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1. Introduction

We consider the minimum variance distortionless response (MVDR) procedure for adaptive
beamforming [1], [5]-[9]. The method can be formulated as a sequence of closely related
constrained least squares problem. Given a sequence of p-dimensional data vectors {2(7)},

define recursively a sequence of data matrices {X(4)} by

and

For each nXp data matrix X(n), we are interested in a set of optimization problems :

X(n) wn) |y=min st dE) T ) (n) = pk) | (1.1)
where d*) is a given direction vector and £ a given scalar. Corresponding to every direction
vector d*), our principal object of interest is the current least squares residual element e{*)(n),
i.e., the last element of the residual vector

e®(n) = X(n)wl)in).
Recently, Schreiber [7] proposed an efficient adaptive procedure for directly extracting the
residual element. His procedure is based on the process for updating the Cholesky factorization
of the covariance matrix XT(n)X(n), and it requires order of p? + pK operations per iteration
where K is the number of direction vectors. However, it is not clear how one can efficiently

realize this procedure on parallel processor arrays.

We present here another adaptive algorithm for direct extraction of the residual element,
by building on previous work of McWhirter [4], [5] for the unconstrained case. Although the
algorithm requires more operations per iteration than the algorithm proposed by Schreiber, the
principal advantage of our approach is that only one systolic array is required for the many
different look directions with a throughput of one residual element per array cycle. Qur results

are new.



This paper is organized as follows. In §2 we present Schreiber’s and our algorithms for the
canonical problem. In §3 we outline our algorithm for the general problem, and in §4 we show
how our algorithm can be implemented in a pipelined fashion on a systolic array for various

look directions and for increasing values of .



2. Canonical Problem

In this section we describe two different ways for finding the least squares residual element

of the canonical problem:
| Xw |lp=min st dTw=1, (2.1)
where X is an nXp matrix { n > p ) that has full column rank. >From here on we shall drop
the subscript 2 for the euclidean vector norm. First, we give an outline of the algorithm

proposed by Schreiber [7]. Next, we develop a new algorithm based on the ideas introduced in

McWhirter [5].

2.1. Schreiber’s Algorithm

An explicit formula for the solution of (2.1} can be obtained by using the Lagrange

multiplier technique. It can be shown that the unknown weight vector w is given by

w = p(d)(XTX)'d, (2.1.1)
where p{d) is a scalar satisfying
1
d) = —m——————
) =

The covariance matrix X7 X has a Cholesky factorization:

XTX = LLT, (2.1.2)

where L is lower triangular. Hence we get

where v solves the triangular system of linear equations

Lv=d. (2.1.3)

Let z7 denote the nth row of X. Then, for the least squares residual element e,, we have

e = 35w = (yTo)/(vTv), (2.1.4)



where y solves the triangular system of linear equations

Ly ==. {2.1.5)
Thus, in order to compute e,, it suffices to know the Cholesky factor L of XTX. We show how

the factor can be computed recursively. Let

X= [ X;.J (2.1.8)

Suppose that we know the Cholesky decomposition of X 7X :

XX =TT,
and the solution ¥ to the triangular system
Iv=d
The Cholesky factor L of XTX can be obtained from I and z by applying the updating
technique of Gill et al. [3]. Specifically, a sequence of {n—1) plane rotations is applied to
r T]

2T

to transform it to the upper triangular form

)

Let @ denote the product of such (n—1) rotations. Then

LT LT
of |- [OT ] (.17

The matrix [ is the desired Cholesky factor of X7 X. It turns out that the vector v can also be

computed recursively. Note that

3404



This suggests the lollowing algorithm.

Algorithm 1 (Canonical Problem)
Initialization

1. Compute the Cholesky factor of the pXp covariance matrix X{p )T X(p).

2. Compute v(p) by solving the triangular system L(p)v(p) = d.
For every new sample z{¢), 7 = p+1,p+2, - - -, do

3. Update L(i—1), i.e., compute L(%) and Q(7).
4. Solve the triangular system L(¢)y(7) = 2(¢).

5. Update v{i—1) according to {2.1.8).

6. Form &;(i) = (y7(:)o(1))/(v7(i)o(5))

On inspection, it is easy to see that Algorithm I requires order of p? + p operations per

iterative step.

2.2. Our Algorithm

Now we describe an alternative way for computing e,. Construct a sequence of plane
rotations Pyg, Pz, * ', P,_1, that annihilate the leading nonzero elements of the direction
vector:

dT(PmPgs"‘ Pp—-l,p)= ”d” GpT, (2-2-1)

where ¢, denotes the pth unit coordinate vector. Let

P=P12P23"' Pp—l,p'

Problem (2.1) thus simplifies to

[| XPv || =min st v, =1/| d], (2.2.2)



where

Let

x-[%).

and suppose that the QR decomposition of the (n— 1)Xp matrix X is known:

We get

o P=¢§|o |, (2.2.3)
3

where

H=UP and 7=27P.
We now apply an orthogonal transformation Z to triangularize the upper Hessenberg matrix H
and to annihilate the leading elements of the vector £ It is essential that we do not annihilate
the vector completely. The matrix Z is composed of two sequences of rotations {Ji141} and
{&,,}, operating in the ({,/+1) and {I,n) planes, respectively. For example, the transformation

Ji141 equals the identity matrix except for four strategic elements in the pivoting positions :

C[‘r S;J
— le clJ -

The order of annihilations is very important :

R y
H T
0 o
KX . Jl ., - KL JL KL Jh{o |= of o (2.2.4)
T
i
of 7

Problem (2.2.2) thus simplifies to



[l B% + || = min , (2.2.5)

where

and the “transformed?” residual vector is

oge, +7Te,
where ¢, denotes the nth unit coordinate vector. The desired residual element is therefore

given by

& QUi Ky Jos Koo+ * Jymrp Ko 12) (0 ¢ + 7 )

— (oK), (2.2.6)

a result very similar to that for the unconstrained case [5], [9]. Finally, as a preparation for the

next step of the adaptive procedure, the QR factorization of X is computed from the QR

factorization of X and the sample vector z. Here the standard updating technique due to Gill

et al. [3] is used. A sequence of rotations {8is}, i=1,---,p, is applied to transform the
matrix [U'7,0,2]7 into the upper triangular form [UT,0,0]%,

X U

81082, " S 0= g

B
£ T

]

With the knowledge of {P;;.,} and the upper triangular matrix U the recursive procedure can

be repeated for a new sample vector z(n+1). This suggests the following algorithm.

Algorithm 2 (Canonical Problem})

Initialization

1. Compute rotations {F; ;4,} as defined by (2.2.1).
2. Using updating technique determine the upper trapezoidal factor 7] (p—1) of the QR

factorization of X{(p—1).



For each new sample z(¢}, i=p,p+1, - - - do

3. Determine H(7) and #(4).

4. Triangularize the upper Hessenberg matrix H(7) and annihilate the leading elements
of the vector £(7).

5. Compute the residual element ¢;(:) using (2.2.6).

6. Compute U(7} from U(7—1) and =(¢).

It is easy to see that, for the canonical problem, Algorithm 2 also requires order of p% + p

operations.
3. General Case

In practice there are many direction vectors {d*)}, k=1, - - - J, for each the procedures

described in the previous section have to be repeated.

3.1. Schriber’s Algorithm

There are two stages in the general procedure, the initialization and the recursive stage. In the
initialization stage, the Cholesky factor L(p) of the initial covariance matrix X7(p)X(p) and
the solutions v(p) to the triangular systems L(p)u(p) = d*), k=1, - - - K are computed. In the
recursive stages, the Cholesky factor and the solutions to the triangular systems are updated. In
addition, a single triangular system is solved. Residual elements are obtained as quotients of

appropriate scalar products. An outline of the algorithm is given below.

Algorithm 1 (General case)
Initialization {

1. Compute the Cholesky factor of pap covariance matrix X*(p)X(p)



2. Compute v(p) by solving the triangular system L(p)v(p) = d

}

For every new sample (¢}, i=p-+1,p42, - - - do {

3. Update L(i—1), i.e., compute L(7) and ()

4. Solve the triangular system L(¢)y{(¢) = z(¢)
Fork=1,---Kdo{

5. Update v*}(i—1) according to (2.1.10)

6. Form ¢f8)(i) = (y7(£)o(1))/ (v (1))(2))

Because only one updating of Cholesky factor is performed and only one trisngular system is
solved for each new sample, the total cost of a single recursive step is of order p? + Kp

multiplications and additions.

This procedure is very efficient as far as the number of arithmetic operations is concerned.
Moreover, fast systolic algorithms exist for updating, solution of triangular systems and scalar
products. However, it is not clear how one could combine these systolic arrays into a system
without inewrring delays between successive stages. Part of the problem here is that while
systolic updating requires top-to-bottom processing, solving an upper triangular system requires
bottom-to-top processing which means that these stages cannot be pipelined. In Section 4 we

will show that Algorithm 2 can be pipelined.



3.2, New Algorithm

Again, there are two stages in the general procedure, the initialization and the recursive stage.
In the initialization stage direction vectors are rotated onto ep, and X{(p—1) is transformed into
upper irapezoidal form. In the recursive stage residual elements corresponding to the current
sample matrix and individual directions are computed followed by updating of the triangular

factor of the sample matrix. An outline of the algorithm is given below.

Algorithm 2 (General Case)

Initialization {
1.For k =1, - ,K compute rotations {P{} as
defined by (2.2)
2. Using updating technique determine the upper trapezoidal factor U(p—1) of the QR

factorization of X(p—1)

}
For each new sample z(1), ¢ = p,p+1, - - -, repeat {

For k=1, --- K repeas {
3. Determine H*)(y) and ¥
4. Triangularize the upper Hessenberg matrix H*) and annihilate the leading elements
of the vector #*)
5. Compute the residual element ef*)(7) using (2.6)

¥

6. Compute U(7) from U(i—1) and z(7)

10



The algorithm described here is a combination of the standard approach to the linearly
constrained linear least squares problem and the method of Mc¢Whirter for directly extracting
the residual element. Each recursive step requires order of Kp? + Kp arithmetic operations. This
is & times as many as in Schreiber’s algorithm. However, as will be shown in the next section,
our algorithm can be efficiently realized on a single square array of processors with the
throughput of one residual element per array cyecle. It is not know to these authors whether

Schreiber’s algorithm or its modification allows similar realization.

4. Systolic Implementation

In this section we outline a possible systolic realization of Algorithm 2. We shall not
specify details of the implementation but rather give general ideas from which it should be clear

that an efficient implemensation is possible.

For a systolic implementation of our algorithm, we propose a mesh-connected trapezocidal
array of processors. As the algorithm is heterogeneous, it is not surprising that the array is,
too; different regions of the array execute different subtasks of the algorithm. In order to attain
sueh flexibility we postulate that the cells be microprogrammable, i.., a program executed by a
cell can be changed if required. By allowing such generality we can guarantee a very smooth

flow of data.

The first subtask to be realized is Step 1. This step can be viewed as a pre-processing step
which is to be executed only once. The results of the pre-processing, namely rotation coefficients,
have to be stored in auxiliary registers in a manner that facilitate an efficient access when
needed. We shall assume that rotation parameters are available and can be accessed in the

space-time order specified later in this section.

The skeleton of the array is the pzp triangular array of Gentleman, Kung and McWhirter

[2], [5]. However, the individual cells are more flexible in the sense that, in the course of

11



computation, they can assume several different states corresponding to different steps of the
algorithm. The triangular array is augmented by an additional subdiagonal of p—1 cells to
accommodate subdiagonal elements of upper Hessenberg matrices, and by an additional row of
p cells to accommodate new sample vectors. In Figure 1, r’s represent the additional row, h’s

represent the additional subdiagonal and ¢’s represent the triangular array.

Trrrrer
ttttitt
htttet
chtttte
- httt
C e RhEt
- Rt

Figure 1. Trapezoidal array of processors

Step 2 can be treated either as a pre-processing step or merged with the iterative steps.
For ease of exposition we assume that, in addition to rotation parameters, the upper trapezoidal
factor U(p—1) of the QR factorization of X(p—1) is available and stored row by row in the first

p—1 rows of the ¢ subarray.

When a new sample vector arrives it is stored in the r processors. The array is ready to

execute Steps 3, 4 and 5 which are repeated for each direction vector.

First, the rotation parameters corresponding to the first direction vector are brought from
the auxiliary registers. The rotations are applied to the new sample vector and the current
triangular factor. This operation is executed column by column in left-right and top-down
directions. New subdiagonal elements are created. The results, the transformed sample and the

Hessenberg matrix, are stored in place.

Remark: It is important that the original sample vector and the triangular matrix be not

12



destroyed but stored in place for later transformations.

It is easy to see that a single wavefront of activities propagates through the array in the south-
east direction, starting from the north-west corner of the array. This wavefront corresponds to

the execution of Step 3.

When the first wavefront has traveled far enough the execution of Step 4 may begin.
Annihilation of subdiagonal elements interlaced with annihilation of the transformed sample
vector form the second wavefront of activities. The operations are executed row by row with the
rows of the Hessenberg matrix staying in place while the transformed sample vector travels in
top-down direction. Again, the wavefront of activities propagates in the south-east direction
and follows after the first wavefront. The appropriate product of cosines is formed by the
diagonal processors while the multiplier 7 is computed by the rightmost column of cells. Finally,

the residual element is determined in the south-east corner cell.

Note that in the course of computation only the elements laying below and including the
second wavefront are required. The elements above the second wavefront are not needed.
Moreover, the cells above the wavefront are idle. Thus, the computation corresponding to the
second direction vector can start right after the appropriate rotation coefficients are fetched
from the auxiliary registers - now it becomes clear why the original sample vector and the

current triangular factor must not be destroyed.

The sequence of operations, postmultiplications followed by the recovery of the triangular

form, is repeated until all direction vectors are processed.

When all direction are processed the array is set to update the triangular factor, i.e., to
realize Step 6. At this moment a single wavefront is formed which again propagates in the usual

south-east direction. A new sample vector can now be received and the whole cycle repeated.

Once the array has been initialized it creates a number of parallel wavefronts. Note that

two wavelronts are created for each direction vector plus one wavefront for the updating

13



operation, for the total number of 2K 4 1 wavefronts per cycle. Wavefronts travel with a
constant speed thrbugh the array in the south-east direction. Wavefronts are pipelined but are
separated by a certain constant distance which is necessary to guarantee that different
wavefronts do not interfere with each other. Thus it can be concluded that one residual
element is computed in the south-east cell, approximately, every second wavefront, or, the
throughput is one residual clement per array’s unit of time where array’s unit of time

corresponds to the time separation of two consecutive wavefronts.

References

[1] AW. Bojanczyk and F.T. Luk, “A unified systolic array for adaptive beamforming,”
Technical Report WUCS-87-8, Department of Computer Science, Washington University, St
Louis, MO, 1987.

[2] WM. Gentleman and H.T. Kung, “Matrix triangularization by systolic arrays,” Real Time
Signal Processing IV, T.F. Tao, Ed., Proc. SPIE, vol. 298 {1981), pp. 19-26.

[3] PE. Gill, GH. Golub, W. Murray and M.A. Saunders, “Methods for Modifying Matrix
Factorizations”, Math. Comp., vol. 28 (1974), pp. 505-535.

[4] F.T. Luk and S. Qiao, “Analysis of a recursive least-squares signal processing algorithm,”
Advanced Algorithms and Architectures for Signal Processing I, IM. Speiser, Ed., Proc. SPIE, vol.
696 (1986), pp. 88-93.

(5] J.G. McWhirter, “Recursive least-squares minimization using a systolic array,” Real Time
Signal Processing VI, K. Bromley, Ed., Proc. SPIE, vol. 431 (1983), pp. 105-112.

{6] J.G. McWhirter and T.J. Shepherd, “A systolic array for linearly constrained least-squares
problems,” Advanced Algorithms and Archilectures for Signal Processing I, JM. Speiser, Ed.,
Proc. SPIE, vol. 696 {1986}, pp. 80-87.

[7] R. Schreiber, “Implementation of Adaptive Array Algorithm”, IEEE Trans. Acoustics,
Speech, and Signal Processing, ASSP-34 (1986), pp. 1038-1045.

[8] R. Schreiber and P.J. Kuekes, ‘“Systolic linear algebra machines in digital signal processing,”

in VLSI end Modern Signal Processing, 8.Y. Kung, H.J. Whitehouse and T. Kailath, Eds,,
Prentice-Hall, Englewood Cliffs, NJ (1985}, pp. 389-405.

9] CR. Ward, P.J. Hargrave and J.G. McWhirter, “A novel algorithm and architecture for

adaptive digital beamforming,” [EEE Trans. Antennas and Propegation, AP-34 {1936), pp. 338-
346.

14



	A Novel MVDR Beamforming Algorithm
	Recommended Citation

	tmp.1462913377.pdf.bTwai

