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ABSTRACT OF THE DISSERTATION 

Salience Coding in the Basal Forebrain and  

the Heterogeneous Underpinnings Underlying Novelty Computations 

by 

Kaining Zhang 

Doctor of Philosophy in Biomedical Engineering 

Washington University in St. Louis, 2022 

Professor Ilya Monosov, Chair 

Humans and animals are consistently learning from the environment by interacting with it and 

getting feedback from their actions. In the environment, some objects are more important than 

others, because they are associated with reward, uncertainty, surprise, or novelty etc. These 

objects are salient to the animal. Salient objects attract attention and orientation, increase arousal, 

facilitate learning and memory, and affect reinforcement learning and credit assignment. 

However, the neural basis to support these effects is still not fully understood. 

We first studied how the basal forebrain, one of the principal sources of modulation of the 

neocortex, encodes salience events. We found two types of neurons that process salient events in 

distinct manners: one with phasic burst activity to cues predicting salient events and one with 

ramping activity anticipating such events. Bursting neurons respond to reward itself and cues that 

predict the magnitude, probability, and timing of reward. However, they do not have a selective 

response to reward omission. Thus, bursting neurons signal surprise associated with external 

events, which is different from the reward prediction error signaled by the midbrain dopamine 

neurons. Furthermore, they discriminate fully expected novel visual objects from familiar objects 

and respond to object-sequence violations. In contrast, ramping neurons predict the timing of 
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many salient, novel, and surprising events. Their ramping activity is highly sensitive to the 

subjects' confidence in event timing and on average encodes the subjects' surprise after 

unexpected events occur. These data suggest that the primate BF contains mechanisms to 

anticipate the timing of a diverse set of salient external events (via tonic ramping activity) and to 

rapidly deploy cognitive resources when these events occur (via phasic bursting activity). 

Then we sailed out to study one special salience signal – Novelty. The basal forebrain responds 

to novelty, but the neuronal mechanisms of novelty detection remain unclear. Prominent theories 

propose that novelty is either derived from the computation of recency or is a form of sensory 

surprise. Here, we used high-channel electrophysiology in primates to show that, in many 

prefrontal, temporal, and subcortical brain areas, object novelty sensitivity is related to both 

computations of recency (the sensitivity to how long ago a stimulus was experienced) and 

sensory surprise (violation of predictions about incoming sensory information). Also, we studied 

neuronal novelty-to-familiarity transformations during learning across many days and found a 

diversity of timescales in neurons' learning rates and between-session forgetting rates within and 

across brain regions that is well suited to support flexible behavior and learning in response to 

novelty. These findings show that novelty sensitivity arises on multiple timescales across single 

neurons due to diverse related computations of sensory surprise and recency, and shed light on 

the logic and computational underpinnings of novelty detection in the primate brain. 
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Chapter 1: Introduction 

 

1.1 Important objects 

Humans and animals are consistently learning from the environment by interacting with it and 

getting feedback from their actions. In the environment, some objects are more important than 

others because they are directly associated with rewards or punishment, or they have 

information, indicate possible changes, or are novel and therefore are important for adaptive 

learning and memory (Fecteau and Munoz, 2006; Ponzi, 2008; Bromberg-Martin et al., 2010a; 

Barto et al., 2013; Ghazizadeh et al., 2016a; Zhu et al., 2018; Parr and Friston, 2019). 

The first step of processing important objects or events is to identify them as important. It may 

sound trivial, but a few things happen when someone notices an important object or event. For 

example, when the fire alarm rings when someone is sleepy, they will immediately wake up 

(arousal increasing), look at where the alarm is coming from (head and eyes orientating), and 

start to figure out what is going on with the alarm (attention drawing). Increasing arousal, 

drawing attention, and eliciting orientation are the typical effects when noticing and responding 

to important events or objects (Ohman et al., 2001; Fecteau and Munoz, 2006; Ghazizadeh et al., 

2016a; Zhu et al., 2018; Parr and Friston, 2019). 

Objects that evoke these psychological and behavioral effects are often called "salient". There 

are many features that can contribute to object salience; for example, how bright or colorful the 

object is, whether it is moving, and other physical features of the object (physical salience) 

(Bachman et al., 2020). However, other features also contribute to object salience. For example, 
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when someone is waiting for an important notice on their phone, such as a text, and their phone 

vibrates lightly for a second, they may notice immediately and overreact, experiencing a strong 

physiological response. Objects with the same physical features can have different object 

salience, depending on the context, prior history, and current internal state (Ghazizadeh et al., 

2016a; Bachman et al., 2020). 

Ghazizadeh et al. (2016a) systematically studied some ecological features that contribute to 

object salience, which is related to the animal's past experience with the object rather than the 

physical features,  by analyzing gaze behavior in primates. They found that object salience can 

be increased by 1) how much reward the object is associated with, 2) the uncertainty of the 

outcome that the object is associated with, 3) the novelty of the object, and 4) some aversive 

events, like threats, that the object is associated with. They term the salience that arises from 

them “ecological salience”. 

Furthermore, some objects motivate animals to change their behavior, causing them to approach 

or avoid the object. For example, delicious food might elicit approach behavior, while the image 

of a predator might motivate avoidance. These objects elicit motivational salience and are 

usually associated with values (Bromberg-Martin et al., 2010a; Puglisi-Allegra and Ventura, 

2012). In primates, this is particularly clear when monkeys rapidly orient to salient objects but 

then ultimately avoid choosing them (Jezzini et al., 2021). 

How does the brain process object salience, ecological salience, and motivational salience?  

In this dissertation, I will first study how the basal forebrain, one of the neuromodulatory hubs 

that mediates neocortical computations, responds to objects with motivational salience or 
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ecologically salience. Then I will switch my focus to one attribute of salience – object novelty, 

and study how the brain computes and processes the novelty signals. 

1.2 Basal forebrain (BF) neuromodulatory system 

The basal forebrain (BF) contains several nuclei, including nucleus basalis, diagonal band, 

medial septal, and substantia innominate, and has wide projections to and influences on the 

neocortex, hippocampus, and amygdala (Mesulam et al., 1983; Baxter and Chiba, 1999; Turchi 

et al., 2018). The BF is the major hub of the cholinergic neuromodulatory system but also 

contains GABAergic and glutaminergic neurons. Moreover, the loss of neurons in the BF can 

predict the development of Alzheimer's disease and Parkinson's disease (Whitehouse et al., 1982; 

Arendt et al., 1995; Pereira et al., 2020). 

One hypothesis of the function of the BF cholinergic system is that it regulates attention. Some 

animal experiments have shown that lesion or inhibition of cholinergic neurons in the BF 

increases the animal's reaction time and decrease the accuracy of detecting and discriminating 

sensory stimuli (Bucci et al., 1998; Chiba et al., 1999; Waite et al., 1999; Pinto et al., 2013). On 

the other hand, stimulation of the same area can improve task performance (Pinto et al., 2013). 

Other studies focus on the BF's role in cortical plasticity and memory formation. Inhibition of the 

BF could impair animal memory formation (Hasselmo and Schnell, 1994; Gu and Yakel, 2011). 

However, the findings of the BF influencing memory formation are inconsistent between species. 

Compared with rodents, memory impairment was more subtle when lesioning primates' BF 

(Voytko et al., 1994). 
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In addition, the BF is also known for participating in the control of the sleep-wake cycle. Lesion 

or inhibition of the BF led to sleep loss in some studies (McGinty and Sterman, 1968; Szymusiak 

and McGinty, 1986) and had complex influences on the delta or theta electroencephalogram 

(EEG) bands (Brown et al., 2012). Furthermore, the cholinergic neurons, some GABAergic and 

glutaminergic neurons in the BF burst during waking and rapid eye movement (REM) sleep (Lee 

et al., 2005; Xu et al., 2015). 

the majority of the neurons in the BF are cholinergic, but it also contains some GABAergic and 

glutaminergic projection neurons (Mesulam et al., 1983), which have similar projections as the 

cholinergic neurons (Gritti et al., 1998). The functions of GABAergic and glutaminergic neurons 

are less studied. In the studies that include those neurons, the results vary from each other. In 

general, studies from different groups have demonstrated that the noncholinergic neurons also 

regulate the sleep-wake cycle, attention, and cortical plasticity (Lin and Nicolelis, 2008; Avila 

and Lin, 2014; Hangya et al., 2015; Xu et al., 2015). 

Electrophysiology and optogenetic methods have been used to record single neuron activity in 

the BF. A series of rodent studies found that a subset of BF neurons has a phasic bursting activity 

pattern, and they encode both reward and aversive events in the same direction by enhancing 

their activity (Lin and Nicolelis, 2008; Avila and Lin, 2014; Hangya et al., 2015). In other words, 

they encode motivational salience. They also discovered another subset of neurons with a tonic 

activity pattern, whose activities are correlated with behavioral reaction time. In addition, studies 

in primates demonstrate that the primate tonic BF neurons respond to reward and uncertain 

events by ramping up their activities to the possible reward delivery time (Monosov et al., 2015; 

Ledbetter et al., 2016b). However, there was no report of the phasic bursting neurons in the 
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primate BF before our experiment. Furthermore, there is a lack of study in the BF's coding of the 

other ecological salience signals like novelty and sensory surprise, besides the motivational 

salience signals, like reward and punishment. 

In addition, the BF system sometimes is compared with the midbrain dopaminergic 

neuromodulatory system. Midbrain dopamine (DA) neurons are mostly known for their encoding 

of reward prediction error (RPE), which is defined as the differences between received reward 

and the prediction, and unsigned RPE, which is the absolute value of the RPE (Schultz et al., 

1997; Matsumoto and Hikosaka, 2007; Bromberg-Martin and Hikosaka, 2011; Schultz, 2016). 

For DA neurons that encode unsigned RPE, they respond to both appetitive and aversive events 

by enhancing their firing rates, which is similar to the activity of BF phasic neurons. Studying 

the similarity and difference of the coding and function between different neuromodulatory 

systems is still a major topic in neuroscience (Avery and Krichmar, 2017). 

In Chapter 2, we report that the primate BF contains at least two functional subtypes of neurons 

that often process salient events in distinct manners: one with phasic burst activity to cues 

predicting salient events and one with ramping activity anticipating such events. Bursting 

neurons respond to cues that convey predictions about the magnitude, probability, and timing of 

primary reinforcements. However, they do not have a selective response to reinforcement 

omission (the unexpected absence of an event). Thus, bursting neurons do not convey reward 

prediction errors but instead signal surprise associated with external events. Indeed, they are not 

limited to processing primary reinforcement: they discriminate fully expected novel visual 

objects from familiar objects and respond to object-sequence violations. In contrast, ramping 

neurons predict the timing of many salient, novel, and surprising events. Their ramping activity 
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is highly sensitive to the subjects' confidence in event timing and encodes the subjects' surprise 

after unexpected events occur. These data suggest that the primate BF contains mechanisms to 

anticipate the timing of a diverse set of important external events (via ramping activity) and to 

rapidly deploy cognitive resources when these events occur (via short-latency bursting).  

1.3 Novelty signals and computations in the brain 

After studying how the basal forebrain encodes salient events, we shift our focus to one 

particular salience signal – novelty.  

A novel object is an object presented for the first time to the animal, and some features of the 

object deviate from the animal's previous experience (Markou and Singh, 2003; Barto et al., 

2013). Detecting, pursuing, exploring, and memorizing novel objects are the crucial steps for 

humans and animals to learn from the environment (Barto et al., 2013; Jaegle et al., 2019; 

Ogasawara et al., 2022). Studies have found novelty signals in multiple brain areas (Berns et al., 

1997; Ranganath and Rainer, 2003; Yamaguchi et al., 2004), but how novelty signals are 

computed in the brain is still not fully understood. 

A study in 1965 firstly reported that the brain signals novelty in the EEG (Sutton et al., 1965; 

Ranganath and Rainer, 2003). There is a specific signal related to novel events in EEG – The 

Novelty P3. It is an event-related potential (ERP) that is elicited by novel or unexpected events 

peaking around 300ms after the event and is presumably related to attention. (Sutton et al., 1965; 

Cycowicz et al., 2001; Friedman et al., 2001; Polich, 2007) 

Novelty P3 has different types and distributions across the scalp. They can be categorized into 

two main types: P3a and P3b. P3a is more frontal and is elicited by novel or surprising events; 
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P3b is more parietal and is elicited especially by novel or surprising task-relevant events. 

Novelty P3 signals habituate to repeating novel events quickly, within the first few repetitions in 

a session. However, they also show heterogeneity. The signal in the frontal scalp decays faster 

than that in the parietal scalp (Friedman et al., 2001). In Chapter 3, we show recordings from 

single neurons in different brain regions, and the results also support the heterogeneity in novelty 

habituation. 

Then, many MRI and PET studies of novelty found multiple brain areas responding to novel 

events. (Tulving et al., 1996; Berns et al., 1997; Kiehl et al., 2001; Ranganath and Rainer, 2003; 

Yamaguchi et al., 2004; Hawco and Lepage, 2014). Most studies found that the hippocampus, 

some areas of the temporal cortex, and the frontal cortex have novelty responses, though results 

varied slightly. Some studies, in addition, reported novelty responses in striatum and cingulate 

cortex (Berns et al., 1997), occipital cortex and parietal cortex (Tulving et al., 1996; Hawco and 

Lepage, 2014), and insula (Kiehl et al., 2001). 

Novel events have multiple effects on the animal. They can provoke orientation behavior, 

increase arousal and attention, which are shared with other salient events (Bradley, 2009; 

Schomaker and Meeter, 2015). In addition, novelty events also increase learning (Tulving and 

Kroll, 1995; Hasselmo et al., 1996; Meeter et al., 2004). One hypothetical neural mechanism is 

through controlling the level of acetylcholine in the hippocampus, which is further controlled by 

the BF neuromodulatory system (Hasselmo et al., 1996; Meeter et al., 2004; Hasselmo and 

Sarter, 2011; Zaborszky et al., 2018). 

Furthermore, most animals seek novel events. One theory of how the brain produces novelty-

seeking is that novel objects provoke intrinsic reward in the brain, and thus the reward circuit 
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guides the behavior of exploring novel objects (Kakade and Dayan, 2002; Jaegle et al., 2019). 

However, more recent experiments show that reward-seeking and novelty-seeking circuits can 

differ (Foley et al., 2014; Ogasawara et al., 2022). Ogasawara et al. (2022) demonstrated that the 

circuit regulating novelty-seeking includes zona incerta (ZI) and anterior ventral medial temporal 

cortex (AVMTC), but not lateral habenula (LHb) and substantia nigra (SN) which are the areas 

traditionally associated with reward-seeking. 

Novel objects have multiple psychological and behavioral effects and are presumably regulated 

by different circuits (Schomaker and Meeter, 2015). The next question is, how does the brain 

detect novel objects from familiar ones? Furthermore, for different circuits that regulate different 

effects of novelty, do they share the same computation of novelty signal? 

Many possible mechanisms of novelty detection at the circuit level have been proposed. Bogacz 

et al. (2001b) proposed that novelty detection in the primate entorhinal cortex is presumably 

implemented by a feedforward neural network deriving from the Hopfield network (Hopfield, 

1982). In fruit flies, Sanjoy Dasgupta et al. (2018) proposed that in the mushroom body, novelty 

detection is presumably implemented by a method deriving from the Bloom filter (Bloom, 1970). 

Furthermore, Danil Tyulmankov et al. (2022) used the meta-learning method to train 

feedforward networks with the Hebbian or anti-Hebbian rules to generate some biologically 

possible novelty detection models. These circuit-level mechanisms store the information of 

familiar objects in the synaptic connections, and the connections keep changing to accommodate 

new objects.  

In all these circuit-level novelty detection models, the objective goal is purely to differentiate 

objects seen for the first time vs. those seen many times. However, novel objects also have other 
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properties: They are surprising, and no similar objects have been seen recently (Markou and 

Singh, 2003; Barto et al., 2013; Pimentel et al., 2014). Accordingly, other mechanisms have been 

proposed at a higher cognitive level. 

Novelty is closely related to surprise, which can be defined as the mismatch of the incoming 

sensory stimuli and the prediction. Some papers also refer to the surprising objects in their 

behavior procedures as the contextual novelty (Ranganath and Rainer, 2003; Nyberg, 2005). 

Novel objects are usually surprising, but surprising objects are not necessarily novel (Strange and 

Dolan, 2001; Barto et al., 2013). An MRI study has demonstrated that the hippocampus and 

some areas in the frontal cortex respond to both novel and surprising events (Strange and Dolan, 

2001). One study proposed a theory that the novelty response in the hippocampus is actually 

generated by a mechanism of mismatch, aka, surprise (Kumaran and Maguire, 2007b). 

Novelty is also closely related to recency. The degree of novelty of an object is related to how 

recently the animal has seen the same or similar object. In the medial/inferior temporal cortex, 

some neurons respond differently to familiar objects presented recently vs. not recently (recency 

response)(Xiang and Brown, 1998). The neural recency response is also observed in the primary 

visual cortex, which is an initial area to process visual information, and the finding can date back 

to a study in cat in 1960s (Hubel and Wiesel, 1962; Dragoi et al., 2000). A theory has been 

proposed that the recency responses can be generated through local synaptic change (Vogels, 

2016) and can support the function of novelty detection (Bogacz et al., 2001a).  

To summarize, according to the hypothetical mechanisms of the novelty detection that have been 

proposed, there are four testable hypotheses: 1) Novelty computation could arise with surprise 

computation which computes novelty as a form of sensory surprise; 2) Novelty computation 
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could arise with recency computation which computes novelty as recency and/or repetition 

effect; 3) Novelty computation could arise with both surprise and recency computations; 4) 

Novelty computation could arise independently of surprise or recency, which purely serves the 

goal of differentiating objects that have been seen for the first time vs. many times. 

There is no study that compares all these hypotheses simultaneously; thus, in Chapter 3, we 

tested all these hypotheses for the first time. In addition, we used high-channel-count electrode 

arrays to record novelty responses in multiple brain areas, which have more accuracy both 

spatially (up to single neuron) and temporally (up to single spike) compared with previous fMRI, 

PET, and EEG studies. 

We found that at the single neuron level, the computation of novelty depends on both sensory 

surprise and recency. This dependency is observed both within brain areas and across brain 

areas. However, different brain areas do not share precisely the same computation.  

We also investigated how single neurons adapt as novel objects gradually become familiar. We 

presented the same novel objects repeatedly to the animals for multiple days. Neurons that are 

excited by novel objects gradually decrease their firing rate as the repeating novel objects' 

presentation number increases. We measured the learning rate of the neuron population. The 

learning rate drops as the repeating novel objects' presentation number increases. In addition, 

different neurons also show heterogeneous timescales in their adaptation to repeating novel 

objects, and this heterogeneity also exists among different brain areas. 
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1.4 Summary 

Salience signals play an important role in guiding our behavior. Salient objects include rewards, 

punishments, cues indicating them, and surprising, uncertain, and novel objects. They make the 

animal orient towards them, attract attention, and improve arousal. Cumulative evidence has 

demonstrated that the neuromodulatory systems, especially the basal forebrain neuromodulatory 

system, regulate many of the behavioral and psychological effects of salience.  

In Chapter 2, we studied how the basal forebrain encodes different kinds of salient events. We 

recorded two subsets of the basal forebrain neurons in the primate brain and studied their 

activities and tunings to different events with motivational and ecological salience.  

Novelty is a special type of salience signal. In Chapter 3, we studied the underpinnings that 

influence the novelty computations in the brain. We recorded neurons from multiple brain areas 

and discovered that the computation of novelty is supported by the computations of surprise and 

recency. We further investigated how the brain goes through the novelty-familiarity 

transformation when presenting the repeating novel objects. 
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Chapter 2: Novelty, salience, and surprise 

timing are signaled by neurons in the basal 

forebrain 1 

 

The basal forebrain (BF) is a principal source of modulation of the neocortex and is thought to 

regulate cognitive functions such as attention, motivation, and learning by broadcasting 

information about salience. However, events can be salient for multiple reasons - including 

novelty, surprise, or reward prediction errors - and to date, precisely which salience-related 

information the BF broadcasts is unclear. Here, we report that the primate BF contains at least 

two types of neurons that often process salient events in distinct manners: one with phasic burst 

activity to cues predicting salient events and one with ramping activity anticipating such events. 

Bursting neurons respond to cues that convey predictions about the magnitude, probability, and 

timing of primary reinforcements. They also burst to the primary reinforcement itself, 

particularly when it is unexpected. However, they do not have a selective response to 

reinforcement omission (the unexpected absence of an event). Thus, bursting neurons do not 

convey value-prediction errors but do signal surprise associated with external events. Indeed, 

they are not limited to processing primary reinforcement: they discriminate fully expected novel 

visual objects from familiar objects and respond to object-sequence violations. In contrast, 

ramping neurons predict the timing of many salient, novel, and surprising events. Their ramping 

 
1 This chapter is adapted from a published paper by Kaining Zhang, Charles D. Chen and Ilya E. 

Monosov: “Novelty, Salience, and Surprise Timing Are Signaled by Neurons in the Basal 

Forebrain.”, Current Biology 29.1 (2019): 134-142. 
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activity is highly sensitive to the subjects' confidence in event timing and on average encodes the 

subjects' surprise after unexpected events occur. These data suggest that the primate BF contains 

mechanisms to anticipate the timing of a diverse set of important external events (via ramping 

activity) and to rapidly deploy cognitive resources when these events occur (via short latency 

bursting). 

2.1 Introduction 

The basal forebrain (BF) is a principal source of modulation of the neocortex (Mesulam et al., 

1983; Everitt and Robbins, 1997; Baxter and Chiba, 1999; Monosov et al., 2015; Zaborszky et 

al., 2015; Turchi et al., 2018) and is thought to regulate cognitive functions such as attention, 

motivation, and learning by broadcasting information about salience (Richardson and DeLong, 

1990; Wilson and Rolls, 1990; Fukuda et al., 1993; Voytko, 1996; Masuda et al., 1997; 

Chudasama et al., 2004; Wilson and Ma, 2004; Pinto et al., 2013; Avila and Lin, 2014; Peck and 

Salzman, 2014; Hangya et al., 2015; Lin et al., 2015; Raver and Lin, 2015). However, events can 

be salient for multiple reasons - such as novelty, surprise, or reward prediction errors (Hayden et 

al., 2011; Preuschoff et al., 2011; Wallis and Rich, 2011; Wang and Mitchell, 2011; Barto et al., 

2013) - and to date, precisely which salience-related information the BF broadcasts is unclear. 

Previous work suggests that two prominent neuronal activation patterns in the BF support its 

mediation of cognitive functions in response to salient events: phasic bursting (Lin and Nicolelis, 

2008; Hangya et al., 2015), which has been identified in the brains of rodents, and tonic 

activations (Hangya et al., 2015; Monosov et al., 2015), which in monkeys are often seen in 

neurons that also ramp to the time of delivery of uncertain or noxious outcomes (Monosov et al., 

2015). To date, it remains unclear how these neuronal activations signal surprise and/or novelty 



14 

 

and how their surprise-related responses relate to errors in estimates of state values, referred to as 

reward prediction errors (RPEs). Therefore, how bursting and ramping BF activations contribute 

to cognitive functions remains poorly understood. Here, we assessed whether prediction-related 

phasic bursting and ramping activity occur in distinct groups of neurons and tested whether and 

how the BF represents prediction errors, surprise, value, novelty, and timing.  

2.2 Materials and Methods 

2.2.1 Experimental Model 

Six adult sexually mature male rhesus monkeys (monkeys B, R, Z, W, H, and P; ages: 7-10 years 

old) were used for recording experiments. All procedures conform to the Guide for the Care and 

Use of Laboratory Animals and were approved by the Institutional Animal Care and Use 

Committee at Washington University (monkeys B, R, W, and Z) and the National Eye Institute 

(monkeys P and H). 

2.2.2 Data acquisition 

All monkeys underwent surgery under general anesthesia. For each monkey, a plastic head 

holder and recording chamber were fixed to the skull under general anesthesia and sterile 

conditions. Chambers were tilted laterally from midline by 35 degrees and aimed at the basal 

forebrain and anterior portion of striatum. After the monkeys recovered from surgery, they 

participated in behavioral and neurophysiological experiments. 

While the monkeys participated in behavioral procedures we recorded single neurons in the basal 

forebrain. The recording sites were determined with 1 mm-spacing grid system and with the aid 

of MR images (3T) obtained along the direction of the recording chamber. This MRI-based 
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estimation of neuron recording locations was aided by custom-built software. Single-unit 

recording was performed using glass-coated electrodes (Alpha Omega). During each recording 

session, an electrode was inserted into the brain through a stainless-steel guide tube and 

advanced by an oil-driven micromanipulator (MO-97A, Narishige). Signal acquisition (including 

amplification and filtering) was performed using Alpha Omega 44 kHz SNR system. Action 

potential waveforms were identified online by multiple time-amplitude windows with an 

additional template matching algorithm (Alpha-Omega). 

Neuronal recordings were restricted to single well-isolated neurons in the basal forebrain that 

displayed task related ramping or phasic-bursting activity following the presentation of the task 

conditioned stimuli in the Probability Amount procedure. The ventral pallidum (defined using 

anatomical criteria and previous electrophysiological criteria, such as high and irregular firing 

rate) was not part of this study. The locations of the BF recordings are detailed in Supplemental 

Figure 2.2. Reconstruction procedures were detailed previously (Daye et al., 2013). 

Eye position was obtained with an infrared video camera (Eyelink, SR Research). Behavioral 

events and visual stimuli were controlled by MATLAB (Mathworks, Natick, MA) with 

Psychophysics Toolbox extensions. Juice, used as reward, was delivered with a solenoid delivery 

reward system (CRIST Instruments). Juice-related licking was measured and quantified using 

previously described methods. Airpuffs were delivered through a narrow tube placed ∼6-8cm 

from the monkey's face. 

2.2.3 Behavioral tasks 

Probability Amount procedure 
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To study (1) neuronal representations of reward probability and amount, and (2) delivery-related 

responses following uncertain predictions, we trained monkeys on a Pavlovian conditioning 

procedure. Pavlovian conditioning was used to avoid fluctuations in reward rate across trials or 

fluctuations in outcome timing within single trials (related to action performance) which 

theoretically may affect outcome prediction error signals (Apicella et al., 2011). 

The Pavlovian conditioning procedure contained two blocks of trials: a reward-probability block 

and a reward-amount block. Each trial started with the presentation of a green trial-start cue at 

the center. The monkeys had to maintain fixation on this trial-start cue for 1 s; then the trial start 

cue disappeared and one of the CSs was presented pseudo randomly. After 2.5 s (for monkeys B, 

Z, and R) or 1.5 s (monkeys H and P), the CS disappeared, and juice (if scheduled for that trial) 

was delivered. The longer duration was introduced for monkey B, Z, and R to verify that the 

ramping activity in the BF reaches maximum at the time of the outcome across different CS 

durations. The reward-probability block contained five visual fractal object CSs associated with 

five probabilistic reward predictions (0, 25, 50, 75 and 100% of 0.25 mL of juice). The reward-

amount block contained five objects associated with certain reward predictions of varying reward 

amounts (0.25, 0.1875, 0.125, 0.065 and 0ml). Each block consisted of 20 trials (monkeys B, Z, 

and R) and 40 trials (monkeys P and H) with fixed proportions of trial types (each of the five 

CSs appears four times in each block or 8 times in each block, depending on block length). The 

expected values of the five CSs in the probability block matched the expected values of the five 

CSs in the amount block. This two-block design removed confounds introduced by risk seeking-

related changes in subjective values of the CSs (Monosov and Hikosaka, 2013; White and 

Monosov, 2016). 
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Before neuronal recordings began, the monkeys' knowledge of the CSs was confirmed by a 

choice procedure that was detailed previously (Monosov and Hikosaka, 2013; Monosov et al., 

2015). Briefly, in separate experimental sessions, the monkeys' choice preference was tested for 

the CSs. Each trial started with the presentation of the trial-start cue at the center, and the 

monkeys had to fixate it. Then two CSs appeared 10 degrees to the left and right. The monkeys 

had to make a saccade to one of the two CSs within 5 s and fixate it for at least 750 ms. Then, the 

unchosen CS disappeared, and after a brief delay the outcome (associated with the chosen CS) 

was delivered, and the chosen CS disappeared. If the monkey failed to fixate one of the CSs, the 

trial was aborted and all stimuli disappeared. The trials were presented pseudo randomly, so that 

a block of 180 trials contained all possible combinations of the 10 CSs four times. To verify that 

the monkeys' knowledge is stable during recording, we also monitored licking behavior and 

confirmed that it, like the choices, scaled with the expected values of the probability CSs and 

amount CSs (two separate Spearman's correlations, threshold: p < 0.05). The CS epoch responses 

of the 31 neurons recorded in monkeys H and P were previously analyzed in (Monosov et al., 

2015). 

Temporal Uncertainty Procedure 

To assess how monkeys' BF neurons encoded uncertain predictions about reward timing, 

monkeys B, R, Z were trained on an additional Pavlovian procedure (Supplemental Figure 2.3). 

Following a trial start cue fixation period (same as above), one of five CSs were presented. These 

CSs predicted either (1) a probabilistic delay before a reward with deterministic delivery 

(reward-timing-uncertain CSs); or (2) a deterministic delay before a reward with 0.5 probability 

of delivery (reward-probability CS). In trials with one of the four reward-timing-uncertain CSs, 
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reward was always delivered either 1.5 s after CS onset or 4.5 s after CS onset. Depending on the 

reward-timing uncertain CS, the reward was delivered at 1.5 s with 0.25, 0.50, 0.75, or 1 

probability. In trials with the reward-probability CS, reward was delivered with a delay of 1.5 s 

after CS onset with 0.50 probability. During, the 0.25, 0.50, and 0.75 CS trials, when reward was 

not delivered at 1.5 s, the CS remained on the screen until reward was delivered at 4.5 s. During 

the 0.50 reward probability CS, the CS turned off at the time of the outcome (when reward was 

either delivered or omitted). The inter-trial-interval ranged from 2 to 6.5 seconds. 

The training was verified by monkeys' reward anticipatory licking behavior. The data suggested 

that they understood the meanings of the CSs and were highly sensitive to the timing and 

probability of reward (Supplemental Figure 2.3B). First, during the four reward-timing-uncertain 

CSs, monkeys displayed increased licking behavior before 1.5 s, then a decrease in licking 

behavior after 1.5 s if the reward was not delivered, then finally an increase in licking behavior 

to the time of reward at 4.5 s. During reward omissions, in 75% reward trials licking behavior 

remained higher than 25% and 50% trials, even 0.5 s after the reward was omitted at 1.5 s (p < 

0.01, rank-sum test, time window 2 s to 2.5 s after the onset of fractal). Also, the mean 

magnitude of anticipatory licking behavior before possible reward delivery at 1.5 s across all 

trials increased with the probability of reward delivery at 1.5 s (Spearman's rank correlation, ρ = 

0.38, p = < 0.0001; Supplemental Figure 2.3). These behavioral results indicate that the 

magnitude and persistence of the monkeys' anticipatory behavior were strongly influenced by 

reward timing conveyed by the CSs. 

Object Sequence Procedure 
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An object sequence task was used to study how BF neurons encode sensory predictions and 

object novelty. Monkeys B, R, and Z experienced four distinct sequences of object presentations 

(S1, S2, S3, S4). The object sequences began following a 0.5 s period of fixation on the trial start 

cue that appeared in the center of the screen. Each sequence contained 3 familiar objects and 1 

novel object. These objects were presented in the center of the screen and occupied ∼3 degrees 

visual angle. The novel object was always presented in second position in the sequence. 

Therefore, the novel object was surprising because it was never experienced by the monkeys, but 

its presentation did not deviate from the animals' expectations. Monkeys performed more than 

10,000 trials before recordings began. Following sequences S2 and S4, the monkeys performed a 

reaction-time Delayed Non-matching-to-Sample task (DNMS). During DNMS, an object that 

was novel during the presentation of S2 (or S4 if the DNMS trial followed S4) was presented 

with a novel object that has never been experienced. The objects were presented 10 degrees from 

the center, to the left and the right of the fixation point. The trial continued until the monkeys 

fixated the novel object for 0.5 ms to get a reward. The monkeys were never penalized for 

looking at the previously experienced object. Therefore, the novel objects in S2 or S4 did not 

have an explicit reward association, but aided the monkey in subsequent DNMS trials. On ∼11% 

of S2 or S4 presentations, the first or the third fractal was replaced by a corresponding fractal 

from sequences S1 and S3 (in S2 from S1; and in S4 from S3). For example, if the first fractal in 

S2 was replaced, the first fractal from S1 was always displayed instead. In this way, sequence 

violations did not alter the relationship of the individual fractals to the timing of reward delivery. 

We used the probability-amount procedure to identify phasically bursting BF neurons and 

uncertainty ramping neurons and studied them in the object sequence procedure. All phasic 

bursting neurons included in Figure 2.5 had greatest responses for 100% reward CSs. 
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Reward and Novelty Motivated Gaze Task 

To test if monkeys are motivated by novelty we trained Monkeys R and Z on a novel saccadic 

task (Supplemental Figure 2.5) that measured their eagerness to observe a novel visual object. 

First, a fixation dot appeared in the center of the screen. 0.5 s after the onset of the fixation dot, a 

visual object fractal appeared 10 degrees to the right or the left of the fixation dot. The monkey 

was required to continue fixating the dot in the center. After 0.35 s the fixation spot disappeared 

and the monkey was free to make saccades. Reward was always delivered 3 s after the fractal 

onset. Therefore, the monkeys' saccadic behavior after the fixation spot disappeared did not 

affect reward delivery. In this task, the monkeys experienced four different trial types. The first 

two types of trials contained a novel (type 1) or 1 of 2 familiar (type 2) visual fractal objects. 

Two additional trial types (3-4) tested whether the monkeys were motivated by the possibility of 

viewing a novel fractal. In trial type 3, 1 of 2 distinct familiar fractal objects appeared. After the 

fixation spot disappeared, if the monkey fixated the familiar object, it was immediately replaced 

by a novel object. In trial type 4, 1 of 2 other distinct familiar objects appeared. If the monkey 

fixated this object, it was replaced by 1 of 2 other familiar objects. If novelty is salient, we ought 

to observe faster target acquisition times (duration between the time when the stimulus was 

presented and when the monkey saccades to its location) in trial type 1 than 2. Also, if novelty 

exerts motivational effects on saccadic behavior, then we ought to see faster target acquisition 

times in trial type 3 than 4. 

2.2.4 Data processing and statistics 

In order to generate spike density functions, spike times were convolved with a Gaussian kernel 

(σ = 100 ms). Statistical tests were two-tailed. All permutation tests used 10000 shuffles. For all 
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analyses and figures that included deliveries and omissions of rewards, unless explicitly stated in 

the text, a neuron was included if it had at least 2 trials for reward delivery and omission. 

To cluster the single neurons' average responses in the probability block (Figure 2.1), first we 

performed principal component analysis (PCA). We then applied Silhouette and Calinski-

Harabasz tests to confirm the optimal number of clusters (n = 2). K-means clustering was used to 

cluster the data based on PCs into 2 clusters (for this, using the first 3 PCs and up to 10 PCs 

resulted in very similar group membership). 

To calculate the latency of reward size coding information (Figure 2.1C) we performed a 

correlation of firing rate and value in time (in 100 ms bins moving 1 ms steps) for each neuron. 

For each time bin we calculated the p value of the Spearman's rank correlation of neuron's 

activity with reward amount in the reward amount block. Reward size coding latency was 

defined as the first time p was lower than 0.01 (but similar results were obtained at p < 0.05). 

These statistical-latency analyses do not determine the actual latency of information coding per 

se because they utilize an arbitrary threshold. Instead, they are useful for demonstrating relative 

latencies across two groups of neurons. 

To calculate the baseline rate that was used to derive the latency with which ramping neurons 

returned to baseline (Figure 2.3A), we picked the time window from 1000 ms to 500 ms before 

trial start cue appeared and used the average firing rate in this time window as the baseline. 

To fit the outcome related activity with exponential functions (Figure 2.3), we first derived spike 

density functions using overlapping bins of 50 ms (in 20 ms steps). Then we used a least-squares 

method to fit the data by the function: 𝐴 ∗ 𝑒−𝜆𝑡 + 𝐶, in which λ is the decay rate, representing 

how fast the firing rate decreases. λ is restrained by the interval (0,0.06). To determine if the 
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decay rates were significantly different across the different reward-omission conditions we used 

bootstrapping to calculate the confidence interval of the difference between two decay rates and 

tested if the 95% confidence interval excluded a difference of zero. Bootstrapping was done by 

randomly resampling the neurons with replacement (500 times). Each time resampling was done, 

we obtained a set of decay rates by fitting the neurons' average activity to the function shown 

above. For Figures 2.2A–2.2D, data from probability-amount and reward timing procedures were 

pooled (see outcome responses separately in Supplemental Figures 2.1 and 2.3). 

In the DNMS object sequence task, reward was delivered as long as the monkey fixated on the 

novel object for 0.5 s, regardless if he had looked at the other object. To evaluate the monkey's 

performance, we focused on the primary choice the monkey made, i.e., the first object he fixated 

for 0.5 s. To calculate performance, we obtained the percentage of trials in which the monkeys' 

primary choices were the novel objects. 

For single neuron analyses (Figure 2.5B–E) of novelty, task-relevance, and sequence-violations 

in the object sequence task, we subtracted the activity 100 ms before the object presentation from 

the activity measured after the object was presented (the time window was 200 ms to 400 ms 

unless otherwise stated). In this way, changes in firing rate that were unrelated to the objects 

were not considered in the analyses. 

Neuronal discrimination of object novelty was assessed by calculating area under the receiver 

operating characteristic (ROC) curve. ROC areas of 0 and 1 are equivalent statistically; both 

indicate that two distributions are completely separated. The analysis was structured so that ROC 

area values greater than 0.5 indicate that the activity during novel object presentation was greater 

than familiar. 
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2.3 Results 

2.3.1 CS-related phasic and ramping activity are observed in mostly distinct 

BF cell groups that differentially signal reinforcement statistics 

We recorded BF neurons in 5 monkeys that participated in a Pavlovian procedure in which they 

experienced reward predictions that varied in magnitude and probability (Monosov and 

Hikosaka, 2013; Monosov et al., 2015; White and Monosov, 2016). A reward-probability block 

contained five conditioned stimuli (CSs) associated with five probabilistic reward predictions (0, 

25, 50, 75, and 100% of 0.25 mL of juice). A reward-amount block contained five other CSs 

associated with certain reward predictions of varying reward amounts (0.25, 0.1875, 0.125, 

0.065, and 0 mL). During neuronal recording, any neuron that displayed ramping and/or phasic 

burst responses in the CS epoch of this Pavlovian procedure was recorded (n = 70; monkey H = 

15, monkey P = 16, monkey B = 10, monkey R = 12, and monkey Z = 17). 

Example neurons are shown in Figure 2.1A. The first neuron (Figure 2.1A, top) displayed short 

latency bursting after the presentation of the probability and amount CSs. This phasic activation 

was greatest following the presentation of the CS associated with the highest expected value in 

either the reward-probability or the reward-amount block and least following the presentation of 

the CSs associated with the lowest expected value (no reward). In either block, the bursting 

activity was strongly correlated with the expected value (Spearman's rank correlation; probability 

block, ρ = 0.84, p < 0.0001; amount block, ρ = 0.86, p < 0.0001). The second neuron (Figure 

2.1A, bottom) had a very different response. Shortly after the CSs were presented, it displayed a 

consistent CS-onset-related inhibition that was greatest in the low-value trials and less apparent 

during high-value trials, on average roughly scaling with the expected value. In the reward-
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probability block, this initial change was followed by ramping activity to the time of the 

uncertain (or risky) reward delivery (following 75%, 50%, and 25% CSs). The neuron's activity 

was significantly fit by a model of uncertainty (ρ = 0.77, p = 0.0001; measured in the last 500 

ms) but not expected value (ρ = −0.01, p = 0.94). In the reward-amount block, in which all trials 

were certain, the neuron represented the expected value until the time of the reinforcement in its 

tonic activity (ρ = 0.70, p < 0.0001; measured in the last 500 ms). These example neurons 

suggest that the BF may contain functionally distinct classes of neurons: phasic bursting neurons 

that co-vary with the magnitude and probability of reinforcements and tonic neurons that ramp, 

predicting the timing of uncertain outcomes. 

To test this, we clustered BF neurons based on their average responses. Only neurons that had 

been recorded in every condition in both blocks were included (n = 66/70). Importantly, their 

response vectors were obtained by averaging the neuronal activity across all five CSs in the 

reward-probability block and were subsequently normalized from 0 to 1 (Figure 2.1B, inset). 

Therefore, neuronal tuning (e.g., representation of reward probability) and baseline firing rates 

were not considered in the clustering analysis. 

This analysis revealed two clusters (Figure 2.1B). The first cluster (red; n = 23) showed clear 

bursting after the CS onset (see the neurons' response vectors in Figure 2.1B, inset). In contrast, 

the second cluster (blue; n = 43) showed an initial suppression following the CS onset and a slow 

ramp-like increase in activity as the trial's outcome neared. 

The two clusters had different baseline firing rates (Figure 2.1C): one had relatively high firing 

rates (blue cluster; average frequency = 18 Hz; SD = 12 Hz) and the other low (red cluster; 

average frequency = 2.1 Hz; SD = 3.5 Hz). Both clusters' initial CS responses co-varied with the 
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magnitude of the predicted reward, initially coding expected value, but the latency of this 

information was different among the two clusters. The expected value was conveyed earlier by 

the neurons in the phasic bursting red cluster (Figure 2.1C, right; rank-sum test; p < 0.01; blue 

cluster, average = 195 ms, median = 159 ms, SD = 104 ms; red cluster, average = 123 ms, 

median = 100 ms, SD = 96 ms). 

These clusters differed in how they represented both the probability and amount of reinforcement 

(Figures 2.1D–2.1F and Supplemental Figure 2.1). Phasic bursting neurons (red cluster) signaled 

the expected value of the CSs in their bursting activations. The bursting activity was correlated 

with the probability in the probability block (ρ = 0.60, p < 0.0001) and with the reward amount 

in the amount block (ρ = 0.71, p < 0.0001). Tonic ramping neurons' initial suppression co-varied 

with the expected value (ρ = 0.47, p < 0.0001 in the probability block; ρ = 0.46, p < 0.0001 in the 

amount block). However, in trials in which reward was uncertain, they displayed additional 

ramping activity toward the trial outcome (Monosov et al., 2015). The activity during these 75%, 

50%, and 25% CS trials was correlated with the probability of reinforcement delivery 

(Spearman's rank correlation; ρ = 0.25, p = 0.0043; pre-outcome analysis window −0.5 s before 

the outcome was delivered). And, on average, the pre-outcome activity in the reward-probability 

block (across all 5 trial types) was correlated with uncertainty (ρ = 0.71, p < 0.0001; same 

analysis window as above). 

Locations of phasic bursting and tonic ramping neurons were reconstructed using in vivo MRI 

(Materials and Methods) (Daye et al., 2013) (Supplemental Figure 2.2). Both phasic bursting and 

tonic ramping neurons were found within the BF, in the diagonal band of Broca and the nucleus 

basalis of Meynert (Mesulam et al., 1983; Monosov et al., 2015; Turchi et al., 2018). 
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Figure 2.1. Two groups of BF neurons encode the magnitude and probability of 

reinforcement in distinct manners. (A) Responses of two example BF neurons (top and 

bottom) to the presentation of 10 fractal objects associated with certain and uncertain predictions 

of juice rewards in the reward-probability block (left) and reward-amount block (right). (B) 

Clustering of BF neurons based on average activity in the probability block. The inset heatmap 

shows the activity of 66 BF neurons (normalized from 0 to 1 to the minimum and maximum in 

the reward-probability block) from the time of the CS onset to the time of the trial outcome 

(reward or no reward) in the reward-probability and reward-amount blocks. Each line represents 

the average activity across all 5 trial types in the block for each neuron. Below are the results of 

principal-component analyses performed on those normalized CS response functions. K-means 

clustering (Materials and Methods) was used to separate the neurons into two groups: red group 

(n = 23) and blue group (n = 43). The group identities of the neurons are also indicated by a color 

bar to the left of the heatmap. (C) The two clusters of neurons (red and blue) display distinct 

baseline firing rates (left) and latencies of value coding (right) in the reward-amount block. Each 



27 

 

dot represents data from a single neuron. Error bars around the mean show the SEM. (D-E) 

Average responses of the neurons in the red group in the reward-probability block (left) and 

reward-amount block (right). (D) shows neurons that displayed greater activation for reward 

versus no-reward trials, while (E) shows neurons that displayed greater activation for no-reward 

trials. See also Supplemental Figure 2.1, Materials and Methods, and the associated 

Supplemental Figure 2.2 for details and anatomical locations of neuronal recordings. (F) 

Average responses of the neurons in the blue group in the reward-probability block (left) and 

reward-amount block (right). 
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2.3.2 Phasic and ramping neurons signal early versus late rewards under 

temporal uncertainty 

Does ramping of BF neurons encode the estimated timing of uncertain rewards? If so, then if 

rewards were certain but their timing was uncertain, the neurons should display ramping activity 

to the time of the earliest possible reward. Second, phasic bursting neurons' bursts seemed to 

scale with the expected values of the CSs, regardless of whether the value was manipulated by 

probability or amount. Might these neurons also encode the value of early versus late rewards? 

To answer these questions, we designed a reward-timing procedure (Supplemental Figure 2.3). 

Here, five distinct visual-fractal objects served as CSs that predicted either (1) a probabilistic 

delay before a reward with deterministic delivery (delays = 1.5 or 4.5 s; reward-timing-uncertain 

CSs) or (2) a deterministic delay before a reward with 0.5 probability of delivery (reward-

probability CS). To test how phasic bursting neurons and tonic ramping neurons encode 

temporally uncertain reward predictions, we first identified them using the task in Figure 2.1 and 

then recorded them in this reward-timing procedure (n = 52; monkey W = 21, monkey B = 6, 

monkey R = 15, and monkey Z = 10). 

Tonic ramping neurons displayed ramping activity in the 0.75, 0.5, and 0.25 reward-timing-

uncertain conditions (Supplemental Figure 2.3). The magnitude of this activation was correlated 

with the probability of reinforcement delivery at 1.5 s (Spearman's rank correlation; ρ = 0.48, p < 

0.0001; analysis window, 1 s to 1.5 s). Interestingly, significant ramping was also observed to 

certain late reward at 4.5 s (Supplemental Figure 2.3). Therefore, BF ramping tracks reward 

delivery during temporal-reward uncertainty (before 1.5 s) and during relatively longer epochs in 

which there is temporal uncertainty due to noise in interval timing. 
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Phasic bursting neurons' activity scaled with reward timing such that highest activity was evoked 

by CSs predicting the earliest reward (Supplemental Figure 2.3). Their average activity was 

correlated with reward probability at 1.5 s (Spearman's rank correlation; ρ = 0.41, p = 0.0012; 

analysis window, 0 s to 0.5 s). Unlike the tonic ramping neurons, the phasic bursting neurons did 

not anticipate the late reward at 4.5 s (Supplemental Figure 2.3). 

2.3.3 BF phasic and ramping neurons signal reinforcement surprise in distinct 

manners 

A long-standing question is whether the BF signals errors in state values, or RPEs—a key signal 

for updating reward values and mediating economic choice (Schultz, 2002; Lak et al., 2014). An 

alternative is that BF neurons signal a rectified (unsigned) prediction error (Pearce and Hall, 

1980; Roesch et al., 2010) rather than a value (signed) prediction error, which is better suited to 

control attention and mediate memory of salient events. We tested which type of prediction error 

is signaled by the BF by analyzing responses to reward deliveries and reward omissions after 

25%, 50%, and 75% predictions (Figure 2.2). 

Ramping neurons' outcome-related activity on average was correlated with unsigned prediction 

errors (Figures 2.2A and 2.2B). After the trial outcome, the magnitude of their activity was 

greatest during reward-delivered trials following 25% reward predictions and greatest during 

reward-omission trials following 75% reward predictions. Reward-omission and reward-delivery 

outcome responses were significantly correlated with expectancy (Figure 2.2B), albeit in 

opposite manners. 

Phasic bursting neurons' outcome-related activity also signaled prediction errors following 

reward deliveries. Their delivery responses were correlated with expectancy (Figure 2.2D, red), 
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displaying highest activations following reward deliveries in 25% reward trials. However, unlike 

the ramping neurons, these neurons did not discriminate reward omissions following different 

uncertain reward predictions (Figures 2.2C and 2.2D). To verify that the lack of relationship 

between reward-omission-related activity and reward probability was not due to firing rate 

normalization, we repeated the correlation analyses in Figure 2.2D on raw omission-related spike 

counts and observed the same results (p = 0.89). Hence, a key feature of the value RPE—a 

reward-omission-related suppression—was missing from the phasic bursting neurons. 

BF bursting can be elicited by rewarding and aversive, noxious events(Lin and Nicolelis, 2008; 

Hangya et al., 2015; Monosov et al., 2015). Therefore, why was bursting not apparent in 

response to unexpected reward omissions? The most parsimonious explanation is that the lack of 

omission responses was due to a lack of external salient events cueing reward omissions and a 

lack of sensitivity of phasic bursting neurons to internally generated errors in subjective value.  
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Figure 2.2. Differential coding of surprise in BF ramping and bursting neurons. (A) 

Ramping neurons' average outcome activity in 25%, 50%, and 75% conditions. Red shows 

reward-delivered trials; black shows no-reward trials. (B) Ramping neurons' average responses 

for reward-delivery and no-reward trials. Linear correlations of responses with reward 

expectancy are indicated (time window: 100 ms to 400 ms; p values were obtained with 10,000 

permutations; Materials and Methods). The results of the correlations suggest that the activity 

resembles the toy model of unsigned RPEs (or surprise). The inset shows cartoon models of 

theoretical outcome responses coding RPEs (left) and unsigned RPEs (right). If neurons signal 

unsigned RPEs, then they should display greatest responses to reward deliveries following 25% 

reward predictions and smallest responses following a 75% reward prediction. The same neurons 

should display greatest responses to reward omissions following 75% reward predictions and 

smallest responses following 25% reward predictions. Alternatively, if neurons encode signed 

RPEs, then they will display inhibitions following omissions whose magnitudes ought to be 

inversely related to the probability of a reward. (C) Outcome activity of phasic bursting neurons. 

Conventions are the same as in (A). (D) Phasic bursting neurons' responses resembled RPE 

coding only in reward-delivery trials (red; time window: 200 ms to 500 ms). 
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Surprise has a temporal dimension, and ramping neurons clearly display ramping signals to the 

timing of uncertain or salient reinforcements (Figures 2.1 and 2.2) (Monosov et al., 2015), the 

magnitude of which is correlated with monkeys' confidence in reward delivery (Figures 2.1 and 

Supplemental Figure 2.3; ramping responses: 0.25 < 0.5 < 0.75). Might BF ramping activity 

encode estimates of outcome timing under uncertainty? 

To test this, we took advantage of the fact that in our tasks, CSs co-terminated with outcomes. 

During omission trials, no external cues indicated that the reward was omitted. If ramping 

reflects information about the animals' internal temporal estimates, then we should have seen 

different ramping-down responses following omissions in 25%, 50%, and 75% trials. 

BF ramping returned to baseline earliest during 25% reward trials and latest during 75% trials 

(Figure 2.3A). Decay of the ramping also roughly scaled with reward expectation: it was greatest 

following omissions during 25% and least during 75% trials (Figure 2.3B; bootstrapping; the 

95% confidence intervals of 25%, 50%, and 75% decay rates exclude each other). Note that 

different firing rates across different trial types could not explain these results because before 

obtaining the decay rates, we first normalized each trial type from 0 to 1. 

Next, we studied the activity of BF ramping neurons in the reward-timing procedure because it 

contained two distinct 50% reward predictions: one in which the CS co-terminated with the 

outcome and one in which the CS remained on the screen (Supplemental Figure 2.3). In the first 

condition, the animals obtained a signal about the timing of the trial, while in the other, they did 

not. The decay rate of BF ramping neurons was again sensitive to temporal predictions: it was 

greater when the animals did not receive an explicit temporal cue (Figure 2.3C; bootstrapping; 

the 95% confidence intervals of the decay rates exclude each other). Finally, we analyzed 
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another task that contained two types of 50% reward CS trials with identical timing and reward 

statistics. The two trials differed in one way—one of them contained an external trial-end cue 

that indicated when the trial was over. Consistent with the results of Figure 2.3C, when an 

explicit cue was given during reward-omission trials, the ramping-down activity displayed a 

relatively rapid drop-off (Figure 2.3D, right). In sum, Figure 2.3 show that BF ramping activity is 

strongly influenced by evidence about and confidence in the timing of reinforcements. 

  



34 

 

 

Figure 2.3. BF ramping neurons encode estimates of outcome timing under uncertainty. (A) 

Activity of BF ramping neurons during 25%, 50%, and 75% reward-probability trials in which 

the reward was omitted. The ramping activity returned to the inter-trial baseline level (thin blue 

line) at different latencies across these three types of trials: earliest during 25% trials and latest 

during 75% trials. Cumulative distributions of these latencies are shown in the inset. The black 

bar below the activity indicates the time window for the analyses in (B). (B) Exponential fits 

(thick lines) to the population's binned activity (thin lines; Materials and Methods). Fits and 

decay rates (right) were calculated for the population after the activity for each trial type was 

normalized from 0 to 1, such that for each of the three conditions, the starting point is 1. A.U., 

arbitrary units. (C) Same as (B), except here we compared the fit and decay rate during 50% 

trials in which an explicit cue indicated the end of the trial (dark blue) with the fit and decay rate 

during 50% trials in which no explicit cue was given (and the CS remained on the screen; 

Materials and Methods). (D) Left: trace conditioning with and without explicit visual cues that 

signaled the end of the trial. Middle: the monkey's gaze behavior indicated that it attended to the 

trial-end cue (presented at the same location as the CS; rank-sum test; p < 0.001). Right: explicit 

knowledge of trial timing reduced the reward-omission-related ramping activity (monkey W; 8 

neurons; p = 0.0234; signed-rank test). The analysis window used to study gaze behavior and 

neuronal activity is indicated by the black bar. The shaded regions throughout this figure 

represent the SEM. See also Supplemental Figure 2.3 for activity in the temporal-uncertainty 

procedure separately. 
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2.3.4 Object novelty and sensory surprise are signaled by the BF 

The data thus far show that BF neurons are sensitive to surprise. However, surprises arise due to 

violations in belief states following a probabilistic prediction, when there is a deviation of the 

outcome from the mean of expected-outcomes (Barto et al., 2013), or as a result of novelty due 

to a comparison of a sensory events with representations of past experiences. To test how the BF 

represents novelty, we designed an object-sequence task in which novel objects were fully 

expected. 

Monkeys experienced four sequences of object presentations (S1, S2, S3, and S4). Each 

sequence contained 3 familiar objects and 1 novel object. The novel object was always in the 

second position in the sequence. If a neuron has a selective novelty response, it should respond 

more strongly and consistently to the novel object than to the familiar objects in the sequence. To 

assess whether novelty responses were dominantly due to task relevance or reward prediction, 

following S2 and S4, monkeys performed a reaction-time delayed non-matching-to-sample 

(DNMS) task (Figure 2.4A, right). During the DNMS task, an object that was novel during the 

presentation of S2 (or S4 if the DNMS trial followed S4) was presented along with a novel 

object that had never been experienced. The trial continued until the monkeys fixated on this 

novel object for 0.5 s to get a reward (Figure 2.4A, right). The monkeys' behaviors indicated that 

they understood the task and utilized previous experiences to increase their reward rate. Their 

first saccade following the presentation of the two fractals most often landed on the novel object, 

where their gazes remained until the non-selected stimulus disappeared and a reward was 

delivered. 
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Figure 2.4. Object-Sequence Task. (A) The monkey was first shown sequences of fractals. 

Each sequence contained 4 fractals, in which the 1st, 3rd, and 4th fractals were fixed familiar 

objects and the 2nd fractal was always novel. After the two sequences, the monkeys performed a 

DNMS task in which one object was novel and the other was the object that was previously 

novel in sequence 2. Monkeys fixated the novel object for reward. (B) Behavioral performance 

for three monkeys. y axis shows the percentage of first saccades to the novel object in DNMS. 

The percentages are significantly different from 0.5 for all three monkeys (p < 0.01; signed-rank 

test). (C) Example BF phasic bursting neuron's responses to the four objects in a sequence. The 

response was highest for the second (novel) fractal (rank-sum test; p < 0.05). 
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We studied 39 BF neurons identified using experiment 1 (monkey B = 6, monkey R = 11, and 

monkey Z = 22). Phasic bursting neurons robustly discriminated the novel object from the 

familiar objects. An example phasic bursting neuron is shown in Figure 2.4C. This neuron 

responded selectively to the novel object (p < 0.01; rank-sum test). This selective response could 

not be explained by priming or reward proximity because the novel objects always appeared in 

the second position in the sequence (Figure 2.4A) rather than the first or the last. Like the 

example neuron, the population of phasic bursting neurons (Figure 2.5A) and the single neurons 

(Figure 2.5B) selectively discriminated the novel object versus familiar objects. 

Phasic bursting neurons' strong and selective novelty responses in the object-sequence task were 

present when the novel object was relevant or irrelevant for subsequent memory behaviors 

(Figure 2.5C). That is, during both S1 and S3, BF phasic neurons displayed stronger responses to 

novel objects than to familiar objects (signed-rank tests; p < 0.01). Their novelty responses were 

also consistently enhanced by task relevance (Figures 2.5C and 2.5D). 

An important consideration for the interpretation of novelty responses is that novelty, in 

primates, is thought to exert a strong influence on behavior (Berlyne, 1970; Tiitinen et al., 1994; 

Barto et al., 2013; Foley et al., 2014), especially on gaze behavior. However, the type of 

influence (attentional, motivational, or both) that is exerted has been unclear. We designed a 

novel behavioral procedure that revealed that object novelty indeed has a motivational value 

(Supplemental Figure 2.5). This finding necessitates that future studies assess the role of BF 

activity in mediating the motivational effects of object novelty on behavior. 

We previously showed that CSs predicting uncertain (surprising) rewards attract overt attention 

more than CSs predicting certain rewards (Monosov, 2017). Here and in a previous report 
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(Monosov et al., 2015), we showed that BF ramping neurons anticipate uncertain reward delivery 

(Supplemental Figures 2.1 and 2.3). So, might these neurons also anticipate other attention-

capturing stimuli such as novel objects? While in contrast to the phasic neurons, the ramping 

neurons had a weaker novelty-selective response (rank-sum test comparing single neurons' area 

under ROC curve values; p = 0.035), they indeed displayed ramping that anticipated at least two 

critical events in the object sequence task: the presentation of novel objects and rewards 

occurring after a long interval (Supplemental Figure 2.4). 

The temporal cortex, a major target of BF projections (Mesulam et al., 1983), is sensitive to 

sequence violations (Meyer and Olson, 2011). To test whether the BF is sensitive to unexpected 

violations in object sequences, we replaced an object in S2 with an object from S1 or an object 

from S4 with an object from S3 in ∼11% of trials. These replacements avoided RPEs because 

the proximity to the reward was not changed. Sequence violations produced small but significant 

increases in the population responses of phasic and tonic neurons (Figure 2.5 and Supplemental 

Figure 2.4). So, the BF can broadcast information about novel and surprising sensory events that 

are not directly associated with primary reinforcements. 
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Figure 2.5. Phasic Bursting Neurons Signal Novelty and Surprise Not Directly Related to 

Reward. (A) Average activity of phasic bursting neurons in the object-sequence task. The 

shaded region represents the SEM. (B) Area under the ROC curve (AUC) for each phasic neuron 

that assessed the ability of the neuron to discriminate novel versus familiar objects. Red dots are 

neurons that can significantly discriminate novel versus familiar objects (time window: 200 ms 

to 400 ms). (C) Phasic neurons group average responses to novel fractals in sequence 1 (thin 

blue line), sequence 2 (thick red line), and then to the last 2 familiar fractals in sequence 1 (thin 

gray line) and sequence 2 (thick black line). The shaded region represents the SEM. The asterisk 

indicates significant difference (p < 0.05) between novel fractal responses in sequences 1 and 2. 

n.s., not significant. (D) Lower left: histogram of single neurons' response differences for novel 

fractals in sequence 2 (or 4) and sequence 1 (or 3). The red asterisk indicates a significant 

difference from 0 (p < 0.05). Upper right: for each neuron, the data from the histogram (right) 

was compared with the strength of novelty discrimination (left). Both novelty-discrimination and 

task-relevance effects are significant, but the novelty effect is stronger (p < 0.05). (E) At low 

probability (11%), one of the familiar fractals in sequence 2 (or 4) was substituted with another 

familiar fractal from sequence 1 (or 3) (Materials and Methods). Phasic neurons' responses were 

enhanced (p < 0.01) by this object-sequence violation. See also Supplemental Figure 2.4 for the 

activity of tonic ramping neurons. 
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2.4 Discussions 

We report that the primate BF contains at least two types of neurons that process a diverse set of 

salient events in distinct manners: with phasic burst responses when they occur or with ramping 

activity—in anticipation of their occurrence. 

Ramping neurons signaled internal variables closely tied to confidence in the timing of surprises 

and novel events. Their activity may represent (or provide a readout of (Paton and Buonomano, 

2018)) an internal clock that is well-suited to guide anticipatory temporal attention, particularly 

in uncertain or novel contexts. Phasic bursting neurons rapidly and precisely conveyed statistical 

information about the timing, magnitude, and probability of reinforcement predictions and about 

the surprise of reinforcement deliveries. They were highly sensitive to sensory novelty and to 

errors in the subjects' beliefs about the sequences of sensory events. These neurons' short latency 

bursting could rapidly coordinate many regions of the neocortex that receive BF projections to 

mediate the processing of a wide range of external salient events and orchestrate appropriate 

responses to them (Shuler and Bear, 2006; Hangya et al., 2015; Raver and Lin, 2015; Liu et al., 

2017; Paton and Buonomano, 2018; Turchi et al., 2018). 

Phasically bursting neurons did not discriminate among expected and unexpected reinforcement 

omissions that monkeys had to detect internally (e.g., omissions were not cued). Thus, in contrast 

to many dopamine neurons, they did not convey phasic RPEs (Morris et al., 2004; Matsumoto 

and Hikosaka, 2009; Lak et al., 2014). Notably, a set of recent studies showed that not all 

dopamine-phasic responses signal RPEs wholly or purely. Instead, some dopamine neurons 

convey an alerting signal complementary to BF bursting (Bromberg-Martin et al., 2010a; 

Matsumoto and Takada, 2013; Takahashi et al., 2016; Takahashi et al., 2017; Babayan et al., 
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2018). Future studies must assess how the BF phasic bursting and dopamine neurons work 

together to mediate behavior. One possibility is that BF phasic bursting (conveyed to the 

neocortex in response to a salient event) is followed by the release of dopamine in the basal 

ganglia. This dopaminergic release would then support striatal value (or motivational-salience) 

assignments to events being processed by the cortex (under the mediation of the BF). How 

dopamine would do so may ultimately depend on when and where it is released (Bromberg-

Martin et al., 2010a; Matsumoto and Takada, 2013; Takahashi et al., 2016; Takahashi et al., 

2017; Babayan et al., 2018). 

The BF contains prominent groups of cholinergic, GABAergic, and glutamatergic projection 

neurons. Previous work in rodents has identified putative GABAergic CS-related phasic bursting 

neurons, reinforcement-salience-related bursting cholinergic neurons, and other tonically active 

neurons in the rodent BF (Lin and Nicolelis, 2008; Avila and Lin, 2014; Hangya et al., 2015). It 

will now be particularly important to identify which neurotransmitters are released (or co-

released) by phasic bursting and ramping neurons in primates. 
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2.5 Supplemental Materials  

 

Supplemental Figure 2.1. BF activity across different probabilistic reward predictions. (A-

B) Neurons' average activity shown separately in trials in which rewards were predicted with 5 

different reward probabilities (indicated on the top; actual fractals used in the task are shown 

above the neuronal activity). After the trials' outcome time, activity is shown separately for 

reward delivered trials (red) and reward omitted trials (black). (A) Ramping neurons (B) Phasic 

bursting neurons. In this figure neurons with at least 2 trials for each condition (e.g. delivery 

versus omission) are shown. 
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Supplemental Figure 2.2. Estimated locations of phasic bursting and tonic ramping 

neurons in the BF. (A) The recording range in the BF was -2 to 4 mm anterior to the center of 

the anterior commissure (AC). Phasic neurons (top; n=38), tonic ramping neurons (middle; 

n=79), and other neurons encountered in the BF that did not have ramping or phasic activity 
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(bottom; n=280) are shown on three coronal T1 MRI images. All single neurons across all tasks 

are shown here. (B) A coronal MRI confirming a recording location of a phasic bursting neuron 

within the BF of monkey B. The image was acquired with a tungsten electrode (FHC) at the 

recording location within BF. The electrode's shadow is the black line whose tip is in BF 

(marked by a yellow e). BF - basal forebrain; ac - anterior commissure; ic - internal capsule; Cd - 

caudate; Put - putamen, Ag - amygdala. 
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Supplemental Figure 2.3. Anticipatory licking and neuronal activity in reward timing 

uncertain task. (A) The reward timing procedure uses Pavlovian delay conditioning in which 

five distinct visual fractal objects serve as conditioned stimuli (CSs) that predict either (1) a 

probabilistic delay before a reward with deterministic delivery (reward-timing-uncertain CSs); or 

(2) a deterministic delay before a reward with some probability of delivery (reward-probability 

CS). In trials with one of the four reward-timing-uncertain CSs, reward is delivered at the latest 

with a delay of 4.5 s after CS onset. However, depending on the CS, reward has either a 0.25 

(red), 0.50 (green), 0.75 (blue), or 1 (black) probability of being delivered earlier with a delay of 

1.5 s after CS onset. In reward-probability trials, reward is delivered with a delay of 1.5 s after 

CS onset with 0.50 (cyan) probability. (B) Time course of anticipatory licking behavior is shown 

before possible reward delivery at 1.5 s across all trials; and from 1.5 s to 4.5 s across trials with 

a reward-timing-uncertain CS in which reward was not delivered at 1.5 s. (B-right) The mean 

magnitude of anticipatory licking behavior increases with the probability of reward delivery at 

1.5 s (Spearman's rank correlation, rho=0.38, p<0.0001). The asterisks indicate significant 

differences between CSs (Wilcoxon rank-sum test, p<0.05). The 'ns' indicates no significant 

difference between CSs (Wilcoxon rank-sum test, p>0.05). (C) Clustering of BF neurons based 

on average activity in the reward timing task produces similar results to Figure 2.1. Heat map 

shows the activity of 52 BF neurons (normalized from 0 to 1) from the time of the CS onset to 

the time of the first trial outcome (1.5 seconds). Each line represents the average activity across 

all trial types for each neuron. K-means clustering (Materials and Methods) was used to separate 
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the neurons into two groups: red group (n=17) and blue group (n=35). The first 3 PCSs 

considered in the clustering are shown at the bottom. The average firing rates of the two groups 

during the first and last 500 milliseconds of the CS epoch are shown on the right (same format as 

in Figure 2.1). Note that in the red group (comprising of phasic bursting neurons) there was also 

1 negative value neuron whose activity is not shown in the average. (D) Tonic ramping neurons' 

(top) and phasic bursting neurons' (bottom) average activity shown separately in reward timing 

uncertain trials in which rewards were predicted at 1.5 s with 4 different probabilities (indicated 

on the top; actual fractals used in the task are shown above the neuronal activity). After the trials' 

outcome time, activity is shown separately for reward delivered trials (red) and reward omitted 

trials (black). (E) The CS related activity of tonic ramping (top) and phasic (bottom) BF neurons 

during 50% reward trials in which reward was delivered or omitted at 1.5 s and 50% reward 

trials in which reward was delivered at 1.5 s (50% of the trials) or 4.5 s (if it was omitted at 1.5 

s). Phasic bursting neurons did not discriminate between these two types of trials (p = 0.51, sign 

rank test, time window: 100ms to 600ms after fractal onset). Tonic ramping neurons displayed 

stronger ramping to the 50% reward probability CS that was riskier (p <0.01, time window: 

1000ms to 1500ms after fractal onset, sign rank test). (F) Reward-timing-uncertain CS responses 

and post-outcome reward-timing signals. Mean neuronal activity of the tonic ramping neurons 

(top) and phasic bursting neurons (bottom). Activity from all trials is shown before 1.5 s, and 

only from trials in which rewards were not delivered at 1.5 s is shown after 1.5 s. After reward 

was not delivered at 1.5 s, tonic ramping neurons displayed anticipatory ramping activity for the 

4.5 s reward (average ramping across all 3 conditions was related to time: Spearman's rank 

correlation, rho=0.32, p<0.01; time window of analyses is indicated by the linear fit over laid on 

the neuronal activity. Phasic neurons' activity is not significantly related to time (same analyses 

as above; p>0.5). In D-F, neurons with at least 2 trials for each condition (e.g. delivery versus 

omission) are shown. 
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Supplemental Figure 2.4. Tonic ramping neurons' activity in the object sequence task. (A) 

Average activity of ramping neurons in the object sequence task. Average activity of tonic 

ramping neurons ramped to the time of novel fractal presentation and to the time of the reward 

that followed the sequence (Spearman's rank correlations relating time and activity in the time 

windows indicated by the linear fits over laid on the neuronal activity, rho=0.29, p<0.01, 

rho=0.3, p<0.01, respectively). (A-right) Area under the ROC curve (AUC) for each ramping 

neuron that assessed the ability of a neuron to discriminate novel versus familiar objects. Red 

dots - neurons that significantly discriminate novel versus familiar objects (time window: 200 ms 

to 400 ms). Overall, the neurons' discrimination was not significantly different from chance (sign 

rank test; p>0.5). (B-top) Histogram of single neurons' response differences for novel fractal in 

Sequence 2 and Sequence 1, there is no significant difference from 0 (sign rank test; p = 0.79). 

(B-bottom) Same convention as Figure 2.5E. Here the object sequence violation also 

significantly enhanced neurons' responses (sign rank test; p<0.01). (C) Given the results in (A), 

might ramping occur in anticipation of any salient stimulus or in anticipation of a distracting 

stimulus? To answer the question, we trained Monkey W to participate in a simple Pavlovian 

procedure in which ~15% of the inter-trial-intervals contained one of three unexpected 150 ms 

events (air puff punishments, juice rewards, and synchronous deliveries of white noise bursts 

with screen flashes). If this first event occurred, a second event (of the same type) always 

occurred after a fixed time interval. As expected BF ramping neurons responded phasically to the 

first sound/flash event (black trace). However, after this, they did not significantly ramp to the 

second sound/flash event. In fact, their activity was clearly reduced by the expectation of the 

second sound/flash relative to baseline. Responses to other events replicated previous work: 

during double rewards, the neurons responded to the first unexpected reward with a phasic burst; 

and the same neurons ramped to the time of punishment-delivery and they subsequently 

responded with a phasic burst to the delivery of the punishment. To clearly visualize the rapid 

phasic events, here we used 50 ms Gaussian kernel for to generate the spike density functions. 

Shaded regions represent SEM.  
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Supplemental Figure 2.5. Behavioral measures of the motivational effects of object novelty. 

(A) To test if monkeys are behaviorally motivated by novelty, we trained Monkeys R and Z on a 

saccadic task that measured their eagerness to observe a novel visual object. First, a fixation dot 

appeared in the center of the screen. 0.5 s after the onset of the fixation dot, a visual object fractal 

appeared either to the right or the left of the fixation dot (angle: 10 degrees). The monkey was 

required to continue fixating the dot in the center. After 0.35 s the fixation spot disappeared, and 

the monkey was free to make saccades. Reward was always delivered 3 seconds after the fractal 

onset. Therefore, the monkeys' saccadic behavior after the fixation spot disappeared did not 

affect reward delivery. Monkeys experienced four different trial types. The first two types of 

trials contained a novel (type 1) or 1 of 2 familiar (type 2) visual fractal objects. Two additional 

trial types (3-4) tested whether the monkeys were motivated by the possibility of viewing a novel 

fractal. In trial type 3, 1 of 2 familiar objects appeared. After the fixation spot disappeared, if the 

monkey fixated the familiar object, it was immediately replaced by a novel object. In trial type 4, 

1 of 2 familiar objects appeared. If subsequently the monkey fixated this object, it was replaced 

by 1 of 2 familiar objects. (B) After training (8 days for Monkey Z and 5 days for Monkey R), 

Monkey R (top) and Monkey Z (bottom) displayed a decrease in target acquisition reaction time 

(the time from fixation off to the time the eye fixates the peripheral object) during trials in which 

the peripheral object was novel versus familiar (first versus second bar; rank sum test p value is 

indicated above the bars), and when a familiar peripheral object was associated with the 

presentation of a novel object (third versus fourth bar; rank sum test p value is indicated above 

the bars). Bars indicate the mean of target acquisition times across all sessions, and the single 

lines are single sessions' means following training. 
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Chapter 3: Underpinnings of novelty 

detection in the primate brain 1 

 

Primates and other animals must detect novel objects. However, the neuronal mechanisms of 

novelty detection remain unclear. Prominent theories propose that novelty is either derived from 

the computation of recency or is a form of sensory surprise. Here, we use high-channel 

electrophysiology in primates to show that in many prefrontal, temporal, and subcortical brain 

areas object novelty sensitivity is related to both computations of recency (the sensitivity to how 

long ago a stimulus was experienced) and sensory surprise (violation of predictions about 

incoming sensory information). Also, importantly, we studied neuronal novelty-to-familiarity 

transformations during learning across many days and found a diversity of timescales in neurons' 

learning rates and between-session forgetting rates within and across brain regions that is well 

suited to support flexible behavior and learning in response to novelty. Our findings show that 

novelty sensitivity arises on multiple timescales across single neurons due to diverse related 

computations of sensory surprise and recency, and shed light on the logic and computational 

underpinnings of novelty detection in the primate brain.  

3.1 Introduction 

Humans and other primates learn from the world by exploring objects. Behavioral experiments in 

primates show that novel visual objects – that is, objects they have never seen before – motivate 

 
1 This chapter is adapted from an unpublished manuscript (accepted by Current Biology) by 

Kaining Zhang, Ethan S. Bromberg-Martin, Fatih Sogukpinar, Kim Kocher, and Ilya E. 

Monosov: “Underpinnings of novelty detection in the primate brain” 
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behavior, for example, by capturing attention and gaze, and promoting the formation of new 

memories (Tiitinen et al., 1994; Xiang and Brown, 1998; Bogacz et al., 2001a; Anderson et al., 

2008; Joshua et al., 2010; Gottlieb et al., 2013; Ghazizadeh et al., 2016a; Jaegle et al., 2019; 

Zhang et al., 2019; Tapper and Molas, 2020). And yet, despite the importance of novel objects in 

our daily life, we currently lack an understanding of how novelty selectivity arises in primate 

brain circuits and lack an algorithmic understanding of biological novelty detection.   

Previous studies reported that neurons in many primate brain areas are novelty responsive – that 

is, they respond differently to novel versus familiar stimuli (Petrides et al., 2002; Ranganath and 

Rainer, 2003; Kumaran and Maguire, 2007b; Zhang et al., 2019; Ogasawara et al., 2022). 

However, novel stimuli differ from familiar stimuli in many respects. For instance, novel stimuli 

are unexpected or surprising, deviate from recent experiences, and motivate behavior (Berlyne, 

1950; Berlyne, 1957; Berlyne, 1960; Berlyne, 1970; Bogacz et al., 2001b; Barto et al., 2013; 

Ogasawara et al., 2022). Such broad and diverse properties of novelty not only highlight that it is 

critical to understand the neural mechanisms of novelty detection, but also illustrate why it has 

been challenging to dissociate representations of novelty from other neural signals, particularly 

in higher-order brain areas. 

There are several formal theories and hypothesized algorithms for processing novelty that each 

suggests related but dissociable mechanisms for novelty detection. They make distinct 

predictions about the nature of novelty responsive neurons in the brain (Figure 3.1A). The first 

one conceptualizes novelty as a form of sensory surprise (Kumaran and Maguire, 2007b; 

Kumaran and Maguire, 2007a; Egner et al., 2010; Barto et al., 2013; Schwartenbeck et al., 2013; 

Homann et al., 2017; Reichardt et al., 2020) (Figure 3.1A – Model 1). Sensory surprise is a 
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violation of predictions about incoming sensory information and could be due to the probability 

of a specific stimulus or the overall sensory statistics of a given context, such as when expected 

sequences of objects are violated (Barto et al., 2013; Zhang et al., 2019). In this conception, 

novelty responsive neurons ought to be sensitive to sensory surprises due to errors in prediction 

about which sensory events occur. A second class of models conceptualize novelty as a recency 

and/or repetition effect, which is commonly operationally defined as a neural or behavioral 

sensitivity to how long ago a stimulus was experienced (Fahy et al., 1993; Li et al., 1993; Xiang 

and Brown, 1998; Bogacz et al., 2001a; Vogels, 2016) (Figure 3.1A – Model 2). While these two 

processes could be distinct, these processes could also be interdependent and cooperate (Hart and 

Jacoby, 1973; Bogacz et al., 2001a), particularly if the brain contains circuits with multiple 

timescales of object memory. Hence, it is possible that novelty selectivity could arise with both 

sensory surprise and recency computations (Model 3) or that each contributes to novelty 

computations preferentially in different brain areas. Finally, novelty responses could arise 

independently of sensory surprise or recency, for example as a categorical signal for 'complete 

novelty that purely indicates whether or not a stimulus has ever been seen before (Model 4) 

(Berlyne, 1960; Miljković, 2010; Barto et al., 2013).  

Human studies have examined how novelty, recency, and surprise modulate blood-oxygen level 

dependent signals (BOLD), as well as other signals that can be acquired non-invasively (Law et 

al., 2005; Strange et al., 2005; Dudukovic and Wagner, 2007; Wessel et al., 2012; Schomaker 

and Meeter, 2015; Kafkas and Montaldi, 2018; Utzerath et al., 2018). They studied novelty and 

recency, or novelty and surprise, but not all three, and, most importantly, could not determine 

whether these key variables were represented by the same group of neurons or by entirely 

different neurons within a given voxel or brain area.   
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We set out to (i) test the relationship between novelty, recency, and different forms of sensory 

surprise and (ii) explore the nature and timescales of novelty representations in the activity of 

single neurons. To do this, we implanted two monkeys with semi-chronic high channel count 

arrays and recorded neurons across temporal cortex, amygdala, hippocampus, basal ganglia, and 

the prefrontal cortices while monkeys participated in unsupervised learning object viewing 

procedures that assessed the relationship of single neurons' object novelty responses with 

recency and sensory surprise, and dissociated novelty responses from reward value and 

uncertainty related computations.  

Our findings show that novelty sensitivity is heavily intertwined with computations of sensory 

surprise and recency in single neurons and operates over diverse timescales both within and 

across brain areas, shedding light on the logic and computational underpinnings of novelty 

detection in the primate brain. We suggest that novelty selectivity may be constructed by 

including constituent elements such as sensory surprise and recency. 

3.2 Materials and Methods 

3.2.1 General procedures 

Two adult male rhesus monkeys (S and L; Macaca mulatta) were used for the electrophysiology 

experiments. All procedures conformed to the Guide for the Care and Use of Laboratory 

Animals and were approved by the Washington University Institutional Animal Care and Use 

Committee. A plastic head holder and plastic recording chamber were fixed to the skull under 

general anesthesia and sterile surgical conditions. For each monkey, we implanted semi-chronic 

high channel count recording drives (LS124; Gray Matter). To aim these micro drives, we first 

acquired 3T magnetic resonance images of the monkeys' brain. We used these MRIs to aim the 
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two micro drives towards the regions of interest, including the prefrontal cortex and the temporal 

cortex. We then attached MRI compatible chambers to the skull using MRI compatible ceramic 

screws (Thomas). After the animals recovered, we performed MRI with fiducials such that we 

could estimate and reconstruct the path of each electrode (Daye et al., 2013; Ledbetter et al., 

2016a; Dotson et al., 2017; Dotson et al., 2018; White et al., 2019). Next, we implanted both 

animals with 124-channel micro drives. These are detailed here: https://www.graymatter-

research.com/documentation-manuals. Following craniotomy, we sealed the chamber and used a 

port to assess whether bacterial growth occurred. Following this safety precaution, we implanted 

the recording drives containing the electrodes and lowered all channels immediately beyond the 

dura. In this way, we minimized the impact of post-op dura thickening on the electrode 

impedance and trajectory. Data from electrode-channels were included in the study if (1) post-op 

CT images showed that the electrodes were in the brain and were following a trajectory that 

could be reconstructed, (2) if the electrode-channel produced single units during the history of 

the array neuronal recordings, and (3) if the post-op impedance was >0.2MΩ or single units were 

observed. This approach produced 108/124 channels in Monkey L and 124/124 channels in 

Monkey S. A key difference in success was due to the use of glass coated electrodes (Alpha 

Omega) in Monkey S versus thinner epoxy electrodes in Monkey L (FHC). The semi chronic 

drive contained electrodes with 1.5mm spacing. Signal acquisition (including amplification and 

filtering) was performed using Plexon 40kHz recording system. Action potentials were identified 

using a template matching based algorithm to sort the data, and then we minimized cluster over-

splitting, removed artifacts, and selected isolated clusters. All recording and reconstruction 

procedures are as in (Ogasawara et al., 2022).  
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3.2.2 Spike sorting 

We used the Kilosort algorithm (Pachitariu et al., 2016), specifically, Kilosort2, to sort the action 

potentials (spikes) from the raw electrophysiological data. 

However, the outputs from Kilosort2 tended to be over-split clusters. Thus, we wrote a post-

Kilosort algorithm to auto-merge the clusters, remove the artifacts, and label the clusters that are 

good for subsequent analyses. 

The following describes the main part of the post-Kilosort algorithm: 

The output of Kilosort2 included the time points, shapes, cluster labels of the spikes, and the 

templates of the clusters. 

The post-Kilosort algorithm at first tried to get rid of artifacts. Because the electrode sites on the 

array were far separated, if the activity of a cluster appeared on more than one electrode site, it 

should be an artifact. The algorithm used Kilosort's templates of the clusters and raw spikes to 

find these artifacts and exclude them in the subsequent analyses. In addition, if a cluster had too 

low(<0.05Hz) or too high firing rate(>400Hz), the algorithm would label it as artifact as well. 

Next, if there were more than one non-artifact cluster in an electrode site, the algorithm would 

try to merge them. The first three components of the spike shapes which were given by principal 

component analysis (PCA), and the nonlinear energy of the spike shapes were used to build the 

clustering space for merging the spikes.  

The algorithm picked two clusters each time and tried to merge them, one cluster called "host 

cluster", and the other called "guest cluster". The guest cluster would be merged into the host 

cluster if it met the following criteria:  
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1) The host cluster did not have good isolation in the clustering space, which was measured by 

silhouette value (silhouette value>0.3, the range is [-1, 1]) 

2) The distance which was measured by squared Mahalanobis distance from the host to the guest 

was small. (Squared distance<9). 

3) The inter-spike interval (ISI) violation was small after merging. (The violation index<0.5, the 

range is [0,1]) 

If ALL criteria were met, the algorithm would merge the guest cluster into the host cluster and 

delete the guest cluster's label. The algorithm went through all pairs of non-artifact clusters. 

After merging, to decide if a cluster was good enough for the subsequent analysis, the algorithm 

used the following criteria:  

1) The cluster was projected onto the first component of PCA, and the distribution was not 

bimodal, which was tested by Hartigan's dip test (p-value >0.01, the range is [0,1]). 

2) The cluster had good isolation from other clusters, and the inter-spike-interval (ISI) violation 

was low (EITHER the silhouette value > -0.1 and the violation index <0.5 OR the silhouette 

value > 0.6 and the violation index <0.7. For the electrode site which only had one cluster, the 

isolation measurement did not work, we required the violation index<0.6). 

3) The average spike shape of the cluster was similar to a typical neuron, this criterion included 

measuring and restricting the variance and the second derivation of the averaged spike shape. 

If ALL criteria were met, the cluster was labeled as good and would be included in the 

subsequent analyses.  
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3.2.3 Behavioral tasks 

Object viewing procedure.  

This behavioral procedure was designed to investigate how novelty and novelty-related events 

are encoded. In each trial of the task, a fixation point appeared at the center of the screen (~0.5 

degrees). The shape of the fixation point indicated the trial type (i.e. each of the four trial types 

had a distinct fixation point shape). The animal was required to fixate on the fixation point for 

400ms to initiate the trial. After that, the monkeys were shown a sequence of three fractals at the 

center of the screen, during which time the fixation point remained at the center of the screen and 

animals were required to maintain fixation. Each fractal was shown for 250ms and there was a 

250ms inter-fractal-interval between fractal presentations. If the animal broke fixation at any 

time before the third fractal disappeared, or did not start to fixate on the fixation point within 5s 

after the point appeared, this was counted as an error, the trial stopped immediately, a sound 

indicating an error was played, and the same trial started again after the inter-trial interval (ITI, 

~5s). If the animal successfully fixated till the end of the 3rd fractal, the screen went blank for a 

randomized time (200ms-1000ms), then a reward dot, visually distinct from the fixation point 

dot at the start of the trial, appeared in one of four peripheral positions (~10 degrees 

above/below/left/right of the center of the screen). The monkeys needed to saccade to this dot for 

reward (Fig. 1B); if the monkey failed to do so within 5s, the reward dot disappeared, a sound 

indicating an error was played, and the same trial started again after the ITI.  

There were four trial types (Type 1 through Type 4), which respectively occurred with 12.5%, 

25%, 25%, and 37.5% probability. Each trial type contained a distinct set of fractals. In type 1 

trials, the 2nd fractal was always a novel fractal which was generated at the start of the trial, 
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while the other two fractals were fixed familiar fractals (i.e. the same two familiar fractals were 

always used for Trial Type 1). In Type 2 trials, all three fractals were familiar fractals presented 

in a fixed order. There were 2 possible distinct sets of three familiar fractals. On each trial, one 

of these two sets was randomly picked to be shown, and each set was always shown in the same 

fixed sequence (i.e. always A→B→C or D→E→F; except for rare 'sequence violation' trials, 

explained below). We used Type 1 and Type 2 trials to test whether a neuron responds to the 

predictable onset of a novel stimulus (2nd fractal on Trial Type 1) vs. predictable onset of a 

familiar stimulus (2nd fractal on Trial Type 2). In trial type 3, just like trial type 2, there were 

also two distinct sets of three familiar fractals, and one of these two sets was randomly picked to 

be shown on each trial. However, unlike trial type 2, each presented fractal was drawn randomly 

with replacement from the picked set. Thus, on each trial, the three presented fractals were drawn 

from the same set, but they could occur in a randomized order (e.g. A→B→C, B→A→C, etc.) 

and could include repeats of the same fractal while omitting other fractals (e.g. A→B→A, 

B→B→B, etc.). This trial type was designed to study surprise and recency, because unlike trial 

type 2 each individual fractal could not be fully predicted, and there were variable time durations 

between each time the animal was exposed to a given fractal. In addition, to create sequence 

violation events, in trial type 2, with 5% probability in each of the 2nd or 3rd positions in the 

sequence, the familiar fractal that would have been presented on that trial was replaced with the 

familiar fractal in the corresponding position of the other set (e.g. A->E->C or A->B->F). Thus 

during a sequence violation, the violating fractal had an unexpected identity, but all fractals still 

had their normal positions in the sequence and normal proximity to reward.  

In trial type 4, there were 3 types of fractals: always novel fractals, repeating novel fractals and 

familiar fractals. We used this trial type to study neurons' novelty-familiarity transformation. The 
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always novel fractals were generated before each trial. The familiar fractals were 4 fractals 

which were always the same and were exposed to the monkey thousands of times. The repeating 

novel fractals were slightly different for each animal. In Monkey S's version, 4 repeating novel 

fractals were generated before the task each day. On the next working day, 2 of those 4 fractals 

were deleted, while the other 2 were saved up to 5 working days and then deleted. Thus, there 

were always 12 repeating novel fractals in each session: 4 fractals that were on their 1st day of 

exposure, 2 that were on their 2nd day, 2 that were on their 3rd day, and so on (Figure 3.1B). On 

each trial, each fractal in each position of the sequence was picked randomly and independently 

from these types. Thus, the probability of presenting each fractal was: 1/17 for each of the 12 

possible repeating novel fractals; 1/17 for each of the 4 possible familiar fractals; and 1/17 to 

show an always novel fractal. In Monkey L's version, 4 repeating novel fractals were generated 

before the task each day and were deleted on the next working day, and another 2 repeating 

novel fractals were generated on the first day of recording and were replaced after 5 days. Thus, 

there were always 6 repeating novel fractals in each session: 4 fractals that were on their 1st day, 

and 2 fractals that could be on either their 1st, 2nd, 3rd, 4th, or 5th day. On each trial, each 

fractal in each position of the sequence was picked randomly and independently from these 

types. Thus, the probability of presenting each fractal was: 1/11 for each repeating novel fractal, 

1/11 for each familiar fractal, and 1/11 to show an always novel fractal. 

Usage of fractals as visual stimuli.  

All visual fractals were generated using the same previously described algorithm (Miyashita et 

al., 1991; Yamamoto et al., 2012; Yasuda et al., 2012; Zhang et al., 2019; Ogasawara et al., 

2022). In previous work, monkeys strongly and rapidly discriminated novel fractals from the 
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familiar fractals (Hikosaka et al., 2013; Ghazizadeh et al., 2016a; Ghazizadeh et al., 2020) and 

learned to distinguish between hundreds of fractals (e.g. associating different individual fractals 

with reward or no reward) (Yasuda et al., 2012; Hikosaka et al., 2013; Ghazizadeh et al., 2016b). 

After this training, they still readily detected that a new fractal is novel and not part of a well-

learned set (Hikosaka et al., 2013; Ghazizadeh et al., 2016a). Using an algorithmic procedure for 

generating stimuli has key advantages over the alternative of drawing from a library of objects 

(e.g. photographs of objects or scenes), including being able to generate a very large number of 

novel objects on-demand on a trial by trial basis, and ensuring that all stimuli have similar gross 

visual properties (e.g. size, degree of radial symmetry, etc.) to minimize the possibility that 

response differences between conditions could be caused by the stimulus sets containing visual 

features that just happen to vary with the task variables. 

Reward information viewing procedure.  

This behavioral procedure was a variant of the information viewing task we previously used 

investigate how reward and information about reward are encoded in the brain (White and 

Bromberg-Martin et al., 2019, Nature Communications). On each trial of the task, a fixation 

point appeared at the center of the screen which the monkey was required to fixate for 300ms to 

initiate the trial. After the trial was successfully initiated, the fixation point disappeared, and a 

fractal Cue1 appeared on the screen for 1s. This cue indicated the probability of large reward 

delivery. Then a fractal Cue2 appeared at the center of Cue1. On informative trials, Cue2 

provided information about whether a big reward was going to be delivered. Both cues stayed on 

the screen for another 1s. Monkeys were required to fixate as long as Cue1 or Cue2 were on the 

screen. If the monkey broke fixation or did not fixate to start the trial 5s after the fixation point 
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appeared, this was counted as an error, the trial stopped immediately, a sound indicating an error 

was played, and the same trial started again after the ITI (2s). After the cues disappeared the 

reward was delivered, which was always either a large or small amount of juice. Two blocks of 

trials alternated: In the informative block, Cue2 informed the monkey whether the big reward 

was going to be delivered, while in the non-informative block Cue2 was randomized and hence 

provided no new information about the outcome. In both blocks, Cue1 indicated the probability 

of big juice delivery (0%, 50%, or 100%). In each block, there were two possible Cue1 stimuli 

for each probability (one of which was randomly chosen to present on each trial), thus there were 

a total of 12 unique Cue1 fractals). In the informative block, there were 4 possible Cue2 stimuli, 

2 indicating big reward and 2 indicating small reward. On each trial, one of the 2 stimuli 

corresponding to the trial's upcoming reward outcome was randomly chosen to be presented. In 

the non-informative block, there were 4 distinct possible Cue2 stimuli. On each trial, one of these 

4 stimuli was randomly chosen to be presented (and hence conveyed no information about the 

reward outcome). 

3.2.4 Data analyses 

For all analyses in the object viewing procedure, unless otherwise stated, each neuron's responses 

to visual fractal objects were measured as the mean firing rate in the 500ms time window starting 

from fractal onset. When permutations were used to assess significance or obtain confidence 

intervals, we permuted 10000 times.  

Novelty index was quantified by AUC of ROC (area under the curve of the receiver operating 

characteristic curve) comparing the neural responses to the novel fractals in the second position 

of Type 1 trials versus the familiar fractals in the second position in Type 2 trials. We then 
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subtracted 0.5 from the AUC such that numbers higher than 0 indicated that the neuron had a 

higher firing rate to the novel fractals than familiar fractals, and multiplied the result by 2 such 

that the range of the index was [-1, 1]. The significance of this index was tested by a rank sum 

test (threshold: p<0.01).  

A novelty responsive neuron was defined as a neuron with a significant novelty index. A 

novelty-excited neuron was a novelty responsive neuron with its novelty index larger than 0, 

while a novelty-inhibited neuron was a novelty responsive neuron with its novelty index less 

than 0. We used analogous definitions for recency responsive neurons, sensory surprise 

responsive neurons, recency-excited neurons, etc. 

Sensory surprise index was quantified by AUC of ROC of each neuron's responses to the 

familiar fractals in the third place in Type 3 trials versus the familiar fractals in the third place in 

Type 2 trials (excluding the ~10% fractals in Type 2 trials that were sequence violations, and the 

non-sequence-violating fractals that were used to calculate the violation index). This compared 

neural responses for predictable versus unpredicted familiar objects. We subtracted 0.5 from the 

AUC, so that values higher than 0 indicated that the responses were higher for unexpected 

fractals versus expected fractals, and multiplied by 2 so that the range of the index was [-1, 1]. 

The significance of this index was tested by a rank sum test (threshold: p<0.01). To further 

eliminate the effect of recency, we performed a 1-way ANOVA analysis (MATLAB) to measure 

the effect on each neuron's firing rate of whether the fractals occurred within the same trial 

(recent) or a previous trial (nonrecent), then subtracted the effect of recency from each neuron's 

responses before repeating the above ROC analysis. 
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Object recency index was quantified using Type 3 trials. We categorized each fractal's 

presentation based on whether the most recent presentation of the same fractal had occurred 

within the same trial (recent) or a previous trial (nonrecent). The recency sensitivity index of 

each neuron was quantified by AUC of ROC comparing responses for nonrecent versus recent 

objects. We subtracted 0.5 from the results, so that values higher than 0 indicated that the neuron 

had higher firing rate to nonrecent fractals than recent fractals, and multiplied by 2 so that the 

range of the index was [-1, 1]. For this analysis we only used object responses during the 2nd and 

3rd position in the Type 3 trial sequence (so that it was possible for the object to be either recent 

or nonrecent). To remove sequence position effects, we subsampled the data before performing 

ROC analysis so that there were an equal number of recent and not recent objects at each 

sequence position (maximizing the contrast between conditions whenever possible by choosing 

the subset of nonrecent objects that were 'least recent', i.e. which had the longest time duration 

since their last presentation). To further eliminate the effects of sequence position and object 

selectivity, above and beyond the position matching procedure described above, we performed a 

2-way ANOVA analysis (MATLAB) on position and object identity, then subtracted the effect 

of position and object selectivity from each neuron's responses before performing the above 

ROC analysis. The significance of this index was tested by a rank sum test (threshold: p<0.01).  

Sequence violation index was measured using the sequence violation trials described above. We 

calculated the AUCs of ROC of the neuron's firing rate to the familiar sequence-violating fractal 

versus the familiar non-sequence-violating fractal in the 2nd place and 3rd place respectively. 

We then averaged these two AUCs, and subtracted 0.5 such that numbers above 0 indicated that 

the neuron had higher firing rate to the sequence violated fractals than the normal fractals, and 
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multiplied the result by 2 so that the range of the index was [-1, 1]. The significance of this index 

was tested by a permutation test (threshold: p<0.01).  

Reward value index. In the reward information viewing procedure, we quantified sensitivity to 

changes in reward value signaled by visual objects by an AUC of ROC that compared neuronal 

responses to the 100% reward versus 0% reward trials (pooling informative and non-informative 

trials) in the last 0.5s epoch before the reward was delivered. We then subtracted 0.5 from the 

result of the ROC analysis such that values higher than 0 indicated that the neuron had a higher 

firing rate to higher reward cue than lower reward cue, and multiplied the result by 2 so that the 

range of the index was [-1, 1].  The significance of this index was tested by a rank sum test 

(threshold: p<0.01).  

Information anticipation index. This index was adapted from the informative cue anticipation 

index used previously to measure how strongly a neuron anticipated the receipt of informative 

visual cues to resolve uncertainty about upcoming rewards (White et al., 2019; Jezzini et al., 

2021). It was defined as the difference between the magnitudes of neuronal uncertainty signals 

during informative versus non-informative trials, where uncertainty signal was defined as the 

AUC of ROC comparing neural activity on trials where Cue1 indicated an uncertain reward 

outcome (50% big) vs. a certain reward outcome (either 100% big or 0% big). In essence, this 

index measured how strongly a neuron anticipated information to resolve uncertainty (White et 

al., 2019; Jezzini et al., 2021). The range of the index is [-1, 1]. The significance of this index 

was tested by a permutation test (threshold: p<0.01).  

Normalization of firing rate in the learning analysis. We z-scored each neuron's firing rates 

by the mean and standard derivation of the firing rates from all types of trials. and then averaged 
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the z-scored firing rates to always novel fractals, familiar fractals, repeated novel fractals on day 

1, and repeated novel fractals on days 2+, separately for each presentation within the current day. 

Then, for each separate presentation number in the session, we rescaled the firing rates so that 

the averaged normalized firing rate was 0 for always familiar fractals and 1 for novel fractals. 

The error bars of the normalized firing rate for repeated novel fractals were the standard errors of 

the mean (computed using bootstrapping, n=10000 bootstraps). This analysis controls for 

repetition suppression because activity for repeating novel fractals is normalized to be relative to 

activity for always familiar fractals, and both of these sets of fractals were repeated over the 

course of the session in exactly analogous manners. 

Learning rate analysis. The learning rate at the nth presentation in Figure 3.5B lower panel was 

calculated as follows: 

 
α(n) =  

R(n) − R(n + 1)

R(n)
 

(3.1) 

Where R(k) in the equation is the population average normalized firing rate in response to the k-

th presentation of the fractal during a session. We calculated the learning rate separately for 1st 

day fractals and 2nd+ day fractals. We then smoothed the learning rate using a 3-apperance bin. 

The error bars in Figure 3.6B were the bootstrap standard error of the mean (n=10000 

bootstraps). 

Within day learning index. For each novelty-excited neuron, we compared its object responses 

during the first 5 and the last 5 presentations of the repeated novel fractals (Figure 3.1). To do 

this, we needed to quantify the strength of responses to the repeated novel fractals relative to 

responses to the always novel fractals and the familiar fractals. To accomplish this, we used a 
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classifier to estimate the approximate posterior probability that each of these responses was 

evoked by an always novel fractal, given an equal prior probability of it being evoked by either 

an always novel fractal or a familiar fractal. To classify the firing rates to repeated novel fractals, 

the classifier used the equation: 

 
𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑅) =  

1

(1 + exp (
𝑎 ∗ (𝑅 − 𝑏)

𝜎2 ))
 

𝑎 = 𝑁 −  𝐹 

 𝑏 =
𝑁 +  𝐹

2
 

(3.2) 

Where R is the firing rate to the repeated novel fractal, N is the mean firing rate to always novel 

fractals, F is the mean firing rate to familiar fractals, and 𝜎2 is the residual variance of the firing 

rate to novel and familiar fractals. All of these firing rates are the non-normalized firing rates 

from the individual neuron (in spikes per second) with the effect of sequence position being 

subtracted.  

This classifier gives a result in [0,1]. This can be interpreted as the posterior probability of the 

response being generated from a novel fractal, if a neuron's firing rates to novel and familiar 

fractals are Gaussian distributions with different means but the same variance, and both types of 

fractals are equally likely to have been presented. The within day learning index was defined as 

the difference between the mean of classification results of the repeated novel fractals at the start 

of day 1 vs. the end of day 1. The range of this index is [-1, 1]. Note that this analysis controls 

for repetition suppression because activity for repeating novel fractals is classified relative to 
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activity for always familiar fractals, and both of these sets of fractals were repeated over the 

course of the session in exactly analogous manners. 

Across day forgetting index. We used the same classifier as the within day learning index. The 

across day forgetting index was defined as the difference between the mean of classification 

results of repeating novel fractals at the beginning of the second and subsequent days vs. at the 

end of the first day. In the calculation, non-overlapping sets of fractals at the end of the first day 

were used in the calculation of within day learning index and across day forgetting index, such 

that the two measurements were independent. The range of this index is [-1, 1]. For comparison 

of brain areas' learning and forgetting indices (Figure 3.7C) we included brain areas with at least 

n=20 novelty excited neurons.  

Control for Figure 3.7B. We controlled for session-to-session variability in learning, which 

might contribute to the correlation of within day learning index and across day forgetting index. 

In other words, could it be that within every single session all neurons learn and forget at the 

same rate as each other, but some sessions are 'fast' and other sessions are 'slow'. If so, the 

apparent differences in learning speeds across neurons could arise from differences in learning 

across sessions, not neurons per se. To control for this possibility, we used the following 

analysis. For each day, if the recording session had >= 5 novelty-excited neurons, the session 

was included. For each session we calculated the averaged within day learning index over all of 

these neurons and then subtracted it from each neuron's individual within day learning index. We 

did the analogous procedure for the across day forgetting index. Lastly, we calculated the 

correlation of the subtracted indices. 
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Pupil diameter was obtained with an infrared video camera (Eyelink, SR Research). To quantify 

pupil's response to novel, surprising, and nonrecent fractals (Figure 3.2A), we used the following 

procedure. First, we z-scored the pupil diameter on a trial-by-trial basis (time window from the 

start of the first fractal until 250ms after the third fractal disappeared). Next, for each fractal 

within the trial, we subtracted the baseline z-scored pupil response (response in the time window 

[-80, 20] relative to fractal onset). We then averaged the pupil response in the time window [0ms 

500ms] relative to fractal onset. Lastly, we calculated the same novelty, sensory surprise, and 

recency indices as we used for the neurons and then multiplied by -1, such that the index was 

positive if the pupil contracted more to novel/surprising/nonrecent objects. 

Correlation analyses. In Figure 3.3A and Supplemental Figures, the novelty responsive neuron 

group contained all novelty responsive neurons. In order to combine the results of novelty 

excited neurons and novelty inhibited neurons together, we flipped the signs of the all the indices 

of neurons whose novelty index is negative, while the indices of neurons whose novelty index is 

positive remained unchanged. In supplemental figures, all indices of neurons were in their 

original signs. In Figure 3.3C and supplemental figures, the bar plots were generated by binning 

the novelty index (x axis) into three even parts, [0,1/6], [1/6, 1/3], [1/3, 1/2], and we calculated 

the mean and the standard error of the mean of the indices in y axis of the neurons in each bin. 

For the linear fitting we used least squares regression. For all correlation analysis, we used 

Spearman's rank correlation unless stating specifically. 

Classifier analyses. In Figure 3.3B and Supplemental Figures we used the activity of all neurons 

to train and test two support vector machine (SVM) classifiers. One classifier was trained to 

decode sensory surprise and then was tested to determine whether it could be used to decode 
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novelty. The other classifier was trained to decode recency and then tested to decode novelty. 

The training set for sensory surprise was the combination of sensory-surprising fractals (label as 

1, they were the familiar fractals in the third position in Type 3 trials) and non-sensory-surprising 

fractals (label as 0, they were the familiar fractals in the third position in Type 2 trials). The 

training set for recency was the combination of nonrecent fractals (label as 1, the fractals that had 

occurred in the previous trial in Type 3 trials) and recent fractals (label as 0, the fractals that had 

occurred within the same trial in Type 3 trials). The test set for the two classifiers was the same. 

They included novel fractals (label as 1, novel fractals in Type 1 trials) vs. familiar fractals (label 

as 0, familiar fractals in the second position in Type 2 trials). To avoid introducing base rate 

biases into the classifier, in both training and testing set, the numbers of fractals with labels 1 and 

0 were balanced by subsampling. We applied this classifier analysis separately for each session, 

computed the percentage of objects that were classified correctly, and then averaged this 

percentage across sessions. 

Cross-validation. For activity plots in supplemental figures, we first separated the sessions into 

even trials and odd trials. Then we calculated the relevant indices using odd trials and used this 

to select neural activity from the even trials for those neurons whose indices in the odd trials 

were significant (p<0.01) and excited (index>0) or inhibited (index<0). Also, we calculated the 

indices using even trials and used this to select neural activity from the odd trials of the neurons 

whose indices in the even trials were significant (p<0.01) and excited (index>0) or inhibited 

(index<0). This ensured that the analysis was cross-validated, i.e. each piece of data from a 

neuron was selected to be used for this analysis on the basis of a separate, independent set of data 

from the same neuron. Finally, we plotted the average z-scored activity from the selected odd 

and/or even trials of the neurons. (If an individual neuron's odd and even trials were both 
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selected, then both were contributed to this analysis). All PSTHs were smoothed by a Gaussian 

kernel (SD = 50ms). The p value in the PSTHs plots were rank-sum tests of the average of the 

two PSTHs in the target window ([0ms, 500ms] relative to the onset of fractals in object viewing 

procedure.)  

Noise correlation analysis. In each session, we calculated the noise correlation (Pearson's 

correlation) for each pair of novelty responsive neurons responding to the novel fractals in Type 

1 trials. We averaged the correlations across all pairs within the session, and then averaged 

across sessions. We did the same process on familiar fractals in Type 2 trials in the second 

position in the object sequence. We also did the same calculations using non-novelty responsive 

neurons.  

Noise variance analysis. This analysis only included sessions with at least 5 novelty responsive 

neurons. In each session we defined an n-dimensional space where each dimension was the firing 

rate of one of the n novelty responsive neurons, and hence the response to each individual fractal 

presentation could be represented as a point in that space. We defined the novelty axis as a unit 

vector pointing from the mean of the points representing familiar fractal presentations (fractal 

presentations in the second position in the sequence in Type 2 trials) to the mean of the points 

representing novel fractal presentations (fractal presentations in the second position in the 

sequence in Type 1 trials) (Supplemental Figure 3.6). We defined random axes as unit vectors 

drawn randomly from a uniform distribution on the unit sphere. We then computed the ratio of 

the mean neural response variance projected onto the novelty axis vs. random axes, as follows. 

We randomly chose 5 individual fractal presentations to represent each of the following three 

conditions. Condition 1: 5 different novel fractals (from the second position in Type 1 trials). 
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Condition 2: 5 individual presentations of different familiar fractals (from the second position in 

Type 3 trials). Condition 3: 5 repeated presentations of the same familiar fractal (from the second 

position in Type 3 trials, using only the remaining familiar fractal from Type 3 trials that was not 

included in Condition 2). We also randomly chose one random axis. For each condition, we then 

computed the variance of its 5 individual neural responses when they were projected onto the 

novelty axis, and when projected onto the random axis. We repeated this process 10,000 times, 

using different random selections of individual fractal presentations for each condition and a 

different random axis. We then computed the ratio of response variances for each condition as 

the mean of the 10,000 variances along the novelty axis divided by the mean of the 10,000 

variances along the random axes. This produced one response variance ratio for each of the three 

conditions in each session. We then averaged these ratios within each condition over sessions, 

and tested the difference between the conditions using signed-rank tests. 

Stability of object selectivity across sessions. We tested whether object selectivity of single 

neurons changed during novelty-familiarity transformations. In each session, we divided the 

learning fractals into three groups chronologically, and used the early group (start of the session) 

and the last group (end of the session) separately to measure object selectivity for each neuron. 

To obtain an object selectivity index we performed a 2-way ANOVA analysis on sequence 

position and object identity, and obtained a measure of variance explained by object 

identity(𝑉𝑎𝑟𝑖𝑑), variance explained by sequence position (𝑉𝑎𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) and residual variance 

(𝑉𝑎𝑟𝑟𝑒𝑠). 

 
𝑜𝑏𝑗𝑒𝑐𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 =  

𝑉𝑎𝑟𝑖𝑑

𝑉𝑎𝑟𝑖𝑑 + 𝑉𝑎𝑟𝑟𝑒𝑠
 

(3.3) 
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In novelty-responsive neurons, we found that there was no significant difference in their object 

selectivity between the start (early group) and the end of the sessions (last group) (p = 0.24, 

signed-rank test). 

Hierarchical clustering of brain areas. We performed hierarchical clustering of brain areas 

based on the strength of their sensory surprise and recency effects relative to their novelty 

effects, using the following procedure. First, for each neuron we converted its novelty, sensory 

surprise, and recency indexes into unsigned “absolute” indexes to represent the overall strength 

of its coding, by multiplying each index by -1 if it had a negative sign while leaving it unchanged 

if it had a positive sign. Then, for each brain area, we computed the mean of each these three 

absolute indexes across its neurons. Finally, in order to measure sensory surprise and recency 

relative to novelty, we normalized the mean absolute sensory surprise and recency indexes for 

each area by dividing them by that area's mean absolute novelty index. Thus each area was 

represented as a point in a two dimensional space, defined by its normalized mean absolute 

indexes for coding of sensory surprise and recency. We then used hierarchical clustering to 

cluster the areas based on their Euclidean distance in that space and using the unweighted pair 

group method with arithmetic mean (UPGMA) 

3.3 Results 

3.3.1 A passive object-viewing behavior procedure is used to detect the 

novelty, sensory surprise, and recency responses in the macaques' brain.   

On each trial, the monkey was shown a sequence of three fractal visual objects. The objects in 

these sequences did not possess instrumental value and did not affect reward rate or magnitude 

(Materials and Methods). Monkeys obtained reward after successfully observing each object 
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sequence and then participating in a distinct instrumental behavior that consisted of making an 

eye movement to a dot that appeared at one of four possible locations on the screen (Figure 3.1B, 

top right).  

To observe the relationship of novelty with sensory surprise and recency, this procedure 

contained several trial types which included distinct object sequences designed to dissociate 

these factors (Materials and Methods). The trial type was cued to the animal at the start of the 

trial by the shape of the fixation point (Figure 3.1). In Type 1 trials, the monkeys experienced a 

sequential presentation of three objects, in which the second object was always novel and the 

other objects were familiar and fully predictable (Figure 3.1B). The novel objects were never 

before seen because they were generated on a trial-by-trial basis using a new random seed on 

each trial (using a previously established algorithm (Miyashita et al., 1991; Yamamoto et al., 

2012; Yasuda et al., 2012; Zhang et al., 2019; Ogasawara et al., 2022). In Type 2 trials, monkeys 

experienced other distinct fractal visual objects that were all highly familiar. For these trials, we 

used two sets of objects to control for single neurons' object sensitivities (Figure 3.1B, Materials 

and Methods), and following the presentation of the first fractal, the remaining objects in the 

sequence were predictable (Figure 3.1B). Hence, the variability or entropy of which object would 

be presented was relatively low. We defined novelty responsive neurons as those that responded 

differentially to the second objects in Type 1 versus Type 2 trials (Zhang et al., 2019). 

Importantly, this design ensured that it was highly predictable whether the second object in these 

sequences would be novel or familiar, so that neural novelty responses could not be attributed to 

the novelty simply being more unpredictable or surprising than familiarity.  



73 

 

Importantly, during the same recording session, we also measured neuronal sensitivities to object 

recency and sensory surprise (Materials and Methods). This was accomplished with Type 3 trials 

that contained three objects that were each drawn from a familiar set of three fractals, but were 

drawn in a random sequence with replacement (Figure 3.1B). Thus, following the presentation of 

the first fractal in Type 3 trials, the monkey could predict which set of fractals the remaining two 

objects would be drawn from, but could not fully predict their specific object identities. Hence, 

variability or entropy of which object would be presented was relatively high. By comparing 

Type 2 and Type 3 trials, we measured neural sensitivity to sensory surprise - that is, responses 

that were attributable to the presentation of an object whose identity and sensory features were 

predictable vs. unpredictable. Furthermore, neural sensitivity to recency was assessed by 

comparing responses to familiar objects during Type 3 trials that were more or less recently seen 

(Figure 3.1B, Materials and Methods; (Xiang and Brown, 1998)). Hence, in Type 1-3 trials, for 

each neuron, we obtained independent measures of sensitivity for novelty, surprise, and recency. 

Importantly, these measurements were independent of each other (Materials and Methods). Thus, 

any relationship between these measures reflects a relationship between how neurons generate 

their responses to these variables (such as is hypothesized by the models in Figure 3.1A). We 

also used a distinct set of trials to study learning and the timescales of novelty-to-familiarity 

transformations (Type 4; we return to them later).   
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Figure 3.1. Models of object novelty computations and object viewing procedure. (A) Four 

theoretical descriptions of the mechanisms of object novelty detection predict different patterns 

of neural responses for object recency and sensory surprise.  (B) Object viewing procedure (top) 

and four trial types (bottom). 
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Monkeys showed behavioral evidence that they understood the procedure. Because we used an 

unsupervised object viewing procedure that required the monkeys to fixate during object 

sequences, we were also able to measure pupillary responses to novelty, recency, and sensory 

surprise. We found that both animals were sensitive to the task because their pupillary 

constrictions reliably changed as a function of these variables (Figure 3.2A. Monkey L: novelty 

index, p<0.0001; sensory surprise index, p<0.0001; recency index, p<0.0001. Monkey S: novelty 

index, p<0.0001; sensory surprise index, p=0.57; recency index, p<0.0001). The constriction of 

pupils to expected novel stimuli in both monkeys replicates previous data in humans (Võ et al., 

2008; Kafkas and Montaldi, 2015; Kafkas and Montaldi, 2018). In addition, Monkeys had faster 

reaction times to initiate Type 1 trials, which contained a novel fractal, than Type 2 trials 

(Supplemental Figure 3.1A, Type 1 vs. Type 2, p = 0.00014). This novelty seeking behavior is 

consistent with previous findings (Ogasawara et al., 2022). Monkeys also had faster reaction 

times to initiate Type 3 trials which contained objects that were less predictable than Type 2 

trials (Type 2 vs. Type 3, p<0.0001). 

In our neuronal data, we found a strong relationship between the encoding of novelty and both 

surprise and recency, consistent with model 3 (Figure 3.2B-C). An example neuron recorded in 

the amygdala is shown in Figure 3.2B. This neuron robustly discriminated among novel and 

familiar objects by displaying greater excitation to predicted novel objects than to predicted 

familiar objects (Figure 3.2B – left). The neuron was also responsive to surprise: it was relatively 

more excited by unpredicted versus predicted familiar stimuli (Figure 3.2B – middle). The 

neuron was also responsive to recency: it was more excited by objects that were presented 

relatively less recently (Figure 3.2B – right). Thus, this neuron was excited by all three types of 

objects – novel objects, surprising objects, and less-recent objects. We quantified this result by 
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computing an index of each neuron's sensitivity for each of these types of objects (Figure 3.2C; 

Materials and Methods). Indices >0 indicate a preference for novelty, sensory surprise, or less-

recent objects respectively. The results of the example neuron (Figure 3.2C) strongly resembled 

model 3 (Figure 3.1A).  
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Figure 3.2. Pupillary and neural signatures of novelty coding. (A) Pupillary responses of 

monkeys L and S. Error bars are SE. (B) A single neuron in the amygdala is sensitive to novelty, 

sensory surprise, and recency. PSTHs were smoothed using a gaussian kernel (SD = 50ms). (C) 

Sensitivity indices based on the activity in (B). *** denotes p<0.001, error bar indicates 

bootstrap SE. The derivation of the indices is detailed in Materials and Methods and 

conceptually shown by the cartoon in (B). Blue and red boxes in the cartoon mark the conditions 

corresponding to the spike density functions in B that were used to derive the sensitivity indices.  
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3.3.2 Novelty sensitivity correlates with both the sensitivities to sensory 

surprise and recency across neurons and across brain areas 

We observed a similar pattern of results across the population of novelty responsive neurons 

across many brain areas (n=2234). Novelty responsive neurons displayed significant sensitivity 

to sensory surprise and recency (mean of sensory surprise index = 0.0468, mean of recency index 

= 0.0263, both greater than 0, p<0.0001, signed-rank tests; Figure 3.3A). Crucially, those effects 

were much greater in novelty neurons versus all other recorded neurons (Figure 3.3A; p<0.0001, 

rank-sum test; Supplemental Figure 3.1 for each animal). In fact, as further confirmation of this 

result, we found that object novelty could be decoded purely based on neural tuning to surprise 

and recency. That is, we trained a classifier on all neurons in each session to decode whether the 

fractals were sensory surprising and another classifier to decode whether the fractals were 

nonrecent. We found that the two classifiers were both able to decode object novelty 

significantly above chance (Figure 3.3B, Supplemental Figure 3.1D, E). Sensory surprise 

classifiers, p<0.0001; recency classifiers, p<0.0001). Furthermore, on a neuron-by-neuron level, 

for novelty excited neurons, the magnitude of sensitivity to novelty was correlated with the 

magnitude of sensitivity to sensory surprise (Figure 3.3C-left) and recency (Figure 3.3C-right; 

Supplemental Figure 3.2). This data indicates that novelty detection is strongly associated with 

encoding of sensory surprise and recency. We also verified that these effects were not produced 

by other factors like object selectivity and sequence position effects or by any potential statistical 

dependencies between the indexes (Supplemental Figure 3.2). 
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Figure 3.3. Novelty neurons are sensitive to sensory surprise and recency. (A) Novelty 

responsive neurons displayed particularly strong sensitivity to sensory surprise and recency. 

Sensory surprise and recency population indices are shown for novelty responsive neurons (left) 

and all other neurons (right). (B) Two classifiers' performance (left and right) at classifying 

objects as novel versus familiar. These classifiers were trained on responses to familiar fractals 

to discriminate sensory surprising fractals (left), and recent vs. nonrecent fractals (right). 

(Materials and Methods) (C) The magnitude of novelty-excited neurons' novelty sensitivity 

was correlated with the magnitude of their sensitivity to sensory surprise (left) and recency 

(right).  
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We found that novelty sensitivity was not uniformly distributed throughout single neurons in the 

primate brain. Some brain areas, in particular the anterior ventral medial temporal cortex 

(AVMTC), and areas that it is interconnected with, such as area 46v, basal forebrain, and the 

amygdala, were preferentially enriched in novelty responsive neurons (Figure 3.4A). Consistent 

with Figure 3.3A-C, we found that there was an across-region relationship between novelty, 

recency, and sensory surprise – that is, on average, regions that were preferentially enriched with 

novelty responsive neurons were also enriched with neurons that were responsive to recency and 

sensory surprise (significantly higher percentage of sensory surprise responsive neurons (p < 

0.0001, permutation test) and recency responsive neurons (p < 0.0001, permutation test) when 

comparing the 1/5th of areas with the highest percentage of novelty responsive neurons to the 

1/5th of areas with the lowest percentage of novelty responsive neurons; Figure 3.4A, left).  

This finding raised the question of whether the relationship between novelty and sensory surprise 

and recency is only relevant to a small number of brain areas that are most enriched with novelty 

responsive neurons, or whether this relationship is a general feature common to brain areas 

involved in novelty processing. Our data indicates that the latter is the case: there were 

remarkably consistent positive correlations between novelty and both sensory surprise and 

recency across almost all of the recorded brain areas (Figure 3.4A-right). This suggests that the 

results in Figure 3.3C generalize across most brain areas that we targeted in this study. In sum, 

these data show that that novelty is linked measurements of sensory surprise and recency in 

many brain areas.  

This finding also raised the question of whether novelty processing is linked to other types of 

sensory surprises as well. For example, we recently showed that novelty responsive neurons in 
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the basal forebrain are sensitive to violations in object sequences, responding to when a familiar 

object from one sequence unexpectedly appears in another (Zhang et al., 2019). To replicate this 

and test whether it holds across the many brain areas recorded here, we introduced object 

sequence violations on a small fraction of Type 2 trials (~10%, Materials and Methods). This 

produced a remarkably similar pattern of results: novelty responsive neurons were significantly 

sensitive to sequence violations, and their sensitivity to novelty and sequence violations were 

positively correlated, particularly in the basal forebrain (Supplemental Figure 3.3). This indicates 

that the results in Figure 3.3A, B can generalize to other types of sensory surprises, and may 

highlight both specificity and importance of the basal forebrain in novelty and surprise 

computations across its cortical and subcortical projection targets (Turchi et al., 2018; Monosov, 

2020).  
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Figure 3.4. Novelty neurons sensitivities to sensory surprise and recency in different brain 

regions. (A) Novelty, sensory surprise, and recency computations often co-occur across the 

brain. % of neurons significantly responsive to novelty (red), sensory surprise (blue), and 

recency (green) shown across brain areas that were rank ordered by the percentage of neurons 

responsive to novelty (left; x-axis). The top four brain areas had more neurons than would be 

expected by chance that were responsive to recency and surprise (colored asterisks), but the 

bottom four did not (binomial test). The differences in ratios among them was significant 

(p<0.0001, permutation test). Within the brain areas, novelty vs. sensory surprise (middle) and 

novelty vs. recency (right) are positively correlated in most brain areas (top histograms, signed-

rank test relative to 0, *, **, ***, indicate p < 0.05, 0.01, 0.001). Error bars indicate SE obtained 

through a bootstrapping procedure. (B)  Pairwise comparison between brain areas of their 

percentage of novelty responsive neurons (left panel), sensory surprise responsive neurons 

(middle panel), and recency responsive neurons (right panel). The colors in the matrix represent 

the absolute difference in percentages of responsive neurons, and the red asterisks indicate 
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whether the differences are significant (Fisher's exact test, *, **, ***, indicate p < 0.05, 0.01, 

0.001) 

Importantly, however, when we interrogated the fine structure of this large-scale brain network 

we found evidence that novelty, sensory surprise, and recency are not simply treated identically 

to each other in the brain. Rather, certain areas may have special roles in each of these 

computations. To test this, we computed a distance matrix between brain areas based on their 

differences in the percentage of cells with significant novelty, sensory surprise, and recency 

coding (Figure 3.4B). These three distance matrices were highly correlated with each other, with 

the same cluster of 4-5 areas standing out from the rest (Novelty vs. Recency, ρ = 0.502, 

p<0.0001, Novelty vs. Sensory surprise, ρ = 0.585, p<0.0001, Sensory surprise vs. Recency, ρ = 

0.327, p<0.0001, Spearman's rank correlation) However, within this cluster there were key 

differences, suggestive of roles in different stages of novelty-related computations. AVMTC was 

highly enriched in novelty and sensory surprise coding but less so in recency; 9/46V was 

enriched in novelty and recency but less so in sensory surprise; while amygdala and basal 

forebrain integrated all three. In addition, recency and surprise sensitivity were significantly 

positively correlated across all neurons (rho=0.07, p<0.001; animal S, rho=0.1154, p<0.001; 

animal L, rho=0.025, p=0.0255) but not always across novelty-excited neurons (rho=0.04, 

p=0.0896; animal S, rho=0.25, p<0.001; animal L, rho=-0.125, p<0.001). Thus, our data suggest 

that specific subpopulations of novelty responsive neurons are especially sensitive to either 

surprise, recency, or both. 

To further explore this notion, we performed hierarchical clustering of the brain areas based on 

their discrimination of novelty, sensory surprise, and recency (Supplemental Figure 3.3). The 

hierarchical clustering visualized clusters of brain areas in a rank that roughly matches what is 
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known about their anatomical connections, such as the major connections between basal 

forebrain, amygdala, and the temporal cortex (Mesulam et al., 1983; Russchen et al., 1985; 

Stefanacci et al., 1996; Suzuki, 1996; Cheng et al., 1997; Saunders et al., 2005; Monosov et al., 

2015). Thus, in addition to the general phenomenon of correlated codes, the fine structure of 

these correlations across large-scale brain networks indicates that specific areas are best suited 

for specific forms or stages of novelty-related computations. 

3.3.3 Neurons' novelty sensitivities have weaker or no correlation with the 

sensitivities to reward-related task variables compared with recency and 

sensory surprise. 

Another important question was whether these correlated codes could have been induced not by 

common computations but by common changes in arousal in response to novelty, surprise, and 

recency. In our data, this was unlikely because while neural populations recorded in each 

monkey displayed similar patterns as Figure 3.3 (Supplemental Figure 3.1), their pupillary 

responses to sensory surprise differed (Figure 3.2A) suggesting that the main population-level 

results could not be simply a reflection of pupil-indexed arousal. As a further test of this issue, 

we recorded the activity of many of the same neurons while manipulating arousal in a reward 

information viewing procedure that measured how novelty sensitive neurons anticipated and 

responded to information about future rewards, Particularly, in this procedure, animals observed 

visual objects that indicated changes in reward value and uncertainty (Figure 3.5A), which are 

known to strongly activate neural populations that regulate motivated behavior (White et al., 

2019; Jezzini et al., 2021).   

We found that our sampled neural populations were significantly enriched in neurons that were 

responsive to two important reward statistics known to drive arousal: (i) many neurons signaled 
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reward values by discriminating among high value and low value objects and (ii) many neurons 

anticipated the receipt of information to resolve reward uncertainty, by activating when reward 

was uncertain, and increasing this activity before an informative cue would appear to indicate the 

reward outcome (Supplemental Figure 3.4A,B). Neuronal sensitivity to these two variables was 

not correlated with neuronal sensitivity to novelty, among novelty excited neurons (Figure 3.5B). 

This is consistent with a previous study that found a similar result using functional magnetic 

resonance imaging in many brain regions ((Ghazizadeh et al., 2020), but note that in brain 

regions involved in controlling the deployment of spatial attention and gaze control, they found 

that there was indeed a correlation between novelty and reward). The main point of these 

analyses was that neuronal sensitivity to novelty was generally more strongly correlated with 

recency and with sensory surprise, than it was with reward value and with information 

anticipation (novelty and recency vs. novelty and reward value, p=0.0008; novelty and recency 

vs. novelty and reward information p=0.052; novelty and sensory surprise vs. novelty and reward 

value, p=0.0114; novelty and sensory surprise vs. novelty and reward information p=0.276; 

permutation tests). Furthermore, neural coding indexes for sensory surprise and recency were not 

correlated with the analogous indexes for reward value and reward information anticipation at 

the population level (Figure 3.5C).  

It is worth noting that these results do not shed light on the interaction between reward and 

novelty when the value of novel objects changes across trials, or when novelty and reward vary 

within the same task, or for example when novelty signals the chance to learn the value of 

objects (Kakade and Dayan, 2002; Costa et al., 2019; Costa and Averbeck, 2020). Rather, the 

analyses were designed to fortify the notion that the population-wide results (Figure 3.3A-C) 

were not simply due to task-induced fluctuations object salience or arousal.   
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Figure 3.5. Neurons' excitatory responses to novelty in the object viewing procedure are on 

average not correlated with their responses in a distinct reward information viewing 

procedure. (A) Behavioral procedure for testing neural responses to changes in reward value 

and in anticipation of information to resolve reward uncertainty. (B) Novelty-excited neurons' 

novelty sensitivity was not significantly correlated with their sensitivity to reward value and 

information anticipation (right two bars, rho = 0.084, p = 0.0013, rho = 0.114, p<0.0001). These 

correlations are weaker than the correlation with sensitivity to sensory surprise and recency (left 

two bars, rho = -0.0008, p = 0.76, rho = 0.042, p = 0.11). *, **, ***, indicate p < 0.05, 0.01, 

0.001. (C) Novelty-excited neurons' sensitivity to sensory surprise and recency was not 

significantly correlated with their sensitivity to reward value and information anticipation. (from 

left to right: rho = 0.0284, p = 0.27, rho = -0.023, p = 0.38, rho = 0.030, p = 0.25, rho = -0.0036, 

p = 0.89) 
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Compared to the more prevalent novelty excited neurons, on average, novelty inhibited neurons 

behaved slightly differently; they had marginally significant correlations with reward related 

indices but not with sensory surprise or recency indices (Supplemental Figure 3.4C), suggesting 

that they may have a different role in linking novelty, arousal, and reward processing. 

Next we asked whether novelty responses share common origins across simultaneously recorded 

neurons. We found that during neural responses to objects, noise correlations are higher between 

pairs of novelty responsive neurons than pairs of other neurons (p=0.002, paired signed-rank test; 

Supplemental Figure 3.5). Furthermore, ensembles of these novelty responsive neurons had 

significantly expanded variance in the strength of their novelty signals across presentations of 

different individual novel objects, consistent with the idea that neural systems for novelty 

detection can have shared response variance, effectively treating some novel objects as 'more 

novel' and others as 'less novel' (Meyer and Rust, 2018; Mehrpour et al., 2021) (Supplemental 

Figure 3.5).  

3.3.4 Multiple timescales of learning and forgetting exists across neurons and 

across brain areas 

Having delineated key factors underlying novelty processing in the brain, we next set out to 

measure their timescales of operation. In everyday life, object novelty is fundamentally linked to 

a continuous process of learning, as each new novel object gradually becomes familiar with 

repeated experience. Furthermore, this learning can occur at multiple timescales; sometimes 

rapidly, sometimes slowly, and sometimes interrupted by forgetting. To investigate the 

timescales of this novelty-familiarity learning, our behavioral procedure (Figure 3.1) included 

Type 4 trials in which sequences of three objects could contain novel objects that sometimes 
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repeated across experimental sessions across multiple days, for up to 5 days (Materials and 

Methods). As a result, these “repeating novel” objects underwent a novelty-to-familiarity 

transformation, allowing us to measure each neuron's responses during different stages of 

learning.  

We found that the novelty excited neuron population's average novelty-related activity reflected 

a gradual learning process, marked by repeated cycles of rapid within-day learning in each 

session, followed by substantial between session forgetting, in between sessions (Figure 3.6). To 

quantify this across the population of novelty-excited neurons controlling for novelty unrelated 

sensory adaptation, we normalized neural responses to repeating novel objects based on the 

responses to fully novel and fully familiar objects in the same trial type and during similar 

epochs of the behavioral session (Materials and Methods).  

We found that on Day 1 of exposure to a repeating novel object, the population response rapidly 

learned to differentiate them from truly novel objects even after a few exposures (Figure 3.6A). 

That is, as a novel object repeated within a day, the average novelty related response of novelty 

neurons declined. Furthermore, there was also a rapid decline in the learning rate – the fraction 

of novelty-related activity that disappeared with each exposure to the object. To quantify this, we 

calculated a measure of the neural learning rate from each individual object exposure. This 

analysis revealed that at the population level the neural learning rate started high and then rapidly 

declined over the course of the day (Figure 3.6B). Importantly, this was found despite controlling 

for any potentially confounding impact of arousal or task engagement on the time course of the 

novelty-familiarity transformation (Materials and Methods). 
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Despite its rapid within-session leaning, these neurons did not retain the results of their learning 

perfectly across sessions. Instead, they showed clear evidence of substantial between-session 

forgetting (Figure 3.6C). When the same neurons were presented with repeating novel fractals 

that had been experienced for 2+ days, their initial response was substantially lower than their 

response to a completely new fractal, indicating some retention of learning (Day 2+ start < Day 1 

start, p<0.0001, paired signed-rank test). However, it was also substantially higher than their 

response to a repeating novel fractal at the end of the first day, indicating substantial forgetting 

or loss of access to the prior learning (Day 2+ start > Day 1 end, p = 0.0099, paired signed-rank 

test). Note that this is distinct from the pattern one would expect if neural memories of objects 

are enhanced following overnight rest between training sessions (Stickgold, 2005). If that was 

the case, rest should cause neurons to treat the repeating novel object more similarly to a fully 

familiar object (“overnight or between-session learning”); instead, neurons treated it more 

similarly to a fully novel object (“overnight or between-session forgetting”). This resembles the 

“spontaneous recovery” observed in multiple forms of sensory, motor, and motivational learning 

(Pavlov, 1960; Rescorla, 2004; Smith et al., 2006; Kording et al., 2007), and could occur due to 

the passage of time, rest, or other factors. Thus on Day 2+, this neural population had to re-start 

its learning process from an earlier point on the learning curve. 

Thus, the time course of novelty learning in the novelty responsive population followed a saw 

tooth pattern, marked by cycles of within-day learning followed by partial across-day forgetting 

(Figure 3.6C). This saw tooth pattern continued with striking consistency on each day for up to 

the full 5 days of exposure tested in this experiment, as the population response to the repeating 

novel fractals gradually progressed toward familiarity (Figure 3.6D). The population average 

response to repeating novel fractals never became fully identical to familiar fractals (Figure 
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3.6C, p<0.0001, Figure 3.5D, p<0.0001, signed-rank test relative to 0.5), which is expected since 

the familiar fractals had been previously viewed many times (1000+ exposures). Interestingly, 

the population made quite similar learning progress each day; the learning rate had a remarkably 

similar magnitude and time course over the session for fractals regardless of their number of 

days of exposure (Figure 3.6B, Day 1 vs. Day 2).  
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Figure 3.6. Dynamics of learning and forgetting in novelty excited neurons. (A) Novelty-

excited neuron population response as a function of object exposure. Firing rates are normalized 

here so that the response is 0 to familiar objects and 1 to always novel objects (Materials and 

Methods). (B) Novelty-excited neuron population learning rate decreases over the course of each 

day. (C) Quantification of within-day and across-day novelty-familiarity transformations. The y 

axis is the population mean AUC of the ROC for discriminating responses to repeating novel 

fractals vs. familiar fractals. This is quantified for the first 5 (start) and last 5 (end) presentations 

of each repeating novel object on each day. *, **, *** indicates p < 0.05, 0.01, 0.001 (signed-

rank tests). (D) Novelty-excited neurons across day novelty-familiarity transformations over the 

course of 5 days (Monkey S; Materials and Methods). The y axis is the area under the ROC 

curve comparing responses to repeating novel fractals vs. familiar fractals. Shown is data from 

the first 5 (magenta) and last 5 (blue) presentations of each fractal in each session. 
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So far, we found that novelty-excited neurons as a population can have different learning rates at 

different times within a single session. But could there also be variation in learning across the 

population, such that different neurons learn and forget at different rates? Some of the novel 

objects we encounter in life are only relevant to our immediate situation, but others have long-

term importance and must be committed to memory, sometimes forever (Hikosaka et al., 2013). 

Therefore, it would be ideal if the brain contained neural networks with different learning rates to 

handle these diverse situations. Indeed, it has been proposed that the brain contains reservoirs of 

neurons with different timescales of learning, including 'fast' neural systems that both learn and 

forget quickly, and 'slow' systems that both learn and forget slowly (Smith et al., 2006; Kording 

et al., 2007). Alternately, it is possible that novelty responsive neurons throughout the brain learn 

and forget in lock step with each other, cooperating to form a single, unified representation of 

each object's degree of novelty. This would be analogous to theories of motivated behavior, 

which propose that key motivational variables, such as the values of states and actions, are 

computed once and then used by multiple brain areas to guide multiple processes such as 

learning, outcome anticipation, and decision making (Schultz et al., 1997; Schultz, 2002; Padoa-

Schioppa and Cai, 2011). While each of these hypotheses from the literature on learning and 

memory has large implications for brain function, they have remained untested in the realm of 

novelty detection.  

To answer this open question, we examined novelty responsive neurons and found that they 

learned in diverse manners. For example, Figure 3.7A left panel shows an example novelty 

responsive neuron recorded in area AVMTC, suggestive of 'slow learning, slow forgetting'. That 

is, this neuron was strongly excited by its first exposure to repeating novel objects (Day 1 start), 

gradually reduced its response over the course of the day (Day 1 end), had almost the same level 
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of response at start of 2+ day, which showed roughly no forgetting (Day 2+ start), and produced 

a learning curve that was similar to the first day but with a pronounced downward shift, 

suggestive of progressive learning across days (Day 2+ start to end). By contrast, Figure 3.7A 

right panel shows a second AVMTC novelty responsive neuron with very different learning 

curves, suggestive of 'fast learning, fast forgetting'. This neuron learned at a considerably faster 

rate on Day 1: by the end of the day its response to repeating novel objects is very close to fully 

familiar objects. However, this neuron also had considerably greater rest related forgetting: it 

almost completely 'reset' its novelty response on Day 2+, so that the learning curve on Day 2+ 

has only a little downward shift from Day 1. Thus, while this neuron learned rapidly within each 

day, it was unable to retain this learning and hence could not compound its progress across days. 

To quantify the time course of novelty-familiarity transformations in single neurons, we 

calculated independent indexes of how much a neuron learned within a day and forgot across 

days (Figure 3.6C, Materials and Methods) and assessed the relationship between learning and 

forgetting. We found that the two indices were strongly correlated (Figure 3.7B, ρ=0.371, 

p<0.0001, Spearman's rank correlation). This correlation was driven by true variation across 

neurons in their learning-related activity, not by variations across session in the animal's learning 

process, because it remained similarly strong after subtracting out session-level effects 

(Supplemental Figure 3.6B). These results indicate that there was true variation in the degree of 

neuronal learning, such that neurons that learned a greater amount within Day 1 also tended to 

forget a greater amount across days. Moreover, while within brain regions these types of neurons 

were intermingled (e.g. the cells in Figure 3.7A), we did observe an anatomical trend that 

strongly corroborates the results of Figure 3.6C: brain areas that on average had greater within 

day learning also had greater across day forgetting (Figure 3.7C). This result supports theories 
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that anatomical or circuit differences can support learning on different time scales (Bromberg-

Martin et al., 2010b; Kim and Hikosaka, 2013; Murray et al., 2014; Cavanagh et al., 2016; 

Monosov et al., 2020; Spitmaan et al., 2020), and provides evidence that this is the case 

specifically in the realm of novelty-to-familiarity transformations. 
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Figure 3.7. Multiple rates of learning and forgetting across neurons and across brain areas. 

(A) (left) Activity of an example AVMTC neuron with slow, progressive learning over the 

course of multiple sessions. This plot was made by quantifying activity using a sliding window 

of 5 object presentations, advanced in steps of 1 object presentation; error bars indicate SE. 

(right) A second example AVMTC neuron that learned rapidly within each day but almost 

completely reset its learning curve across days. (C) Correlation between indexes of neural 

learning within day (x-axis) and forgetting across days (y-axis). The heat map shows the joint 

distribution of the two indexes, and the histograms show the marginal distributions of each 

index. A positive within-day learning index indicates responses to repeating novel fractals 

become relatively more like responses to familiar fractals at Day 1 end than Day 1 start. A 

positive across-day forgetting index is an analogous comparison between Day 1 end and Day 2 

start. (D) Heterogeneity in average learning and forgetting indices across brain areas. Scatterplot 

showing the distribution of the mean within day learning index and mean across day forgetting 

index of each brain area.  
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3.4 Discussions 

Current theories put forward distinct models in which novelty is either derived from recency 

judgements or conceptualized as a form of sensory surprise. Here, high-channel 

electrophysiology assessed these mechanisms and determined that object-novelty arises with 

both computations of recency and surprise, suggesting that novelty detection and memory-related 

functions are supported by diverse mechanisms of predictive coding. 

Elegant work from Brown and his colleagues identified distinct neuronal groups in AVMTC – 

the region most strongly enriched with novelty sensitive neurons (Figure 3.4A) – that signaled 

novelty and recency (Xiang and Brown, 1998). There the relationship between recency and 

novelty, or surprise and novelty, was not assessed. Subsequent pioneering theoretical and 

computational work of Bogacz and Brown suggested that recency and novelty neurons may form 

a functional network in support of memory and other adaptive behaviors (Bogacz et al., 2001a; 

Bogacz and Brown, 2003b; Bogacz and Brown, 2003a). Our data replicate the findings that 

AVMTC is enriched with novelty sensitive neurons, above and beyond other temporal regions, 

and provides a first demonstration for the linkage between recency and novelty computations 

suggested by modelling. We could have found instead that novelty sensitivity was not correlated 

or negative correlated to recency or surprise. In some sense, within a single pool of neurons such 

as AVMTC, this could have been more efficient mode of information encoding (Koay et al., 

2021). This deviation from efficiency further supports the argument that the relationships 

between novelty and sensory surprise and recency are important for novelty detection.   

Importantly, our data does not indicate that novelty, recency, and sensory surprise are always 

treated identically by the brain (Bogacz et al., 2001a; Charles et al., 2004). Instead, we interpret 
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the results to mean that neurons sensitive to these variables are functionally linked in support of 

novelty detection in the primate brain, across multiple brain areas (Bogacz et al., 2001a). Novelty 

triggers many processes, starting with the retina (Hosoya et al., 2005; Huang and Rao, 2011), in 

the service of adaptive behavior and survival. Next, in-vivo and computational experiments must 

understand how bottom-up novelty-related computations and top-down (feedback) signals 

interact to produce the complex interactions between different prediction signals, and determine 

which emerge due to bottom-up sensory processing.  

For example, novelty and surprise can arise due to distinct sources. Sensory surprise sensitivity 

indices (Figure 3.1) measure surprise due to probability of seeing an object, while surprises due 

to sequence violations (Supplemental Figure 3.3B-D) arise also due to a violation in the subjects' 

beliefs about the structure and statistics of the external world. Relatedly, novelty can be expected 

or unexpected, arising from distinct sources ((Barto et al., 2013; Zhang et al., 2019; Monosov, 

2020), note that in our data sensitivities to unexpected novelty in Type 4 trials and to expected 

novelty in Type 1 trials were highly correlated; ρ=0.3582; p<0.001). While expected and 

unexpected novelty or surprises formally could have different roles in learning (Soltani and 

Izquierdo, 2019), in naturalistic contexts, the line between expectedness and unexpectedness is 

never clear  – agents need to monitor all surprising and novel events to detect changes in 

contexts and distributions of outcomes and events (Monosov, 2020). This notion is supported by 

the linkage we see between novelty sensitivity and different forms of sensory surprise across 

many brain areas (Figure 3.3-4, and Supplemental Figure 3.3D). However, the source of sensory 

surprises along different task, decision, and statistical hierarchies requires further investigation 

as has begun to be done for reward surprises or prediction errors (Li et al., 2019; Sarafyazd and 

Jazayeri, 2019). 
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Beyond the global linkage between novelty with sensory surprise and recency, we found several 

brain area differences (Figure 3.4). While, the same neurons within ventral visual regions in 

AVMTC were strongly sensitive to both sensory surprise and novelty, single novelty sensitive 

neurons there did not seem to commonly track object recency relative to other areas. In 

particular, novelty sensitive neurons in the amygdala (Figures 3.2 and 3.4) were particularly also 

sensitive to sensory surprise, recency, and novelty consistent with the wide ranging roles of 

amygdala neurons in object memory, sensory processing, and associative learning (Murray and 

Mishkin, 1998; Baxter and Murray, 2002; Murray and Izquierdo, 2007; Peck et al., 2013; Peck 

and Salzman, 2014; Dal Monte et al., 2015; Costa et al., 2016).   

Neuronal novelty-familiarity transformations occurred with multiple, heterogeneous time 

courses, with some neurons learning slowly but steadily over the course of multiple days, and 

others learning a rapidly within each day but retaining little across days. This may support 

adaptive behavior in a world in which some objects are only relevant for short periods of time, 

while others must be remembered for a lifetime. This is akin to theories of sensorimotor learning 

and adaptation in which the motor system must adjust to perturbations during movements that 

are unlikely to ever again challenge the system, and also to slow permanent changes, like age-

related changes in the body or permanent changes in the task (Smith et al., 2006). It has been 

suggested that to support such fast and slow changes the brain may have evolved fast and slow 

learning systems (Logothetis and Sheinberg, 1996; Kording et al., 2007; Kim and Hikosaka, 

2013), that forget quickly or slowly, respectively. We found evidence for similar mechanisms for 

novelty detection. Neurons underwent novelty-to-familiarity transformations at a spectrum of 

timescales, with some learning rapidly and others learning slowly. Furthermore, these timescales 
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of learning were reflected in a consistent manner across time; neurons which learned rapidly 

within a session also tended to have greater spontaneous recovery across sessions.  

We found that the entorhinal cortex and the hippocampus had average negative forgetting 

indices, meaning that their average learning was enhanced across days, after periods of rest 

(Figure 3.7 and Supplemental Figure 3.6C). While among single neurons, all brain regions 

contained heterogeneous timescales, consistent with the average learning and forgetting indices, 

posterior medial temporal cortex, anterior entorhinal, and hippocampal regions were also 

enriched with single neurons that displayed enhanced learning after rest (Supplemental Figure 

3.6C). We propose that this enhancement (indexed by negative forgetting indices) is a correlate 

of these regions' pronounced contributions to memory consolidation and recall (Saunders et al., 

1984; Murray and Wise, 1996; Murray et al., 1998; Hasselmo and McClelland, 1999; Hasselmo 

et al., 2000; Fell et al., 2002; Joo and Frank, 2018; Pine et al., 2021), but also caution that many 

brain areas contained heterogeneous learning and forgetting timescales, regardless of the average 

timescales (e.g., negative or positive). This is consistent with the notion that learning and 

memory are distributed functions rather than pinpointed to any one particular region of the brain. 

Neural learning-forgetting timescales could be directly related to the computations of recency 

and surprise. Intuitively, the faster we forget, the more surprising the forgotten object becomes. 

Despite the fact that our task painstakingly separated recency and surprise, their relationship with 

novelty suggests that timescales may play a central role in novelty detection, albeit in 

heterogeneous manners, and that novelty detection is a dynamic process that may not be bound 

to binary classifications of novelty and familiarity. 



100 

 

A technological limitation in our study was that while we were able to record from many regions 

simultaneously, each electrode had one contact. Therefore, each recording session yielded 

relatively few neurons within each region. Denser sampling within each brain area could 

facilitate hierarchical analyses of learning and forgetting timescales across brain areas, and relate 

them to intrinsic timescales (Murray et al., 2014; Cavanagh et al., 2016; Spitmaan et al., 2020) or 

anatomical wiring. Also, to perform high dimensional population analyses, Materials and 

Methods for wide-scale recording that incorporate denser sampling of neurons within each brain 

area are required.  

Surprises may arise due to different circuit and algorithmic mechanisms in the service of distinct 

strategies of prediction (e.g., depending on the coding space or reference frame of the prediction 

or prior). This is well illustrated by the insight gained in the inferotemporal cortex (IT), lateral to 

AVMTC. Kaliukhovich and Vogels (2014) found that IT neurons responded more strongly to an 

object in blocks when it had a 10% probability of appearing rather than a 90% probability of 

appearing, and this adapted rapidly to recent stimulus history (Kaliukhovich and Vogels, 2014). 

These responses were strikingly insensitive to the prior probability distribution of alternative 

objects that could have been presented, to either a narrow distribution (a single alternative object 

with a 90% probability of appearing) or to a wide one (9 different alternative objects which each 

had a 10% probability of appearing). Meyer and Olson (2011) trained monkeys with highly 

stable sequences of objects (i.e., object A->B, A->B, C->D, C->D) and after extensive training 

violated the monkeys' expectations (i.e., C->B). IT activations were higher in response to these 

sequence violation events which they attributed primarily to the suppression of predicted stimuli 

(and to the absence of this suppression for objects that violate predictions (Meyer and Olson, 

2011; Ramachandran et al., 2016). A study by Bell et al (2016) reported that IT responses to 
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faces were suppressed during periods when faces were presented with high probability (Vogels, 

2016; Bell et al., 2017). In sum these papers suggest that surprise effects in IT could be due to 

computations tightly linked to object-presentation probability.  

Our data in the AVMTC, constituting medial regions of IT and perirhinal cortex (Xiang and 

Brown, 1998), is aligned with this interpretation. When comparing activity in trial types 2 and 3, 

which differ in monkeys' ability to predict which object will appear next (object-presentation 

probability), we observed differential activation in many AVMTC neurons, particularly in 

neurons that also displayed strong selective activations in response to novel objects. Here, we 

show that novelty selectivity - the differential responses to never before seen objects - could arise 

from computations that detect the occurrence of unpredicted objects (or surprises (Barto et al., 

2013)), emerging intertwined with the circuit mechanisms of prediction (Aitchison and Lengyel, 

2017).  

It is highly possible that surprise signals in different brain regions serve different prediction and 

behavioral control algorithms, supporting different forms of belief or sensory updating. Such 

diversity can theoretically support the many distinct strategies of novelty detection that have 

been developed in machine learning (Miljković, 2010). For example, different brain areas or 

circuits may implement distinct algorithms based on comparisons of explicit sensory memories 

with incoming sensory stimuli (Dasgupta et al., 2018; Tyulmankov et al., 2021), such as in 

Hopfield networks (Bogacz et al., 2001b; Bogacz and Brown, 2003b), or implement algorithms 

for inference, comparing beliefs about a particular object's probability, or total contextual object 

variability, with sensory input. Diversity of novelty detection and memory encoding mechanisms 



102 

 

may be supported by the heterogeneous time scales of learning and forgetting that we observed 

within individual brain regions, and across the brain.   

Therefore, a particularly fruitful avenue for future work will be to uncover how multiple 

timescales of learning and forgetting can sub serve adaptive novelty-detection and inference in 

natural and artificial intelligence (Adams et al., 2014; Aitchison and Lengyel, 2017; Friston, 

2018).  
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3.5 Supplemental materials 

 

Supplemental figure 3.1. Trial start related behavioral analyses and neural results for two 

monkeys separately. (A) Monkeys' reaction times are different for the fixation dots predicting 

the first three trial types. (B-E) In both monkeys, novelty neurons displayed strong coding of 

sensory surprise and recency. The figure format is the same as in Figure 3. (F) Novelty neurons 

in Figure 3A shown separately for novelty-excited (higher activity for novel objects - left two 

bars) and novelty-inhibited (higher activity for familiar objects - middle two bars) groups. Other 

neurons are shown on the right (same as Figure 3). The figure format is the same as in Figure 3.  
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Supplemental figure 3.2. Supplemental analyses for novelty and surprise indices. 

Correlation analysis as in Figure 3A, but using alternative Materials and Methods to calculate the 

novelty index and sensory surprise index as controls. (A) We calculated the novelty index only 

using one of the two familiar fractals in trial type 2 at the second position in the sequence. The 

sensory surprise index and recency index are very similar to Figure 3. (B) We calculated the 

novelty index only using the other one of the two familiar fractals in trial type 2 at the second 

position in the sequence. The sensory surprise index and recency index are again very similar to 

Figure 3. (C) We calculated the sensory surprise index using the raw neural firing rates without 

regressing out recency and object selectivity effects. (D) We calculated the sensory surprise 

index after regressing out recency and object selectivity effects from each neuron's firing rates 

(Materials and Methods). In addition, the correlation coefficient of the novelty index and sensory 

surprise index in novelty excited neurons is 0.078 (p<0.01), 0.071 (p<0.05), 0.108 (p<0.001), 

0.064 (p<0.01), respectively in the four cases, and the correlation coefficient of the novelty index 

and recency index in novelty excited neurons is 0.117 (p<0.001), 0.038 (p=0.20), 0.114 

(p<0.001), 0.114 (p<0.001), respectively in the four cases. 
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Supplemental figure 3.3. Novelty-excited and inhibited neurons' relationship with surprise 

and recency across the brain, and sequence violation coding. (A) We separated the neurons in 

figure 3C into novelty-excited, novelty-inhibited, sensory surprise-excited, sensory surprise-
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inhibited, recency-excited and recency-inhibited neurons. Data to the left of 0 are for inhibited 

neurons, and to the right of 0 are for excited neurons. Novelty, sensory surprise, and recency are 

indicated by red, blue, and green. Here by excited we mean higher activity, and by inhibited we 

mean lower activity; for example, a novelty inhibited neuron had lower firing rate for novel than 

familiar objects (Materials and Methods). (B-D) Relationship of sequence violation and novelty 

coding. (B) The mean sequence violation index in all novelty responsive neurons is significantly 

higher than in all other neurons. (C) Within novelty-excited neurons, the magnitude of novelty 

sensitivity was correlated with the magnitude of their sensitivity to sequence violations. The 

figure format is the same as in Figure 3. (D) The distribution of neurons coding sequence 

violation by brain areas is distinct from Novelty neurons (left, magenta line), but in the brain 

areas which had dense novelty neurons, the coding of novelty and sequence violation are 

correlated (right, magenta). Error bars indicate SE obtained through a bootstrapping procedure. 

The distribution of the correlations from brain areas is centered higher than 0 (signed-rank test, 

*, **, ***, indicate p < 0.05, 0.01, 0.001). (E) Brain areas are clustered by their average recency 

and sensory surprise sensitivities relative to their average novelty sensitivity (Materials and 

Methods). 
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Supplemental figure 3.4. Supplemental analyses of reward information viewing procedure. 

(A) Percentage of neurons significantly encoding reward value and information anticipation. 

Chance is indicated by the dotted line. (B) Cross-validated population average PSTHs of neurons 

encoding reward value (left) or information anticipation (right). Each neuron's activity was 

normalized by z-scoring before being averaged. (C) (left) Novelty-inhibited neurons' novelty 

sensitivity correlated with their sensitivity to reward value and information anticipation (right 

two bars), but not significantly correlate with their sensitivity to sensory surprise and recency 

(left two bars). *, **, ***, indicate p < 0.05, 0.01, 0.001. The results of these comparisons are: 

novelty and reward value, p=0.045, novelty and information anticipation, p=0.02, novelty and 

sensory surprise, p=0.052, novelty and recency, p=0.81, Spearman's rank correlation). This 

implies that novelty-inhibited neurons are functionally distinct from novelty-excited neurons. 

(middle, right) Novelty-inhibited neurons' sensitivity to sensory surprise and recency was not 

significantly correlated with the magnitude of their sensitivity to reward value and information 

anticipation.  
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Supplemental figure 3.5. A hidden factor in the noise correlation of novelty responsive 

neurons. (A) Noise correlation analysis. The bars from left to right represent the mean noise 

correlations for the following conditions: Novelty responsive neurons' noise correlation during 

responses to novel fractals; novelty responsive neurons' noise correlation during responses to 

familiar fractals; other neurons' noise correlation during responses to novel fractals, and other 

neurons' noise correlation during responses to familiar fractals. Asterisks (same format as other 

figures) indicate significance of a comparison between novelty responsive neurons vs. other 

neurons comparing mean noise correlations pooled over all fractals. (B) Noise variance analysis. 

We tested if novelty responsive ensembles responded to the novel fractals in a manner consistent 

with novel fractals having different degrees of novelty – for example, as a result of some novel 

fractals being perceived as more or less novel/familiar. Specifically, we defined the ensemble 

response to each individual object presentation as a point in an N-dimensional firing rate space 

(with each dimension corresponding to the firing rate of a specific neuron, including only 

novelty responsive neurons). Then, using 5 individual object presentations, we computed the 

variance of the ensemble responses along the novelty coding axis and a random axis, 

bootstrapped the mean, and calculated their ratio (Materials and Methods). This was done for 

three sets of object presentations: 5 different novel fractals, 5 different familiar fractals, and 5 

presentations of the same familiar fractal (red, black, and green circles in theoretical schematic in 

B; left, middle, and right bars in C). (C) The results indicated that the variance of the neural 
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responses to novel fractals, compared to familiar fractals, was expanded relatively more along 

the novelty axis than the other random axes (p<0.0001, signed-rank tests). This may suggest that 

neural systems for novelty detection can have shared response variance, effectively treating some 

novel objects as 'more novel' and others as 'less novel' (Meyer and Rust, 2018; Mehrpour et al., 

2021). 
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Supplemental figure 3.6. The changing of the sparseness of novel objects within a session 

and supplemental analyses of learning and forgetting. (A) In Type-4 trials, as animals learned 

to become familiar with the repeating novel fractals after repeated exposure, this caused the 

probability of encountering never-before-seen novel fractals to become much less common (Left 

panel; start of session: 5/17; end of session: 1/17). Hence, if animals tracked this reduction in the 

probability of encountering completely novel objects, they might treat the presentation of the 

always novel objects as increasingly 'surprising'. Furthermore, we hypothesized that novelty 

responsive neurons might be sensitive to this form of surprise (i.e., surprise induced when 

animals predict that a novel object has a low probability of appearing), given our finding that 

many of these neurons respond to a different form of surprise (i.e. sensory surprise induced when 
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a familiar object has a low probability of appearing; Figure 3). Indeed, the activity of novelty-

excited neurons reflected this additional novelty-related surprise by increasing their responses to 

the always novel objects towards the end of the session. We introduced an index to quantify the 

effect. Both Type 1 trials and Type 4 trials had novel fractals. In Type 1 trials the percentage of 

novel fractal was a constant, so we used it to control for any possible drift over time in neural 

response patterns. The index was calculated as the AUC of the ROC of the neuron's firing rates 

to the first 5 presentations vs. last 5 presentations of always novel fractals in Type 4 trials minus 

the AUC of the ROC of the neuron's firing rate to the first 5 presentations vs. last 5 presentations 

of novel fractals in Type 1 trials. (B) Importantly, the correlation between learning and forgetting 

indexes reflected differences in neural learning, and did not result from any possible session-to-

session variations in animal learning or behavior. For example, hypothetically, even if all 

neurons learned in lock-step with each other within each individual session, if the animal learned 

fast in some sessions and slow in other sessions, this would produce a dataset where some 

neurons had fast learning curves and other neurons had slow learning curves. To control for this 

possibility, we repeated the analysis after subtracting the mean of the indices for each session's 

data from all neurons recorded during that session (Materials and Methods). The results were 

very similar to Figure 3.7B. Note that the marginal histograms are no longer significant because 

the indexes were mean-subtracted within each session, and hence the mean indexes must be 

equal to 0. (C-top) Data of Figure 3.7C with SEM. Solid lines are the means of the within day 

learning index and across day forgetting index. Error bars indicate standard error of the mean 

(SEM). (C-bottom) Proportions of cells with significant negative or positive forgetting indices 

(threshold: p=0.05) are indicated below.  

 



112 

 

 

Supplemental figure 3.7. Recording locations (A) Recording locations relative to the anterior 

commissure (AC) in each monkey. All units are in mm. Cell count: number of cells in the region. 
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mean(L) to AC(L) : mean of lateral coordinates of the cells in the region, referenced to AC. 

mean(A) to AC(A) :  mean of anterior coordinates of the cells in the region, referenced to AC. 

mean(D) to AC(D) : mean of dorsal coordinates of the cells in the region, referenced to AC. 

std(L) : standard deviation of lateral coordinates of the cells in the region. (B) MRI images and 

recording sites in areas preferentially enriched (top 4) with novelty neurons. The neurons are 

projected onto coronal MRI slices (top: monkey L and bottom monkey S). Blue dots represent 

cells which do not selectively respond to novelty and red cells represent cells which do 

selectively respond to novelty. Green rectangle shows one standard deviation of cells' 

coordinates around their means in dorsal and lateral directions. Monkey L : AVMTC is shown on 

two planes at AP +23.4 and AP +19.6, Basal Forebrain is shown on AP + 19.5, Amygdala is 

shown on AP +22.2 and AP +20.5. Monkey S : AVMTC on AP +24.1 and AP +18.4, 9/46V on 

AP +30.3, Basal Forebrain on AP +20.1, Amygdala on AP +20.3 and AP + 18.9. AP - anterior 

posterior axis. Here numbers are relative to the interaural (where the center of the AC is on 

average between 20+ and 21+ AP). 
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Chapter 4: Discussions and Summary 

 

4.1 Basal forebrain encodes salient events 

Salience, or the behavioral importance of an object, usually reflects its relationship with reward, 

punishment, uncertainty, surprise, and novelty (Lin and Nicolelis, 2008; Bromberg-Martin et al., 

2010a; Ghazizadeh et al., 2016a; Zhu et al., 2018). Accordingly, salience has multiple complex 

effects on behavior. Salient objects attract attention and orientation, increase arousal, facilitate 

learning and memory, and affect reinforcement learning and credit assignment (Ohman et al., 

2001; Fecteau and Munoz, 2006; Laurent, 2008; Ponzi, 2008; Ghazizadeh et al., 2016a; Zhu et 

al., 2018; Radulescu et al., 2019; Yu et al., 2021). 

In Chapter 2, we study two kinds of neurons in the primate basal forebrain (BF), phasic bursting 

neurons (BF phasic neurons) and tonic ramping neurons (BF ramping neurons), which may 

underlie these functions in distinct manners. 

On the one hand, the BF phasic neurons respond to reward conditioned stimuli (CS), and their 

activity scale with reward amount or probability. Unlike some dopaminergic neurons (Schultz et 

al., 1997), these neurons do not encode quantitative reward prediction error (RPE). Instead, 

current data show that their activity scales with prediction error only when rewards are delivered. 

When the reward is unexpectedly omitted, without any external sensory cue, their activity 

remains largely unchanged. Based on these data and other observations (Lin and Nicolelis, 2008; 

Avila and Lin, 2014; Hangya et al., 2015), we propose that BF phasic neurons signal surprises 

triggered by external stimuli. Furthermore, their external surprise signal encompasses other 
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dimensions. For example, their activity was rapidly increased by novel objects, and violations of 

beliefs about sensory statistics. 

On the other hand, BF ramping neurons' activity predicts the timing of rewarding, novel, and 

surprising events, and their ramping activity is highly sensitive to the subjects' confidence in 

event timing. In the experiments, the BF ramping neurons ramped up their activity in response to 

the CS indicating reward, and their activities were much more enhanced when the reward 

outcome was uncertain. In the behavior procedure where there were multiple possible reward 

delivery time points, the BF ramping neurons ramped up to each time point and dropped the 

activity after, even if there was no external cue. These data show that the BF ramping neurons 

tracks the time structure of the task and reflects certain internal variables of the subject. The BF 

ramping neuron could be a good candidate as the source that continuously regulates the subject's 

internal state, like level of arousal or attention. 

The BF contains cholinergic, GABAergic, and glutamatergic projection neurons. Studies in 

rodents have identified putative GABAergic and cholinergic phasic bursting neurons and non-

cholinergic tonic neurons (Lin and Nicolelis, 2008; Avila and Lin, 2014; Hangya et al., 2015). A 

future direction is to identify which neurotransmitters are released (or co-released) by the BF 

phasic and tonic neurons in primates. 

4.2 Comparison between the basal forebrain phasic neurons 

and the midbrain dopamine neurons 

We can compare the BF phasic neurons with the midbrain dopamine (DA) neurons. DA neurons 

and BF phasic neurons shared some similarities. They are both in the neuromodulatory systems 

and have phasic bursting responses to appetitive and aversive events. However, their tunings or 



116 

 

responses to the salient events are not exactly the same, revealing that they might regulate 

different functions. 

A subset of DA neurons encodes reward prediction errors (Schultz et al., 1997). They respond to 

appetitive and aversive events in the opposite direction (motivational value-coding DA neurons). 

Another subset of DA neurons signals unsigned reward prediction errors (motivational salience-

coding DA neurons) (Matsumoto and Hikosaka, 2009). In contrast, the BF phasic neurons signal 

incomplete RPEs, i.e., only when the reward is delivered. 

Our study demonstrated that BF phasic neurons' salience signal also encompasses novelty and 

sequence violation. In contrast, some recent studies demonstrated that DA neurons do not encode 

value-unrelated novelty and sensory surprise (Nour et al., 2018; Ogasawara et al., 2022). In 

addition, The DA neurons' latency is slightly longer than the BF phasic neurons (DA: ~100ms, 

BF phasic neuron:20-100ms) (Schultz, 1998; Redgrave and Gurney, 2006; Lin and Nicolelis, 

2008; Hangya et al., 2015).  

The popular theory of DA neurons is that they participate in the brain's reinforcement algorithm 

(Schultz et al., 1997; Kakade and Dayan, 2002; Sutton and Barto, 2018). In the credit assignment 

process, the animal needs to know both how much the value needs to be updated, and which 

object should be linked to reward or punishment and updated on the value. The animal 

hypothetically uses the RPE signaled by the motivational value-coding DA neurons for value 

updating. On the contrary, there are various speculations on the function of the motivational 

salience-coding DA neurons. They could participate in linking the salient conditioned stimuli to 

the reward or punishment; Or they could also regulate other effects of motivational salience, 
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such as attracting attention and orientation, and increasing arousal. (Kume et al., 2005; Redgrave 

and Gurney, 2006; Laurent, 2008; Bromberg-Martin et al., 2010a) 

According to our results in Chapter 2 and previous studies in BF and DA neurons, A preferable 

speculation is that BF phasic neurons may participate in initiating the orienting and attention, 

because BF phasic neurons' signal is more rapid and encompasses more general salient events 

than DA neurons. On the other hand, motivational salience-coding DA neurons can signal 

complete unsigned RPEs, and they may work with the motivational value-coding DA neurons in 

the process of credit assignment and learning the association of sensory cues. However, this 

speculation remains to be tested by further experiments. Furthermore, the serotonergic and 

noradrenergic neuromodulatory systems also respond to salient events, and how they interact 

with the BF and dopaminergic systems remains to be understood (Avery and Krichmar, 2017). 

4.3 Computations of novelty in the brain 

In Chapter 3, we show that the computation of novelty in the primate brain depends on both 

sensory surprise and recency. This dependency is observed across neurons, and across brain 

areas.  

However, according to our data, different brain areas do not share exactly the same computation 

of novelty. This supports the hypothesis that there could be multiple systems to detect and 

encode novel objects, and to regulate different effects driven by novel objects like arousal, 

attention, orientation, and learning. 

Among the brain areas with high concentrations of novelty-responsive neurons, we found that 

the BF and amygdala are highly enriched with both recency responsive neurons and sensory 
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surprise responsive neurons. This confirms and adds more knowledge to what we have found 

about the BF in Chapter 2. Anatomically, the BF and amygdala have reciprocal projections 

(Mesulam et al., 1983), and previous studies have also found amygdala encodes novelty and 

surprise (Blackford et al., 2010; Cheung et al., 2019). In addition, the amygdala and the BF are 

hypothesized to function as a circuit to regulate spatial attention (Peck and Salzman, 2014). Our 

results so far align with this hypothesis. In contrast, the BF also has wide projections to other 

neocortex brain areas, but not all brain areas have similar percentage of sensory surprise and 

recency responsive neurons as the BF. This means that besides the basal forebrain-amygdala 

circuit, there are probably other circuits that respond to novelty through other mechanisms and 

regulate other effects of novelty. 

The AVMTC has a very high concentration of novelty-responsive neurons and could be a source 

of novelty signal that is relatively independent from the BF-amygdala circuit. In our data, the 

AVMTC is highly enriched in sensory surprise coding, which previous studies have also 

reported: Kaliukhovich and Vogels (2014) and Meyer and Olson (2011) found neurons in the 

inferior temporal cortex (IT) responding to surprise and sequence. Our data also showed that the 

AVMTC has a relatively low concentration of recency responsive neurons, which seems not 

aligned with the study by Xiang and Brown (1998), who found a higher concentration of recency 

responsive neurons in the temporal cortex. The difference in the results could be due to the 

different methods used for measuring recency between the two studies: In Xiang and Brown 

(1998), The nonrecent objects were defined as the first presentations of the objects and recent 

objects as the subsequent presentations of those objects. Thus, the last time that the animal saw 

the nonrecent objects was usually 24 hours before. However, in our study, the nonrecent objects 

had only ~5 mins intervals between presentations, and the recent objects had time intervals of 
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less than one second. Thus, we measured recency with a much shorter timescale than Xiang and 

Brown (1998). 

We have an experimental discovery that novelty computation is supported or intermingled with 

the computation of novelty and recency. However, the circuit details underlying these 

intermingled computations are still missing. 

I will speculate some possible ways how the computation of novelty and the computation of 

surprise may be intermingled. There are primarily three possibilities: The first is that a circuit's 

primary goal is to compute surprise, and the novelty is calculated as a side effect; the second 

possibility is that a circuit's primary goal is the compute novelty and the surprise signal is a side 

effect; the third possibility is that a circuit may compute novelty and surprise together, and the 

readout of whether the signal is surprise or novelty relies on combining with other information in 

the downstream brain areas. The same mechanistic relationship may apply for novelty and 

recency computations as well, and there are even more possible combinations when recency, 

novelty, and surprise are considered together. Specifically, circuits may be designed to calculate 

one or two of them, with the others rising as side effects, or all three computations may be totally 

intermingled. In the following, I will mainly speculate on the models whose primary goal is to 

calculate novelty. While the other mechanisms are still possible, their discussion is beyond the 

scope of this dissertation. 

Most recently published novelty detection circuit models are designed to discriminate objects 

seen for the first time from objects that have been seen many times. In some of those models, 

recency responsive neurons can come out as a side effect but not surprise responsive neurons 
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(Dasgupta et al., 2018; Tyulmankov et al., 2022). However, we can make improvements on those 

models to make them also respond to surprise, which fits our experimental findings in Chapter 3. 

The principle of novelty detection and surprise detection have a similarity. They both require 

memory, but they differ in how memory is used. When decoding absolute novelty, the brain 

essentially compares the current object with ALL objects stored in the memory. In contrast, for 

surprise, the brain compares the object with only one or a small subset of predicted objects 

among all objects stored in the brain. To bring surprise computations into the novelty detection 

circuit, we can assign weights to the objects stored in the novelty detection circuit, and we put 

more weight on the predicted objects than the other familiar objects. In some perspective, we try 

to find some way to integrate the predictive coding models into the novelty detection models 

(Huang and Rao, 2011; Homann et al., 2017). 

For example, the fruit fly Bloom filter model used a set of hash functions to map the 

representation of objects on a bit array (stored in the weights of the KC -> MBON-03 

connection) (Bloom, 1970; Dasgupta et al., 2018). A possible modification is to introduce a 

mechanism that can further decrease the values in the bits that represent the predicted object (i.e., 

the bits that the object projects to through the hash functions). Thus, the output value of the 

circuit for the predicted familiar objects will be lower than the unpredicted familiar objects, and 

the output to the novel objects is still the highest.  

We can also make similar modifications in Rafal Bogacz's Hebbian model (Bogacz et al., 

2001b), which is a model based on the Hopfield network. Novelty detection is based on the 

calculation of the Hopfield network's energy (Hopfield, 1982): 
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𝐸𝑛𝑒𝑟𝑔𝑦(𝑋) =  

1

2
𝑋𝑊𝑋𝑇 

(4.4) 

In this equation, X is a row vector representing the input object, and W is a square matrix 

representing the weights of connections between neurons. Familiar object inputs, on average, 

have higher energy (Hopfield, 1982), the expectation of the energy (𝐸[𝐸𝑛𝑒𝑟𝑔𝑦(𝑋)]) equals 0 for 

the distribution of novel objects, equals 𝑁/2 for the distribution of familiar objects, where 𝑁 is 

the neuron number (same as the input dimension) in the Hopfield network (Bogacz et al., 2001b). 

One way to account for surprise is to add a new term in this energy function:  

 
𝐸𝑛𝑒𝑟𝑔𝑦(𝑋; 𝑌) =

1

2
𝑋𝑊𝑋𝑇 + 

1

2
𝛼 ∗ 𝑋𝑊𝑌𝑇 =

1

2
 𝑋𝑊(𝑋 + 𝛼 ∗ 𝑌)𝑇 

(4.5) 

Where 𝑌 represents a given predicted familiar object and 𝛼 is a coefficient determining the 

strength of the surprise response relative to the novelty response. (0 < 𝛼 < 1).  

If the input 𝑋 is same as predicted familiar object 𝑌, the expectation of the energy is  

 
𝐸[𝐸𝑛𝑒𝑟𝑔𝑦(𝑌; 𝑌)] =  𝐸[ 

1

2
(1 + 𝛼) ∗ 𝑌𝑊𝑌𝑇]  =  𝐸[ 

1

2
(1 + 𝛼) ∗ 𝑋𝑊𝑋𝑇] 

=  (1 + 𝛼)𝑁/2 

(4.6) 

If the input 𝑋 is a familiar object but not the predicted object (𝑋 ≠ 𝑌, suppose 𝑋 and 𝑌 are 

independently drawn and not correlated), the expectation of the energy is 

 
𝐸[𝐸𝑛𝑒𝑟𝑔𝑦(𝑋; 𝑌)] = 𝐸[ 

1

2
𝑋𝑊𝑋𝑇 +  

1

2
𝛼 ∗ 𝑋𝑊𝑌𝑇] =  𝐸[ 

1

2
𝑋𝑊𝑋𝑇] =  𝑁/2 

(4.7) 

In addition, for novelty input 𝑍, the mean of the energy is  
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𝐸[𝐸𝑛𝑒𝑟𝑔𝑦(𝑍; 𝑌)] = 𝐸[ 

1

2
𝑍𝑊𝑍𝑇 +  

1

2
𝛼 ∗ 𝑍𝑊𝑌𝑇]  =  0 

(4.8) 

Equation (4.5) computes the lowest mean of energy; Then is Equation (4.4), which computes the 

expectation of the energy when the input is unpredicted and familiar; Last is Equation (4.3), 

which computes expectation of energy when the input is predicted and familiar. Thus, this 

system can discriminate not only novel vs. familiar objects, but also surprising vs. non-surprising 

objects. More rigorous analysis of this modified network, which can give the network's capacity, 

will need to use the signal-to-noise analysis method, similar to what has been done in Bogacz et 

al. (2001b). 

Returning to recency, all novelty detection models with limited capacity, in theory, all have 

recency response, and the timescales of the recency response depend on the capacity. We 

observed that in our experiment, some neurons have very short timescale recency responses, 

which is around the timescale of minutes. However, this timescale is too long to be explained by 

neurons' refraction period (timescale of milliseconds) (Hodgkin and Huxley 1952) and too short 

for a large capacity novelty detection network. To give the reader a sense of the scale, here is a 

rough estimation of the timescale of a network whose size is similar to the primate memory 

system. There are about 5 billion neurons in the primate brain, with each neuron having, on 

average, about 1000 synaptic connections (the estimation here is conservative) (Wildenberg et 

al., 2021). Even if only a small fraction of the neurons participates in memory, say 1%, this still 

includes 50 million neurons. We take the theoretical circuit model proposed by Rafal Bogacz et 

al. as an example (Bogacz et al., 2001b; Bogacz and Brown, 2003a), where the capacity of 

novelty detection is proportional to the number of synaptic connections, and the coefficient is 

0.012 given by the model. Then, a primate's brain could theoretically store about 50 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 ∗
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1000 ∗ 0.012 =  600 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 objects. Supposing a macaque keeps viewing 1 object per second, 

without sleeping, it would still need about 19 years to fill up the storage.  

One possible explanation for the minute-timescale recency is that there are multiple novelty 

detection networks in the brain, and the sizes of the networks and the synaptic decay rates can 

vary. For networks with smaller sizes and faster synaptic decay rates, the storage capacities are 

small, and they generate the minute-timescale recency response we observed. 

4.4 Neural learning and forgetting 

We investigated how single neurons adapted as novel objects gradually become familiar. We 

presented the same novel objects repeatedly to the animals for multiple days. In the session, 

neurons that were excited by novel objects decreased their activity as the presentation number of 

the repeating novel objects increased (within-day learning) while the learning rate dropped. At the 

start of the session on the next recording day, the majority of the activity in neurons excited by 

novel objects rebounded back (across-day forgetting). On average, the neurons gradually adapted 

to the repeating novel objects in a sawtooth pattern across days, with peaks at the start of the 

session and valleys at the end of the session. 

It is worth noting that the neuron's across-day forgetting here is different from the recency 

response that we discussed earlier. The amount of forgetting reflects how much a neuron forgets 

about some newly learned objects overnight. On the other hand, the recency response measures 

the fully learned familiar objects' repetition suppression over the course of a single session. In 

addition, when measuring the across-day forgetting, we removed the repetition suppression 

effect of fully learned familiar objects. Moreover, the correlations in our data between recency 
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index with learning index and forgetting index were not significant. (rho = 0.028,  p = 0.51, 

recency vs. learning, rho = 0.053, p = 0.096, recency vs. forgetting, n = 991, Spearman's 

correlation). 

We found variety in the learning and forgetting patterns of neurons. Neurons that tend to learn 

more within a day also tend to forget more across days. This variety persists after grouping the 

neurons by brain areas. The brain areas that tend to learn more within a day also tend to forget 

more across days. In addition, the hippocampus and the entorhinal cortex on average have 

negative forgetting indices, which means that instead of forgetting, they consolidate the objects 

after resting at night. These two brain areas are also the key ones that participate in memory 

formation. (Takehara-Nishiuchi, 2014; Olafsdottir et al., 2018).  

The heterogeneity of learning and forgetting further indicates that multiple systems of processing 

novel objects could exist. In a world where some objects are only relevant for short periods, 

while others must be remembered for a lifetime, heterogeneous learning systems can gate the 

information flow and provide adaptive behavior to the objects with various timescales. 

Hypothetically, the information of the objects that are only relevant for short periods would 

mainly stay in the fast timescale system, while only the information of the objects that are 

important for a long time could be gradually learned and transferred from the fast timescale 

system to the slow timescale system, and kept there for a long period. 

4.5 Final thoughts 

In this dissertation, we first studied the BF neurons' activities to salient events, including reward, 

uncertainty, surprise, and novelty. We found two types of neurons that process salient events in 
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distinct manners: one with phasic burst activity to salient events and cues predicting the events 

and one with ramping activity anticipating salient events. Then we studied how the brain 

computes novelty signals and their adaption. In multiple brain areas, we found that the 

computation of novelty is related to both computations of recency and sensory surprise. In 

addition, we found diverse timescales of neural learning and forgetting across neurons and brain 

areas. These results give us new insights into how the brain processes salient objects. However, 

there is still much work to fully understand how the brain works. We will need to combine the 

experimental evidence and the theoretical models to build a comprehensive framework about 

salience processing in the brain. 
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