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1. Abstract

We present a new algorithm for computing the QR factorization of an mxn Toeplitz matrix in
O(mn) multiplications. The algorithm exploits the procedure for the rank-1 modification and the
fact that succesive columns of a Toeplitz matrix are related to each other. Both matrices Q and
R are generated column by column, starting from their first columns. Each column is calculated
from the previous column after rank-1 modification to the matrix R and a step of Gramm-
Schmidt orthogonalization process applied to two auxiliary vectors.

2. Introduction

An mxn matrix T is Toeplitz if elements on any diagonal are all equal, i.e.,
& =t—;,1=L.m, j=1,.n. Toeplitz matrices arise in many engineering applications. For
most of these applications it is required to compute the QR decomposition of the matrix T,

T=QR

where @ is an orthonormal matrix and R is upper triangular.

Methods for calculating the QR decomposition of a general rectangular matrix are known and
they require O(mn?) multiplications. Because Toeplitz matrices have a very special structure, it
might be expected that the QR decomposition of a Toeplitz matrix could be calculated in less
multiplications than in general case. This is indeed true.

Recently, Sweet [4] has proposed an O(nm) algorithm for the QR decomposition of a rectangular
Toeplitz matrix. The algorithm exploits the procedures for rank-1 modification and the fact
that both principal mxn submatrices of T are identical. When the fast Givens rotations are
used, Sweet’s algorithm requires 9mn+5n*+O(m+n) multiplications to compute both Q and R.

Another approach has been proposed by Cybenko [2]. Instead of computing the QR
decomposition of the matrix T, one computes an fnverse decomposition, i.e., a matrix P having
orthogonal columns and U/ upper triangular for which



TU=P

The method uses inner products as in Gramm-Schmidt orthogonalization process. An inverse
QR factorization is computed in 10nm + O(nz) multiplications.

Yet another algorithm for QR factorization of Toeplitz matrix have been developed in [1]. The
approach is similar to that used in Sweet’s algorithm but is logically less complex. The
algorithm requires 7nm+4n2+0(m+n) multiplication for computing @ and R when fast Givens
rotations are used.

Computer tests [3] have shown that none of the three algorithms, at least in their present form,
gives satisfactory numerical results. All three algorithms do not guarantee crthogonality of the
computed matrix Q.

In this paper we propose an algorithm for calculating the QR decomposition of a rectangular
mxn Toeplitz matrix in 12mn + 6n% 4+ O(m) multiplications. The algorithm can be viewed as a
combination of the Gramm-Schmidt procedure and results obtained in [1].

Although the operation count is slightly higher for the new algorithm, computer tests suggest

that the algorithm may give more accurate results than the other methods. More test are
necessary to verify this claim.

3. The Algorithm

Consider an mxn Toeplitz matrix T,

[ to to by . . t,4]
tl to t_l . . t—ﬂ+2
Ly t g . . topys
T =
b1 b tm—g - - t—n

Let x; denote the kth column of T. Define recursively matrices X, and Y, as

X, =%, X:= [xk-l:xk]

Y, =%, Y,:= [Yk—lka+1]

Because T is Toeplitz, X, and Y, can be partitioned as follows
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We will also consider an augmented matrix S,_, defined as

ag
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a1

Assume that the QR factorizations of X, and Y,_, are known,
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From (3.1)-(3.3) we have
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Let G(#;_},G(6x—3),.,G(8;) be a sequence of plane rotations which triangularizes the upper
Hessenberg matrix on the right hand side of (3.4),

R
G(8y1)G(0r—2)...G () [;i—_lll = [ :)_zl'bk—ll (3.6)

Similarly, let G{wy_,),F(wg—g),...,G(w;) be a sequence of plane rotations which triangularizes the
upper Hessenberg matrix on the right hand side of (3.5),

Glwi_1) G (wi—g)-. G (wy)

T R
a;_ Sp—1bpy
= 3.7
R,,t ] l o7 ] (21)

From the uniqness of the QR factorization of Sy_; the following relations hold,
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where I;_, is the (k-1)-dimensional identity matrix. The relation (3.8) states that only the first

k-1 columns on both sides of (3.8) are equal. This is because R,,_s,_, has rank k-1.
Define an (m+1)x(k-1) matrix V,_; and a vector ¥; as
[3 ol qf_.}ef(el)af(az) T8y = (39)
[Vn"z; T :vk—l’;k] = [vk—l:;k]
Note that
[‘: l;‘ p;‘l]ar(wl)cr(%) e GT(wpy) = (3.10)

[vllv2) e ;Vk—lazk] = [Vk-—lszi:]

where 2, in general, is not equal to v,.

The rest of this Section is divided into two parts. In the first part we show how to obtain the
QR decomposition of X, from the QR decomposition of X,._, and the QR decomposition of
Y;_,. In the second part we show how to obtain the QR decomposition of Y, from the QR
decompositions of X;,8,_; and Y,_;. All quantities computed in step k-1 are assumed to be
known before the execution of step k starts.

3.1 Computation of Q,, and R,

From (3.2) and (3.3) we have

r, oF
11
Xk = [qlapl) CNGN ka—1] 0 Rb‘. (311)
-1
We can make q; orthogonal to the space Lin(p,,py, . . - » Pg—1) using, for example, the Gramm-
Schmidt procedure,
gy == q

for i=1,2,...,k-1:

u; =W + BP; #e = —(u;_y,p;) (3.12)



By construction u; is orthogonal to Lin(py, . . . ,p;_;). Clearly u,_; and g;_, can be generated

recursively from u;_, and p;_,.
Based on (3.12) we can express q; in terms of p's and w,_;,
Q) = Wy — (B1Py+e A Pry)
Moreover, from orthogonality of p's and u;_,,
]l = [hag—y [Pt-peft.. 4122,

Let my_; = [gy, - - * ,p85—;]T. Combining (3.11) and (3.13) we obtain

-m; I]frf 0F
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-1
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then (3.15) can be rewritten as

—rfl my;_ Rb*_q

Xi =[P Pe— U] re lapll  OF

Note that the matrix [p;, . . . , Pi..y,Uz—;] has orthonormal columns.

Let G{7}G(7) - - - G(74—1) be a sequence of plane rotations such that

a
I R*t-—1

GonGm) == 6= g a1 o

is upper triangular.

From the uniqueness of the QR decomposition of X, and (3.17)-(3.18) we conclude that

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)



[Py, - - ;Pk-h‘_lk—l]GT("ik—l)GT('fk—z) Tt GT(’YI) =[q, ..., q]= Qa,, (3.20)

and

—rime—; Ry
. (3.21)
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Note that by (3.14)

[he 1P + 225 = o I1P

Thus G(7;), 7<k—2, generated in step k-1 are the same as those generated in step k. Hence, in
each step k we have to compute only one additional rotation G(v,).

From (3.20) it follows that

[Pk—b‘_lk—l]GT(’Yk-l) = [2,q] (3.22)

Thus q, can be generated from p;_;,u;_; and G{v;_); the vector z is of no importance in the
further considerations.

Comparison of the last columns on both sides of (3.21) yields

rk—lk—l

"lk-l
G(v)G(1) - - - Glve—) l l (3.23)
-1k

The relations (3.22) and (3.23) give us a means for generating the QR decomposition of X from
the QR decomposition of X;_; and the QR decomposition of Y,_,.

3.2 Computation of Qb, and Ry,

In the sequel we develop a procedure for computing the QR decomposition of Y, from the QR
decomposition of X; and the QR decompositions of Y,_, and S,_;.

Recall that the augmented matrix S,_, is defined as follows



T
S, = gk_l _ b _ | Yea
k-1 = al;-l =X T |af,
£—1

Assume by induction that R,, ,, and [V,_,,v;] defined by (3.7) and (3.9) are known.

Consider the augmented matrix S,. We have

o _[BF]_fr owF]_[r o bl (5.25)
k Xk 0 Qck Ra‘ 0 Qa* Ra‘._l T '
where v} = [r{,74, . . ., r&)T is the last column of the matrix R,,.
From (3.6)
bl i
G(03-)6(00)--G0) | o | = (3.27)
-1 -

ab
Ro b, Tlk-1k

—ab
0 & Tik
o7 A

where rf%_, ; denotes elements 1 thru k-1 of the kth column of R, s, Rewriting the relation
(3.27) for the last column gives

Bin ri}
a
Tk "
G(0—)G(#r—)..G(6))| . |= f&gk (3.28)
I Tk
Thk e

The rotation G(8;) which zeroes the bottom element r% and produces rf can now be easily

. b . . 3
determined from 7y and r&. The relation (3.28) gives us a means for generating r%, the last
column of the matrix R,,,, .

We also have



10...0

[0 o %]GT(el)GTwe) - GT(0) =
[vlsvm T :vk—lr;krﬁk]GT(Bk) = [vk:;k+l]

where Q*T = [0,q]. For the last two columns in the above relation we have

Ve, @] GT(00) = [V, Vi) (3.29)

We will now derive similar relations for Q;, and Ry,

From (3.5)
S 0 P - P a.g'
=
10 .. 0[|R,
The sequence of plane rotations G(wg),G(wi—), - - - ,G(w,) transforms the upper Hessenberg

matrix on the right hand side to the upper triangular matrix R,

H.T Ra s
Gl@n)Gwpar) - - Glun) [R’L] - [ oF } (3.30)

G(w)G(wp) -+ - G(wy) are known from step k-1. We want to find G(wy) and rl, the last
column of R,,.

Recall from (3.8) that

0 . I. O

[1 I;I L. pok]GT(wl)GT(wQ)‘“GT(wk) I:Oi; 0]
I, O

[f, o ;]of(el)af(og)..-eftm[0’} 0]=

or using notation (3.25) and (3.29),

I, 0 I, 0
v Vi,V =y V1,508 |GT () ' (3.31)
ERESEIREF IS FAF T 51 Ot 0 1« s Ye=1ZE,Pe k 0 0

where 1’5,3' = [py,0] is being sought as well.



Comparing the kths columns on both sides of (3.31) we obtain

e(w)eg + 8(w;) [%k} =V (3.32)

where ¢(w;) and s(w,) are cosine and sine defining G(w;). From the relation above it is clear
that

e(wp) = & (3.33)

Zmk

where v,,; and z,, are the last components of v, and z; respectively.

In order to compute s(w,) note that P, is in Lin(z,,v,) and is orthogonal to z;. By Gramm-
Schmidt procedure, the vector p; defined by

Pr =V + V4%, vp = —(Vi, %) (3.34)

has the same direction as p, = [p7,0]7. Thus

[Pkl _ Pk
O Il
Comparing (3.32) and (3.34) we see that
1
c{wg) = =y, s(we) = —= (3.35)
P&l
Note that (3.33) is another alternative for computing ¢(wy).
Knowing G(w;) it is now straightforward to compute r!, from the relation (3.30) as
tm—k ab
s T1k
Tik :
= GT(w) - GT(wy)]| . (3.36)
3 r):kb
Tk 0

Also we can compute 2, from (3.31) as

10



(2.8 ] GT (i) = [Vi B (3.37)

which completes the derivation of the kth step of the recursive procedure. An outline of the
algorithm together with costs of individual operations are given in Appendix.

Appendix

For completeness we give a brief outline of the kth step of the recursive algorithm.

Algorithm
Assume that all relevant quantities computed in step k-1 are known. In step k do:

1) compute u,_; and p,_, (see (3.12) and (3.16))

Uy = Wp_p + Pr_yPp—; Where ;= —(uk—z,Pk—J
. .
k- ”uk—lll

cost: 2m + O(1) multiplications

2) determine ¢(v;_;) and s(7;_,), parameters of the rotation G(v;_,), from the following relation
(see (3.21)}

—8(Te=1) c(Ve—1) || |Paxyll

lc(qk_l) 8(’7*-1)] ~#ry | [”uk-zu}
- 0

cost: O(1) multiplications

3) compute the vector q; (see (3.22))
(2:9] = [Pe—-1,0 1] G T (1)

cost: 2m multiplications

4) compute the kth column of R,, (see (3.23))

11



b
Tlk—1 LT

G(1)G(12) - - - G(re=r)

I

[ ]
Te—1k—1 Tr—1k
0 Tkak

cost: 4k + O(1) multiplications

5) determine the parameters of the rotation G(6;) and the kth column of R, (see (3.28))

t_y ab

a
Tik

G(ok—l)G(ak—z)'"G(al) S ".E%gk

e s z]- [4]

cost: 4k + O(1) multiplications

6) find the vectors v, and ¥, (see (3.29))
Ve, Ven] = [V4,8:] GT(6:)

cost: 4m multiplications

7) compute the vector py and c{w;),s(w;), the parameters of the rotation G{w,) (see (3.34) and
(3.35)

Pr =V + vz, where v, = —(V;,,Ek)
Pr Pk 1
[o ST T =y
" k

cost: 2m + O(1) multiplications

8) compute r}, the kth column of Ry, (see (3.36))

12



i ik
r
1k )
- = GMw) - GT(w)] -
. rab
o
f.:?k 0

cost: 4k multiplications

9) find the vector z, ,, (see (3.37))

Ve Best] = [0 GT(wy)

cost: 2m multiplications

The cost of step k is 12m + 12k multiplications. Thus the overall cost of the algorithm is
12mn + 6n° multiplications. Some additional saving would be possible if the fast rotation were
used. However, for simplicity of exposition we did not include this variant of the algorithm.
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