decision maker chooses aH iff. all tests are passed, then the

persuaders must choose tests such that the decision maker is indifferent when all tests are

passed. That is, tests (xi, yi) satisfy

n∏
i

[
yip+ xi (1− p)
yi (1− p) + xip

]
=

pd
1− pd

.

Suppose that yi < 1 for some i. persuader i is strictly better off when he increases

yi because doing so increases the probability of a pass from i and makes a pass from i

more positive. The standard set does not shrink after the deviation since s is already the

smallest standard set. Therefore, such a deviation strictly increases the probability of aH ,

and persuader i must choose yi = 1 in such an equilibrium.

Since s = {{1, ..., n}} implies that yi = 1 for all i, when yi < 1 for some i, it must be

the case that s ) {{1, ..., n}}. That is, the decision maker is indifferent when some tests are

failed. Therefore, when all tests are passed, the decision maker must strictly prefer aH . This

implies that her expected utility must be strictly higher than U .

Finally, it is worth mentioning that although equilibria with endogenous noise do exist

and are always beneficial for the decision maker, they are never the best equilibria for the

persuaders. Kamenica and Gentzkow (2011) imply that in an environment without exogenous

noise, the best equilibrium for the persuaders is outcome-equivalent to the one in which the

first persuader chooses a test as if he is the only persuader, and the rest choose uninformative

tests that are always passed unconditionally.
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2.5 Discussion

A. Single persuader with multiple tests

The games that this paper studies feature multiple identical persuaders, each of whom in-

dependently conducts one test. One might ask what happens if there is only one persuader

in charge of all these independent tests. In this case of one persuader, the equilibrium is

unique: the persuader chooses tests t that maximize V (t). The outcome is simply equiva-

lent to the the best equilibrium outcome for the multiple persuaders in this paper. When

exogenous noise is absent, the unique persuader optimally design tests so that only one of

them is informative, and the decision maker does not gain from the tests (Kamenica and

Gentzkow, 2011). However, if exogenous noise exists and the tests on each noisy condition

must be identical, the decision maker can expect a better outcome. As Theorem 4 implies, if

the decision maker is sufficiently picky or if the environment is sufficiently noisy, the unique

persuader optimally designs relatively informative tests that induce a high payoff for the

decision maker.

Overall, when there is a single persuader conducting multiple tests (or, alternatively,

when all persuaders collaborate), outcomes with a high payoff for the decision maker are

more rare. Given that all the persuaders’ preferences are perfectly aligned and externalities

are absent, this comparison emphasizes that merely preventing perfect coordination among

the persuaders is sufficient to induce high levels of information revelation.

B. Correlated tests

In this paper, I assume that the tests are independent, which is a natural assumption for

many real-world scenarios, including the interview example in the Introduction. Consider,

instead, that the persuaders may choose correlated tests. In this case, the decision maker

never gains regardless of whether exogenous noise is present. Specifically, if there is no
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exogenous noise, regardless of the number of persuaders, all strict equilibria9 are outcome-

equivalent to the equilibrium with a single persuader and a zero-gain for the decision maker.

When there is exogenous noise, the persuaders are better off when there are more of them,

and the decision maker never gains from their collected information.10

Therefore, the absence of perfect correlation is crucial for the existence of strict equilibria

with a high payoff for the decision maker. While this paper studies the case of perfect

independence, the same intuition carries over in the case of partial correlation: as long as

the persuaders cannot perfectly coordinate on the number of test failures, they have the

incentive to design tests with fairly informative passes so that the decision maker adopts

a relatively low standard. This generates a high level of information revelation and a high

payoff for the decision maker.

In general, as Li and Norman (2015) point out, the assumption of independence gives

rise to an even wider range of predictions when persuaders have different preferences. Their

paper provides an example in which adding an independent persuader may strictly harm the

decision maker.

C. Sequential persuaders

The persuaders in this paper choose tests simultaneously. Suppose, instead, that they choose

the tests in a sequence. Then, the unique subgame perfect equilibrium is outcome-equivalent

to the best equilibrium for the persuaders in the simultaneous game. If there is no exogenous

noise, results in Kamenica and Gentzkow (2011) predict that the first persuader optimally
9While other equilibria - e.g. the fully revealing equilibrium in which all persuaders reveal the true state

- exist, they reply on tie-breaking rules that feature excessive information revelation. These equilibria are
Pareto dominated by the described strict equilibria.

10To see why, note that a game with n identical persuaders choosing correlated tests is analogous to a game
in which one persuader conducts a test on n i.i.d. conditions jointly. Moreover, a test on n i.i.d. conditions is
analogous to a test on a single condition with better accuracy (a higher p). In the latter case, the equilibrium
features a test with a higher passing rate under a bad condition (a higher x) and, hence, a higher expected
utility for the persuader. The increased x is supported by the increased informativeness of a failure. Since
the decision maker either chooses her default action aL or is indifferent between aL and aH when she chooses
aH after seeing a pass, the decision maker is as well off as always choosing aL unconditionally. Hence, the
information collected from the test does not increase the decision maker’s expected utility.

48



chooses a test design as if he is the only persuader, and all later persuaders choose uninfor-

mative tests that are always passed. The decision maker does not gain in this equilibrium.

Results in Section 4.3.2 show that this may be the case when exogenous noise is present, as

well.

D. Asymmetrically constrained testing technology

The assumption of exogenous noise is symmetric in this paper. That is, Pr(cH |H) =

Pr(cL|L) = p. However, the symmetry is sufficient, but not necessary for the existence

of equilibria with high expected utility for the decision maker. To see why, note that the

symmetric constraint puts an upper bound on both posterior probabilities Pr(H|pass) and

Pr(L|fail). In equilibrium, only the latter constraint on Pr(L|fail) binds since the per-

suaders endogenously choose tests such that Pr(H|pass) ≤ pd < p anyway. Therefore,

relaxing the constraint on Pr(cL|L) does not change the equilibrium outcome. The main

results of this paper hold as long as Pr(cH |H) < 1.

E. Continuous state space

The main result of the paper does not hinge on the assumption of the binary state space.

Suppose the true state is a continuous variable z ∈ R. If the action space of the decision

maker is still {aH , aL} and the persuaders still strictly prefer aH regardless of the true state,

then the decision maker strictly gains only if there are multiple persuaders conducting noisy

tests.

To see why this is true, first note that, in equilibrium, the persuaders endogenously

choose coarse test designs even when the state space is a continuum. As Kolotilin (2015)

shows, when there is one persuader, the optimal test is one such that the persuader reports

only a “pass” when z ≥ z∗ and a “failure” when z < z∗, where z∗ is a threshold chosen such

that the decision maker is indifferent when the persuader reports a pass. When there are

multiple persuaders, it is also an equilibrium that each persuader chooses this same test with
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threshold z∗, and all tests yield the same outcome. In these cases, the decision maker does

not gain from the test(s) because she either plays her default action if the test(s) failed, or

is indifferent if the test(s) passed.

On the contrary, when test outcomes never perfectly reveal the true state, there exist

multi-persuader equilibria in which the persuaders choose relatively informative tests with

a relatively higher threshold, and the decision maker chooses aH even if some tests failed.

This implies that, in expectation, the decision maker strictly gains since she strictly prefers

aH when all tests passed. The existence of these equilibria results from the same intuition

as in the binary-state case: when the persuaders cannot perfectly coordinate on the test

outcomes, they have an incentive to design relatively informative tests so that a few failures

can be outweighed by strong passes.

For example, when there are two persuaders, there exists a symmetric equilibrium in

which both persuaders choose to report “pass” when z ≥ z and “fail” when z < z, where z is

a relatively high11 threshold chosen in such a way that the decision maker is indifferent when

one persuader reports “pass” and the other reports “failure”. The decision maker chooses aH

if and only if there is at least one pass. To check this is indeed an equilibrium, note that

when the second persuader is using this strategy, it suffices to check that it is not profitable

for the first persuader to always report “pass” regardless of the state: 12 following such a

deviation, the decision maker chooses aH if and only if the second persuader reports “pass”,

but this leads to a lower probability of aH , since previously the decision maker also chooses

aH when the second persuader reports “failure” but the first reports “pass.” Therefore, this

deviation cannot be profitable.
11compared to the threshold for the single persuader game, z∗
12To see why, first note that since a “pass” is sufficient to guarantee aH , the first persuader has no incentive

to design a test whose outcomes can be more positive than a “pass” by implementing higher threshold(s).
Alternatively, if he deviates in such a way that the most positive test outcome is less positive than a “pass”,
then the decision maker responds by choosing aH only if the second persuader reports “pass”. Therefore in
this category it is best to deviate to an uninformative test described above.
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F. Implications for the decision maker

If, in reality, a decision maker relies her decision on persuaders’ endogenously collected

information, this paper suggests that independently consulting more than one persuader

can make the decision maker better off even in a worst case scenario, that is, even if those

persuaders all have the same extreme bias towards a certain action and side transfers to

induce information revelation are not feasible. Focusing only on the best equilibrium for

the decision maker, her expected utility increases substantially even if she has merely two

persuaders instead of one, as suggested by the proof of Theorem 7. Even if there is reason to

believe that the actually equilibrium selected is the biased persuaders’ favorite equilibrium,

there are still methods for the decision maker to apply in order to induce a high payoff. As

Theorem 4 suggests, by restricting the persuaders’ ability to collect perfect information and

by requiring all persuaders to use the same test design, the decision maker can guarantee a

high payoff, as the most informative equilibrium is Pareto dominant.

Overall, this paper emphasizes that the lack of perfect coordination among multiple

persuaders is sufficient to increase the payoff for the decision maker. If, in addition, the

decision maker can find persuaders whose preferences are more aligned with hers, or if the

decision maker can induce information revelation through payment transfers, then this paper

predicts that she should expect an even higher payoff.
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2.6 Appendix

2.6.1 Proof of Proposition 1

When yi = 1 for all i, and 1
x1·...·xn = pd

1−pd
, the decision maker is indifferent when all tests are

passed:

Pr(H|pass1, ..., passn)

Pr(L|pass1, ..., passn)
=

n∏
i=1

Pr(passi|H)

Pr(passi|L)

=
1

x1 · ... · xn
=

pd
1− pd

.

I first show that no persuader has an incentive to deviate to some y < 1.

Suppose that persuader j deviates to some
(
x
′
j, y

′
j

)
s.t. y′j ∈ [x

′
j, 1). (If y′j < x

′
j, then

relabel “pass” as “fail” and vice versa so that y′j > x
′
j.) There are three effects of a downward

deviation of yj. First, the ex ante probability of a pass decreases. Second, a lower yj makes

a pass from j less persuasive since

Pr(passj|H)

Pr(passj|L)
=
p · yj + (1− p) · xj
(1− p) · yj + p · xj

is increasing in yj . Third, a lower yj makes a failure from j less negative since

Pr(failj|H)

Pr(failj|L)
=

1− [p · yj + (1− p) · xj]
1− [(1− p) · yj + p · xj]

is decreasing in yj.

Therefore, a decrease in yj is profitable only if it induces the decision maker to choose

aH even if test j is failed. However, this is never the case since it requires that

1− yj
1− xj

·
n∏
i 6=j

1

xi
≥ pd

1− pd
,
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but 1
x1·...·xn = pd

1−pd
implies that the required inequality never holds for y′j ≥ x

′
j. Hence,

persuader j is strictly worse off after a decrease to y′j < 1.

I next show that a deviation in xi also strictly decreases persuader i’s expected utility

for all i.

Suppose that persuader i chooses x′i > xi. In this case a pass from i is less positive, and

the decision maker chooses aL even if all tests are passed, making the persuaders strictly

worse off.

Suppose that persuader i chooses x′i < xi. Because yj = 1 for all j, it is still the case

that the decision maker chooses aH only when all tests are passed, since each failure directly

reveals state L. Therefore, such a downward deviation only decreases the probability of aH

because a pass from i is less likely. Again, the persuaders are strictly worse off.

Therefore, the proposed strategies indeed constitute an equilibrium. In this equilibrium,

the expected utility of the persuaders is simply the expected probability that all tests are

passed, V = 1
2

(
1 + 1−pd

pd

)
. The decision maker either chooses aL, or is indifferent between

aH and aL when she chooses aH . Hence, her expected utility is equal to what she would get

from always choosing aL: U .

2.6.2 Proof of Theorem 4

When α = 1, by Theorem 3, the decision maker learns the true state, and she chooses aH if

and only if the true state is H. Therefore, V (tα) converges to 1
2
, the ex ante probability for

state H.

When α = 1, t1 = ((x, 1) , ..., (x, 1)), where

x =
p− (1− p)

(
pd

1−pd

) 1
n

p
(

pd
1−pd

) 1
n − (1− p)

,

53



Pr(aH |H) = [Pr(pass|H)]n = [p+ (1− p)x]n

=

p+ (1− p) ·
p− (1− p)

(
pd

1−pd

) 1
n

p
(

pd
1−pd

) 1
n − (1− p)


n

→
(

pd
1− pd

) p−1
2p−1

as n→∞.

Pr(aH |L) = [Pr(pass|L)]n = [(1− p) + px]n

=

1− p+ p ·
p− (1− p)

(
pd

1−pd

) 1
n

p
(

pd
1−pd

) 1
n − (1− p)


n

→
(

pd
1− pd

) −p
2p−1

as n→∞.

Hence,

V (t1) =
1

2
· Pr(aH |H) +

1

2
· Pr(aH |L)→ 1

2

[(
pd

1− pd

) p−1
2p−1

+

(
pd

1− pd

) −p
2p−1

]
≡ f (pd, p) ,

with

∂f

∂pd
=

(
pd

1−pd

) p−1
2p−1

(
1 + p

pd
− 2p

)
2 (1− 2p) pd (1− pd)

< 0,

lim
pd→ 1

2

f = 1,

lim
pd→p

f =
1

2
· p

−p
2p−1 (1− p)

1−p
2p−1 <

1

2
.
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∂f

∂p
=

(
pd

1−pd

) −p
2p−1

[
1 +

(
pd

1−pd

)]
ln
(

pd
1−pd

)
2 (2p− 1)2

> 0,

lim
p→pd

f =
1

2
· p

−pd
2pd−1

d (1− pd)
1−pd
2pd−1 <

1

2
,

lim
p→1

f =
1

2

(
1 +

1− pd
pd

)
>

1

2
.

Therefore, ∀pd ∈
(
1
2
, 1
)
, there exist p s.t. p ∈ (pd, p) implies f (pd, p) <

1
2
. Define region

B accordingly.

2.6.3 Proof of Theorem 5

When st = {{1, 2, ..., n}}, the decision maker chooses aH only when all tests are passed.

Thus, she either chooses aL or is indifferent between aH and aL when she chooses aH .

Therefore, her payoff is always U - the payoff she gets when she chooses aL unconditionally.

2.6.4 Proof of Theorem 6

Theorem 6 is proved in two steps. I first show that the result is true for the case of two

persuaders (n = 2) and then extend the result to an arbitrary n.

Lemma 2. Assume that p < 1. When n = 2, let t = ((x1, 1) , (x2, 1)) denote the tests in an

equilibrium. Then, V (t) ≤ VB. Moreover, the equality holds if and only if t = ((1, 1) , (xB, 1))

or ((xB, 1) , (1, 1)).

Proof. Since pd > 1
2
, the standard set for n = 2 must be {{1, 2}}. Therefore, the persuaders’

optimal strategy is to choose t such that the decision maker is exactly indifferent when she

sees two passes:

Pr(H|pass, pass)
Pr(L|pass, pass)

=
Pr(pass, pass|H)

Pr(pass, pass|L)
=

[p+ (1− p)x1] [p+ (1− p)x2]
(1− p+ px1) (1− p+ px2)

=
pd

1− pd
(2.2)
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x∗2(x1) =
p2 − ( pd

1−pd
− 1)p(1− p)x1 − pd

1−pd
(1− p)2(

pd
1−pd
− 1
)
p(1− p) +

[
pd

1−pd
p2 − (1− p)2

]
x1

(2.3)

There are infinitely many equilibria when n = 2, as long as x1 and x2 satisfy equation

(3). Since V (t) = 1
2

[Pr(aH |H) + Pr(aH |L)], to prove the lemma, it is sufficient to show that

the conditional probabilities

Pr(aH |H) = Pr(pass, pass|H)

Pr(aH |L) = Pr(pass, pass|L)

are both maximized exactly when x1 = 1, x2 = xB, or x1 = xB, x2 = 1.

Notice that the expected posterior likelihood when the decision maker chooses aL,

laL ≡
1− Pr(pass, pass|H)

1− Pr(pass, pass|L)
=

1−
(

pd
1−pd

)
· Pr(pass, pass|L)

1− Pr(pass, pass|L)
,

strictly decreases with Pr(pass, pass|L), as well as Pr(pass, pass|H) = pd
1−pd
·Pr(pass, pass|L).

In other words, Pr(aH |H) and Pr(aH |L) are maximized exactly when laL is minimized. For

arbitrary (x1, x2),

laL =
(1− x1x2)(1− p)2 + (2− x1 − x2)p(1− p)

(1− x1x2)p2 + (2− x1 − x2)p(1− p)
,

which decreases in both x1 and x2 because (1− p)2 < p2. Moreover,

lim
x1→1

laL = lim
x2→1

laL =
1− p
p

. (2.4)

Since 1−p
p

is precisely the posterior likelihood when the decision maker chooses aL (i.e.

the test is failed) in the benchmark case, (4) implies that both Pr(aH |H) and Pr(aH |L)

are maximized exactly when x1 = 1 or x2 = 1; that is, the equilibria associated with the
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highest payoff for the persuaders must have one of the persuaders choosing an uninformative

test and the other choosing the benchmark test. In either case, the maximized conditional

payoff is equal to the persuader’s conditional payoff in the benchmark case, and, hence,

V (t) = VB.

Remark: The unique symmetric equilibrium with x1 = x2 generates the lowest payoff for

the persuaders.13

Theorem 6. Assume that p < 1. Fix n ≥ 2. In equilibria with yi = 1 ∀i, if the standard

set induced by tests t is {{1, 2, ..., n}}, then V (t) ≤ VB. Moreover, the equality holds

if and only if there exists i s.t. xi = xB and xj = 1 for all j 6= i.

Proof. Start with n = 3. Fix the test choice of the third player, x3. Let li denote the

posterior likelihood ratio
Pr(H|pass)
Pr(L|pass)

=
p+ (1− p)xi
1− p+ pxi

after a single pass from test i. Let

A ≡ pd
1−pd

. Given x3, if a pair of (x1, x2) solves

max
x1,x2

Pr(aH |H) Pr(aH |L)

s.t. l1 · l2 · l3 = A

then (x1, x2) maximizes the payoff of the persuaders. Rearranging the constraint into

l1 · l2 =
A

l3
, the optimization problem is identical to the problem in Lemma 1 with Â =

A

l3
. Therefore, applying Lemma 1, in the equilibrium with the highest expected utility

for the persuaders, one of the persuaders must choose an uninformative test. Without

loss of generality, assume that x1 = 1 and x2 > 0. Given x1 = 1 and x2 > 0 as best

responses to x3, now find the optimal x3 that maximizes the persuaders’ expected utility.
13Let V |H ≡ Pr(aH |H), V |L ≡ Pr(aH |L), A ≡ pd

1−pd
, then

V |H ′′
(x1) = − 2A2(p− 1)p(2p− 1)3

[(A− 1)p2(x1 − 1)− x1 + p(A− 1 + 2x1)]
3 > 0; V |L′′

(x1) =

− 2A(p− 1)p(2p− 1)3

[(A− 1)p2(x1 − 1)− x1 + p(A− 1 + 2x1)]
3 > 0. Moreover, V |H ′

(x1) = V |L′
(x1) = 0 if and only

if x2 = x1 =
(p− 1)

√
A+ p

p− 1 + p
√
A

.
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Since persuader 1 is completely uninformative, deleting him from the game does not change

the equilibrium outcome. An iterated application of Lemma 1 implies that (x2, x3) = (1, xB)

or (xB, 1). Although the decision maker consults three persuaders, only one of them chooses

an informative test. The same logic applies to any n ≥ 3. Applying Lemma 1 and deleting

uninformative persuaders iteratively until there is only one persuader left who follows the

benchmark strategy, (xB, 1). Hence, V (t) = VB for all n > 2.

2.6.5 Proof of Example 1

Let p = 1, n = 2, and pd = 0.64. I verify that t = ((0, 1, 0, 8) , (0.1, 0.8)) and s (t) =

{{1} , {2} , {1, 2}} is an equilibrium.

When players choose the above strategies, V (t) = 0.575. Given (x2, y2) = (0.1, 0.8), I

show that persuader 1 is strictly worse off if he deviates to some
(
x
′
1, y

′
1

)
6= (0.1, 0.8). I use

t′ to denote the tests after persuader 1’s deviation.

a. If a deviation by persuader 1 induces s(t′) = {{1} , {2} , {1, 2}}, then
(
x
′
1, y

′
1

)
must

satisfy
8
(
1− y′1

)
1− x′1

≥ 16

9
and

2y
′
1

9x
′
1

≥ 16

9
.

Among all deviations that satisfy the above inequalities, persuaders’ payoff is uniquely

maximized when
(
x
′
1, y

′
1

)
= (x1, y1) = (0.1, 0.8).

b. If a deviation by persuader 1 induces s(t′) = {{2} , {1, 2}}, then V (t′) = Pr (pass from persuader 2) =

0.45 < V (t).

c. If a deviation by persuader 1 induces s(t′) = {{1} , {1, 2}}, then
(
x
′
1, y

′
1

)
must satisfy

2y
′
1

9x
′
1

≥ 16

9
⇒ x

′

1 ≤
1

8
and y

′

1 ≤ 1.

In this case, V (t′) is maximized at
(
x
′
1, y

′
1

)
=
(
1
8
, 1
)
and V

(
1
8
, 1
)

= 0.5625 < V (t).

d. If a deviation by persuader 1 induces s(t′) = {{1, 2}}, then

V (t′) ≤ Pr (pass from persuader 2) = 0.45 < V (t).
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Therefore, conclude that persuader 1 is strictly worse off after a deviation to some(
x
′
1, y

′
1

)
6= (0.1, 0.8).

2.6.6 Proof of Example 2

Let n = 3, pd = 81
113

, and p = 1. I verify that t = ((0.2, 0.9) , (0.2, 0.9) , (0.2, 0.9)) and

s(t) = {{1, 2} , {1, 3} , {2, 3} , {1, 2, 3}} is an equilibrium.

When players choose the above strategies, V (t) = 0.538. Given (x2, y2) = (x3, y3) =

(0.2, 0.9), I show that persuader 1 is strictly worse off if he deviates to some
(
x
′
1, y

′
1

)
6=

(0.2, 0.9). I use t′ to denote the tests after persuader 1’s deviation.

Among all deviations that induce s(t′) = {{1, 2, 3}}, the most profitable is
(
x
′
1, y

′
1

)
=

(1, 1), which yields V (t′) = 0.425 < V (t).

If a deviation by persuader 1 induces s(t′) = {{1, 2, 3} , {2, 3}}, then
(
x
′
1, y

′
1

)
must satisfy

0.92

0.22
· 1− y′1

1− x′1
≥ pd

1− pd
.

Among all deviations that satisfy the above inequality, persuaders’ payoff is maximized

when
(
x
′
1, y

′
1

)
→ (1, 1), and V (t′)→ 0.425 < V (t).

If a deviation by persuader 1 induces s(t′) = {{1, 2, 3} , {1, 2} , {1, 3}}, then
(
x
′
1, y

′
1

)
must

satisfy
0.9

0.2
· 0.1

0.8
· y
′
1

x
′
1

≥ pd
1− pd

.

Among all deviations that satisfy the above inequality, persuaders’ payoff is maximized

when
(
x
′
1, y

′
1

)
= (2

9
, 1), and V (t′) = 0.535 < V (t).

If a deviation by persuader 1 induces s(t′) = {{1, 2, 3} , {1, 2} , {1, 3} , {2, 3}}, then(
x
′
1, y

′
1

)
must satisfy

y
′
1

x
′
1

≥ 0.9

0.2
,

1− y′1
1− x′1

≥ 0.1

0.8
.

Among all deviations that satisfy the above inequalities, persuaders’ payoff is uniquely
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maximized when
(
x
′
1, y

′
1

)
= (x1, y1) = (0.2, 0.9).

If {1} ∈ s(t′), then
(
x
′
1, y

′
1

)
must satisfy

y
′
1

x
′
1

· 0.12

0.82
≥ pd

1− pd
⇒ y

′
1

x
′
1

≥ 162.

Among all deviations that induce s(t′) = {{1} , {1, 2} , {1, 3} , {1, 2, 3}}, the most prof-

itable is
(
x
′
1, y

′
1

)
= ( 1

162
, 1), which yields V (t′) = 0.503 < V (t).

Among all deviations that induce s(t′) = {{1} , {1, 2} , {1, 3} , {2, 3} , {1, 2, 3}}, the most

profitable is
(
x
′
1, y

′
1

)
= ( 7

1295
, 162
185

), which yields V (t′) = 0.511 < V (t).

{2} /∈ s(t′) and {3} /∈ s(t′) for all t′. Therefore, conclude that that persuader 1 is strictly

worse off after a deviation to some
(
x
′
1, y

′
1

)
6= (0.2, 0.9).

2.6.7 Proof of Theorem 7

To prove that equilibria with endogenously noisy tests exist universally, I first start with the

case of two persuaders and then extend it to the case of npersuaders.

Lemma 3. Let p = 1 and n = 2. ∀pd ∈
(
1
2
, 1
)
, there exists an equilibrium in which xi ∈ (0, 1)

and yi ∈ (0, 1) for i = 1, 2.

Proof. It suffices to show that there exist a symmetric equilibrium with x1 = x2 = x ∈ (0, 1),

y1 = y2 = y ∈ (0, 1), and s = {{1} , {2} , {1, 2}}, such that x and y satisfy

y

x
· 1− y

1− x
=

pd
1− pd

,

and each persuader’s expected utility is

V ∗ =
1

2

[
2y (1− y) + y2 + 2x (1− x) + x2

]
1

2

(
2y − y2 + 2x− x2

)

60



I now go through each case of unilateral deviation to identify the conditions for x and y

such that the proposed strategies indeed form an equilibrium.

a. Suppose persuader 1 deviates to some (xa, ya) s.t. sa = {{1} , {2} , {1, 2}}. sa implies

that xa and ya must satisfy

ya
xa
· 1− y

1− x
≥ y

x
· 1− y

1− x
,

y

x
· 1− ya

1− xa
≥ y

x
· 1− y

1− x
.

The inequalities imply that

y

x
· xa ≤ ya ≤

y − x+ (1− y)xa
1− xa

,

which in turn implies that

xa ≤ x and ya ≤ y.

Following this deviation, persuader 1’s expected utility is

Va =
1

2
[ya (1− y) + xa (1− x) + (1− ya) y + (1− xa)x+ yay + xax]

1

2
[(1− y) ya + (1− x)xa + x+ y]

Since Va is increasing in both xa and ya, Va is maximized when xa = x and ya = y, i.e.

there is no profitable deviation to some (xa, ya) 6= (x, y) s.t. sa = {{1} , {2} , {1, 2}}.

b. Suppose persuader 1 deviates to some (xb, yb) s.t. sb = {{2} , {1, 2}}. sb implies that

xb and yb must satisfy
y

x
· 1− yb

1− xb
≥ y

x
· 1− y

1− x
,

61



and persuader 1’s expected utility is

Vb =
1

2
(y + x)

<
1

2

[
y + x+

(
y − y2

)
+
(
x− x2

)]
= V ∗.

Therefore, there is no profitable deviation to some (xb, yb) s.t. sb = {{2} , {1, 2}}.

c. Suppose persuader 1 deviates to some (xc, yc) s.t. sc = {{1, 2}}. Then, persuader 1’s

expected utility following this deviation is

Vc =
1

2
(y · yc + x · xc)

≤ 1

2
(y + x)

≤ Vb

< V ∗.

Therefore, there is no profitable deviation to some (xc, yc) s.t. sc = {{1, 2}}.

d. Finally, suppose persuader 1 deviates to some (xd, yd) s.t. sd = {{1} , {1, 2}}. sd

implies that xd and yd must satisfy

yd
xd
· 1− y

1− x
≥ y

x
· 1− y

1− x

⇒xd ≤
x

y
and y ≤ 1.

Following this deviation, persuader 1’s expected utility is

Vd =
1

2
(yd + xd)

≤ 1

2

(
1 +

x

y

)
.

A sufficient condition for Vd ≤ V ∗ is 1
2

(
1 + x

y

)
≤ V ∗.

Summarizing the four cases of possible deviation, it suffices to prove the lemma if, for all
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pd ∈
(
1
2
, 1
)
, there exist x ∈ (0, 1) and y ∈ (0, 1) s.t.

y

x
· 1− y

1− x
=

pd
1− pd

(2.5)

(
2y − y2 + 2x− x2

)
−
(

1 +
x

y

)
≥ 0 (2.6)

Let A ≡ pd
1−pd

, then (5) implies

y(x) =
1

2
+

[
1

4
− A

(
x− x2

)] 1
2

,

and the left hand side of (6) can be rewritten as

g(x) ≡ (A+ 1)
(
x− x2

)
+ x+

1

2
+

[
1

4
− A

(
x− x2

)] 1
2

.

Note that g(0) = 0 and g′(0) = 1 > 0, which implies that there exist some positive x

close to 0 s.t. y(x) ∈ (1
2
, 1) and g(x) ≥ 0. This completes the proof.

Next, I prove Theorem 7 by showing that for any n > 1, there exist an equilibrium in

which the first two persuaders play strategies specified in Lemma 2, and the rest persuaders

choose tests that are always passed unconditionally.

Theorem 7. Let p = 1 and n > 1. For all pd ∈
(
1
2
, 1
)
, there exists an equilibrium in which

the persuaders choose tests that never perfectly reveal the true state.

Proof. It suffices to show that there exists an equilibrium in which x1 = x2 = x ∈ (0, 1),

y1 = y2 = y ∈ (0, 1), and xi = yi = 1 for all i > 2.

Lemma 2 shows that there is no profitable deviation for the first or the second persuader.

I here prove that without loss of generality, among all pairs of (x, y) that support Lemma 2,

there always exists some (x, y) such that no deviation will bring the third persuader a higher

expected utility than V ∗ as well.
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First, note that a unilateral deviation by the third persuader may be profitable only if a

pass from his test dominates two failed tests from both the first and the second persuaders,

i.e.,
(1− y)2

(1− x)2
· y3
x3
≥ pd

1− pd
.

Since pd
1−pd

= y
x
· 1−y
1−x , the above condition is equivalent to

y3
x3
≥ y

x
· 1− x

1− y
(2.7)

Since the decision maker is indifferent after one pass and one failure from the first two

persuaders, it is impossible for the decision maker to choose aH when, in addition to one

pass and one failure, the test from the third persuader fails as well. Therefore, it is sufficient

to check only the following two cases of deviation:

a. The third persuader deviates to some (xa, ya) such that sa = {{3} , {3, 1} , {3, 2} , {3, 1, 2}}.

In this case, it is most profitable for third persuader to choose xa ∈ (0, 1) and ya = 1, which

yields an expected utility of Va = 1
2

(1 + xa) = 1
2

(
1 + x

y
· 1−y
1−x

)
.

By construction, 2y − y2 + 2x − x2 ≥ 1 + x
y
from (6) and 1−y

1−x ∈ (0, 1). Hence, it must

be the case that V ∗ = 1
2

(2y − y2 + 2x− x2) > 1
2

(
1 + x

y
· 1−y
1−x

)
= Va. Conclude that it is not

profitable for the third persuader to deviate in this way.

b. Persuader 3 deviates to some xb ∈ (0, 1) and yb ∈ (0, 1) s.t.

sb = {{1, 2} , {3} , {3, 1} , {3, 2} , {3, 1, 2}}. sb implies that, in addition to (7), xb and yb

must also satisfy
1− yb
1− xb

≥ x

y
· 1− y

1− x
. (2.8)

Since Vb = 1
2

[yb + xb + (1− yb) y2 + (1− xb)x2] increases in xb and yb, Vb is maximized

when both (7) and (8) hold with equality, i.e.,

yb
xb

=
y

x
· 1− x

1− y
and

1− yb
1− xb

=
x

y
· 1− y

1− x
,
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which yields

xb =
x− xy

x+ y − 2xy
and yb =

y − xy
x+ y − 2xy

.

Vb (x, y) =
y + x2y − x3y + x (1− 2y + y2 − y3)

2 (x+ y − 2xy)

V ∗ − Vb =
x3 (1− 3y) + (1− y)2 y + x2 (6y − 2) + x (1− 6y + 6y2 − 3y3)

−2y + x (4y − 2)

Lemma 2 also specifies that y(x) = 1
2

+
[
1
4
− A (x− x2)

] 1
2 , therefore V ∗ − Vb can be

expressed as a single function of x, h(x) ≡ V ∗ − Vb, with

h(x) = −
(x− 1)x

{
A(3x− 1)

[√
1 + 4A(−1 + x)x− 1

]
+ (x− 1)

[
1 + 3

√
1 + 4A(−1 + x)x

]}
4x
√

1 + 4A(x− 1)x− 2
[
1 +

√
1 + 4A(x− 1)x

] .

Note that h(0) = 0 and h′(0) = 1. In other words, there exists x ∈ (0, 1) and y ∈ (0, 1)

s.t. V ∗ − Vb > 0 and no profitable deviation exists for third persuader. This completes the

proof.
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Chapter 3

The False Promise of Becoming a Better

Person

3.1 Introduction

It is a recurring theme in fiction that a person can quit a bad habit in the pursuit of a

friend or a love interest. To list a few examples, this includes movies “Knocked Up” (Ben

quits marijuana for Alison), and “Yes Man” (Carl quits his habit of always saying “no” to

make friends), as well as the TV series “How I Met Your Mother” (Barney quits sleeping

around for Robin). This paper examines whether such hopeful perception is true. I focus on

cases in which people consume some harmful, tempting good, and their resistance against

temptation is negatively correlated with their friends’ consumption. Moreover, friends are

chosen endogenously. The good news: there indeed exist equilibria in which one exercises

extra self control and chooses a low consumption level in order to win the friendship of

another. The bad news: no such equilibrium is subgame perfect, i.e. those cases are not

stable.

To be more precise, I adopt the temptation model of Gul and Pesendorfer (henceforth,

“GP”) (2001, 2004, 2007) and focus on people’s consumption of some harmful tempting good,
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d (drugs, drinking, devil’s food cake...). The special trait of the good d is that, when an

agent is kept away from it, he wishes to consume as little as possible. However, if the

good is presented in front of the agent, it becomes so tempting that it’s difficult to resist

consumption. After going through a struggle of self-control, the agent will likely deviate

from his previous plan and consume a positive amount.

I extend GP’s model by claiming that in any society, no one is completely isolated when

facing temptation. The strength of one’s resistance against tempting goods is influenced by

one’s friend. Specifically, I assume that the more d one and one’s friend consumed in the

past, the harder it is to resist consumption in the current period. Therefore, making friends

with an “addict” will increase one’s own consumption level, and making friends with someone

with “a clean past” helps cut consumption down. The presence of such peer effects leads to

a preference for friends with low past consumption.

Assume there is a strong player, say Alison, who has low past consumption, and a weak

player, say Ben, who has high past consumption, Alison will reject Ben’s friend request

if his past consumption is too high. However, Ben can change the situation by choosing

a low consumption today, so that he can win Alison’s friendship back tomorrow. I show

in this paper that such an equilibrium does exist. However, any equilibrium where Alison

conditionally accepts Ben tomorrow depending on his low consumption today fails to be

subgame perfect. This is because all equilibria of conditional friendship are enforced by

Alison’s threat to reject Ben tomorrow if his consumption is not low enough today. However,

I show that this threat is not credible, as Alison is in fact willing to befriend Ben even if he

consumed more than required. Knowing the non-credibility of the threat, Ben deviates to a

higher consumption. Anticipating Ben’s deviation, Alison will decline to participate in such

conditional friendship agreement at the first place, even though Ben and Alison are both

better off if they stick to the agreement.

This paper contributes to two literatures. Firstly, there is work in decision theory that

has established models of self-control problems and the formation of addiction, but the
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major focus has been on individual decision-making (Becker and Murphy 1988, Gul and

Pesendorfer 2001, 2004, 2007, Kopylov 2012), with little discussion on the impact of social

interaction. The paper by Battaglini, Benabou, and Tirole (2005) is one of the very few that

addresses self-control problems in peer groups. In their paper, peer effects exist only through

informational spillovers. The probabilities for players to experience exogenously high or low

self-control cost are correlated, therefore a player can update his belief on his own cost by

observing the behavior of others. In this setting, they predict that a player prefers a friend

who is worse at self-control, as this makes his own successes more encouraging and his failures

less discouraging. In contrast to their paper, here I assume that a player’s friends can directly

change his own self-control cost, and I predict that a player prefers friends who are better

at self-control, because hanging out with them makes it easier to resist temptation himself.

Secondly, the focus of the peer effect literature has mostly been on empirical detection and

measurement (Evans et al. 1992, Dishion et al. 1999, Sacerdote 2001, Lundborg 2006).

Models of peer effects either assume a fix network (Ballester, Calvo-Armengol, and Zenou

2006; Calvo-Armengol, Patacchini, and Zenou 2009), or an endogenous network with no

self-control problem (Badev, 2013). In particular, those papers do not assume that smoking,

committing crime, or using drugs is necessarily harmful to the agents. The agents simply

choose the lifestyle that maximizes their welfare; taking the cigarettes away from them only

makes their life more miserable. On the contrary, in this paper I focus on the situation

in which agents realize the harm of consuming a certain good, but simply can’t resist the

temptation. This coincides with observations of smokers who wish they could quit smoking,

or drug addicts who wish they weren’t addicted. The presence of such self-control problems

justifies the possibility of a welfare improvement, and this paper focuses on how making good

friends leads to such an improvement by making self-control easier.

The rest of the paper is organized as follows. Section 2 describes the set up of a two-

stage, simultaneous-move game, followed by the characterization of equilibria in section 3.

Section 4 illustrates why equilibria with conditional friendship cannot be subgame perfect.
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Section 5 states that the weaker player always prefers to consume first when the timing of

consumption is endogenous. A conclusion is included in Section 6.

3.2 Two-period game set up

Suppose there are 2 players, Alison and Ben, whose past consumption of a harmful tempt-

ing good is dA0 , dB0 ∈ [0, 1], respectively. Assume Alison consumed less than Ben in the

past:dA0 ≤ dB0 . There are two time periods. In each period, players observe each other’s

past consumption, decide whether to be friends, and then simultaneously choose the cur-

rent period consumption with possible peer effect from the friend. The following time line

summarizes the decision problem in details.

Day 1

1. Alison observes the past consumption level dB0 of Ben to decide if she wants to be

friends with him, and vice versa. They become friends if and only if they both want to

be friends. In this case, we say A♥t=1B.

2. Alison chooses dA1 ∈ [0, 1] to maximize

WA(dA1 ) = WA
1 (d1) + βWA

2 (dA1 ), where

WA
t = U(dAt ) + σAt

[
V (dAt )− V (1)

]
+ 1A♥tB · uF for t = 1, 2.

We assume that U is decreasing and V is increasing. uF > 0 is the utility the player

receives when he/she has a friend. For t = 1, 2,

σAt =


σ(dAt−1, d

B
t−1) when A♥tB

σ(dAt−1, d
A
t−1) when players are not friends in t

for some positive, increasing function σ.
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Similarly, define Ben’s maximization problem by switching the indices.

Intuitively, the commitment utility U represents agent’s ranking over consumption level

when he’s free of temptation (i.e., when he commits to consume exactly d1 ex ante). A

decreasing U implies that the good is harmful. On the other hand, the temptation utility

σ1V measures the impulse to consume as much as possible when the good is present. An

increasing V implies that the good is tempting. Since σ is also increasing, the good becomes

more irresistible in the current period if the player consumed a large amount in the past,

or if the player befriended someone who consumed a large amount in the past. In other

words, σ summarizes both the addictiveness of the good, and the peer effect from a friend.

Figuratively, U and V are, respectively, an angel and a demon in the player’s mind, and σ

represents the strength of the demon.

Day 2

1. Players decide whether to be friends after observing dA1 and dB1 . We say A♥t=2B if the

two players are friends in day 2.

2. Amy chooses dA2 ∈ [0, 1] to maximize

WA
2 (dA2 ) = U(dA2 ) + σA2

[
V (dA2 )− V (1)

]
+ 1A♥t=2B · uF .

Ben simultaneously chooses dB2 likewise.

3.3 Equilibrium

Before characterizing the equilibria of the game, we start with a few comparative statics that

help illustrate players’ preferences for friend selection.

Lemma 4. Player i’s optimal consumption di∗t increases in σit for i = Alison, Ben, and t =

1, 2.
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Proof. Let σH1 ≥ σL1 . When σi1 = σH1 , let dH1 denote the optimal consumption in day 1, and

let W2(d
H
1 ) denote the the maximized payoff in day 2 following dH1 . When σi1 = σL1 , let dL1

denote the optimal consumption in day 1, and let W2(d
L
1 ) denote the the maximized payoff

in day 2 following dL1 .

U(dH1 ) + σH1 V (dH1 ) + βW2(d
H
1 ) > U(dL1 ) + σH1 V (dL1 ) + βW2(d

L
1 ) (3.1)

U(dL1 ) + σL1 V (dL1 ) + βW2(d
L
1 ) > U(dH1 ) + σL1 V (dH1 ) + βW2(d

H
1 ) (3.2)

Since LHS (1) - RHS (2) ≥ RHS (1) - LHS (2), we have

(
σH1 − σL1

) [
V (dH1 )− V (dL1 )

]
> 0.

As V is increasing, V (dH1 ) > V (dL1 ) if and only if dH1 > dL1 . Hence σH1 > σL1 implies

dH1 > dL1 , i.e. d∗1 increases in σ1.

Similarly define dH2 and dL2 for σH2 ≥ σL2 .

U(dH2 ) + σH2 V (dH2 ) > U(dL2 ) + σH2 V (dL2 ) (3.3)

U(dL2 ) + σL2 V (dL2 ) > U(dH2 ) + σL2 V (dH2 ) (3.4)

Equations (3) and (4) imply that d∗2 also increases in σ2.1

Lemma 5. (1) If i♥t=1j, then di1 increases with dj0 and W i decreases with dj0.

(2) If i♥t=2j, then an increase in dj1 increases both di1 and di2. Moreover, it increases W i
1,

decreases W i
2, and decreases W i.

Proof. When i♥t=1j,
∂σi1
∂dj0
≥ 0 implies di′1 (dj0) ≥ 0 by lemma 1. Moreover,

∂W i

∂dj0
=
∂σi1
∂dj0
·
[
V (di∗1 )− V (1)

]
≤ 0 (3.5)

1This statement is an application of Proposition 2 in “Harmful addiction”, Gul and Pesendorfer (2007)

71



since σ and V are both increasing.

When i♥t=2j, to see how W i
1 and W i

2 change with dj1 we need to determine how di∗1

changes with dj1 first. Note that the FOCs for a player’s optimal consumption is

[d2] U
′(d2) + σ2(d1)V

′(d2) = 0 (3.6)

[d1] U
′(d1) + σ1V

′(d1) + β · ∂σ
i
2

∂di1
· [V (d2)− V (1)] = 0 (3.7)

When dj1 increases, from (5) we know that d∗2(d1), hence V (d∗2(d1)) and the LHS of (6),

increases for each value of d1. The SOC at the maximum ensures that the LHS of (6), i.e.

the marginal payoff of d1, is decreasing in d1. Therefore as LHS (6) increases for every value

of d1, the optimal value di∗1 also increases, which gives us

di∗
′

1 (dj1) ≥ 0 (3.8)

By (6) and (7),

W i′

1 (dj1) = −β · ∂σ
i
2

∂di∗1
· di∗′1 (dj1)

[
V (di∗2 )− V (1)

]
> 0 (3.9)

After an increase in dj1,
∂σi2
∂dj1

represents the total increase in σi2, and
∂σi2
∂di∗1
·di∗′1 (dj1) represents

the indirect increase in σi2 due to an increased di∗1 . Therefore,
∂σi2
∂dj1
− ∂σi2
∂di∗1
·di∗′1 (dj1) represents

the direct increase in σi2, which is positive. We conclude that

W i′

2 (dj1) =
∂σi2
∂dj1
·
[
V (di∗2 )− V (1)

]
≤ 0 (3.10)

W i′(dj1) =

[
∂σi2
∂dj1
− ∂σi2
∂di∗1

· di∗′1 (dj1)

]
· β
[
V (di∗2 )− V (1)

]
< 0 (3.11)
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Therefore, by lemma 1 and lemma 2 we know that on both days, players want to befriend

those with a low enough past consumption level. In particular, since we have assumed that

dA0 ≤ dB0 , if Alison makes friends with Ben on day 1, she earns the friendship benefit uF ,

at the cost of an increased σ1 (higher self-control cost). On the other hand, after making

friends with Alison, Ben is better-off both due to the friendship benefit uF , and a lowered σ1

as well. The same argument works for day 2. Therefore, in an equilibrium the two players are

friends in day 1 if and only if dB0 is low enough for Alison. Similarly, the player with a lower

d1 determines the condition for friendship on day 2. Here let’s impose an assumption that

when two players are friends, the player with the lower past consumption still has stronger

resistance against temptation even after the mutual peer effect.

Assumption 1. For t = 1, 2, if dit−1 ≥ djt−1, then σit ≥ σjt when i♥tj.

We will assume A1 for the rest of this paper.

With A1, since Alison has a lower dA0 to start with, she chooses a lower d1 than Ben even if

they’re friends in the first period. Therefore, Alison is still the player who sets the condition

under which she and Ben are friends on day 2. The players’ equilibrium friend-selection

strategy is summarized below.

Proposition 3. [Equilibrium friend-selection strategy] Ben always accepts Alison as a friend.

There exists K0, K1 ∈ [0, 1] s.t. Alison accepts Ben on day 1 iff. dB0 ≤ K0, and on day 2

iff. dB1 ≤ K1.

Fix the friendship status in t = 1, 2 (e.g. friends on both days, friends only on day 2),

as well as player j’s consumption dj1, let di∗t denote player i’s optimal consumption on day t.

We have the following proposition stating the different classes of equilibria.

Proposition 4. Fix dA0 . ∃dUC ≤ dC2 ≤ dC1 ∈ [0, 1] such that

If dB0 ∈ [dA0 , d
UC ], A♥tB and dit = di∗t for t = 1, 2, i = A,B. [Unconditional friendship,

“UC”]
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If dB0 ∈ [dUC0 , dC2], A♥tB and dAt = dA∗t for t = 1, 2, and dB1 < dB∗1 . [Conditional 2-day

friendship, “C2”]

If dB0 ∈ [dC2, dC1], A and B are friends in day 2 only. dAt = dA∗t for t = 1, 2, and

dB1 < dB∗1 . [Conditional 1-day friendship, “C1”]

If dB0 ∈ [dC1, 1], A and B are alone for both days. [No friendship, “NF”]

Proof. Proposition 2 is a corollary of proposition 1. Note that Alison’s payoff decreases with

both dB0 and dB1 if she’s friends with Ben on those days. When dB0 is sufficiently low, the

increased self-control cost with Ben is lower than the friendship benefit, so Alison befriends

Ben, and they optimally chooses their consumption levels (UC). When dB0 is not low enough

for the unconditional friendship, although Ben has no control over dB0 , he does have control

over dB1 , so there exists a class of equilibria in which although the net payoff of befriending

Ben who optimally chooses dB∗1 is negative, Alison can improve this payoff by asking Ben

to choose a smaller dB1 = K1 < dB∗1 , so that the increased self-control cost with Ben doesn’t

surpass the friendship benefit. Since choosing a low dB1 is costly to Ben, he will only agree

to such plan if K1 is sufficiently high; otherwise the two players remain alone (UF).

The only thing left to specify is that suppose Ben has agreed to choose dB1 = K1, and

that Alison agreed to be friends on day 2, does Alison also agree to be friends in day 1? Note

that in this case Alison compares the payoff WA
A♥1B

with the outside option of being alone,

which gives a constant payoff independent of dB0 . Since WA
A♥1B

decreases in dB0 by lemma 2,

Alison is friends with Ben if dB0 is sufficiently low (C2), and stays alone otherwise (C1).

The following example confirms the existence of the C1 and C2 equilibria.
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Example 3. Let U(d) = −d2, V (d) =
3

2
· d1/2, β = 0.9, uF = 0.1, dA0 = 0. σit = 1 + dit−1 if

player i is alone; σit = 1 + 0.6dit−1 + 0.4djt−1 if player i is friends with j. Let dA0 = 0, dB0 = 0.5

or 0.6. Let Alison’s requirement for day-2 friendship be dB1 = K1 = 0.6, which according to

the construction of the problem is lower than what Ben would have chosen if he is guaranteed

to be friends with Alison on day 2. In Table 1 we summarize the maximized payoff Alison

and Ben can get for each possible friendship outcome given dB1 = K1 = 0.6. We conclude

that we have a C2 equilibrium when dB0 = 0.5, and a C1 equilibrium when dB0 = 0.6.

K1 = 0.6 dB0 = 0.5 dB0 = 0.6

Alison Alone in both periods (UF) -1.45533 -1.45533

♥B in t = 1 only -1.44848 -1.46504

♥B in t = 2 only (C1) -1.37893 -1.37893

♥B on both days (C2) -1.36472 -1.38019

Ben Alone in both periods (UF) -1.66051 -1.69145

♥A in t = 1 only -1.49318 N/A

♥A in t = 2 only (C1) -1.55995 -1.59376

♥A in both periods (C2) -1.3984 N/A

Table 3.1: Maximized payoff for each friendship outcome, given dB1 = K1 = 0.6.

3.4 C1 and C2 equilibria are not subgame perfect

We have just shown the existence of equilibria in which Ben exercises extra self-control and

chooses a low day-1 consumption in order to win the friendship of Alison on day 2. However,

in this section we are going to show that no such equilibrium is subgame perfect.

Intuitively, any conditional friendship agreement is enforced by Alison’s threat to reject

Ben if Ben chooses a higher day-1 consumption than the required K1. Ex ante, if Alison

anticipates that Ben chooses a level higher than K1, she would rather stay alone on day 2,
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and choose her (dA1 , d
A
2 ) accordingly. However, if Alison is prepared to engage in a conditional

friendship agreement, she will choose her day-1 consumption as a function of K1, which will

be a higher level than what she would have chosen if she were to be alone on day 2. Such

a higher dA1 lowers Alison’s “bargaining power” on day 2, in the sense that following a high

day-1 consumption, Alison is now in fact willing to accept Ben with a dB1 above K1. In

other words, Alison’s threat to reject Ben when dB1 > K is non-credible once the players

have entered day 2. Seeing this, Ben has incentive to deviate to a consumption level higher

than K1, which lowers Alison’s payoff. Anticipating Ben’s deviation, Alison will not enter a

conditional friendship agreement at the first place. The formal proof is provided below.

Theorem 10. The C1 and C2 equilibria are not subgame perfect.

Proof. We prove by contradiction. Suppose the C1 equilibrium is subgame perfect. This

requires Alison to be indifferent between befriending and rejection Ben in t = 2, i.e.

WA
2 (σA♥t=2B

2 ) = WA
2 (σAlone2 ). (3.12)

Denote Alison’s consumption in the C1 equilibrium as (dC1
1 , dC1

2 ), then

WA
C1 = WA

1 (σAlone1 , dC1
1 ) +WA

2 (σAlone2 , dC1
2 ).

But Alison’s optimal consumption when she anticipates to be alone for both periods with

(σAlone1 , σAlone2 ) is (dAlone1 , dAlone2 ) 6= (dK1 , d
K
1 ) because σA♥t=2B

2 6= σAlone2 . Hence,

WA
K1plan < WA

Alone ⇒ profitable deviation.

Therefore, C1 cannot be an equilibrium, and we have a contradiction.

Similarly, to show the C2 equilibrium is not subgame perfect, either, we use “A♥B in

t = 1 only” as a profitable deviation for contradiction.

Example 4. For a detailed illustration, let’s show that the C1 equilibrium in example 1 is
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not subgame perfect. Use the same utility functions as before, that is, U(d) = −d2, V (d) =

3

2
· d1/2, β = 0.9, uF = 0.1. σit = 1 + dit−1 if player i is alone; σit = 1 + 0.6dit−1 + 0.4djt−1

if player i is friends with j. Let dA0 = 0 and dB0 = 0.6. Recall that in this case we have a

C1 equilibrium in which the players are not friends on day 1, and Alison accepts Ben as a

friend on day 2 conditional on dB1 ≤ K1 = 0.6. However, after Alison has chosen dA1 (K1)

anticipating that she befriends Ben who consumed K1, on the second day she in fact does not

want to reject Ben no matter how high Ben’s actual day-1 consumption is. Given dA1 (K1),

from (12) we can calculate that as long as dB1 ≤ 1.76, which is naturally satisfies since the

upper bound for consumption is 1 in our set-up, Alison prefers having Ben as a friend on day

2 over loneliness. Therefore, K1 = 0.6 is a non-credible threat for Ben, and he will deviate

to a higher dB1 on day 1, which harms Alison. Anticipating Ben’s deviation, Alison would

rather quit the conditional friendship deal, and stays alone from day 1.

3.5 Endogenous timing

One crucial reason why C1 or C2 equilibria are not subgame perfect is because Alison cannot

best-respond to Ben’s deviation in the game. Since the players decide their consumption

level simultaneously, by the time Alison observes Ben’s deviation, she has already chosen

her consumption, which is now suboptimal. However, we also know that if an equilibrium

with conditional friendship exists, both Alison and Ben are better off in that equilibrium

than being alone. Therefore, if players have the freedom to consume at different times, and

if a C1 or C2 equilibrium does exist, Ben will strictly prefer to consume (at the required low

level) before Alison, so she will indeed be friends with him on day 2, since the risk of Ben’s

deviation no longer exists. For the same reason, Alison strictly prefers to consumer later

than Ben. The detailed timeline is described below.

On each day t = 1, 2, players still have only one chance to choose d1, but now suppose

instead that they can choose to consume either in the morning or in the afternoon. Hence
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we impose the new time line: At each t = 1, 2,

1. Observe dAt−1 and dBt−1. Players decide whether to be friends.

2. Given the friendship status, players choose whether they want to consume in the morn-

ing. If so, choose dt that maximizes W .

3. If a player didn’t consume in the morning, he/she chooses dt in the afternoon to

maximize W .

With this new time line, the simultaneous game is transformed into a sequential game when

the players choose to consume at different times. In particular, when dB0 ∈ [dUC , dC1] as

described in proposition 2, Ben is better off with a conditional friendship agreement, therefore

he has incentive to choose dB1 = K1, as required by Alison, before Alison chooses her own

consumption. This way, once Alison observes that Ben did not deviate from K1, she will also

best-respond by befriending Ben on day 2. On the other hand, Alison has the incentive to

move after Ben, so that she can observe dB1 and best-respond to Ben’s deviation by choosing

a lower dA1 and not befriending Ben on day 2. Therefore we conclude:

Claim 1. If dB0 ∈ [dUC , dC1] as specified in proposition 2, Ben chooses dB1 = K1 < dB∗1 in

the morning, and Alison chooses dA∗1 in the afternoon of day 1. The conditional friendship

equilibrium (C1 or C2) is subgame perfect.

3.6 Conclusion

This paper extends Gul and Pesendorfer’s temptation framework by introducing peer effects

and social interaction into a player’s decision when he faces a harmful tempting good. The

strategic interaction of players, as well as their preferences for friends with low past consump-

tion of the harmful tempting good, gives rise to a class of equilibria where a player chooses

low consumption in order to win the friendship of another. However no such equilibrium is

subgame perfect, because the potential friend’s threat that enforces the low consumption is
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non-credible. As a result, although such conditional friendship is beneficial for both players,

they choose to stay alone. This intuition also implies that when the timing of consump-

tion is endogenous, the player with the worse self-control problem prefers to chooses his

consumption first, so the other player can initiate the conditional friendship at no risk.

One possible extension of the paper is to introduce more players to the game, such that

when B exercises extra self-control for A, B may require C to do so as well, or else B rejects C

as a friend. This way we can expect a chained conditional friendship agreement, which lowers

the consumption of many players at once, even though they’re not mutually friends. Another

extension is to allow for the concealment of past consumption. In this case whether players

can benefit from hiding their identity, and whether they still exercise extra self-control for a

friend while remaining anonymous is worth discussing.
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