Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-87-2

1987-02-01

System Specifications and Flow Control

Gruia-Catalin Roman and Michael E. Ehlers

We started with an approach intended for the formalization of software/hardware interactions in
distributed systems and applied it to an elevator control problem. The emphasis on physical
relevance, intrinsic to the approach, has resulted in a new treatment of the elevator problem, one
which reflects faithfully the structural and behavioral properties of the system components and
which allows the designer to work on the algorithm for elevator movement and its proof in the
realistic context of the total system. In addition to presenting the model we discuss several
issues important in ensuring the physical relevance of software specifications: (1)... Read
complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation

Roman, Gruia-Catalin and Ehlers, Michael E., "System Specifications and Flow Control" Report Number:
WUCS-87-2 (1987). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/805

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F805&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F805&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F805&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F805&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F805&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/805?utm_source=openscholarship.wustl.edu%2Fcse_research%2F805&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/805

System Specifications and Flow Control

Gruia-Catalin Roman and Michael E. Ehlers

Complete Abstract:

We started with an approach intended for the formalization of software/hardware interactions in
distributed systems and applied it to an elevator control problem. The emphasis on physical relevance,
intrinsic to the approach, has resulted in a new treatment of the elevator problem, one which reflects
faithfully the structural and behavioral properties of the system components and which allows the
designer to work on the algorithm for elevator movement and its proof in the realistic context of the total
system. In addition to presenting the model we discuss several issues important in ensuring the physical
relevance of software specifications: (1) boundary validation, (2) failure analysis, and (3) design-rules
formulation and enforcement.

https://openscholarship.wustl.edu/cse_research/805?utm_source=openscholarship.wustl.edu%2Fcse_research%2F805&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/805?utm_source=openscholarship.wustl.edu%2Fcse_research%2F805&utm_medium=PDF&utm_campaign=PDFCoverPages

SYSTEM SPECIFICATIONS AND
FLOW CONTROL

Gruia-Catalin Roman and Michael E. Ehlers

WUCS-87-2

February 1987

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

Proceedings of the 4th International Workshop on Software Specification and Design, April 1987, pp.
118-125,

SYSTEM SPECIFICATIONS AND PHYSICAL RELEVANCE

Gruia-Catalin Roman and Michael E. Ehlers

Department of Computer Science
WASHINGTON UNIVERSITY

Saint Louis, Missouri 63130

ABSTRACT

We started with an approach intended for
the formalization of software /hardware
interactions in distributed systems and applied it
to an elevator control problem. The emphasis on
physical relevance, intrinsic to the approach, has
resulied in a new treatment of the elevator
problem, one which refiects faithfully the
structural and behavioral properties of the system
components and which allows the designer to work
on the algorithm for elevator movement and its
proof in the realistic context of the total system. In
addition to presenting the model we discuss several
issues important in ensuring the physical relevance
of software specifications: (1) boundary validation,
(2) failure analysis, and (3} design-rules
formulation and enforcement.

1. Introduction

Ajthough there is a general consensus
regarding the nature of distributed systems,
distributed processing models do not generally
capture the dependency that exists between
distributed software and the characteristics of the
operating system and hardware architecture.
Approaches as diverse as data fiow, Peiri nets,
exchange functions, calculus of communicating
processes, CSP, actors, and others |1] exbibit this
important limitation. While compatible with the
notion of distribution, these formal systems do not
attempt to model distributed software but
distributed computation, an abstraction somewhat
removed from the realifies of distributed
processing.

QOur research is based on a distributed
system model, called Virfval System |2}, that
enables the designer to formulate and answer
questions regarding the logical correctness and
performance characteristics of distributed software
when the interaction between the hardware and
the software is important, i.e., when the impact of
faults, failures, communication delays, hardware
selection, scheduling policies, etc, must be
considered. By capturing the functionality,
architecture, scheduling policies, and performance
attributes of the system it models, the Virtual

System enables us 1o reformulate the traditional
distributed software wverification concerns by
addressing the issue of establishing the correctness
and performance characteristics of software
running on a particular distributed hardware
architecture and using a particular operating
system.

In contrast to other distributed system
models where the architecture is treated only as a
collection of computational sites, the Virtual

Systemy attributes arbitrary computational
characteristics and behavior to processors.
Furthermore, the model permits independent

elaboration, analysis, and modification of its
components while allowing easy identification of
the entities aflected by particular changes. For
instance, the architecture can be modified without
changing the functionality, to determine how best
to implement a required set of functions.
Alternatively, the functionality can be restructured
without changing the architecture, to determine
how best to take advantage of a particular
architecture or feature of the system hardware.

We argue here that such specifications force
designers to give more careful consideration to the
physical relevance of the design being produced,
thus making it easier for two implementors looking
at the same design to interpret it in the same
manner. After all, design involves not the
formulation of elegant mathematical entities but
the unambiguous and correct representation of
postulaled sysiemn components Logether with their
interactions and processing environment. The
concept. of physical relevance is the basis for
validating the implementation against the design.

The rtemainder of this paper provides
support for this position by showing how the
treatment of an elevator control problem is
afiected by by the emphasis on physical relevance
intrinsic to the Virtual System approach. Section
2 introduces our reformulation of the elevator
problem. Section 3 provides a review of the
notation used to specify Virtual Systems. Section
4 presents our requirements specification for the
elevator control problem and discusses three
methods useful in ensuring the physical relevance
of the model: environment/system boundary
validation, failure analysis, and design-rules
formulation and enforcement. The complete

specification is included in the Appendix. The
paper also shows the applicability of our
specification technique to modeling control type
systems.

2. Problem Formuliation

In the simplest terms, the elevator control
problem requires one to specify the logic for
moving n elevators in a building with m foors.
Solutions to this problem provide the designer with
three important challenges: (1) how to capture the
functionality of the system; (2) how to design an
algerithm for elevator movement in a manner that
limits the waiting time by passengers; and (3} how
to prove that all requests for service are satisfied in
a fair manner. The last two problems remain
unaflected by our unorthodox viewpoint and we
plan to deal with them in a peripheral way. The
first one, however, had to be reformulated as
follows: How can we caplure the functionality
involved in the elevator problem in ¢ manner which
15 faithful to the structural and behavier properties of
the physical components of some proposed sysiem
design? Can the Virtual System model help?

Because we are talking about design
specifications (not problem definition) we must
have a design we want to express and a
specification method that must be used to express
it. Unfortunately, the design is greatly aflected by
the controls and capabilities already available in
the elevators as supplied by their manufacturer.
For simplicity sake, let us assume that {1} all
buttons may be turned on and off, (2) elevators
may open/close doors, change direction and move
up/down one floor at a time, and (3) a controller
monitors the status of the buttons and the
elevators and commands certain changes m their
state. With regard to the specification method, we
capture the above design outline in a language
called CSPS (Communicating Sequential Processes
with Synchronization) which we used to specify a
number of Virtual Systems some of which included
dynamic reallocation of software modules to
hardware processors [3]. In the next section we
provide a brief overview of the CSPS notation.

3. CSPS Review

An extension of Hoare’s CSP [4], CSPS
allows synchronization between multiple processes
in addition to the I/O commands of CSP. The I1/O
commands are used to express communication
between software or hardware components which
are modeled as CSP processes. Software processes
are called modules and hardware processes are
called processors. A module and a processor may

not use [/O commands to interact with each other.
The synchronization commands, on the other hand,
are employed as a mechanism for identifying the
occurrence of the same event at the hardware and
software level. In this manner the interactions
between software and hardware may be formalized
and later evaluated by employing proof procedures
developed for CSP programs, e.g., [5].

The simplest form of a synchronization
command consists of a synchronizaiion label and a
synchronization operator: a §;. A synchronization
command may occur many times in the text of a
single process. Any process whose text includes a
particular synchronization command must always
participate in the corresponding synchronization,
i.e., 3 synchronization takes place only when each
participating process is ready to execute the same
synchronization command. If two or more
synchronization and [/O commands appear
together separated by blanks (forming &2 composite
synchronization command), all the commands must
occur together——this feature enhances modularity
of the models but adds no extra power to CSPS.
CSPS extends the CSP distributed termination
convention to cover event synchronization
commands. The last element in a guard may be an
I/O command, a synchronization command, or a
composite synchronization command. A guard
fails if the boolean part is folse or a terminated
process is involved in any of the synchronization or
1/O commands appearing on the guard; a guard is
passable if the boolean part 1s true, the [/O
command may be executed, and all
synchronizations may take place.

N-way synchronization, as introduced so far,
is unable to simulate the data transfers
accomplished by 1/O commands. The r-way
synchronization with pattern malch is a mechanism
for accomplishing what may be seen as data
transfer.

Here is an example of how to simulate an
I/O exchange using synchronization with pattern
match:

P .. PtoQ $ {x); ...
Q: .. PtoQ $ (y"); ...

PtoQ is the synchronization label which is used to
determine (a priori) the set of processes that must
synchronize. The pattern definition appears as a
list following the synchronization operator. For a
synchronization to be successful, each pattern
must contain the same values. A single quote
indicates that the value of the particular variable
is part of the pattern for the respective
synchronization but it is indeterminate, i.e., the
variable will assume any value (within the
restrictions of the variable type) that renders the
pattern match successful.

4. Model Specification and Validation

A design specification is 2 model, at some
level of abstraction, of relevant structural and
behavior properties of some (software} system and
its environment. A requirements specification is an
extreme case of a design specification, one in which
the designer focuses on the behavior of the
interface between the system and its environment
and ignores, to the greatest possible extent, the
internal structure of the system. Clarity and
precision are desirable properties of a requirements
specification. They should not be achieved,
however, at the expense of a loss in the physical
relevance, i.e., validity, of the model. In this
section we discuss three methods useful in ensuring
the validity of software specifications: (1) boundary
validation, (2) failure analysis, and (3} design-Tules
formulation and enforcement. For the sake of
simplicity and without loss of generality, we
explain our ideas in the context of requirements
specification. The presentation starts with an
overview of our treatment of the elevator problem.

In the elevator problem, the environment is
represented by elevators and buttons, generically
called devices, while the system consists of a
software controlier. The physical distinction
between controlier and devices is captured well by
the module/processor dichotomy present is CSPS.
The controller can be represented by one or more
CSPS modules while the devices in the system can
be modeled by CSPS processors. The interactions
between the controller and devices may be
expressed using CSPS synchronizations between
modules and processors.

For this particular example of the elevator
model, we assume that there are three types of
devices: elevators, floor buttons (fo request an
elevator on a particular floor), and elevator
buttons {to request a floor from inside an elevator).
These devices are primitive in nature, they do not
interact with each other, but only report events
and accept commands from the controller. We
further assume that the controller software 1s
centralized. The software is represented by a
single CSPS module, called elevator_control.
The devices are each represented by a different
CSPS processor. If the system has k elevators and
n floors, then there are k elevator processors
(elevator.i, 1<i<k), k elevator button processors
(elevator_buttons.i, 1<i<k), and n floor button
processors (floor_buttons.i, 1<i<n). The only
interactions present in the model are
communications between the controlier and the
devices, There are no software to software
communications since the software is a single
entity. There are no hardware to hardware
communications since the devices were assumed
not to interact directly. Next we examine more

closely the structure of the module and processors
that make up the model.

First we consider the processors used to
model the devices. We specifically look at
elevator.l, the processor model for the first
elevator. The elevator has several different actions
it can perform repeatedly and, for the most part,
in any order. This type of behavior is modeled in
CSPS by a guarded repetition statement, where
each guarded command corresponds to one of the
actions that may be undertaken, as shown by the
specification of elevator.l given in Figure 1.

PROCESSOR elevator.i ::
f

dir: direction := up;
lev: floor_number ;= 1:
doors_closed : BOOLEAN = true;

*
change_dir.1 $—
[dir = yp—dir ;= down
dir = down—dir = up|

open_doors.l $—doors_closed = false

doors_closed; go.1 $—
lev ;= max(}, min(Num_floors, lev + dir));

NOT doors_closed—+doors_closed = true

]

Figure 1: Elevator modeled as a CSPS processor.

The four guarded commands correspond to
the elevator actions of changing direction, moving
one fioor in the current direction, stopping and
opening the doors at the current ficor, and closing
the doors, respectively. The first three are actions
taken only upon command irom the controiier, and
this interaction is represented by the
synchronization on each of the guards. In the first
two, the synchronization is alone on the guard,
representing the fact that the elevator is always
ready to perform either of these commands. The
third one (go.1) also includes a boolean expression
which expresses a local condition that must exist
for the command to be accepted, in this case the
elevator doors must be closed before the elevator
will move to the next floor. The last guard
contains no synchronization, which corresponds to
an independent local action, in this case closing
the doors at some point after they have been

opened.

The effect of each action is captured by the
statement portion of the guarded command, as
exemplified by setting the boolean doors_ciosed
true in the local action corresponding to closing
the elevator doors. Another example is the
movement of the elevator expressed by
incrementing or decrementing lev. This model of
the elevator movement implicitly prevents the
elevator from changing direction or opening the
doors between floors. In a more detailed model,
the movement could be modeled by several actions.
Then, explicit booleans on the guards would be
needed to prevent any inappropriate actions. It is
important to note that we require the model to
remain faithful 4o the actual physical
characteristics of the device, not in absolute terms,
but relative to a specific level of abstraction.

The processors corresponding to the buttons
have a similar structure and interpretation as the
elevator (see Appendix). In addition to executing
commands issued by the controlier these processors
also report events taking place in the devices, e.g.,
the pressing of the buttons to generate new
requests for service. The event reporting is
represented by a synchronization on the guard,
with the boolean expression (not present in
examples) representing the conditions under which
the event may take place. Event reports appear
syntactically the same as commands in the
controller, but represent communications initiated
by the device, whereas commands are initiated by
the controller.

The elevator-control has two major
functions to perform. 1t accepts requests from the
buttons and issues commands to dispatch elevators
in response to service requests and to reset buttons
when services are rendered. To accept a request
from a button, the module must synchronize with
that processor, and, similarly, to issue a command
to an elevator or button, it must synchronize with
that processor. Since any order of requests is
possible and the arrival of new requests can be
interspersed with servicing of previcus ones, the
controller must accept requests and issue
commands in any sequence. This is similar to the
way the devices behave. Hence, the structure of
the module elevator_control is similar to that of
the devices, namely 2 single guarded repetition,
where each guarded command represents an action
of the controller. Each action is either a response
to an event in one of the devices or a command for
an action by one of the devices.

Every event report is represented by a
synchronization in the processor, so the moduie
must have 3 matching synchronization to accept
the report. This synchronization appears in the
guard of the guarded command representing the
response to such an event report. In general, these

guards have true (empty) boolean portions because
the software is not allowed to ignore the reporting
of the events (even though it may take no action
as a result of the particular event) As an
illustration, consider pressing the button on floor 5
for an elevator to go up. When the controller
accepts this event report, it updates its internal
state so the request can be serviced later. This is
represented by the following guarded command in
the module:

elev_up_req.5 § — up_req{5) ;= true

Commands are handled analogously, with
the controller having a matching synchronization
to that in the processor for each command. Again
they appear on guards, but in this case the boolean
expression is non-empty and represents the
condition under which this command should be
executed. The statement potion of the guarded
command represents the actions taken by the
software as a result of the command being
performed. As an exampie, consider the
controtler’s command to an elevator to change
direction when it is on the first fioor and heading
in the downward direction. Upon command
execution, the controller updates its state to reflect
the change in the direction of the elevator
movement. This is captured by the following
guarded command (the elevator involved is number
3):

elev_dir(3) = down AND on_floor(3) = 1;
change_dir.3 § — elev_dir{8} .= up;

The other guarded commands for the controller
module are similar. A complete specification of the
module is contained in the Appendix.

Environment/system boundary
validation. Most frequent specification errors are
interface specification eTTors. Any
misunderstanding regarding the boundary between
the system and its environment or regarding the
protocol foliowed by the two leads to an incorrect
specification. Although these precepis are
universally accepted, the selection of the
system/environment boundary is not always
straightforward and shouid be subject to explicit
validation during the specification review.

In the elevator example, for instance, one is
initially tempted to draw the boundary at the floor
and elevator button level. This choice, although
intellectually very exciting, is, nevertheless, wrong.
It provides the opportunity for developing
interesting algorithms aimed at optimal servicing
of the passengers but fails to acknowledge that the
elevators available on the market may have built-
in controls that are incompatible with the choice of
algorithm. The correct boundary is the point of
interaction between the software controller and the

available hardware devices (elevators and buttons)
and a proper model of their capabilities ought to
be constructed (at an appropriate level of
abstraction) before attempting to specify the
desired software behavior.

In our model we made ezplicit assumptions
about the elevators’ capabilities. The potential for
drastic changes in the model is a consequence of
altering these assumptions. For instance, consider
the hardware to be composed of two types of
devices: elevators and fioor monitors. The elevator
includes what was previously the elevator buttons
and automatically services requests from those
buttons, as long as they are in the direction it is
curreptly beading. To change direction or to
continue moving in a direction for which it has no
service requests requires direction from the
controller. The floor monitors include the floor
buttons, but they are also capable of
communicating with the elevators as they
approach so that, if the fioor has a request and the
elevator is going in the right direction, it will stop
at the floor. The floor monitors will signal when a
request is made and also when a request is serviced
by an elevator. The elevators signal each time
they move one floor.

In this system the requirement on the
controller is to arrange for elevators to go to all
floors that have generated a request. 'The
controller must accept requests and service
notifications from the fioor monitors and
movement data from the elevators. All three of
these are simple event reports; they correspond to
the first three guards in Figure 2, which contains
the new controller. The controller also provides
limited directions to the elevator. First, the
elevator s allowed to change direction when
requested and if there are no floor requests in the
direction it is currently heading. Secondly, the
controlier could instruct the elevator to continue in
the direction its heading (so that some foor
requests will be serviced). Finally, the controller
can request the elevator to change direction (to
meet some floor. requests), but it is assumed the
elevator will not accept this unless it has no
requests of its own in the current direction. The
above commands are represented by the last three
guards in Figure 2, in the order given.

The risks associated with neglecting the
boundary validation check should become obvious
when one contrasts this version of the controller
with the one given in the Appendix. Although
their general structure is similar, the actual
actions and conditions are different. In particular,
the actions of the alternate controller are much
simpler since only updates to the status of the
elevators and the buttons are required. If the
elevators were made more complex so that they
could detect the ficor requests and respond in a

b.

manner like the controller is instructing them to,
then the controller would be reduced to mere
report gathering, and could be eliminated entirely,
Hardware/software tradeofls normally captured by
the virtual system are manifest in the elevator
problem as iradeofis between environment and
system capabilities.

MODULE elevator_control

[
dir: direction(Num_elev) := up;
lev : fioor_number{Num_elev) := 1;
¢ : elevator;
f: floor;

*
elev_move.e” § '—lev(e) -~ lev(e) + dir{e)
elev_req.f” $—req(f} := true

floor_serv.f” $—reqg(f) = false

{dir(e") = up AND NOT request_above(lev(e)))
OR (dir(e") = down AND
NOT request_below(lev(e)))

elev_chng.e” $—+dir(e) .= - dir(e)

#
{dir{e"} = up AND request_above{lev{e))) OR
(dir(e") = down AND request_below(lev(e)))
continue.e” $—skip

(dir(e™) = up AND request_below(lev(e))) OR
(dir(e"} = down AND request_above(lev(e)}})
chng_dir.e” $—dir(e) := - dir(e)

J

Figure 2: Alternate controller specifieation

Failure analysis. It 1s common practice to
ignore the potential for failure when constructing 2
requirements specification. This is due to both the
desire to keep the specifications simple and the
technical difficulties raised by the failures’ design
dependent manifestations. Nonetheless, failures
may be used to analyze the validity of the
specifications. If the model is true to physical

! In CSPS the double quote indicates that the
guard and the corresponding action are replicated once
for each possible value of the variable marked by a
double guote. In this instance, a version of this line is
conceptually present for each possible fioor number,

reazlity and if a particular failure may be
characterized faithfully at the level of abstraction
used by the model, then the failure's potential
impact on the system should be the observable in
the model.

We found this kind of analysis to be a very
eflective tool both in uncovering modeling errors
and in sharpening our understanding of the level of
abstraction at which the model is constructed.
Although proper characterization of the failures is
non-trivial, the payofis make the effort worthwhile.

Our strategy focused on identifying potential
device failures and on establishing the
consequences of these failures on other devices and
the controlling software. In other applications the
effects of software failures may prove to be equally
important to consider. To account for software
failures, however, one must refine the system
specification part of the model to include
additional detail, ie., a partial design of the
system must be carried out. The danger of
overspecifying the requirements becomes now a
serious concern.

In ocur model it is reasonable to view a
failure in & device as the abortion of the
corresponding processor, so that in efiect there is
no partial failure of a system component. Even at
this level of detail, several types of failures are
possible. Devices could fail while idle (awaiting
next event or command), while performing an
action, or while performing a communication. The
first two types do not involve any other
component, 50 there is no direct efiect on others,
but the failure during a communication could Jeave
the other components involved in an unknown
state. To effectively study this, a more detailed
specification of the communication (including such
details as protocol, etc.) would be necessary.
Hence, we must assume that failures do not occur
during a communication. Due to the structure of
the device models, 2 failure could be modeled by
the addition of another guarded command with a
true guard and statement portion containing a2
single abort statement. This is consistent with the
reliable commurication assumption and covers the
other types of failures.

Once a processor has aboried, any
synchronizations it previously could participate
are prevented from happening henceforth. Any
other process that tries ome of these
synchronizations will either block, if it is inline (a
stand-alone statement), or fail to pass the guard
containing the synchronization. As an example of
the latter case, consider the abortion of
elevator.l. The controller can no longer issue
commands to it. The guards containing the
appropriate synchronizations fail. This prevents
the statement portion from being executed also, so
the floor_arr.1 synchronization is never performed

again, resulting in the elevator_buttons.l
processor leaving the button lighted. However,
further requests from the elevator buttons will be
acknowledged by the controller since the reporting
of these events is independent of the elevator.l
operation. Visualized in the real device, the
elevator is stuck somewhere, incapable of further
movement. However, the buttons in the elevator
can be pressed and, as a result, remain lighted
(acknowledging the request). Hence, the model
matches well the physical situation. Inline
synchronizations do not occur in the example, but
consider the foliowing alternate and
straightforward specification in the controller for
the open_doors command to elevator.l when it is
going up and at level 4 (boolean portion of guard
omitted):

open_doors.l1 § —
doors_closed := false;
floor_arr.1 § (4);
elev_up_arr.4 §

Once the open_doors command has been given, the
elevator buttons and floor buttons must be notified
s0 they can turn off their lights. However, in this
simpler version, if either of the button processors
has failed, then the module will block and the
system will come to a halt. This is most likely a
modeling error, since this is not a realistic manner
for such a controller to behave, though it does
serve to point out the danger of casual placement
of synchronizations inline. As seen in the complete
specification in the Appendix, the use of a
repetition statement with the synchronizations on
guards ir such a manner that they are executed
once if the processor is still alive and are skipped if
the processor has terminated avoids this pitfall.

Design-rules formulation and
enforcement. It is not sufficient to understand
the nature of the system/environment interactions,
one must also capture it correctly in the
specification language being used. Functionally
equivalent f{ormulations, when subjected to an
analysis of their physical implications, often reveal
distinct properties. One way to ensure the model’s
desired physical relevance is by formulating design
rules which, when followed, guarantee the faithful
modeling of physical reality. There are many ways
of capturing the design rules. They range in
sophistication from the use of macros, templates,
and user-defined language extensions, at one end of
the spectrum, to the formulation of provable
assertions about the model, at the other.

The idea of formulating the design rules
before building the specification and checking the
specification for adherence to the design rules

seems to be the only way to reconcile the apparent
conflict between specification language generality
and problem specificity. It also has the advantage
that it forces the designer to gain a deeper
understanding of the physical realities with which
he/she must cope.

An analysis of the types of interactions
taking place between the software and the
controlled devices led to the following set of design
rules:

(1) each processor consists of a single guarded
repetition, with synchronizations occurring
only on the guards of this repetition;

(2) each module consists of an outer guarded
repetition in which guards corresponding to
event reporting from devices must always be
serviceable, i.e., no boolean condition may
appear on these guards; and

(3) no inline synchronizations may appear in any
of the modules in order to eliminate the
possibility that a terminated processor might
block the module.

Adherence to these rules guarantees that all
interactions are consistent with the physical
system but does not imply that the software
requirements are properly specified. In certain
cases, however, knowledge about the desigh rules
may lead to simplified proofs of correctness for the
software specifications.

5. Conclusions

We started with an approach intended for
the formalization of software/hardware
interactions in distributed systems and applied it
to the elevator control problem. The emphasis on
physical relevance has resulted in a new treatment
of the elevator problem, one which is design
oriented, which reflects faithfully the structural
and behavioral properties of the system
components, and which allows the designer to work
on the algorithm for elevator movement and its
proof in the realistic context of the total system.
This means that the algorithm development will
not involve a strategy which, optimal in theory,
may mnever be implemented because of some
peculiar built-in elevator controls which have not
been considered by the abstract study of the
system!

Another interesting resuit is the fact that we
have been forced to reexamine the interpretation of
the synchromization commands. While in the
Virtual System context a synchronization
command represented the occurrence of the same
event at two distinet levels of abstraction
(software and hardware), in the elevator problem
we used them to model reliable signal exchanges
between the software and the controlled devices.

It should be noted, however, that the ways in
which we used the synchronization commands have
precise physical interpretation! (Other uses
permitted by the language do not have such
interpretations.} It is our hope that this simple
exercise will prompt others to give serious
consideration to the issue of how to limit a
specification language so as to ensure physical
relevance of the proposed designs.

6. References

[1] Filman, R E. and Friedman, D. P,
Coordinated Computing: Tools and Technigques
Jor Distributed Software, McGraw-Hill, 1984.

[2] Roman, G.-C. and Day, M. S., "Multifaceted
Distributed Systems Specification Using
Processes and [Event Synchronization,”
FProceedings of the 7th International Conference
on Softwaere Engineering, pp. 44-55, March
1984.

[38)] Roman, G-C., Ehlers, M, E., Cunningham, H
C., and Lykins, R. H., “Toward
Comprehensive Specification of Distributed
Systems,” Technical Report WUCS-86-8,
Department of Computer Science, Washington
University, Saint Louis, Missouri 63130.

l4) Hoare, C. A. R., "Communicating Sequential
Processes,” CACM 21, No. 8, pp. 666-677.

{5] Soundararajan, N., "Axiomatic Semantics of
Communicating Sequential Processes,” ACM
Trans. on Prog. Leng. and Sys. 6, No. 4, pp.
647-662, 1984.

Acknowledgement: The authors are indebted to
H. C. Cunningham, R. H. Lykins, and W. Chen for
their review of the elevator model. Their
participation in the development of the CSPS
language and models is also acknowledged.

Appendix

Simplified treaiment of an elevalor problem.

Num_fioors : INTEGER CONSTANT;
Num_elevators: INTEGER CONSTANT;
on: BOOLEAN CONSTANT := true;
off: BOOLEAN CONSTANT := false;
up: INTEGER CONSTANT = 1;

down: INTEGER CONSTANT = —1;
TYPE button 1S BOOLEAN;

TYPE floor_num IS (1..Num_ficors);
TYPE ¢lev_num IS {1.Num_eievators);
TYPE direction 1S (up,dewn);

PROCESSOR elevator.i (i : elev_num) ::
|
move: direction := up;
level : floor_num := 1;
doors_closed : BOOLEAN = true;
x

/* Commands from controller */
change_dir.1 § —
| rmoving =up —+ moving := down
moving = down— moving := up]
#
doors_closed; go.l $ —
level := max(1, min{Num_fioors, level + move))

open_doors.i$3 — doors_closed 1= false

/* Local actions *f
NOT doors_closed — doors_closed = true

PROCESSOR Elevator_buttons.i (i : elev_num} =

[
B : ARRAY(floor_pum) OF button := off;

f: Aoor_num;
®

[* Event reporis to controller */
floor_reqd $(f) — B(f) := on;

/* Commands from controller *f
fioor_arzi $ (") — B(f) := off

i
J

PROCESSOR Floor_buttons.i (i : foor.num) =

up,down : bution = off;
L]

/* Event reporis to controller *f
elev_up_reqd§ — up:=on;

elev_down_req.l § -+ down :=on;
/* Commands from coniroller */
elev_up_arr.d$ — up:=off

#
]

elev_down_arr.l § = down := off

MODULE elevator_control ::

up_req : ARRAY (floor_num) OF BOOLEAN := fajse;
down_req : ARRAY (Root_num) OF BOOLEAN := false;
elev_dir : ARRAY (elev_num} OF direction := up;
on_fioor : ARRAY (elev_num) OF fcor_num = 1;

B : ARRAY (elev_num,floor_num) OF BOOLEAN := false;
{: ficor_num;

e :elev_num;

bl, b2 : BOOLEAN;

*

/* Event reports from devicesa */

elev_up_req.r” § wt up_req(f) i= true

elev_down_req.f”§ — down_req(f) := true

fioor_req.e™ § (f") — B(e,f) := true

/* Commands to devices */

elev_dir{e”) = down AND on_floor(e) > 1 AND
NOT (B(e,on_floor(¢)) OR down_req{on_fioor(e)));
go.e §
—+ on_floor(e) ;= on_floor(e) + down
#
elev_dir(e”} = up AND on_fioor(e) < Num_fiocors AND
NOT (B(e,on._fioor(¢)) OR up_req{on_fiocor(e)));
go.e $
—+ on_foor(e) == on_floor(e) + up
#
elev_dir(e") = down AND " = on_ficor(e)
AND (B(e,f) OR down_req(f));
open_doors.e §
— down_req ([} ;= false;
Bfe,f) := false;
bl := true; b2 :=true;
*| bl; elev_down_arr.f $ — bl :a= false
b2; floor_arr.e $(f) — b2 := false

]

clev_dir(e”) = up AND 1" = on_ficor(¢)
AND (B(e,l) OR up_req(f));
open._doors.e §
— up_req () 1= false;

B(e,l) 1= false
bl := true; b2 1= true;
*| bl; elev_up_arr.f $ — bl := false
b2; floor_arr.e § (f} — b2 = false

}

elev_dir(e™) = down AND on_flioor(e) = 1;
change_dir.e §
— elev_dir(e) 1= up

#

#

#
elev_dir(e") = up AND on_ficor(e) = Num_ficors;
change_dir.e $
— elev_dir(e) := down

	System Specifications and Flow Control
	Recommended Citation
	System Specifications and Flow Control

	tmp.1462913377.pdf.LKNde

