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ABSTRACT

SDL (Shered Datespace Language) is a
language for writing and visualizing programs
consisting of thousands of processes executing on a
highly-parallel multiprocessor, SDL is based on a
model in which procesaes use powerful transactions
to manipulate abstract views of a virtual, content-
addressable data structure called the detaspace.
The process society is dynamic and supports
varying degrees of process anonymity. The
transactions are executed over abstract views of
the  dataspace. This  facilitates  elegant
concepbualization of dataspace transformations
and compact program representation. Processes
and transactions enable SDL to combine elements
of both large and fine grained concurrency. The
view is a novel abstraction mechanism whose
significance is derived from the fact that it allows
processes to interrogate the dataspace at 2 leve| of
abstraction convenient for the task they are
pursving. The view also plays a role in the
definition of continuously updated, programmer-
defined visual abstractions which enable exploration
of the program's functionality and performance.

1. INTRODUCTION

In recent years a number of highly parallel
computer system architectures have been proposed,
for example, hypercubes?!, the Ultracomputer®,
and the Connection Machinel*. Such machines
have appeared commercially and are expected to
become commonplace in the future. Hypercube
system products are available from companies such
as Intel, NCUBE, and Floating Point Systems, the
Connection Machine is marketed by Thinking
Machines  Corporation, and shared-memory
multiprocessors are available from companies such
as Elxsi, Encore, Sequent, and BBN. Many of
these machines (e.g., the hypercubes) consist of
general purpose processing elements {e.s., an off
the-shelf microprocessor) interconnected in a
regular communications pattern. With such an
architecture, VL3I technology holds the promise of
putting one or more nodes on a single chip—
making systems with thousands of nodes viable.
The present costs of these systems make
supercomputer power much more available than

ever before. The future holds much promise of
further decreases in the price/performance ratio.

The raw power offered by this class of
machines makes them attractive for systems
requiring  high performance and reliability.
However, large-scale usage of these machines by
the current generation of computer programmers is
being viewed with great skepticism by concurrent
programming experts. The sources of concern are
both cultural and technical. At z cultural level,
appropriate training, skills, and experience are
missing. At the technical level, econcurrent
programs consisting of thousands of processes
present the programmer with unprecedented
degrees of complexity +which are further
exacerbated by our limited capacity to reason
about concurrent computation and to predict the
performance of complex programs execuiing on
highly paralle! multiprocessors.

Our ultimate goal is to develop the software
support mneeded for the design, analysis,
understanding, and testing of programs involving
thousands, or tens of thousands, of concurrent
processes  runming on 2 highly paralle]
multiprocessor. No single technical development
will solve all the problems associated with what we
have come to call Large-Scale Concurrency. It is
certain, however, that one must consider both
novel programming paradigms and innovative
exploratory environments. The search for new
programming paradigms must be concerned above
all with offering programming convenience and with
enCOUTaging programmers to mazimize progrem
concurrency. Future environments must provide,
among other things, powerful wisualization
capabilities which will assist programmers in
understanding the behavior and performance
characteristics of the programs they develop—
there is no other way for humans to assimilate
voluminous information about the continuousty
changing program state.

Our own concern with large-scale
concurrency spans both language and visualization
issues. Furthermore, we believe that the language
should come first and the visualization second.
For this reason we started our investization by
seeking a programming paradigm appropriate for
large-scale concurrency and yet conducive to an
elegant solution of the visualization problem—our



alternative would have been to pursue the visual
programming language path. This paper discusses
the choices we made so far and the reasons behind
them. We start with a brief review of the
concurrent programming language field and follow
it by arguments in favor of the shared dataspace
paradigm. An overview of the language proposal
and a discussion of its implications for an
approach to visualization come next. We end with
some remarks about the appropriateness and
feasibility of our language.

2. CONCURRENT LANGUAGE
LANDSCAPE

Concurrency has been a long-standing
interest for programming language designers.
Concurrent programming languages, i.e, languages
that provide explicit mechanisms for expressing
concurrent execution, may be divided into four
broad categories depending on the nature of the
inter-process communication mechanisms they
employ. Shared varigbles as used in Concurrent
Pascalt, for example, allow processes to
communicate by reading and writing (directly or
indirectly via monitors) their values. Messege
based communication requires all information
sharing to take place by sending and receiving
messages In accordance with some predefined
protecol.  CSP'  and Actor languages! are
representative of this category. Remote operations,
such as the remote procedure call used in Ada3
permit a process to invoke operations associated
with some other process. The parameters and
returned values represent the information shared
by the processes involved in the exchange. The
last category we choose to call shared detaspace. It
Is comprised of languages in which processes have
access t0 a common, content-addressable data
structure (typically a set of tuples) whose
components may be asserted, read, and retracted.
Associons!®, Linda®, and some artificial intelligence
languages such as OPS83° belong here. Gelernter!?
bas used generafive communication to refer to this
category but we found the term shared dataspace
to be more explicit. It suggests an analogy with
the shared variables mechanism and also ailudes to
the attempt to incorporate database concepts into
the programming language.

Large-scale concurrency. Not ail models
scale up o programs consisting of many thousands
of processes. Name management, control and data
state coupling, and information transfer bandwidth
are potential trouble areas.

Name management. Shared variables,
message based communication and remote
operations require variable, process, or operation
names to establish communication between
processes. Such paradigms could be ¢alled name-

2.

based. For large programs, managing the name
space becomes a great programming burden,
especially when the names do not contribute to the
computation task. Furthermore, in open systems!3
new processes need to pass on their names to the
rest of the community; this kind of programming
overhead is clearly an artifact of the model and
bears no relevance on the solution. The name
management problem is less acute in shared
dataspace models because anonymous processes
can access data directly by its content.

Coupling. Complex program states make
program understanding and analysis very difficult.
Complexity is most often the result of the
interplay between the control and the data state of
the program. The shared dataspace paradigm can
eliminate most considerations of contrel state, thus
offering the promise of greatly simplified program
analyzability. We  believe that complete
elimination of the control state will prove
unrealistic for many practical situations, but, we
find the fact that one has the opportunity to limit
the complexity of the control component of the
state appealing.

Bandwidth. The most compelling reason for
adopting a shared dataspace paradigm has to do
with the potential for major increases in the
bandwidth of information (not datal) transfer.
Variables, messages, and parameters, no matter
how complex they become, are lirnited both in
their ability to convey information about global
aspects of the sysiem state and in the level of
abstraction at which they express such
information. Unless we allow processes to
interrogate the system state at an appropriate
level of abstraction, the programmer will be
overwhelmed by the mechanics of data
communication. The shared dataspace makes
access to highly abstract information possible by
means of mechanisms we understand well—logical
queries. Logical queries have been used extensively
in databases and logic programming.

Visualization. As far as visualization is
concerned, two distinct approaches seem
appropriate: system-defined or programmer-defined
visvalization. The former is outside the language
while the latter is based on constructs included in
the language, i.e., it is language-embedded. Most
current work places visualization in the runtime
support system. If this is the direction of choice,
any programining paradigm is suitable because the
runfime support system presumably has access to
all aspects of the system state. We believe,
however, that programmer-defined mechanisms are
more general and flexible. The shared dataspace is
the only paradigm we are aware of which elegantly
accommeodates language-embedded visualization.
This is because one can conceive of visualization
processes completely decoupled from the rest of the



process society, yet having access to any
information about the computation state.
The considerations  discussed above

convinced us to investigate shared dataspace
languages supporting large-scale concurrency and
visualization. Qur language proposal, calied SDL
(Shared Dataspace Language), shares with
Associons and Linda the use of tuples to represent
the dataspace. In SDL, however, the dataspace is
examined and altered by concurrent processes
using atomic transactions much like those in a
traditional database, but exhibiting a richer set of
operational modes specifically designed for support
of large-scale concurrency. Associons use the
closure statement, which is very powerful znd has
high potential for concurrency but is intended for
use in what might be considered a single explicit
process environment. Linda provides processes
with very simple dataspace access primitives {read,
assert, and retract one tuple at a time). Another
distinguishing feature, unique to SDL, is the
availability of programmer-defined process »iews.
The view is a powerful abstraction mechanism
which serves.multiple roles. First, it supports an
abstract motion of locality. Second, it provides a
mechanism for introducing structure into the
tuple-based dataspace and for organizing sets of
processes into cooperative process societies. Third,
it is used to comstruct complex visual abstractions.
Finally, it aliows processes to interrogate the
dataspace at 2 level of abstraction convenient for
the task they are pursuing. To the best of our
knowledge, this kind of relativistic abstraction
mechanism has never been explored before. Its
advantages over the fixed encapsulation
mechanisms available in modern languages are
self-evident.

3. LANGUAGE OVERVIEW

This section introduces the reader to our
current thoughts on the SDL design. In SDL
concurrent computation is deseribed in terms of a
dataspace and a process society. The dataspace is
a set of tuples. The process sociely is a set of
processes. Both dataspace and process society
undergo continuous change. Tuples are asserted,
examined, and retracted by processes. Each tuple
is owned by the process that asseried it and the
owner may be determined by examining the unique
tuple identifier associated with each tuple. By and
large, tuple identifiers are ignored by application
programs but are of interest during debugging and
testing. Tuples may be manipulated by any
process and can survive the termination of the
creating process. Processes, in turn, are created by
other processes, manipulate tuples, and terminate
on their own.

3.

The interactions between processes and the
dataspace take place via fransactions issued by
individual processes. At a logical level, all
transactions are atomic, i.e., transactions appear
to execute serially and they either succeed or have
no effect on the dataspace. In general, transaction
execution involves four subactions: a query
evaluation over the dataspace, the retraction of
selected tuples specified in the query, the assertion
of new tuples, and a few local actions affecting the
control state of the issuing process. Individual
processes may initiate concurrent evaluation of
multiple transactions with the intent of
committing only one of them or may issue an
unbounded number of concurrently executing
transactions. Consistent with the notion of
process/data decoupling, most transactions are
independent of the process society state. However,
we found one instance where coordinated
transaction execution by a set of cooperating
processes greatly simplified the program. This
novel transaction type, called a consensus
trensaction, i1s based on a generalization of the well
known guiescence detection problem®,

A view is associated with each process. The
view specifies 2 window which, like the dataspace,
is a set of tuples. The window, however, is
computed only at the start of the transaction and
is discarded as soon as the transaction commits.
The tuples in the dataspace are mapped into the
window using the fmporf component of the view.
Transactions act upon the window as if it
represented the whole dataspace. Retractions of
tuples in the window are translated to
corresponding retractions in the dataspace in
accordance with the import ruies. The export part
of the view maps tuples asserted in the window to
new tuples in the dataspace. Conceptually, the
view allows programmers to consider the dataspace
at a level of abstraction that matches the
processing requirements of a particular process.
This leads to both clarity and brevity.
Pragmatically, the view also provides bounds on
the scope of the transactions which, in turn, reduce
the transaction execution time. Thus, transaction
types that might be expensive to implement may
be used comfortably when the number of tuples
they examine is small.

In the following sections we introduce the
notation used in SDL, give examples, and discuss
some methodological implications of our
programming paradigm.

3.1. Dataspace

The dataspace D is defined as a finite but
large set of tuples with the first position in the
tuple being the unique tuple identifier. Formally,
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where 1 is the set of tuple identifiers (e.g., integers)
and V is a domain of values (e.g., atoms and
integers). Tuple identifiers encede the identity of
the creating process and, for tuples having the
same owner, the order in which they were created.
The tuple owner may be obtained using owner(t),
where :€l. Beside being used to support certain
visualization features, tuple identifiers allow the
environment to order properly the outputs of
individual processes.

At the meta level, we will denote tuples as
finite sequences of symbols as in

<1723,year,B7>

(Because we often present statements outside of
the context of a process definition, we will use
greek letters for quantified variables, lower case
letters and numbers for constants, and upper case
letters for named constants).

In SDIL, the dataspace membership test
assumes the form

1723[year,87]
meaning

<1728,year 87> €D

(Note: A transaction does not see the dataspace
but 2 window. For the time being, however, we
will assume that the window is the entire
dataspace.)

Since most often the programmer is not
interested in the tuple identifier one uses

[year,87]
meaning

o€l <iyear,87> € DI

Furthermore, a do-not-care marker, "*" may be
used in any tuple fields which are not of interest to
the programmer. For instance, [year,*), *[year,*),
and <*year,*>€D are all interpreted as

v el vEV < yeary> €D

Some tuples in the dataspace are involved in
the interfacing with the input/output environment.
Their tuple identifiers encode this fact. The

1 Al logical expressions used in this discussion
consist of three parts separated by colons: a list of
quantified variables, domain restrictions on the values
the variables may assume, and a predicate. The
separation between the domain and the predicate is
often only aesthetic and sometimes is omitted along with
the second colon.

4.

symbols " and "I" may be used in the tuple
identifier field to indicate that the particular tuple
is an input from or output to the environment,
respectively. We can use

?[year,*)

to check if a new year has arrived. However, a
test of the form

{[year,¥|

is disallowed in order to permit the output
environment to retract all program output without
interference from the process society. In other
words, we treat the environment as two
distinguished processes that exist outside the
process society making up the program. The input
environment may only assert input tuples while
the output environment may only retract cutput
tuples. The process society, on the other hang,
may not assert input tuples and may not retract or
test output tuples.

3.2. Basic Transactions

Dataspace membership testing, tuple
assertion, and tuple retraction are the simplest
5DL transactions, The membership test we have
met already in the previous section

[vear,87|

This transaction is evaiuated only once and may
either succeed or fail depending upon whether the
query evaluates to true or false. In a particular
context, its success or failure may be used to alter
the state of the process issuing the transaction;
otherwise, it has no effect on the dataspace. To
retract a tuple, one simply tags it (in the query) by
a 1. The transaction

[year,87]f

follows the membership test by the removal of the
tuple, Note that retracting one instance of
<* year,87> may leave in the dataspace other
instances having difierent tuple identifiers.

More complex queries may be formed by
composing predicates using negation ("-"),
conjunetion ("), disjunction  ("or"), and
parentheses. In such cases, any membership test
with a retraction tag must be evaluated (even if its
truth value does not affect the result of the query!).
For instance, in the transaction

Iyear 87}t or [year,86]}

even if the first membership test turns out to be
successful, the second test must also be performed
because the presence of <*year8 > in the
dataspace must trigger its retraction.

To assert a tuple cne can use a transaction
such as



(year,87)
Output tuples are indicated by the "I" symbol
[(year 87)

and, although they are part of the dataspace and
are owned by the process executing this
transaction, they are not accessible by the process
society.

The most common transaction format is

transaction =
query
transaction_type_tag
action_lst

query e
quantifier
variable_list
binding_query :
test_query

quantifier ;=
vi3|cT

irensaction_type leg ;=
==t
The transaction_type_tag! determines some of
the operational characteristics of the transaction.

Immediate transactions are tagged by "-»" as
in the transaction

3 @ : [year,at : @>>87 — let N=a, (found,a)

The operational interpretation here is as follows.
First, the binding query is evaluated in an attempt
to find 2 tuple of the form <*year,*>. If the
tuple <1212,year, 90> is found, the test query is
initiated with @ bound to 90. Since 90 is greater
than 87, the query succeeds leaving & bound to 90
and the tuple <«1212year, 90> tagged for
retraction. Next, the tuple is retracted. In the
action_list, N is defined to be the constant 96 and
the tuple <«idfound 90> 1is added to the
dataspace. (The function id generates new tuple
identifiers,) Logically all these steps represent a
single atomic transformation of the dataspace.
The transaction would have failed if, at the time
the query was evaluated, the dataspace contained
no tuple of the form <*year,*> with a number
greater than 87 in the third position.

If we want to check that all tuples
<*year,*> have a value greater than 87 in the
third fleld, we may use a universal quantifier. The
variable @, which is left unbound by the query

} There are currently three transaction types in
the language, Other types, which would be denoted by
different symbols, are under investigation.

5.

evaluation, may ne longer appear in the action list
Vo :{yeara] : @>87 — (o)

Note that we have omitted the dagger so as not to
remove all tuples satis{ying the query. Also note
that, if there are no tuples of the form <* year,*>,
the query is successful by definition. With a little
bit more notation we can alse find out how many
tuples were involved in the above successful query

let N=(Z a : [year,a], a>>87 : 1) — {ok)

For every successful binding of o a value of 1 is
added, and the final result is used in the definition
of N. A summation query always succeeds. Other
specialized queries such as MIN and MAX will also
be included in the language.

Delayed transactions, tagged by ">", differ
from immediate transactions in that, instead of
failing, they block the process until a suecessful
evaluation is possible. A delayed transaction such
as

3 e : [year,a| : @>87 > (new_year)

is not executed until the dataspace contains a
tuple of the form <* year,*> with the third field
greater than 87. However, a delayed transaction is
not guaranteed to detect the first instance when
the dataspace allows it to be successful. As far as
fairness is concerned, we =assume only that, if 2
transaction is issued and the dataspace does not
prevent it from executing, the transaction is
eventually executed.

Other kinds of transaction types are
currently under investigation, in particular,
transactions that support visualization
requirements. However, we are not ready to
discuss them in any defail at this time.

3.3. Transaction Sequencing

A process may sequence the execution of
transactions by means of four flow of control
constructs: sequence, selection, repetition, and
replication. To form a sequence, two or more
tramsactions may be listed on separate lines or on
the same line separated by semicolons. The
execution of one transaction must complete before
the next one is initiated. In the sequence shown
below onre array index and a value, both supplied
independently by the environment, are paired at
random and placed in the dataspace

3 p : Yindex,pj} > let Xm=p
3 v Tvalue vt > let Ye=rr
(XY)

Sequences may be terminated prematurely by
issuing the ez:it action.

The selection construct functions iike a case
statement consisting of several sequences separated



by “#". These sequences are calied guarded
sequences. In this and all the constructs discussed
below, flow of control constructs may appear in
sequences anywhere transactions may except at the
head of a guarded sequence. (Henceforth, we will
take the liberty of using the term sequence of
transactions but assume that some of the
transactions might be flow of control constructs.)
The transaction heading a guarded sequence is
called a guarding transaction. Successful execution
of one of the guarding transactions leads to the
execution of its successors in the sequence followed
by the terminatior of the construct. If all
guarding transactions fail the construct is
terminated without executing any of the sequences.
No guarding transactions may be evaluated more
than once. Since delayed transactions cannot fail,
2 selection involving only delayed transactions will
block until one of the guarding transactions
succeeds. This is the case in our example below
where either we pair a value with a positive index
or we retract a non-positive index

[ Fp:index,p]t : p>0 > let X=p
I v ?valuevjt > let Ymu
(X )
# 3 p : Yindex,pit : p<O > skip

The repetition construct works similarly but
is restarted after each selection. The exit from the
repetition is made explicit by including the action
exit in the action_list of some transaction in one of
the guarded sequences. In such cases the ezit action
terminates the guarded sequence and inhibits the
repetition.

Using the repetition we can now read all
input provided by the environment. We take this
opportunity to simplify the earlier coding of
transactions

[ * 3 pw: ?index,p}t, 2valuev]t :
p>0 > (pv)
# 3 p : ?index,p}t : p<0 > skip
# =([*,¥]) > exit

The last construct we discuss is the
replication. Although both selection and repetition
allow for concurrent initiation of multiple
transactions, they are essentially sequential
constructs since only one guarding transaction is
permitted to commit. By contrast, the replication
provides for unbounded concurrent execution of
transactions. To explain the semantics of the
construct let us consider the following replication
in which the index/value pairs are sorted by
exchanging the value fields of tuples whenever the
relation between values is inconsistent with that
between indices

[ = 3p1,1,p2,02
jeLenlt, [p2,02]h, p2 <2
vis>p? —
(p1,v2)(p2,01) ]

The syntax is similar to that for repetition with
"*" being replaced by the symbol "=" which is
suggestive of parallelism.

Conceptually, we can think of this construct
as consisting of an unbounded number of textual
copies of each of the transaction sequences that
make it wup, all executing concurrently. An
alternate model is to think that each sequence is
started concurrently and that every successful
execution of a guarding transaction leads to the
creation of a finite but indeterminate number of
copies of the entire sequence. The construct
terminates when all generated sequences terminate,
Using the latter we can return now to the sorting
program. The replication contains a single
sequence consisting of a single transaction we will
call 7. 7 searches for two pairs which are out of
order. If it finds one such instance, it retracts the
two pairs, asserts them back with the value fields
exchanged, and terminates successfully. Its
successiul termination, however, ieads to the
creation of several copies of 7 which execute
concurrently. Each copy exhibits the same
behavior, When all pairs are sorted, an arbitrary
number of copies of r will still exist in the system.
As they discover that no unordered pairs exist they
fail one by one until none are left. At that point
the replication terminates.

Since delayed transactions never fail, if used
in a replication they continue to exist forever
preventing the replication from terminating,
Under these circumstances, the ezif action issued
by some transaction in one of the concurrent
sequences may be used to terminate the construct
by aborting all sequences that have not passed
their respective guarding transactions.

3.4. Process

SDL supports the definition of parameterized
process types, henceforth called process definifions.
Ignoring process views which are discussed in the
next section, process definitions assume the
following format:

PROCESS fype_name(parameters)

BEHAVIOR

sequence_oj_statements

where a statement is a transaction or a fiow of
control construct.

A process that computes the factorial could
be written as



PROCESS Factorial(FID)

BEHAVIOR
3 v : [FID,factorial_request,f :
>0 > let Naxp
[ =3 p:1<p<N =[FID u} —
(FID,p) |
[ =3 plu2,:1,.2:
L1[FID,u1}t, t2[FID,u2)t :
11502 — (FID,z1Xp2) |
A p: [FID,ujt —
(FID,fa.ctoriaLresult,u)

where the parameter FID is used to prevent
interference between multiple instances of factorial
processes executing concurrently.

Computing 5/, for instance, requires the
assertion of an appropriate tuple and the creation
of a factorial process. This can be done in a single
transaction composed of several actions:

let FID=new, Factorial{FID),
(FID factorial._request,5)

A unique tag FID is obtained using the
built-in function new, a process of type Factorial
is created using the value FID as parameter, and a
tuple requesting the computation is asserted. At
the termination of the factorial type process above
the tuple <* FID factorial_result, 120> will be leit
in the dataspace. Process termination occurs when
the last statement is executed or upon execution of
the cbort action in 2 successful iransaction.

Although SDL is designed to support
anonymous processing, name-based communication
may be simulated. Unique tags, which the system
makes available through the built-in function new,
may be used to accomplish process-to-process
interactions. Consider a process that needs to
acquire a server from a pool of servers. The server
may assert a tuple indicating its availability and a
unique tag to be used in requests directed to the
server, After that it waits for work requests

let SID=new
(iree,SID)
[request,SID|t > skip

The process needing = server, in turn, seeks a iree
server. When a server becomes available, it is
acquired and the unique tag is remembered for
subsequent direct interactions.

Jo: [free,olf > let SID=eo
(request,SID)

Continuations (i.e., tagging results for use by other
than the service requester) may also be
programmed in the same manner.

3.5. View

Jn our discussion so far we have assumed
that each transaction r has access to the entire
dataspace D. We can think of r as a function
which, given D, returns two sets of tuples: the
reiraction set Dr (tuples to be retracted) and
assertion sef Da (tuples to be asserted). After
computing Dr and Da, D’ (the new dataspace
configuration) may be computed by performing all
retractions and all assertions in this order

(Dr, Da) = 7D}
D' = ((D — Dr) + Da)

(Note: Set union and difference are represented by
"+" and "-"))

The view associated with a particular
process restricts its transactions from operating on
the dataspace directiy. Invisible to the
transaction, the dataspace is substituted by a
window W on which the transaction r acts as
before. The transaction computes a reiraction
window Wr and an essertion window Wa which are
used to update the current window

(Wr, Wa) = W)
W = (W — Wr) + Wa)

The window exists only during the execution of the
transaction. Tests such as [year,87|, assertions
such as (year,87), and retractions such as [year,87}t
are relative to W, not to D.

The window 1is an abstraction of the
dataspace relative to = particular process’ needs.
The abstraction mechanism is the wiew which
defines both the abstraction rule and the way in
which changes to the window are mapped back to
corresponding changes in the dataspace. The view
is characterized by two functions called Impert and
Ezport. Given a particular dataspace configuration
D, Import computes the window W and a refraction
Junction ¢ which maps tuples in the window to sets
of tuples in the dataspace. The role of 4 is to
trace retractions in the window back to retractions
in the dataspace. The mapping of assertions in the
window io assertions in the dataspace is controlled
by Ezpor!. Each tuple asserted by the process is
mapped into one or more tuples to be added to the
dataspace. Therefore, the new dataspace
configuration is computed as follows

(W, ) = Impor{D)
where ¥ : W — Powersef{D)

{(Wr, Wa) = (W)
W' = (W — Wr) + Wa)

D’ = {{D — #{Wr)} + Ezpori{Wa))

In SDL, every process has an explicit view.
A language implementation may use the explicit



view to achieve performance improvements and
carry out compilation-time checks. We are
interested, however, in the view concept as a novel
programming construct and in the manner by
which it heips the programmer deal with some of
the dificulties associated with large-scale
concurrency. SDL  provides support for
programmer-defined views. The process type
definition may be augmented to include the view

PROCESS type_name(; parameters)

IMPORT
tmport._definitions

EXPORT

expori_definitions

BEHAVIOR

sequence.of stefements

The definition of import and export is
specified using fmport/ezport statements having the
following general syntax

import_statement ;=
variable_liat
binding_query :
transfer_tuples =
targei_tuple

export_statement =
variable_list ;
binding_query :
transfer_tuple =2
tergei_tuples

If the relation between a transfer tuple and the
target tuple is identity, only the target tuple is
listed using "*" and constants in the appropriate
flelds. If the second colon is omitted, the transfer
tuples are assumed to appear in the binding_query.
Semicolons may be used to separate several
statements on z single line.

Operationally, the import statement may be
viewed as consisting of an existentially quantified
query over the dataspace which is evaluated
repeatedly until no new variabie bindings, i.e.,
matches, are found. For each successful match, a
tuple is assigned a tuple identifier and is added to
the window. All the transfer tuples (in the
dataspace) that contributed to the creation of a
particular farget tuple (in the window)} will be
deleted if the respective target tuple is deleted.

For instance, given the dataspace

D= {<*A8>, <*AS8>,
<*B,1>, <*B,6>, <*B,7> }

and the import statement
o [Bel, [Bat]: [Ae] => (a),

the window is defined as
W= { <*6> ),

and, after executing the transaction
Ja: e} a>8 — skip,

the dataspace becomes

D= { <*:A:8>s
<*B,1>, <*B6>, <*B,7> }

While on import several transier tuples may
be mapped to a single target tuple in the window,
on export g singie transfer tuple in the window
may be mapped to several target tuples in the
dataspace. These restrictions are consistent with
the definition of ¥ and Ezpert and simplify the
implementation. Moreover, they are consistent
with the notion that the view is an abstraction
mechanism which hides low-level details in which
the process is not interested.

Having discussed the syntax and semantics
of the basic language constructs used in defining
the process view, we turn now to consideration of
the pragmatics of the view concept. In particular,
we would like to illustrate the view's ability to
induce structure in both the dataspace and the
process society.

There are two interesting ways of
structuring the dataspace. The obvious way is to
think of the dataspace as a collection of disjoint
subspaces with processes divided into groups
depending on which dataspaces they examine and
modify. Partition identification tags may be
placed into each tuple and the views may use them
to indicate the relation between processes and
subspaces. Dataflow graphs and Petri nets, for
instance, could be simulated in this manner.

Amnother approach invelves a  dual
structuring of the dataspace and the process
society into domafng and communities, respectively.
A community of processes is a set of processes
defined by taking the transiiive closure of the
relation ¥mport set overlap, i.e., "the import set of p
overlaps the import set of q." (The import set is
defined as Y(W}) Similarly, the domain is
constructed by the union of the import sets of a
process community. As an illustration, let us
comsider an open polygon made of a finite set of
distinct points in 2-D space having strictly positive
ccordinates. Their relative positions in the
polygon are given by a symmetric and non-
reflexive binary relation called neighbors. We will
assume that exactly two points have a single
neighbor (the end points) and that all the other
points have exactly two distinet neighbors.
Associated with each point there is a process of
type Node which takes two parameters: the point
coordinates P and the number of neighbors N. The
processes cooperate in choosing one of the



endpoints as master. The community is formed by
allowing each process to import tuples involving its
point and the neighboring points.

Imtially the endpoints vote for themselves
while the inner points vote for a nonexisting point
(8,0). The endpoint votes are propagated in
opposite directions until the larger coordinate
reaches the other endpoint. At this time, the loser
declares the other endpoint to be the winner.

PROCESS Node(P,N)

IMPORT
@, : neighbors(e, P}, [node,o,vote )\ i=>
{he_votes,\)
A 1 [node P vote,\] :=> (i_vote,\)
(master,*)

EXPORT
X [ivote,\| = (node,P,vote,\)
(master,*)

BEHAVIOR.
| N=1-+(ivoteP)
[ 3xtae:
ivote,A1]f, [he_votes,\2] :
Al<h2 >
(i_vote,A2), (master,A2)
# [master,*{> skip

F# N2 -y (i_,vote,(0,0))
[ * 3xpe:
fi-vote, M1]f, fhe_votes \2] :
AL<A2 >
{i_vote,A2)
# [master,*]> exit

)

The above example also illustrates the
manner in which the abstraction power of the view
hides some of the details of the dataspace
definition, thus leading to more compact and
elegant programs. Two other examples of useful
abstractions are given below in terms of two
import statements used in processes that need to
know about the polygon used earlier. First, we
consider a process interested only in the endpoints
of the polygon. The import statement looks as
follows:

alw2 A1,82,41,42,
[node,e1,vote, ], [node,a2,vote,*| -
—(neighbors{e1,81),
neighbors{a1,71), #1x~1),
~{neighbors(e2,82),
neighbors(@2,12), #2%~2),
al#a? :=> (polygon,al,a?)

Second, we consider a process interested in the
convex hull of the same polygon. We assume that

9.

for every three points in the polygon we have
constructed a clockwise triangle stored in the
dataspace as tuples of the form <* triangle * * *>.
The import statement looks identical to Rem’s
associon solution!®

@, §: [triangle,a,8,*], —ltriangle,a,* f] :=>
{(huli,e,8)

Finally, before concluding this section we
want to comment on the relation between the
abstraction mechanism embodied by the view and
performance monitoring, As indicated earlier, we
treat the input/output environment as processes.
The same could be done for the runtime
environment (hardware and software) supporting
the execution of the program. For this reason,
although we have not done it yet, we plan to
provide for built-in functions which allow one to
request the inclusion in the process window of
performance data regarding individual processes
and physical resources involved in the program
execution.- This scheme will allow a single, elegant
abstraction mechanism, the view, to support
debugging and visualization of both functional and
performance properties, separately and together.
The practical significance of such a capability
cannot be underestimated as highly parallel
multiprocessors become common components of
systems demanding high performance and
reliability.

3.8. Consensus Transaction

Central to the shared dataspace paradigm is
the notion of process/process and process/data
decoupling. The transactions introduced so far are
consistent with this principle.  Transaction
execution involves only the dataspace; it is
independent of the state of the process society.
However, the very fact that processes cooperate in
solving a given task, leads naturally to cases where
processes in a particular community must reach
some common agreement, i.e, a consensus, before
further processing anywhere in the community may
proceed. These kind of situation occurs frequently
in concurrent programs and in implementations of
concurrent languages. Program termination in the
UNITY model?, task termination in Ada, the
simulation of clocked systems, and the exit from a
cobegin-coend block in some concurrent languages
involve various forms of multiparty consensus.
Actually, the two way synchronization commonly
used in many concurrent languages is nothing more
than a special case of the more general notion of
CONnsensus,

Our solution to consensus-type problems is
to provide in SDL a specialized and powerful
transaction type called a consensus transaction. In
its simplest form, the consensus transaction may



be thought of as an explicit n-way synchronization
among processes tha{ are members of the same
process community (defined earlier).  Since
communities are formed dynamically, through
changes in the import set overlap relation among
processes, the parties participating in the
consensus must be determined during program
execution. This makes the comsensus transaction
different, from other forms of consensus considered
in the literature8,

A consensus involves the coordinated
execution of a set of transactions issued by
processes that make up a consensus set. To define
coordinated execubion, let us consider a finite set of
transactions T and a dataspace configuration D. If
some transaction 7; in T is executed alone, the new
dataspace configuration I}' would be computed as
before by determining the corresponding assertion
and retraction sets Da; and Dr;. In the case of 2
coordinated execution, D' is computed by doing the
retractions specified by each Da; followed by the
assertions specified by each Dr;,

The transactions participating in the
coordinated execution are determined by the
processes that make up the consensus set. A
consensus set C is a set of processes satisfying the
following properties:

(1)  Willingness to reach consensus is ezplicit.
Each process p; in C is ready to execute
successfully a transaction 7; tagged as a
consensus transaction.

{(2) Al requests for participation by others in
consensus are salisfled. Every process Py
whose import set ¢verlaps tuples examined
by 7; during its successful execution is
included in C.

(8)  Participation requests are eymmetric. Tor
any two processes p; and p; in G, if the
tuples examined by 7; overlap the import
set of p;, then the tuples examined by T
must overlap the import set of p;.

(4) All participants are needed. The set C is
closed under the transitive closure of the
relation “p; and p; requested each other’s
participation.”

Syntactically, consensus transactions are
tagged by "tt." Semantically, outside of their
participation in the consensus, they act like
delayed transactions in the sense that they block if
& consensus may not be reached. To illustrate the
use of comsensus transactions and the kind of
compact process definitions they encourage, we will
consider once more the problem of selecting a
leader in a polygon. This time, however, we will
eliminate the restriction that the polygon may not
be closed. This will show how a significantly more
complex problem leads to a simpler solution when
we take advantage of the power of the consensus
iransactions.
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PROCESS Node(P,N)

IMPORT
ok
neighbors{e F), [node,e voie, )] =>
{he_votes,)\)
A 1 [node P vote ] :=> (i_vote,A)

EXPORT
X ::[ivote )] > (node,P,vote,h)
(master,P)

BEHAVIOR
{i_vote,P)
(E X : [he_votes, ) : 1)=N > skip
[ * 3A1, 02
[ivote A1)}, [he_votes\2] :
ALA2 >
(i_vote,\2)
#V AL A2
[i_vote,A1], |he_votes,\2| :
A=A2 11
exit
|

. [i_vote,P] — (master,P)

Each node starts by voting for itself after
which it waits for all its neighbors to cast their
vote. When this happens, the node enters the
voting loop which is exited only if the consensus
transaction is  successful. The  consensus
transaction in each node checks for agreement
between its vote and the votes of the neighbors. If
all votes are the same, the node is willing to
participate in a consensus and requests the
participation of all its neighbors. When all nodes
forming the polygon see agreement with their
neighbors, all votes are for the same master and
the conmsensus is reached. Upon exiting, the
winning node declares itself 2 master.

The consensus transaction, maybe more than
anything else, is illustrative of the expressive
power we want to put in the hands of the
programmer. It is 2 high-level concept, it occurs
frequently in programming, it relates closely to
some important concurrent language constructs
and concepts, and it holds the promise for efficient
implementation. Preliminary analysis indicates
the potential for implementations whose time
complexities are linear in the number of processes
forming the consensus set.

4. VISUALIZATION

Previous sections have been concerned with
the issue of convenient representation of large-scale
concurrent programs. This section deals with a
visual approach to program understanding. The
interest in visualization is motivated by the
programmer’s need, during testing and debugging,



for rapid assimilation of large amounts of
information concerning the continuously changing
program state. The high bandwidth required to
accomplish the information transfer makes the use
of high-resolution graphics a necessity.

In recent years, work on visualization has
become an important endeavor in the computer
science community; our group zlone has been
involved in three separate projects where
visualization played a key role. Three research
directions seem to dominate the field: visual
programming, program visualization, and data
visualization. Visual programming is concerned
with the development of two-dimeansional, icon-
driven programming languages for ease of
understanding and of maintenance. Show and
Tell'®, Pict!!, and Kimura’s Transaction Networkl?
are languages that fall into this category. Progrem
visualization is concerned with the development of
visual environments in which program structure
and program execution can be displayed
graphically. PV® and BALSA® are representative
examples for this kind of work. PFinally, there is
significant investment being expended in the area
of date wisualizetion. Research efforts, such as the
spatial management of data at CCA!2 and our own
study of geographic data processing requirements!®
are interested in the display of large data sets for
easy understanding of relationships among data
entities and for easy browsing.

Relative to the above taxonomy, the SDL
debugging/testing environment falls into the
program visualization category. However, the
reliance on the shared dataspace as a means for
decoupling the application and visualization
processing leads us to incorporate elements of data
viswalization methodologies. An important feature
of our approach is the emphasis on programmer
defined visualizations. The motivation behind this
strategy is the realization that any predefined
program visualization, by necessity, is in terms of
programming language constructs and, therefore, is
unable to capture the semantics of the application.
When processing 2 matrix of elevation values, for
instanece, it is much more meaningful to see a
three-dimensional surface rather than an array of
numbers.

In SDL, visual abstraction, i.e., the graphic
display of an abstract representation of the
program state, is logically decomposed into two
parts: abstraction and rendering. As before, the
abstraction mechanism is the view. Its role, in this
case, is to map the state of the dataspace to a set
of tuples which can be interpreted by buili-in
device-dependent rendering rules and converted to
images on a display device. The programmer can
cutput tuples to a visualization device in a manner
similar to the input and output interactions
presented earlier. Visualization processes can also
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be defined, with their execution controlled by the
programmer. Syntactically, 2 visualization process
takes the form

PROGESS type_name(parameters)
IMPORT FOR virtual_dev_neme(parameters)
mapping.fo_dev_dependent_window

By convention, a visualization process may be
started by a transaction such as

let VID=new,
See_Voting_in_Action(VID), (VID)

and may be stopped by using

(VID]t
which  signals the visualization process to
terminate,

As an example, let us consider the

visualization of the earlier leader selection program
on a graphics device capable of displaying lines
and points of specified colors. We may want to use
a visualization process which displays the polygon
25 white lines and encodes the vote of each node as
a color other than white, When a master node is
selected all other nodes turn white. The definition
of such a process might look as follows

PROCESS See_Voting_in_Action(VID)
IMPORT FOR Raster_screen_device(VID)

B : [node,a,vote,*], [node,f,vote,*] :
neighbers(e,f), a< fim=>
{line,white,o,8)
@\ p : [node,@,vote,\], = [master,f] :=>
{point,colorize()),e)
a,\B : [node,a,vote,A], [master,f] :
csef =2 (point,white, &)

The process behavior is implicit. The "FOR"
clause on import indicates that the behavior of this
process is defined externally by a handler specific
to the particular virtual device. Moreover, the
window is restricted to containing only tuples
recognized by the particular device. Changes in
the dataspace are automatically reflected in the
information presented on the screen. The
programmer can interact with the display by
making the view a function of certain control
tuples whose assertion and retraction would
change the contents of the window.

In Figure 1 we show an image depicting one
state in the execution of a complex program. (The
image is a black and white reproduction of a single
frame from a 10 minute videotape containing a
complete visualization of a simulated program
execution. The visualization uses eolor, location,
and geometric symbols to encode the state of the
program.) Although the visualization has been
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Figure 1: Visualization of a sample complex program execution.

simulated, it is consistent with the results that
could have been obtained by executing a
visualization process similar to the one above. The
program assumes an airborne platform which scans
the terrain below (an airport) comstructing an
image unbounded on one side. A hardware edge
detector transforms the incoming image into a
binary edge image (red and blue pixels in the
videotape) which the program converts to =
symbolic representation as polygons (red lines in
the videotape). Non-edge points and edge points
having three or more neighboring edge points are
eliminated. As a preliminary step to generating
the polygons, a version of the voting program
discussed earlier is used to select a master in
chains of two-way comnected edge points {(in the
videotape, each pixel’s vote is color-coded). The
master defines the starting point for the polygon
construction along each chain,

The same visualization mechanism may also
be used to display performance date about the
execufing processes and the underlying hardware
resources. We plan to provide for this by means of
specialized built-in functions which may be used to
import/export performance data. The process
identifiers are the principal means for accessing the
performance data and other information about
executing processes. Hardware resources will be
abstracted as processes and treated in the szme
manner as the processes making up the application
program. The emphzsis on visual abstractions of

both functional and periormance properties of
concurrent sysiems will promote the integration of
functional and performance considerations into the
design methodoiogy and will enable a better
understanding of programs and algorithms for
which we lack formal analysis tools.

5. CONCLUSIONS

The briel history of the computer science
field has shown that progress in the software arena
has been associated with increases in the leve! of
abstraction at which we reason about and write
programs. Our language and visualization
proposals represent znother step in this direction.
The view introduces the notion of relativistic
abstraction in the programming language by
allowing individual processes to see the same
dataspace at a level of abstraction appropriate for
that process. The transaction is a powerful data
transformation executed at a level of abstraction
defined by the process view. Visual abstractions
are employed in debugging, analysis, and testing.

Technological advances in the areas of
highly parallel multiprocessors and graphic
workstations have clearly led us to the choices we
have made. The ever increasing computing power
of the processors makes it possible to support the
large communities of hidden processes necessary
for maintaining the views and executing the
powerful transactions. The quality of the graphics



displays will enabie us to render complex and
dynamic visval abstractions of large process
societies and dataspaces. The same technology,
however, allows us to go only so far, Higher levels
of abstraction, while conceptually attainable,
would come with significant performance penalties,
It is our conviction that the direction we have
taken represents the middle ground between lofty
ideals and engineering practice, lofty enough to
advance the state of the art and realistic enough
to find its way into common usage in the not too
distant future,
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